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Abstract 

 
Aims 

Regulation of vascular tone by 3’,5'-cyclic adenosine monophosphate (cAMP) involves many 

effectors, including the large conductance, Ca2+-activated, K+ (BKCa) channels. In arteries, 

cAMP is mainly hydrolyzed by type 3 and 4 phosphodiesterases (PDE3, PDE4). Here, we 

examined the specific contribution of BKCa channels to tone regulation by these PDEs in rat 

coronary arteries, and how this is altered in heart failure.  

Methods and Results 

Concomitant application of PDE3 (cilostamide) and PDE4 (Ro-20-1724) inhibitors increased 

BKCa unitary channel activity in isolated myocytes from rat coronary arteries. Myography was 

conducted in isolated, U46619-contracted coronary arteries. Cilostamide or Ro-20-1724 

induced a vasorelaxation that was greatly reduced by iberiotoxin, a BKCa channel blocker. Ro-

20-1724 and cilostamide potentiated the relaxation induced by the β-adrenergic agonist 

isoprenaline or the adenylyl cyclase activator L-858051. Iberiotoxin abolished the effect of PDE 

inhibitors on isoprenaline but did not on L-858051. In coronary arteries from rats with heart 

failure induced by aortic stenosis, contractility and response to acetylcholine were dramatically 

reduced compared to arteries from sham rats, but relaxation to PDE inhibitors was retained. 

Interestingly, however, iberiotoxin had no effect on Ro-20-1724- and cilostamide-induced 

vasorelaxations in heart failure. Expression of the BKCa channel α-subunit and of a 98 kDa 

PDE3A was lower in heart failure compared to sham coronary arteries while that of a 70 kDa 

PDE4B was increased. Proximity ligation assays demonstrated that PDE3 and PDE4 were 

localized in the vicinity of the channel. 

Conclusion 

BKCa channels mediate the relaxation of coronary artery induced by PDE3 and PDE4 inhibition. 

This is achieved by co-localization of both PDEs with BKCa channels, enabling tight control of 

cAMP available for channel opening. Contribution of the channel is prominent at rest and on 

β-adrenergic stimulation. This coupling is lost in heart failure. 
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Abbreviations 

AC: Adenylyl cyclase 

ACh: Acetylcholine 

α-s.u.: α-(pore forming) subunit of the BKCa channel 

β-AR: Beta-adrenergic receptor 

BKCa: Large conductance, Ca2+-activated K+ channel 

CA: Coronary artery 

cAMP: 3’, 5’-cyclic adenosine monophosphate 

cGMP: 3’, 5’-cyclic guanosine monophosphate 

Cil: Cilostamide 

CRC: Concentration-response curve 

IBTX: Iberiotoxin 

ISO: Isoprenaline 

HF: Heart failure 

Kv: Voltage-dependent K+ channel 

KATP: ATP-sensitive K+ channel 

K80: 80 mmol/L KCl -modified Krebs solution 

LADCA: Left anterior descending coronary artery 

LV: Left ventricle 

NPo: Average number of open channels 

NFo: Opening frequency of N channels 

PDE: Cyclic nucleotide phosphodiesterase 

PLA: Proximity ligation assay  

PP: Patch potential 

Ro: Ro-20-1724 

RyR: Ryanodine receptor 

VSMC: Vascular smooth muscle cell 
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1. Introduction 

Adequate vasoreactivity of the coronary circulation is key for cardiovascular homeostasis. 

However coronary reserve is altered in cardiac hypertrophy and heart failure (HF)1-5. Abnormal 

coronary flow in HF may originate from arterial wall remodelling, atherothrombosis and 

vascular rarefaction. In addition, endothelial-dependent vasodilatation and relaxant responses 

initiated by 3’,5'-cyclic adenosine monophosphate (cAMP)-elevating agents6-8, have been 

reported in patients with chronic HF1, 6 and animal models of HF7-9. 

Production of cAMP is achieved by adenylyl cyclase (AC), while its hydrolysis is catalyzed by 

cyclic nucleotide phosphodiesterases (PDEs). There are 11 described families of PDEs that 

encompass 21 genes and a myriad of variants10. PDE3 and PDE4 are classically reported to 

account for the major part of the Ca2+-independent, cAMP-PDE activity in vascular smooth 

muscle cells (VSMCs) from various species11, 12. Selective pharmacological inhibition of PDE3 

or PDE4 is well known to elevate cAMP concentration in tissue12, 13 and to promote relaxation 

of VSMCs in various vascular beds, including coronary artery (CA)13-15. This response is 

generally considered to be mediated by protein kinase A16, although cross-activation of protein 

kinase G17 and stimulation of exchange protein directly activated by cAMP (EPAC)18, 19 are 

also documented. The potential downstream mechanisms that can be targeted by these 

pathways are numerous, encompassing effectors of Ca2+ handling and regulators of the Ca2+ 

sensitivity of the contractile apparatus16. 

Nevertheless, it remains unclear whether PDE3 and PDE4 control evenly cAMP 

concentrations in all compartments of VSMCs, or rather work by restricting cAMP in the vicinity 

of some particular effectors that would be predominant for the relaxing effect evoked by PDE 

inhibition. Importantly, evidence gathered by our laboratory and others in various models 

suggest that specific PDE subfamilies are non-uniformly localized near discrete cellular 

effectors and thus delineate restricted compartments that hinder the spreading of cAMP10, 20. 

According to this paradigm, such a compartmentalization would allow fine tuning of cAMP 

signals, and disorganization of these signalling platforms in disease might jeopardize cellular 

homeostasis20. In blood vessels, the actual existence of tone–regulating signalling domains 

that would include PDE3 and PDE4 remains elusive. Although already examined in endothelial 

cells10, the potential tethering of PDE with molecular effectors of the cAMP pathway has never 

been investigated in contractile vascular smooth muscle layer. 

Large conductance, Ca2+-activated K+ (BKCa) channels are key regulators of vascular and non-

vascular smooth muscle tone21-23. Activation of BKCa channels by intracellular Ca2+ influx or 

local and transient Ca2+ release from the ryanodine receptor (i.e. Ca2+ sparks)23, 24 repolarizes 

membrane potential, limiting Ca2+ influx through voltage-gated channels and hence contraction 
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of the VSMCs. In addition, BKCa channels are well documented cellular effectors of cAMP 

signalling in VSMCs: i) pharmacological inhibition of BKCa channels reduces the relaxing effect 

of cAMP-elevating agents 25, 26; ii) the BKCa current is enhanced by such agents, an effect that 

may either be promoted directly by phosphorylation21, or indirectly via potentiation of Ca2+ 

sparks26, 27. Of note, BKCa channel activity was reported to be depressed in several animal 

models of cardiovascular disorders22 including HF28. 

Because the BKCa channel is a target of the cAMP pathway with pivotal role in regulation of 

vasomotricity, we tested the hypothesis that BKCa channels may be key effectors by which 

PDE3 and PDE4 control vascular tone in rat CA. We explored the modalities of such a 

coupling, and how this is impacted by the establishment of HF. 

 

2. Materials and Methods 

An expanded detailed version of Materials and Methods is available online. 

2.1 Animals and surgical procedures 

All animal care and experimental procedures conformed to the European Community guiding 

principles in the care and use of animals (2010/63/EU) and complied with French institution's 

application decrees for animal care and handling. Aortic stenosis was mimicked in rats under 

anaesthesia and analgesia, by placing a stainless steel hemoclip (0.6 mm-internal diameter) 

on the ascending aorta via thoracic incision, as previously described29. The surgical procedure 

was carried out on 3-week-old rats, under anaesthesia with a ketamine-xylazine mix (75 mg/kg 

– 10 mg/kg, respectively, 0.3 mL/100g, i.p.). Buprenorphine chlorhydrate (0.2 mL/100g, s.c.) 

was administered twice daily for 3 days beginning at the end of the surgery. Age-matched 

sham animals underwent the same procedure without placement of the clip. Operated animals 

were sacrificed 22 weeks after surgery, using sodium pentobarbital (150 mg/kg, i.p). 

2.2 Coronary artery isolation and smooth muscle cells preparation 

Male, 8-10-week-old Wistar rats or above-mentioned operated rats were anesthetized by 

injection of pentobarbital (150 mg/kg, i.p). The left anterior descending coronary artery 

(LADCA, inner diameter 100–300 µm) was carefully isolated and either freshly used for 

vascular reactivity, submitted to digestion steps in order to obtain isolated smooth muscle cells 

(SMCs) used for patch-clamp or in situ immunolabelling, or immediately frozen for biochemical 

analysis.  
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2.3 cAMP-PDE activity assay and PDE inhibitors 

cAMP-PDE activity was measured by a radioenzymatic assay according to the method 

reported by Thompson and Appleman30 and adapted to vascular tissue31. Reactions were 

carried out with or without PDE inhibitors, namely 100 µmol/L IBMX, as a non-selective PDE 

inhibitor, 1 µmol/L cilostamide (Cil.), as a selective PDE3 inhibitor and 10 µmol/L Ro-20-1724 

(Ro), as a selective PDE4 inhibitor (Table S1). IBMX-sensitive PDE activity, PDE3 and PDE4 

activities were defined as the fraction of total activity that was inhibited by corresponding 

inhibitor. 

2.4 Vascular reactivity measurement 

Assessment of vascular reactivity was conducted in segments of LADCA mounted on wire 

myograph (DMT, Aarhus, Denmark), as previously described32. Vessels were isolated and 

mounted in “Krebs” solution (in mmol/L): NaCl 119, KCl 4.7, CaCl2(H2O)2 2.5, MgSO4(H2O)7 

1.2, KH2PO4 1.2, glucose 11, NaHCO3 25, bubbled with 95% O2 and 5% CO2. All vessels were 

transiently challenged with 80 mmol/L KCl -modified Krebs solution (K80) to evaluate 

contractile capacity. Endothelial function was evaluated in all vessels by measuring the 

relaxation induced by 1 µmol/L acetylcholine (ACh) following contraction with the thromboxane 

A2 mimetic U46619 (0.3-3 µmol/L) so as to obtain a response as close as possible to the K80 

response. In experiments set out to study the vasorelaxant effect of PDE inhibition, the rings 

were contracted with U46619 (0.3-3 µmol/L). Once steady contraction was obtained, Cil was 

added. To study the additional effect of PDE4 inhibition, PDE4 inhibitor Ro (10 µmol/L) was 

added on top of Cil. In other vessels, this order was reversed. In other experiments, 

vasorelaxant agonists were added on U46619-contracted vessels in a stepwise, cumulative 

fashion to establish concentration-response curve (CRC). When addressing the role of ion 

channels or PDEs in relaxant responses, inhibitors or relevant vehicle were applied during 10 

min before U46619. Contractile responses were expressed in mN/mm and relaxant responses 

were expressed in %, relative to the contraction amplitude obtained with U46619. 

2.5 Patch-clamp experiments 

Unitary channel activity recording was performed in freshly isolated LADCA SMCs, using either 

cell-attached or inside-out configurations of the patch-clamp technique17, 33. Composition of 

extracellular bath solution was34 (mmol/L): KCl 140, MgCl2 10, CaCl2 0.1, Hepes 10, D-glucose 

30, pH=7.2 adjusted with KOH. High K+ concentration in the bath was used to clamp cell 

membrane potential close to 0 mV. Experiments were conducted at room temperature (20-

23°C). For cell-attached recordings, pipette (2-5 MOhm) solution34 contained (mmol/L): KCl 5, 

NaCl 110, MgCl2 1, CaCl2 2, Hepes 10, pH=7.4 adjusted with NaOH. In some experiments, 0.1 

µmol/L iberiotoxin (IBTX) was added in the pipette solution. Current was recorded at a patch 
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potential (PP) of 40 mV. Perfusion with PDE inhibitors was started after the vehicle (DMSO 

0.03%) had been perfused for 2-5 min and channel activity was stable. Channel activity was 

analyzed using PClamp 10 (Molecular Devices Inc., Sunnyvale, CA, USA) and average 

number of open channels (NPo), mean open time, opening frequency (NFo) and unitary current 

amplitude were calculated. For inside-out recordings, pipette contained (mmol/L): KCl 140, 

MgCl2 1, CaCl2 0.1, Hepes 10, pH=7.4 adjusted with KOH. Several PP were tested to build up 

the current-PP relationship of the conductance detected. 

2.6 Western Blot analysis 

Western blotting was performed as previously described using other vascular tissues31. Protein 

samples were prepared in standard loading buffer under reducing conditions and heated at 

95°C for 5 min except for BKCa detection. Following primary antibodies were used: rabbit anti-

PDE3A (1/10000; kind gift from Dr. Chen Yan, University of Rochester Medical Center, NY, 

USA), anti-PDE4A (1/5000); rabbit anti-PDE4B (1/1000), anti-PDE4D (1/1000), kind gifts from 

Dr. Marco Conti (University of California, San Francisco, CA, USA); and a mouse anti-BKCa α-

subunit (α-s.u. 1/500; #75-022, purchased from University of California Davis/NIH). GAPDH 

was used for normalization. Results were expressed relatively to the mean expression level in 

the sham group. 

2.7 Proximity ligation assay (PLA) 

PLA protocol was carried out according to the recommendation of manufacturer (Duolink® 

PLA, Sigma-Aldrich, St Quentin-Fallavier, France) using fixed LADCA SMCs. The following 

primary antibodies were used at the indicated dilutions: above-mentioned anti-BKCa α-s.u. 

(1/300), anti-PDE3A (1/400), anti-PDE4B (1/100), or a pan-PDE4 (rabbit, 1/100; #PD4-101AP, 

FabGennix, Frisco, TX, USA). Preparations were incubated overnight at 4°C with the anti-BKCa 

α-s.u. antibody and one type of anti-PDE antibody. Preparations incubated with only one 

antibody were used as negative control. Subsequent steps and image acquisition were 

performed using similar parameters for all slides testing a given antibody association. PLA 

images were acquired with a laser scanning confocal microscope (excitation: 554 nm; 

emission: 579 nm). Using the ImageJ 1.50b software all single cell images corresponding to 

one given couple of antibodies were converted into 8-bit and binarized using a common 

threshold value. Results were expressed as the percentage of cell area covered by PLA signal. 

Considering the average diameter of an antibody being 10 nm, this technique allows to detect 

co-localization of proteins in a 40 nm range. 
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2.8 Histological evaluation of coronary arteries 

Following sacrifice, some hearts were prepared for paraffin inclusion. Sections (5 μm-thick) 

were stained by the trichrome method and digitally scanned. Wall thickness over vessel 

diameter ratio was analyzed using the ImageJ software.  

2.9 Data and statistical analysis 

CRCs obtained for each vessel were fitted with the Hill equation using Prism 7 software 

(Graphpad Software, La Jolla, CA, USA) and pharmacological parameters, namely pD2 and 

maximal effect (Emax), were obtained. Data were expressed as mean ± SEM. N represented 

the number of rats while n represented the number of cells in electrophysiology and PLA 

experiments. Two-group comparisons were performed using either t-test, Welsh’s t-test, or 

non-parametric Mann-Whitney test when relevant, except for paired comparisons that were 

performed using the Wilcoxon signed-rank paired test. In comparisons involving more than 2 

groups, 1-way ANOVA followed by Holm-Sidak multiple comparison post-test was used. When 

comparing the effect of IBTX in sham and HF animals, 2-way ANOVA was used. Comparison 

of CRCs was performed using 2-way ANOVA for repeated measures. Where relevant, a nested 

ANOVA was performed to fit a mixed effect model. Values of P<0.05 were considered for 

statistical significance. 

 

3. Results 

3.1 Characterization of PDE3 and PDE4 activity in rat coronary artery 

Because previous studies12, 31 demonstrated that PDE3 and PDE4 were the most abundant 

cAMP-PDEs in vasculature, we first verified their respective contributions in rat LADCA. Total 

cAMP-hydrolyzing activity amounted to 76±11 pmol/min/mg (N=7 with tissue collected from 23 

rats). Selective PDE3 inhibitor, Cil, (1 µmol/L), and selective PDE4 inhibitor, Ro (10 µmol/L), 

inhibited 55±5% and 33±2% of the total PDE activity, respectively (N=5-6). In comparison, the 

non-selective PDE inhibitor, IBMX (100 µmol/L) decreased the total PDE activity by 91±3% 

(N=4). These results confirm that PDE3 and PDE4 are the main contributors to cAMP 

hydrolysis in rat LADCA. 

3.2 BKCa channels largely contribute to vasorelaxation induced by PDE3 and PDE4 

inhibition 

To address whether vasoactive effects of PDE3 and PDE4 inhibition are mediated by BKCa 

channels, we applied Ro or Cil on rat LADCA mounted on a wire-myograph and contracted 

with U46619 (0.3-3 µmol/L, Table S2A), in the presence or absence of IBTX (0.1 µmol/L), a 
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selective BKCa channel inhibitor (Table S1). Figure 1A-B shows that Cil and Ro relaxed 

contracted LADCA on average by 40±11% and 26±5%, respectively. Both Ro and Cil effects 

were greatly blunted by IBTX. Furthermore, joint addition of Cil and Ro induced a synergistic 

relaxation which was still significantly decreased by 50% upon IBTX pretreatment. These 

results provided evidence that, in rat LADCA, the vasorelaxant effect of PDE3 or PDE4 

inhibitors involves activation of BKCa channels. IBTX was still as effective in inhibiting relaxant 

response to combined Ro and Cil in LADCA rings where the endothelium had been voluntarily 

deteriorated (Figure 1C), showing that the coupling between PDE3/4 and BKCa channel takes 

place in the smooth muscle layer and is not influenced by endothelium-derived components. 

The contributions of alternative vascular K+ channels were also investigated in precontrated 

LADCA (Table S2A) using selective inhibitors (Table S1). Interestingly the Kv7 blocker XE991 

(30 µmol/L) also inhibited the action of combined Ro and Cil, while DPO-1 (1 µmol/L), 

stromatoxin-1 (0.1 µmol/L), selective blockers of Kv1 and Kv2 channels, respectively, or the 

KATP channel blocker glibenclamide (10 µmol/L) had no effect (Figure 1D). These data indicate 

that the relaxing effects of Ro and Cil in rat LDCA require specific activity of BKCa and Kv7 

channels. 

Ca2+ sparks can activate BKCa channels and regulate smooth muscle tone24. Thus, to address 

the relevance of this pathway in the relaxant effect of PDE3/4 inhibition in precontracted rat 

LADCA, we repeated the above protocol using high concentration of ryanodine (30 µmol/L, 

Table S1-S2A) to prevent Ca2+ release from internal stores via the ryanodine receptor (RyR). 

We found that, in contrast to IBTX, ryanodine did not significantly alter the relaxant responses 

induced by Cil and Ro. This indicates that ryanodine-sensitive BKCa channel regulation is not 

a prominent mechanism in the relaxation induced by PDE3/4 inhibitors in rat LADCA. 

3.3 Simultaneous inhibition of PDE3 and PDE4 increased BKCa channel activity 

In order to verify whether PDE3 and PDE4 control the activity of BKCa channels, we examined 

the effect of inhibition of PDE3 or PDE4 on BKCa channel activity in freshly isolated LADCA 

SMCs. Using inside-out patches in symmetrical [K+] and bath with high [Ca2+] (0.1 mmol/L), a 

unitary conductance of 221 pS was measured, consistent with properties of BKCa channel in 

VSMCs (Figure S1A). Using the cell-attached configuration of the patch-clamp technique and 

physiological K+ gradient, channel activity was observed in most membrane patches and was 

dramatically silenced when pipette solution contained IBTX (Figure S1B), strongly supporting 

that this conductance was carried by BKCa channels. Average unitary current in the presence 

of 0.03% DMSO amounted to 5.4±0.4 pA, at a 40 mV PP, and the channel open state 

probability NPo averaged to 0.029±0.006 (n=26), consistent with other reports in similar 

conditions17. Figure 2 and Table S3 show the effects of PDE3 and PDE4 inhibition on channel 
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activity in cell-attached patches. When perfused alone, Ro or Cil had no obvious effect on 

channel activity. However, simultaneous perfusion with Ro and Cil significantly increased NPo, 

mean open time and NFo. Thus BKCa channel activity can be regulated by PDE3 and PDE4. 

3.4 BKCa channels participate in the potentiating effect of PDE3 and PDE4 inhibitors on 

the vasorelaxation induced by β-adrenergic or AC stimulation 

So far, we have shown that BKCa channels are key players in the relaxing effect of PDE 

inhibitors on rat LADCA rings under resting cAMP level. In order to investigate the relevance 

of this phenomenon under stimulation of the cAMP pathway, the response of LADCA to 

isoprenaline (ISO), a β-adrenergic receptor (β-AR) agonist, was examined (Figure 3A-D, Table 

S2B). ISO induced a concentration-dependent relaxation of LADCA rings (pD2=7.7±0.1, 

Emax=90±4%, Figure 3A). Both PDE4 (Ro, 10 µmol/L) and PDE3 (Cil, 1 µmol/L) inhibition 

shifted the CRC of ISO to the left and increased its pD2 value to 8.3±0.1 and 8.2±0.1, 

respectively (P<0.01 for both), indicating a potentiating effect (Figure 3A and C). Pretreatment 

with IBTX reduced the Emax of ISO response to 54±4% (P<0.001) but not its pD2 (7.6±0.1; 

Figure 3B and D). Interestingly, neither Ro nor Cil had any effect on ISO response in the 

presence of IBTX (Figures 3B and D). These results indicate that BKCa channels are important 

effectors of the β-adrenergic vasorelaxation. They further highlight a key role of BKCa channels 

in mediating the potentiating effect of PDE4 inhibition and PDE3 inhibition on this β-adrenergic 

response.  

We also studied the effects of PDE3 and PDE4 inhibition on the response to a direct AC 

activator, L-858051 (L-85, a hydrophilic forskolin analog, (Figure 3E-H, Table S2C). L-85 

induced a concentration-dependent relaxation (pD2=6.5±0.1) which was potentiated by Ro and 

Cil (pD2=7.1±0.1, P<0.001, and 6.8±0.1, P<0.05, respectively; Figure 3E and G). IBTX 

hampered the response to L-85, by decreasing its pD2 value to 5.9±0.1 (P<0.001; Figure 3F 

and H). Interestingly, Cil and Ro still potentiated L-85 response in the presence of IBTX (Figure 

3F and H). These data indicate that the potentiating effect of PDE3/4 inhibitors on the 

vasorelaxant response to direct AC stimulation does not require functional BKCa channels. 

3.5 The coupling of BKCa channels with PDE3 and PDE4 is functionally absent in HF 

LADCA 

We then explored whether the above-described coupling between BKCa channels and PDE3/4 

is altered in HF situation, by using a rat model of chronic cardiac pressure overload31. 

Echocardiographic analysis in independent series of animals are presented in Table S4. Rats 

which had aortic stenosis surgery displayed significant increases in left ventricle (LV) mass, 

end diastolic and end systolic volumes, and a significant decrease in LV ejection fraction (EF) 

compared to sham-operated animals. Thus this model is featured with hypertrophic 
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remodelling of the myocardium, LV dilation and decreased systolic function. The weight of the 

lung normalized to tibia length (LW/TL) collected after sacrifice in rats with aortic stenosis 

correlated significantly with the decrease in systolic function (e.g. EF, P<0.05, Pearson 

correlation coefficients), and with the increase in LV dimensions (e.g. end-diastolic and end-

systolic volumes, P<0.05 and P<0.01, respectively) and parameters related to LV hypertrophy 

(e.g. LV mass, P<0.01). Heart weight correlated only with LV mass and posterior wall 

thickness, diastolic (P<0.01) and systolic (P<0.001). Because the outcome of the model 

showed great individual variability29, only rats with LW/TL ratio on sacrifice above 650 mg/cm, 

(as an evidence of lung congestion, a sign of HF) were included in the series used for 

experiments on LADCA (Figure 4A). Furthermore, histological examination revealed that CA 

from HF animals displayed thickening of their wall and perivascular fibrosis (Figure 4B). 

LADCA isolated from HF rats (HF-LADCA) showed decreased contractile capacity to both K80 

and U46619 (1 µmol/L), compared to LADCA isolated from sham rats (Figure 4C and Table 

S2D). Moreover, HF-LADCA displayed a significant reduction of the relaxant effect of ACh, an 

archetypical endothelium-mediated response, in comparison with sham (Figure 4D). Thus HF-

LADCA are characterized by an alteration of their contractile capacity, accompanied by signs 

of endothelial dysfunction. 

As already shown above, Ro relaxed sham-LADCA and this effect was prevented by IBTX 

(Figure 5A). By contrast, the relaxant response to Ro was not affected by IBTX (Figure 5A). 

Cil effect was less robust in this series in sham, but was globally higher in HF (P<0.01, 2-way 

ANOVA), with no effect of IBTX. (Figure 5B). Furthermore, upon simultaneous application of 

Ro and Cil, synergistic relaxant responses were observed in both HF- and sham-LADCA but 

the response was depressed by IBTX in sham-LADCA only (Figure 5C). Therefore, 

contribution of BKCa channel to the relaxing effect of PDE3/4 inhibition is lost in HF-LADCA. 

3.6 Expression level of BKCa α-subunit, PDE3 and PDE4 in HF-LADCA 

In order to provide a molecular basis that would explain this last result, we characterized the 

expressions of BKCa channel and PDE3/4 in sham- and HF-LADCA (Figures 6 and S2). The 

amount of the pore-forming α-s.u. of the BKCa channel was about half-decreased in HF- 

compared to sham-LADCA (Figure 6A). Quantification of PDE3A revealed a 2-fold decrease 

in a short, 98 kDa isoform, whereas a robust 4-fold increase in the amount of a 70 kDa PDE4B 

isoform was found in HF- compared to sham-LADCA (Figure 6B). PDE4A and PDE4D did not 

reveal any significant difference between HF and sham. 
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3.7 Proximity between PDE3/4 isoforms and BKCa channels 

In order to reveal whether PDE isoforms localize in the vicinity of BKCa channels, experiments 

using PLA were performed in SMCs freshly isolated from either HF- or sham-LADCA. In sham-

LADCA SMCs, PLA signals were detected using the antibody against the α-s.u. of the BKCa 

channel associated with either a PDE3A antibody, a pan-specific PDE4 antibody (documented 

to detect PDE4A and PDE4D isoforms) or a PDE4B antibody (Figure 7). Controls incubated 

with only one of these antibodies showed no signal except for the pan-specific PDE4 antibody 

(Figure S3). However, this signal was considered to be negligible compared to the signal 

obtained by coupling with anti-BKCa antibody. Quantification and mixed model analysis 

revealed no significant changes of the PLA signals in HF-LADCA cells. 

 

4. Discussion 

Here, we addressed the extent and modalities of the contribution of BKCa channels in mediating 

the vasodilating properties of PDE3 and PDE4 inhibitors. This was performed using rat LADCA 

isolated from either healthy rats or animals with severe HF. We report novel findings: (i) The 

existence of a signalosome involving PDE3/4 and BKCa channels is supported by PLA data 

that revealed in situ spatial proximity between PDE isoforms and the channel within a 40 nm 

range. (ii) PDE3 and PDE4 control BKCa channel activity. (iii) The relative contribution of BKCa 

channel to the relaxing effects of selective PDE inhibitors depends on the status of cAMP 

synthesis (either unstimulated, stimulated via -AR, or direct AC stimulation) and is globally 

equivalent for PDE3 and PDE4. (iv) Inhibition of the RyR did not affect the relaxant responses 

to PDE3 or PDE4 inhibition. (v) In a model exhibiting signs of severe HF associated with 

hypertrophic remodelling of the myocardium, LV dilation and decreased systolic function, the 

contribution of BKCa channel to the regulation of coronary tone by PDE3 and PDE4 

disappeared, although PDE3 and PDE4 inhibitors were still able to relax the vessels. This was 

associated with decreased expression of BKCa channel -s.u. and of a short form of PDE3A. 

Altogether, these data provide new insights on how regulation of a specific cAMP effector by 

PDEs translates into fine-tuning of the vascular tone. Moreover, our study provides an 

unprecedented observation of an altered coupling between vascular PDEs and a cAMP 

effector, namely the BKCa channel, in a cardiovascular disorder. 

4.1 Differential participation of BKCa channel to the relaxant action of PDE3/4 inhibition 

Effects obtained with PDE3 and PDE4 inhibitors at selective concentrations (Table S1) were 

overall consistent with previous data obtained in various vascular beds11-13, 15, 31, 35. Using 

selective block with IBTX, we demonstrated that vasorelaxation by PDE3 or PDE4 inhibition in 
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rat LDCA depended substantially on BKCa. Few studies formerly explored such participation of 

BKCa channels in the relaxation evoked by PDE3/4 inhibition in other vascular beds. Regarding 

PDE3 inhibition, BKCa inhibitors showed either no or little effect in human or guinea-pig 

pulmonary artery (PA), respectively36, 37. In line with our study, Li et al.38 reported that relaxation 

of rabbit aorta by cilostazol, a PDE3 inhibitor, was almost suppressed by the BKCa channel 

blocker paxilline. Considering PDE4 inhibition, a couple of reports mentioned that the relaxant 

effect of rolipram was only partially inhibited by BKCa inhibitors in human PA36 and porcine CA13. 

Although heterogeneity of conclusions among reports may originate from diversity of protocols 

used (e.g. type and concentration of contractile agonist or PDE inhibitor used), the relative 

contribution of BKCa channels may also vary among vascular beds and species. 

According to our data, Kv7 channels are interesting supplementary candidates for mediating 

the effects of PDE3 and PDE4 inhibitors. Kv7.1, Kv7.4 and Kv7.5 subunits were reported to be 

robustly expressed in rat CA39 and inhibited by 30 µmol/L XE991 (Table S1). Accumulating 

evidence suggest that Kv7 act in parallel with BKCa channels to mediate cAMP vasorelaxant 

pathways in various vascular beds19, 39. Since PDE4 inhibition with rolipram was recently 

shown to enhance native Kv7.5 while Kv7.4 was insensitive40, channels including the Kv7.5 

subunit may contribute to the XE991-sensitive action of PDE inhibitors in our study. 

We found that in rat LADCA SMCs, simultaneous PDE3 and PDE4 inhibition induced a clear 

stimulation of BKCa unitary channel activity. However, neither PDE3 nor PDE4 inhibitor used 

alone was sufficient to increase NPo. Cilostazol was recently reported to stimulate channel 

activity in rabbit aortic SMCs38. However, a high concentration was used (10 µmol/L) so that 

the effect may also be attributed to other PDEs, such as PDE541. Inhibition of a single PDE 

may not be sufficient for detectable increase of channel activity possibly because of 

overlapping activity of PDE3 and PDE4. Absence of endothelial-derived NO-cGMP pathway in 

isolated myocytes may enhance PDE3 activity and mask the effect of PDE4 inhibition9, 11, 12. 

Why then PDE3 inhibition had no apparent effect is unclear. At a low basal rate of cAMP 

production, inhibition of a single PDE family may only yield small or sporadic rise in cAMP 

concentration resulting in small increase in BKCa channel activity. It is accepted that, because 

input resistance of vascular smooth muscle cells is high (1010 ohm), very few ion channels 

need to be open to have substantial effect on membrane potential24. Therefore, it is possible 

that even hardly detectable activation of BKCa channel may evoke relaxation of SMC. 

In line with earlier work focusing on other vascular beds12, 35, our data in CA show that inhibitors 

of PDE3 and PDE4 potentiate the relaxant responses to ISO, a receptor-mediated cAMP-

elevating agent, and L-85, a direct AC activator. Besides, responses to these stimulators were 

inhibited by IBTX, an observation consistent with previous studies25. Interestingly, IBTX 

inhibited the action of Ro and Cil only under β-AR stimulation, but not under broad AC 
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stimulation. This suggests that β-AR-stimulated cAMP is preferentially controlled by PDEs 

acting on BKCa channels, while L-85 response is impeded by PDEs acting on other effectors. 

This would be consistent with compartmentalization of cAMP in these cells, created by 

signalling domains including PDE3/4, BKCa channel and β-AR. A signalosome involving BKCa 

channels, β2-AR, L-type Ca2+ channels and the scaffolding protein AKAP79/150, was 

previously characterized in VSMCs42. In other cell types, PDE4D was detected in a 

macromolecular complex involving β2-AR whereas PDE4B was associated with the L-type 

Ca2+ channel (reviewed in Mika et al., 201220). To our knowledge, there is no available 

evidence for localization of PDE3 isoforms in such sarcolemma complex involving β-AR. Here, 

we took advantage of the novel PLA technique to show that PDE3 and PDE4 isoforms are 

localized in the vicinity of BKCa channels in LADCA SMCs. Nevertheless, resolution of this 

technique is limited since two antigens as far as 40 nm from each other can generate a PLA 

signal. Further data supporting the existence of a macromolecular complex might be given by 

biochemical methods although these are challenging to use in native small arteries yielding 

small amount of material. Yet, our data offer new insights toward the characterization of a new 

signalling complex with important functional relevance in regulating arterial tone under β-AR 

stimulation. Since recent studies in bladder SMCs showed that PDE4 inhibition elevated BKCa 

activity by stimulating Ca2+ release43, 44, it was of interest to address whether this coupling was 

relevant in vascular SMCs. Our data did not support a major role of such a mechanism in the 

vasorelaxant effects of Cil and Ro in unstimulated conditions. This implies that Ca2+ 

participating to BKCa activation may rather originate from Ca2+ influx23. 

4.2 Contribution of BKCa channel to the relaxant action of PDE3/4 inhibition is lost in HF 

Importantly, by clear contrast with age-matched sham animals, BKCa channels did not mediate 

the relaxant effect of PDE3 and PDE4 inhibitors in arteries from HF rat. This indicates that the 

relaxation was mediated by other mechanisms than BKCa channels activation, which may 

include action on other ion channels, increased Ca2+ pumping, decreased Ca2+-sensitivity of 

the myosin light chain phosphorylation, or uncoupling of contractile machinery16. A 

straightforward explanation would be that collapse of the IBTX-sensitive contribution was a 

direct consequence of the decrease of the amount of BKCa channel α-s.u. observed in HF-

LADCA. Such a down-regulation of BKCa channel expression was previously described in 

mesenteric arteries from mice which developed HF following myocardial infarction28 and in 

other models of cardiovascular disorders22, and was generally associated with a reduced 

amount of the channel α- and/or β-s.u. Data in CA, however, are scarce: a study reported no 

alteration of channel expression in a rat model with cardiac hypertrophy following injection of 

ISO45. In the latter work, however, animals presented only mild remodelling, whereas the rats 
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studied here were submitted to chronically elevated afterload and displayed dramatic cardiac 

hypertrophy and lung congestion. 

In parallel, we report a decrease of a 98 kDa PDE3A isoform, together with a marked increase 

in a 70 kDa PDE4B isoform in the HF-LADCA. Decrease in PDE3A expression was reported 

to be a feature of SMC switching to a proliferative phenotype46, consistent with the intense 

vascular wall remodelling that was seen in the CA from HF rats. Robust increase in the 70-

kDa PDE4B was also observed in aorta using the same model. Thus this alteration may 

constitute a hallmark of remodelling vascular tissue, at least in HF. 

A limitation to our study was that contractility of LADCA from rats with HF was strikingly 

reduced compared to sham (Figure 4C) and this was associated with wall thickening and 

remodelling. In contrast, contractility was slightly increased in aortic rings from rat submitted 

to the same model9. Exposure of both vascular beds to contrasted hemodynamic stress 

(LADCA being upstream the stenosis whereas aorta being downstream) may explain 

differential alteration of contractility. Still, a milder aortic banding model in guinea pig yielded 

CA with thickened wall but normal active media stress8, while septal arteries from rats with 

congestive HF five weeks following myocardial infarction displayed quasi-normal structure with 

higher response to contractile stimuli47. Thus loss of reactivity of CA in our study may be related 

to specific hemodynamic stress caused by severe stenosis rather than deterioration of 

myocardial function. The exact mechanisms remain to be determined and may include 

deleterious wall remodelling with a loss of muscular capacity. The conclusion of our study will 

have to be taken cautiously when extended to other forms of HF such as post-myocardial 

infarction and HF with preserved ejection fraction. 

Coronary reserve is well known to be altered in severe cardiac hypertrophy, including in 

patients or animal models submitted to chronic afterload4, 5. The observation that combined 

PDE3 and PDE4 stimulation yield almost maximal relaxation of LADCA suggests that dilatory 

mechanisms are still functional, although the BKCa component is apparently abolished. 

Because our study focused on large arteries mounted on an isometric myograph, caution must 

be taken when extending our conclusions to in vivo changes in coronary reserve, which does 

not depend solely on vasodilatory mechanisms, but also on basal blood flow and minimal 

coronary resistance in the whole myocardium circulation. 

4.3 Conclusion 

In conclusion, this study identifies cAMP-PDE–BKCa channel coupling as a key signalling 

pathway for fine tuning of vascular tone (Figure 8). Our results demonstrate that the 

contribution of this mechanism to global tone regulation by PDEs varies depending on the 
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mode of cAMP stimulation and in pathophysiological context of HF. The last result may be 

explained by decreased expression of BKCa channel in HF. Further studies are needed to 

delineate the structural determinants of cyclic nucleotide compartmentation among various 

effectors in the vascular smooth muscle and how they are modified in disease. 
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9. Figure Legends 

Figure 1. BK
Ca

 channel inhibition inhibited the relaxant effect of cAMP-PDE inhibitors in 

rat LADCA. Selective PDE4 inhibitor (Ro, 10 µmol/L), or PDE3 inhibitor (Cil, 1 µmol/L), or both 

inhibitors were applied on LADCA rings contracted with U46619 (U46, 0.3-3 µmol/L) in the 

presence of BK
Ca

 channel inhibitor IBTX (A, B, C, 0.1 µmol/L), various ion channel inhibitors 

(D) or relevant vehicle (veh., A-D). A: Examples of traces obtained in the absence (veh., left-

hand side) or in the presence of IBTX (right-hand side). B: Scatter plot showing individual data 

points and mean relaxation ± SEM, in percentage of initial contraction. (+): IBTX; (-): Control. 

C: Relaxant effect by Ro + Cil was still inhibited by IBTX in rings after the endothelium was 

voluntarily damaged (endo
(-)

). D: Relaxant effect of combined application of Ro and Cil was 

not altered by either ryanodine (30 µmol/L), glibenclamide (glib.,10 µmol/L), DPO-1 (1 µmol/L), 

or STX (0.1 µmol/L), but was reduced by XE991 (30 µmol/L). Shown are individual data and 

means ± SEM. N=5-13. **: P<0.01, ***: P<0.001 (Mann-Whitney test). ###: P≤0.001 (ANOVA 

followed by Holm-Sidak’s multiple comparison test). 

Figure 2. Ro (10 µmol/L) together with Cil (1 µmol/L) increased NPo, mean open time and 

NFo of BKCa channels in LADCA SMCs. Both inhibitors had no significant effect when used 

alone. A: Data from 3 independent cell-attached patches are shown, during DMSO perfusion 

(a, b and c) and during Ro+Cil perfusion of the same cells (a’, b’ and c’, respectively). Patch 

potential was 40 mV. NPo associated to the displayed traces are indicated. Amplitude 

histograms generated from the whole analysed period in each condition are also shown. B-D: 

Summary individual (grey dots) and mean±SEM (black lines) data of NPo (B), mean open time 

(C) and opening frequency (NFo, D) are presented. n=5-11 cells from N=5-7 rats. *: P<0.05 vs. 

DMSO (Wilcoxon signed-rank test performed on means per rat). 

Figure 3. Effect of PDE4 or PDE3 inhibition on concentration-response curves to 

isoprenaline or L-858051 in LADCA rings. PDE4 (Ro, 10 µmol/L: A, B, E, F) or PDE3 (Cil 1 

µmol/L: C, D, G, H) inhibition was tested on CRCs to isoprenaline (ISO, A-D) or L-858051 (L-

85, E-H) in LADCA rings incubated with IBTX, in the right panels, or relevant vehicle, in the left 

panels. In the right panels (B, D, F, H), dashed line represents the CRC fit from control data. 

N=6-14. ***: P<0.001 (2-way ANOVA for repeated measures). 

Figure 4. Rats with aortic stenosis exhibit signs of heart failure, remodelling of the wall 

of large coronary arteries and altered vasoreactivity of LADCA. A: Summary values of 

organ weight over tibia length (TL) ratios for heart, lung, kidney and liver, as well as body 

weight from sham rats and rats with aortic stenosis included for LADCA isolation and histology 

(HF; lung weight/TL >650 mg/cm). N=23-26; $$$: P<0.001, Welsh’s t-test). B: Representative 
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left ventricle cross-sections from sham and HF rats stained with Masson trichrome, displaying 

large arteries. The scatter plot represents quantification of [wall/vessel diameter] ratio in large 

arteries (n=22-23 from N=3 rats per group; #: P<0.05, nested ANOVA). C-D: Vasoreactivity 

in LADCA from sham and HF rats: contractile response to K80 and 1 µmol/L U46619 (C; N=7 

rats) and relaxant response to ACh (D; N=7 rats).  **: P<0.01, ***: P<0,001 (Mann-Whitney 

test); §§§: 2-way ANOVA for repeated measures. Plots show mean values ± SEM. 

Figure 5. BK
Ca

 channel inhibition has no effect on the relaxant effect of PDE3/4 inhibitors 

in HF-LADCA. PDE4 inhibitor (A, Ro, 10 µmol/L), PDE3 inhibitor (B, Cil, 1 µmol/L) or both 

inhibitors (C) were applied on U46619-contracted (1-3 µmol/L) LADCA rings from sham and 

HF rats in the presence of IBTX (+) or vehicle (-). Scatter plot showing individual data points 

and mean relaxation ± SEM, in percentage of initial contraction. N=4-7. *: P<0.05, **: P<0.01 

(2-way ANOVA followed by Holm-Sidak test). In B, effect of Cil was overall significantly higher 

in HF compared with sham (P ≤ 0.01, 2-way ANOVA). 

Figure 6. Expression of BK
Ca 

and PDE proteins in sham and HF rat LADCA. Expression 

of BK
Ca

 α-s.u. (A), PDE3A, PDE4A, PDE4B and PDE4D (B, from left to right, respectively) 

proteins in LADCA isolated from sham or HF rats. Representative immunoblots obtained for 

these proteins and matching GAPDH signal are shown. Arrows indicate the bands that were 

quantified. Scatter plots show individual values and mean ± SEM from relative densitometric 

quantification normalized to GAPDH and averaged signal in sham. N=5 for BK
Ca

 α-s.u. and 

PDE4B, N=9 for PDE3A, N=6 for PDE4A and N=4 for PDE4D. *: P<0.05, **: P<0.01 (Mann 

and Whitney test). 

Figure 7. Evidence for PDE3/4-BK
Ca

 -subunit signals. PLA using an antibody against BK
Ca

 

-subunit associated with anti-PDE3A (A), anti-PDE4 (pan specific, B) or anti-PDE4B (C) 

antibody in sham- (images in upper panel, empty circles in scatter plot) or HF- (images in 

middle panel, filled circles) LADCA SMCs. Representative images are shown. Scale bar: 5 µm. 

Inset shows transmitted light image. Plots in lower panels show respective quantifications of 

PLA signal (individual data and mean ± SEM) of n=12-84 cells from 2-3 rats. 

Figure 8. Schematic representation of the differential contribution of BKCa channels to 

the relaxant effects of PDE3 and PDE4 inhibitors in rat LADCA. A. Under basal cAMP 

production rate, Ro and Cil produce a relaxation in which the BKCa channels play essential role. 

K+ channels limit depolarization of cell membrane potential, resulting in closing L-type Ca2+ 

channels (LTCC), reduction of intracellular calcium concentration ([Ca2+]i) and relaxation. This 

would be facilitated by proximity of PDE3 and PDE4 isoforms with the channel. KV7 channels 
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also participate in the action of PDE inhibitors. B. Under stimulation of cAMP production via 

the -AR (ISO), Ro and Cil action depends mostly on coupling with BKCa channels. Under 

broad stimulation of the AC with L-85, participation of the channel is not apparent, and other 

effectors may mediate the relaxation. C. In LADCA from rats with heart failure, participation of 

the channel to the relaxant action of Ro and Cil is absent, in contrast with sham. Variation of 

expression of BKCa (), short form of PDE3A () and PDE4B () proteins are shown. 
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1. Detailed Material and Methods 

1.1 Animals and surgical procedures 

All animal care and experimental procedures conformed to the European Community guiding 

principles in the care and use of animals (Directive 2010/63/EU of the European Parliament) 

and authorizations to perform animal experiments according to application decrees were 

obtained from the French Ministry of Agriculture, Fisheries and Food (No. C92-019-01, 03 

August 2016). A total of 164 rats were used in the experiments described here. This included 

8-12-week-old, male Wistar rats that were used for basic physiological exploration. In addition, 

37 rats with HF sacrificed 22 weeks after surgical stenosis of the ascending aorta were used. 

The surgical procedure was carried out on 3-week-old rats, under anaesthesia with a ketamine-

xylazine mix (75 mg/kg – 10 mg/kg, respectively, 0.3 mL/100g, i.p.). Aortic stenosis was 

mimicked by placing a stainless steel hemoclip (0.6 mm-internal diameter) on the ascending 

aorta via thoracic incision, as previously described1, 2. Also, 32 age-matched control animals 

underwent the same procedure without placement of the clip. Buprenorphine chlorhydrate (0.2 

mL/100g, s.c.) was administered twice daily for 3 days beginning at the end of the surgery. 

Echocardiography was performed at 22 weeks after surgery on 11 SHAM-operated and 14 

stenosed rats using a 12 MHz transducer (Vivid 7, General Electric Healthcare). Anaesthesia 

was induced and maintained using 3% and 1.5% isoflurane, respectively. Two-dimensional-

guided (2D) M-mode echocardiography was used to determine wall thickness and left 

ventricular chamber diameter at systole and diastole, and contractile parameters such as 

fractional shortening and ejection fraction. Left ventricular mass (LVM, mg) was calculated 

according to the Penn formula home-adapted for the rat heart: 

𝐿𝑉𝑀 = 1.04 . (𝐼𝑉𝑆𝑑 + 𝐿𝑉𝐼𝐷𝑑 +  𝐿𝑉𝑃𝑊𝑑) 3 − 𝐿𝑉𝐼𝐷𝑑3, 

 with IVSd: end-diastolic interventricular septum thickness; LVIDd: end-diastolic LV internal 

diameter; LVPWd: end-diastolic LV posterior wall thickness3. Volume (V) of the left ventricular 

chamber was evaluated using the Teicholz formula: 

𝑉 =
7𝐷3

2.4+𝐷
 , 

 where D is the diameter of the chamber4. 
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1.2 Materials 

Cilostamide (Cil) was purchased from Tocris Bioscience (Bristol, UK) and Ro-20-1724 (Ro) 

from Calbiochem (Merck Chemicals Ltd, Nottingham, UK). 3-isobutyl-1-methylxanthine 

(IBMX), acetylcholine (ACh), isoprenaline (ISO) phentolamine, trypsin inhibitor (T6522), bovine 

serum albumin, dithiothreitol (DTT), glibenclamide and snake venom from Crotalus atrox were 

supplied by Sigma Aldrich (Saint Quentin-Fallavier, France). Iberiotoxin (IBTX), a selective 

blocker of BKCa channels5, was bought from Latoxan (Valence, France) or Smartox 

Biotechnologie (Saint Martin d’Hères, France), ryanodine and stromatoxin-1 (STX) from 

Alomone (Jerusalem, Israel), U46619 and XE991 from Interchim (Montluçon, France) and L-

858051 (L-85) from Enzo Life Science (Villeurbanne, France). Diphenyl phosphine oxide-1 

(DPO-1) was purchased from SantaCruz Biotechnology (Dallas, TX, USA).  

Ro, Cil, ryanodine, glibenclamide and DPO-1 were dissolved in dimethylsulfoxyde (DMSO). 

Final concentration of DMSO usually did not exceed 0.03%, except for experiments using 

ryanodine where maximal DMSO amounted to 0.33%. ISO was prepared in ascorbic acid (1%). 

Other pharmacological agents were dissolved in water. For each given experiment, amounts 

of vehicle (water or DMSO) were matched in all groups studied. The following enzymes were 

used for tissue digestion: papain (Sigma Aldrich, P4762), collagenase H (Roche, 1074032 or 

Sigma Aldrich, C7926). All salts for solutions were from Sigma-Aldrich or Euromedex 

(Souffelweyersheim, France) 

 

1.3 Coronary artery isolation and smooth muscle cells preparation 

Rats were anesthetized by injection of pentobarbital (150 mg/kg, i.p.). The heart was quickly 

isolated and placed in an ice-cold “Krebs” solution of following composition (in mmol/L): NaCl 

119, KCl 4.7, CaCl2(H2O)2 2.5, MgSO4(H2O)7 1.2, KH2PO4 1.2, glucose 11, NaHCO3 25, 

bubbled with 95% O2 and 5% CO2 to maintain pH at 7.4. The heart was then pinned in a 

Sylgard®-coated dish filled with Krebs solution and the ventricle was carefully dissected to 

isolate the left anterior descending coronary artery (LADCA, inner diameter 100–300 µm). 

Dissecting solution was renewed every 10-15 min with cold, bubbled solution. Collected tissue 

was then frozen in liquid nitrogen and stored at -80°C, or freshly processed, according to the 

following relevant protocols. 

For isometric tension measurements, LADCA was cut into small segments of (0.5-2 mm length 

and mounted on a wire myograph (see relevant section below). 

Isolated smooth muscle cells were obtained as described previously6, with some minor 

modifications. Briefly, LADCA was placed into ice-cold dissociation medium (DM) composed 
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of (in mmol/L): NaCl 110, KCl 5, Hepes 10, KH2PO4 0.5, NaHCO3 0.5, taurine 10, EDTA 0.5, 

Glucose 10, CaCl2 0.2, MgCl2 2, pH7. Then tissue was incubated in papain 1.5 mg/mL in DM 

for 1 h, then during 6 min at 37°C in the presence of DTT (1 mg/mL) under gentle agitation. 

LADCA was then transferred in DM mixture containing collagenase (1.6 mg/mL) and trypsin 

inhibitor (1.6 mg/mL) and further incubated at 37°C for 4 min. Tissue was then washed 3 times 

with ice-cold DM and gently triturated using a blunt Pasteur pipette to obtain relaxed, spindle-

shaped SMCs. Undigested tissue was discarded, cells were centrifugated (200 g, 4°C, 5 min), 

re-suspended in 0.5 mL DM and kept on ice. For patch-clamp experiments, a similar protocol 

was used except that only 13 min papain digestion step was performed in DTT and bovine 

serum albumin (1 mg/mL). Cells were used within 7 h following digestion. 

 

1.4 cAMP-PDE activity assay 

cAMP-PDE activity was measured by a two-step radioenzymatic assay according to the 

method reported by Thompson and Appleman7. Frozen LADCA were homogenized in lysis 

buffer containing Hepes 20 mmol/L, NaCl 150 mmol/L, EDTA 2 mmol/L, NP-40 0.5% and 

microcystin 1 µmol/L. During the first step, protein extracts (10 µg) were incubated in a mix 

containing 10 mmol/L Tris-HCl (pH=8), 10 mmol/L MgCl2, 5 mmol/L β-mercaptoethanol, 1 

µmol/L cAMP (Sigma Aldrich), and 105 cpm of [3H]-cAMP (PerkinElmer, Villebon-sur-Yvette, 

France) for 25 min at 33°C. The reaction was performed in a final volume of 200 µL and allowed 

the cAMP hydrolysis by PDEs into 5’-adenosine monophosphate. The reaction was stopped 

by addition of 200 µL of “stop” solution (Tris-HCl 40 mmol/L, EDTA 10 mmol/L, pH=8) and 

boiling during 1 min. In the second step, an excess of 5’-nucleotidase (snake venom from 

Crotalus atrox, 1 mg/mL) was incubated with samples (20 min, 33°C) to convert 5’ adenosine 

monophosphate into adenosine. The enzymatic reaction products were separated by anion-

exchange chromatography using 1 mL of AG1-X8 resin (Bio-Rad, Marnes-la-Coquette, 

France) and quantified by scintillation counter. Reactions were carried out with or without 

inhibitors of PDEs, namely 100 µmol/L IBMX, as a non-selective PDE inhibitor, 1 µmol/L Cil, 

as a selective PDE3 inhibitor8 and 10 µmol/L Ro, as a selective PDE4 inhibitor9. IBMX-sensitive 

PDE activity, PDE3 and PDE4 activities were defined as the fraction of total activity that was 

sensitive to corresponding inhibitor. 
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1.5 Vascular reactivity measurement 

Each small segment of LADCA was mounted in the chamber of a small vessel myograph (620 

M, Danish Myo Technology A/S, Aarhus, Denmark) using 25 µm tungsten wire, as previously 

described10. Chambers were filled with Krebs solution, (see above “Coronary artery isolation 

and smooth muscle cells preparation” for composition), bubbled with 95% O2 - 5% CO2 mixture 

and warmed at 37°C. Data were digitized using a Powerlab 8/30 (AD Instruments, Paris, 

France) and acquired using the Labchart7 software (AD Instruments).Vessels underwent a 

normalization procedure which consisted in stretching the vessels stepwise to construct 

tension-circumference relationship. Rings were eventually set at an internal circumference 

corresponding to 90% of the circumference the vessel would have if submitted to a transmural 

pressure of 100 mmHg (13.3 kPa). After an equilibration period of 45-60 min, contractile 

capacity of the vessels was evaluated by challenging them with a modified Krebs solution 

containing 80 mmol/L KCl with equimolar substitution of NaCl. This depolarizing solution (K80) 

normally evoked robust contraction, and was left for 5 min. Then chambers were washed with 

a “Ca2+-free” modified-Krebs solution, containing no Ca2+ and supplemented with 0.1 mmol/L 

EGTA (Sigma-Aldrich), until the vessel was full relaxed and tension was stabilized. This 

allowed to suppress possible constitutive tone that would otherwise mask the minimum tension 

level. Then, normal Krebs solution was added for 5 min, “Ca2+-free” modified-Krebs solution 

was subsequently added for 3 min and K80 challenge was repeated. After an additional series 

of washes, the vessels were bathed in Krebs and used for various pharmacological protocols: 

(i) Endothelial function was evaluated in all vessels by measurement of the relaxant effect 

induced by 1 µmol/L ACh following contraction of the vessels with the thromboxane A2 mimetic 

U46619 (0.3- 3 µmol/L), so as to obtain a response as close as possible to the K80 response. 

In experiments involving 8-12-week-old rats, vessels relaxing less than 50% to ACh were 

excluded. (ii) In experiments set out to study the vasorelaxant effect of PDE3 inhibition, the 

rings were contracted with U46619 (0.3 – 3 µmol/L). Once stabilized contraction was obtained, 

1 µmol/L Cil (a concentration selective for PDE3 inhibition, Table S1) was added. To study 

additional effect of PDE4 inhibition, PDE4 inhibitor Ro (10 µmol/L, Table S1) was added on 

top of Cil. In other vessels, Ro was applied first and Cil was then added on the top. Data 

mentioned as “Cil + Ro” represented pooled data obtained using both sequences of compound 

addition. When addressing the role of ion channels in the relaxant effect of PDE inhibitors, 

inhibitors or relevant vehicle were applied during 10 min before contracting the vessels. (iii) In 

other experiments, vasorelaxant agonists (ACh, ISO, L-85) were added on U46619-contracted 

vessels in a stepwise, cumulative fashion to establish concentration-response curve (CRC). 

ISO was added in the presence of the α-adrenergic receptor antagonist phentolamine (10-5 M). 

Again, when relevant, Cil, Ro or IBTX were added at least 10 min before contraction. 
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Contractile responses were expressed in mN/mm and relaxant responses were expressed in 

%, relative to the contraction amplitude obtained with U46619. Tension level at the end of the 

last “Ca2+-free” challenge was considered to be the minimal tension from which amplitude of 

the response was calculated. 

 

1.6 Patch clamp 

Single channel recording was performed in freshly isolated LADCA myocytes, using either cell-

attached or inside-out configurations of the patch clamp technique11. Patch pipette, made from 

glass capillaries (Vitrex Medical A/S, Herlev, Denmark) pulled using a DMZ-universal puller 

(Zeitz-Instruments Vertriebs GmbH, Martinsried, Germany), had resistance of 2-5 MOhm. 

Cells suspended in 50 µL DM were allowed to settle 5-10 min on the bottom of a Petri dish 

and then gently covered by 3 mL of extracellular bath solution12 (in mmol/L: KCl 140, MgCl2 

10, CaCl2 0.1, Hepes 10, D-glucose 30, pH=7.2). High K+ concentration in the bath was used 

to bring cell membrane potential close to 0 mV and therefore to better control the patch 

membrane potential. Experiments were conducted at room temperature (20-23°C). 

For cell-attached recordings, pipette solution12 contained (in mmol/L): KCl 5, NaCl 110, MgCl2 

1, CaCl2 2, Hepes 10, pH=7.4 adjusted with NaOH. In some experiments, 0.1 µmol/L IBTX 

was added in the pipette solution. Generation of voltage commands and current acquisition 

were performed with Clampex (PClamp 10, Molecular Devices Inc.) through a Digidata 1440A 

and an Axopatch 200B amplifier (Axon CNS, Molecular Devices Inc., Sunnyvale, CA, USA). A 

gigaseal was obtained and current was recorded at patch potential (PP) of 40 mV (where PP= 

- applied voltage, due to the inverted output polarity in this configuration). Current was digitized 

at 10 kHz, filtered at 5 kHz (low pass Bessel filter). Different combinations of PDE inhibitors 

diluted in the bath solution were directly perfused over the cell using multiple pipes fused to a 

single manifold outlet. Perfusion with PDE inhibitor was started after the vehicle (DMSO 0.03%) 

had been perfused for 2-5 min and channel activity was stable. Ro and Cil superfusion 

immediately followed vehicle superfusion in 4 out of 11 cell-attached patches. In 4 other 

patches, (Ro+Cil) followed Ro alone superfusion, and the remaining 3 tests were following Cil 

alone superfusion. 

For analysis, traces were further low-pass filtered offline at 2 kHz. Channel activity in patches 

was idealized using the single channel detection tool of Clampfit (PClamp 10, Molecular 

Devices Inc.). Cursors were positioned so that analysis ranged over a minimum of 45 s to 5 

min period of stable channel activity (period of interest). Because a patch of cell membrane 

can often contain several active channels of undetermined number (N), indication of channel 

activity during a period of interest was given by the calculation of NPo, the average number of 
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open channels (or the probability of any channel being open at any level), defined as follows12, 

13: 

𝑁𝑃𝑜 =  ∑ 𝐿 𝑃𝐿

𝑁

𝐿=0

 

where PL is the probability that L channels are open. PL is given by the fraction of time spent 

by the current to a level corresponding to L channels opened, relative to the total duration of 

the period of interest. Mean open time was defined as the mean duration of a channel opening 

and given by13: 

𝑚𝑒𝑎𝑛 𝑜𝑝𝑒𝑛 𝑡𝑖𝑚𝑒 = 𝑁𝑃𝑜/𝑋 

with X being the total number of opening transitions per unit of time. The opening frequency of 

N channels in the patch (NFo) was given by dividing X by the total duration of the period of 

interest. Mean current amplitude (corresponding to the average amplitude of opening 

transitions at any level) were determined by a gaussian fit of amplitude histograms (bin 

width=0.2 pA). In case less than 10 events were present, arithmetic mean was used.  

For inside-out recordings, the following pipette solution was used (in mmol/L): KCl 140, MgCl2 

1, CaCl2 0.1, Hepes 10, pH=7.4 adjusted with KOH, allowing to work in symmetrical K+ 

condition. Several PP were tested, each during 15-30 s, to build up the current-PP relationship 

of the conductance detected. 

 

1.7 Western Blot analysis 

Frozen LADCA were homogenized in ice-cold “Rippa” buffer containing 50 mmol/L Tris-HCl 

(pH=8), 150 mmol/L NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS and a 

cocktail of protease and phosphatase inhibitors (cOmplete™ Protease Inhibitor CocktailTM, 

Sigma-Aldrich). Tissues were homogenized with a Precellys®24 (Bertin instrument, Montigny-

Le-Bretonneux, France) for 10 s and kept in ice for few minutes. Supernatant was collected 

following centrifugation at 12000 g, 4°C for 5 min. Before electrophoresis, samples were 

prepared in fresh mix of Laemmli buffer and β-mercaptoethanol. Samples were generally 

heated at 95°C during 5 min except for BKCa detection where samples were kept on ice. Similar 

amounts of protein samples (50 µg) extracted from sham and HF rat LADCA were subjected 

to SDS-PAGE (8%) and electrotransferred onto PVDF membranes (Millipore, Molsheim, 

France). Membranes were then blocked with 5% non-fat dry milk dissolved in Tris-buffered 

saline containing 0.1% Tween-20 (TTBS) for 1 h for PDE detection or 2 h for BKCa α-subunit 

detection. Membranes were then incubated overnight at 4°C with primary antibodies: a rabbit 

polyclonal antibody anti-PDE3A (1/10000; kind gift from Dr. Chen Yan, University of Rochester 
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Medical Center, NY, USA), anti-PDE4A (1/5000), a rabbit polyclonal anti-PDE4B (1/1000), and 

anti-PDE4D (1/1000), kind gifts from Dr. Marco Conti (University of California, San Francisco, 

CA, USA), a mouse monoclonal antibody anti-BKCa α-subunit (1/500; #75-022, purchased from 

University of California Davis/NIH NeuroMab Facility), and anti-GAPDH (1/4000; #2118, Cell 

Signalling Technology, Danvers, MA, USA). After washing 3 times with TTBS, the membranes 

were incubated 1 h at room temperature with either horse anti-mouse IgG-HRP (1/3000; 

#7076, Cell Signalling) or goat anti-rabbit IgG-HRP (1/10000; #sc-2004, Santa Cruz 

Biotechnology Inc., Dallas, TX, USA). Detection was performed with chemiluminescence 

reagent (Pierce ECL Western blotting substrate, Thermo Fisher Scientific, Waltham, MA, 

USA). For quantification, tiff images were analyzed with ImageJ 1.50b software. Signals were 

submitted to densitometric analysis and GAPDH was used for normalization. Results were 

expressed relatively to the mean expression level in sham group. Controls for antibodies were 

provided by the manufacturer or available in Abi-Gerges et al. 14 and in Figure S2. 

 

1.8 Proximity ligation assay (PLA) 

Freshly isolated LADCA SMCs from HF and sham rats were seeded on glass coverslips and 

fixed in 4% (wt/vol) paraformaldehyde (PFA) prepared in phosphate buffered saline (PBS) for 

10 min at room temperature. Following 3 washes with PBS, cells were permeabilized with 0.1% 

Triton X-100 and 0.2% BSA for 10 min at room temperature. Then, coverslips were incubated 

in a quenching solution (50 mmol/L NH4Cl prepared in PBS) aiming at minimizing 

autofluorescence and washed 5 min in PBS. PLA protocol was carried out according to the 

recommendation of manufacturer (Duolink® PLA, Sigma-Aldrich). Primary antibodies were 

used at the indicated dilutions: anti-BKCa α-subunit (1/300), anti-PDE3A (1/400), anti-PDE4B 

(1/100), or a pan-PDE4 (rabbit polyclonal, 1/100; #PD4-101AP, FabGennix, Frisco, TX, USA). 

Preparations were incubated with anti-BKCa α-subunit antibody and one type of anti-PDE 

antibody (100 µL) overnight at 4°C. Preparations incubated with only one antibody were used 

as negative control. After washing, incubation of relevant secondary antibodies, ligation, and 

amplification were performed. After the final wash with appropriated buffer, the slides were 

washed with purified water and mounted in “Mowiol” medium (Mowiol® 4.88 g, glycerol 6 g, 

TrisHCl 0.2 mol/L; all compounds from Sigma-Aldrich) on glass slides. PLA images were 

acquired with a laser scanning confocal microscope (SP5, Leica Microsystems SAS, Nanterre, 

France) equipped with an x60 water immersion objective. The presence of PLA probes was 

revealed by excitation with a white light laser at 554 nm and emission was collected at 579 nm, 

using similar parameters for all slides testing a given antibody association. Because 

preliminary experiments using PDE4B and BKCa α-subunit antibodies led to saturating PLA 

signal (high fluorescence level and coalescence of the puncta), polymerization time for this 
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specific condition was reduced to 90 min (rather than 100 min) to dampen the signal. Tiff 

images were created and analyzed using the ImageJ 1.50b software. All single cell images 

corresponding to one given couple of antibodies were converted into 8-bit and binarized using 

a common threshold value. Threshold value was set arbitrarily to clearly discriminate 

fluorescence puncta from background. Results were expressed as the percentage of cell area 

covered by PLA signal. This technique allows to detect co-localization of proteins in a 40 nm 

range, based on the average diameter of an antibody being 10 nm 

(https://www.sigmaaldrich.com). 

 

1.9 Histological evaluation coronary arteries 

Following sacrifice some hearts were cannulated, perfused first 3 min with high K+ Krebs and 

then with 10% formalin for 30 min at a flow rate of 8 mL/min. Hearts paraffin sections (5-μm 

thick) were stained by the trichrome method. Slides were scanned by the digital slide 

scanner NanoZoomer 2.0-RS (Hamamatsu, Palaiseau, France) allowing an overall view of 

the samples. Images were digitally captured from the scanned slides using the NDP.view2 

software (Hamamatsu). Image analysis was performed using ImageJ software. Only arteries 

that were cut in cross section were analyzed. Because some remodeled arteries displayed 

expanded perivascular area, exact dimension of the vessel could not be determined 

accurately. Thus wall thickness (w) was defined as the thickness of media plus intima. It was 

measured as the mean distance between the limit of the lumen and the external limit of the 

media (identified as purple with distinct SMC, as opposed to bright blue area without cells 

that included fibrosis extending into the adventitia and myocardium). Between 6 and 14 

values of wall thickness were taken for each vessel, depending on the regularity of the 

dimension. Luminal diameter (l) was defined as:  

𝑙 =  2. √𝐿/𝜋, 

 with L defined as the measured luminal area. Diameter of the vessel (d, excluding adventitia) 

was defined as: 

𝑑 = 𝑙 + 2𝑤. 

Only large arteries similar to the ones that were obtained after dissection were analysed. 

Diameters “d” of analyzed arteries averaged to 177±16 µm for sham (n= 23) and 188±16µm 

for HF (n=22). Data were expressed as:  w/d in order to obtain an index of the thickness of 

the vascular wall proportionally to vessel size15. 

 

https://www.sigmaaldrich.com/
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1.10 Data and statistical analysis 

CRCs obtained for each vessel were fitted with the Hill equation using Prism 7 software 

(Graphpad Software, La Jolla, CA, USA) and pharmacological parameters, namely pD2 and 

maximal effect (Emax), were obtained. pD2 was defined as the negative logarithm of EC50, giving 

the concentration of drug required to promote half maximal response. Data were expressed as 

mean ± SEM. N represented the number of rats while n represented the number of cells in 

electrophysiology and PLA experiments. Where relevant (values normally distributed), 2-group 

comparisons were performed using either t-test (variances equal) of or Welsh’s t-test 

(variances unequal). When normality of distribution could not be assumed, non-parametric 

Mann-Whitney test was used. Paired comparisons were performed using the Wilcoxon signed-

rank paired test to analyze the effect of addition of PDE inhibitors on the single channel activity 

vs. Control in the same cell. In comparisons involving more than 2 treatments, 1-way ANOVA 

followed by Holm-Sidak multiple comparison post-test was used. When comparing the effect 

of IBTX in sham and HF animals, 2-way ANOVA was used. Comparison of CRCs was 

performed using 2-way ANOVA for repeated measures. Values of P<0.05 were considered for 

statistical significance. Where relevant a nested ANOVA was performed to fit a mixed effects 

model. Comparison between sham and HF groups was treated as a fixed effect, while the 

animal was treated as a random effect. Nested ANOVA was performed using R software (R 

version 3.3.3, The R Foundation for Statistical Computing, www.r-project.org)16. 
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2. Supplementary Tables 

2.1 Table S1: Reference supporting selectivity of pharmacological inhibitors used. 

Compound Concentration (µmol/L) Target inhibited Reference 

iberiotoxin (IBTX) 0.1 BKCa channel Galvez et al., 1990 5 

ryanodine 30 ryanodine receptor 
Jaggar et al., 2000 17, 

Sutko et al., 1997 18 

DPO-1 1 Kv1 channel Lagrutta et al. 2006 19 

stromatoxin-1 0.1 Kv2 channel Escoubas et al., 2002 20 

XE991 30 Kv7 channel Tsvetkov et al., 2017 21 

glibenclamide 10 KATP channel Standen et al., 1989 22 

Ro-20-1724 10 PDE4 Rich et al., 2001 9 

cilostamide 1 PDE3 Sudo et al., 2000 8 
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2.2 Table S2: Contraction level obtained in vascular reactivity experiments. 

Abbreviations: K80: amplitude of contractile response to K80 solution; U46619: amplitude of contractile response to U46619; endo.(+), endo.(-): with functional or non-functional 

endothelium, respectively; veh.water veh.DMSO 0.3%, veh.DMSO 0.01%: vehicle incorporating 0.01%water, 0.3% DMSO or 0.01% DMSO, respectively; IBTX: iberiotoxin; glib: 

glibenclamide; DPO-1: Diphenyl phosphine oxide-1; STX: stromatoxin. 

 

Table S2A: Contraction level obtained in experimental groups presented in Figure 1. 

Statistics: data represent mean ± sem of N rats. **: P ≤ 0.01 vs relevant veh.water; ##: P ≤ 0.01 vs veh.DMSO 0.3%; §§: P ≤ 0.01 vs veh.DMSO 0.01%; £: P ≤ 0.05, £££: P ≤ 0.001 vs endo.(+) 

/ veh.water (ANOVA followed by Holm-Sidak’s multiple comparison test). 

  

 endo.(+) endo.(-) 

 veh.water 
IBTX 

0.1 µmol/L veh.DMSO 0.3% 
ryanodine 

30 µmol/L veh.DMSO 0.01% 
glib. 

10 µmol/L 

DPO-1 
1 µmol/L 

STX 
0.1 µmol/L 

XE991 
30 µmol/L veh.water 

IBTX 
0.1 µmol/L 

N 21 20 7 5 6 6 5 5 5 13 10 

K80 (mN/mm) 1.82 ± 0.11 1.94 ± 0.12 1.17 ± 0.14 £ 1.61 ± 0.32 1.85 ± 0.11 1.91 ± 0.16 1.58 ± 0.16 1.62 ± 0.24 1.68 ± 0.20 0.90 ± 0.07 £££ 0.92 ± 0.16 

U46619 (vs K80)  1.12 ± 0.02 1.28 ± 0.04 ** 1.15 ± 0.05 1.45 ± 0.10 ## 1.14 ± 0.03 0.85 ± 0.08 §§ 1.28 ± 0.06 1.10 ± 0.05 1.10 ± 0.04 1.11 ± 0.05 1.36 ± 0.05 *** 
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Table S2B: Contraction level obtained in experimental groups presented in Figure 3A-D 

(CRC isoprenaline) 

Statistics: data represent mean ± sem of N rats. In this data set neither Ro, Cil nor IBTX had any significant effect 

compared to relevant vehicle (2-way ANOVA followed by Holm-Sidak’s multiple comparison test). 

 

Table S2C: Contraction level obtained in experimental groups presented in Figure 3E-F (CRC 

L85). 

Statistics: data represent mean ± sem of N rats. #: P ≤ 0.001, 2-way ANOVA (effect of factor “IBTX" vs “veh.water”). 

Neither Ro nor Cil had any significant effect compared to relevant vehicle (2-way ANOVA followed by Holm-Sidak’s 

multiple comparison test). 

 

Table S2D: Contraction level obtained in experimental groups presented in Figure 4. 

 
 

 

 

 

Statistics: *: P ≤ 0.05 vs sham-veh.water (2-way ANOVA followed by Holm-Sidak’s multiple comparison test); #: P ≤ 

0.001, 2-way ANOVA (effect of factor “HF" vs “sham”). 

 

 

  veh.water IBTX 

veh.DMSO  Ro Cil veh.DMSO  Ro Cil 

N 14 6 9 9 6 6 

K80 (mN/mm) 1.65 ± 0.09 1.98 ± 0.27 1.46 ± 0.18 1.95 ± 0.25 1.38 ± 0.11 1.79 ± 0.42 

U46619 (vs K80)  1.01 ± 0.03 0.90 ± 0.04 1.00 ± 0.04 1.06 ± 0.02 0.98 ± 0.04 1.07 ± 0.06 

 veh.water IBTX 

veh.DMSO  Ro Cil veh.DMSO  Ro Cil 

N 13 8 9 6 7 9 

K80 (mN/mm) 1.48 ± 0.19 1.68 ± 0.21 1.57 ± 0.19 1.24 ± 0.17 1.65 ± 0.16 1.48 ± 0.16 

U46619 (vs K80) # 1.04 ± 0.07 0.85 ± 0.07 1.05 ± 0.07 1.18 ± 0.08 1.20 ± 0.04 1.25 ± 0.04 

 sham HF 

veh.water IBTX veh.water IBTX 

N 7 6 7 6 

K80 (mN/mm) # 2.42 ± 0.23 2.30 ± 0.36 0.53 ± 0.11 0.47 ± 0.08 

U46619 (vs K80)  1.00 ± 0.03 1.23 ± 0.03 * 1.21 ± 0.07 1.26 ± 0.11 
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2.3 Table S3: Effect of application of PDE inhibitors (Ro, 10 µmol/L, Cil, 1 µmol/L and Ro  +Cil) 

on current amplitude, compared to DMSO. DMSO concentration was 0.03%, corresponding to 

the maximal DMSO concentration carried when Ro and Cil were added together. n: number of 

cell membrane patches studied from 5-7 animals. No significant effect on any parameter 

(Wilcoxon signed-rank test on patches or means per animals). 

 

 

 

 

 

 

 

 

 

 

  

 
n = 6 

DMSO Ro 

current amplitude (pA) 
4.05 ± 0.80 4.31 ± 0.71 

 
n = 6 

DMSO Cil 

current amplitude (pA) 
5.85 ± 1.31 5.74 ± 1.23 

 
n = 12 

DMSO Ro + Cil 

current amplitude (pA) 
5.82 ± 0.79 5.90 ± 0.55 
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2.4 Table S4:  Echocardiographic and anatomic parameters in series of rats studied 22 

weeks after aortic stenosis, or of sham-operated animals. 

Abbreviations: IVSd and IVSs: end-diastolic and end-systolic interventricular septum thickness, respectively; 

LVPWd and LVPWs: end-diastolic and end-systolic LV posterior wall thickness; LVIDd and LVIDs: end-diastolic 

and end-systolic LV internal diameters, respectively; EDV and ESV: end-diastolic and end-systolic volume; FS: LV 

fractional shortening; EF: LV ejection fraction; SV: stroke volume; HR: heart rate (bpm: beat per minute); W/TL: 

weight of the indicated organ over tibia length ratio. 

Statistics: *: P<0.05, **: P<0.01, ***: P<0.001, NS: non-significant (t-test, Welsh’s t-test or Mann and Whitney test 

when relevant, sham vs aortic stenosis surgery). 

  

Echocardiographic parameters 
sham  

(N = 11) 

aortic stenosis 

(N = 14) 
P 

IVSd (mm) 1.42 ± 0.06 1.78 ± 0.08 ** 

IVSs (mm) 2.47 ± 0.15 2.72 ± 0.17 NS 

LVPWd (mm) 1.78 ± 0.12 2.39 ± 0.16 ** 

LVPWs (mm) 2.83 ± 0.10 3,39 ± 0.18 * 

LV mass (mg) 874 ± 48 1540 ± 156 *** 

LVIDd (mm) 7.69 ± 0.24 8.54 ± 0.27 * 

LVIDs (mm) 4.12 ± 0.22 5.24 ± 0.33 * 

FS (%) 46.6 ± 1.9 39.6 ± 2.3 
* 

 

EDV (mL) 1.03 ± 0.09 1.38 ± 0.12 * 

ESV(mL) 0.19 ± 0.03 0.39 ± 0.06 ** 

SV(mL) 0.84 ± 0.07 1.00 ± 0.07 NS 

EF(%) 82.3 ± 1.6 73.8 ± 2.7 * 

HR (bpm) 334 ± 12 316 ± 8 NS 

Anatomical parameters 
sham 

(N = 11) 

aortic stenosis  

(N = 11) 
P 

heart W/TL (mg/cm) 398 ± 16 690 ± 74 ** 

lung W/TL (mg/cm) 447 ± 17 641 ± 87 NS 

liver  W/TL (mg/cm) 3821 ± 155 4042 ± 207 NS 

kidney W/TL (mg/cm) 355 ± 9 339 ± 18 NS 

rat weight (g) 593 ± 17 603 ± 11 NS 
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Figure S1. Characterization of BKCa single channel activity in rat LDCA SMCs. A.

Using inside-out patches in symmetrical [K+] and high Ca2+ ([K+]=140 mmol/L, [Ca2+]=0.1

mmol/L), a unitary conductance (g) of 221 pS was measured (average of 2 patches). B.

Using cell-attached patches under physiological [K+] gradient ([K+] in pipette=5 mmol/L),

specific BKCa inhibitor IBTX (0.1 µmol/L) nearly abolished NPo (i.e. the average number

of open channels) when present in the pipette solution. Patch potential=40 mV. n=9-10

cells from N=3 rats. **: P<0.01 (Mann and Whitney test).
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Figure S2. Examples of full length blots for BKCa alpha subunit (A), PDE3A (B),

PDE4B (C), PDE4A (E) and PDE4D (F) using sham and HF rat LADCA samples. D:

western blot showing the signal detected by the anti-PDE4B antibody in aorta from

rat, a Pde4B-/- mouse and a wild type littermate. MW: molecular weight marker (kDa).



Figure S3. Negative control experiments of in situ PLA using the following primary

antibodies: anti-BKCa α-subunit alone (A), anti-PDE3A alone (B), anti-PDE4 alone (C), an

anti-PDE4B alone (D), or relevant pair of Duolink® oligonucleotide-associated secondary

antibodies (E), in rat LDCA SMCs. A, B, C, D and E are representative confocal images.

Scale bar: 5 µm. Inset shows transmitted light images.
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