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Abstract  

Aims Increase of cardiac cAMP bioavailability and PKA activity through adenylyl-cyclase 8 (AC8) 

overexpression enhances contractile function in young transgenic mice (AC8TG). Ageing is associated 

with decline of cardiac contraction partly by the desensitization of -adrenergic/cAMP signaling. Our 

objective was to evaluate cardiac cAMP signaling as age increases between 2 and 12 months and to 

explore whether increasing the bioavailability of cAMP by overexpression of AC8 could prevent cardiac 

dysfunction related to age.  

Methods and Results Cardiac cAMP pathway and contractile function were evaluated in AC8TG and 

their non-transgenic littermates (NTG) at 2-mo and 12-mo-old. AC8TG demonstrated increased AC8, 

PDE1, 3B and 4D expression at both ages, resulting in increased PDE and PKA activity, and increased 

phosphorylation of several PKA targets including SERCA2a cofactor phospholamban (PLN) and 

GSK3/a main regulator of hypertrophic growth and aging. Confocal immunofluorescence revealed 

that the major phospho-PKA substrates were co-localized with Z-line in 2 mo-old NTG but with Z-line 

interspace in AC8TG, confirming the increase of PKA activity in the compartment of PLN/SERCA2a. 

In both 12-mo-old NTG and AC8TG, PLN and GSK3/ phosphorylation was increased together with 

main localization of phospho-PKA substrates in Z-line interspaces. Hemodynamics demonstrated an 

increased contractile function in 2-mo and 12-mo-old AC8TG, but not in NTG. By contrast 

echocardiography and Tissue Doppler Imaging (TDI) performed in conscious mice unmasked 

myocardial dysfunction with a decrease of systolic strain rate in both old AC8TG and NTG. In AC8TG 

TDI showed a reduced strain rate even in 2-mo-old animals. Development of age-related cardiac 

dysfunction was accelerated in AC8TG, leading to HF and premature death. Histological analysis 

confirmed early cardiomyocyte hypertrophy and interstitial fibrosis in AC8TG as compared with NTG.  

Conclusions Our data demonstrated an early and accelerated cardiac remodeling in AC8TG mice, 

leading to the development of HF and reduced lifespan. Age-related reorganization of cAMP/PKA 

signaling can accelerate cardiac ageing, partly through GSK3phosphorylation.  

Keywords cAMP ● adenylyl cyclase 8 ● cardiac function ● aging ● transgenic mice 
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1. Introduction 

  

A gradual decrease in left ventricle (LV) function and increase in LV mass are the hallmarks of an 

ageing heart1, 2. The decline of cardiac performance with ageing may result from a reduction in intrinsic 

contractile properties due to many factors. These factors include changes in excitation-contraction 

coupling due to desensitization of the -adrenergic signaling pathway, with the downregulation of 1-

adrenergic receptors (1-ARs) and adenylyl-cyclases (ACs), slower calcium transport via the cardiac 

sarcoplasmic reticulum (SR) due to downregulation of the sarco(endo)plasmic-reticulum-calcium-

ATPase (SERCA2a), impairment of mitochondrial function and alterations of contractile proteins 

expression1-3. The apparent deficit in sympathetic modulation of cardiac function with ageing occurs in 

the presence of elevated catecholamine levels due to age-related activation of sympathetic nervous 

system and reduced plasma clearance4.  

In cardiomyocytes, cAMP is an important regulator of contractile function5. Its production is activated 

by catecholamines binding to 1-ARs, catalyzed by ACs, and its degradation is mediated by 

phosphodiesterases (PDEs)5. By activating PKA, cAMP induces the phosphorylation of key proteins 

such as L-type Ca2+ channels (LTCC), ryanodine-receptor-type 2 (RyR2), phospholamban (PLN), a 

negative regulator of SERCA2a, and troponin-I. This translates into strong positive inotropic, lusitropic 

and chronotropic responses. While it has been speculated several decades ago that activating the -AR 

pathway might be beneficial in patients with heart failure (HF)6, this hypothesis is no longer valid. 

Studies in transgenic (TG) mouse overexpressing either the 1- or 2-ARs, or the s subunit of 

heterotrimeric G proteins (Gs) in the heart display enhanced ventricular contractility at baseline and 

under -AR stimulation, but develop a severe dilated cardiomyopathy with age, with a loss of myocytes 

and widespread interstitial fibrosis, resulting in lower survival rates7. Such age-related cardiac 

dysfunction might be related to -AR activation of various effectors mediating hypertrophy, apoptosis 

and arrhythmia. These include the exchange protein directly activated by cAMP (EPAC)8 and PKA 

substrates such as glycogen-synthase-kinase-3GSK3a/9 and extracellular signal-regulated kinase 

1/2 (ERK1/2)10. Since transgenic mice with cardiac overexpression of AC6 isoform do not exhibit such 

abnormalities11-16, we hypothesized that targeting specific AC isoforms might perhaps be useful for 

preventing age-related cardiac dysfunction.  

In the heart, the main AC isoforms responsible for catecholamine-dependent cAMP synthesis are AC5 

and AC6. Our group has shown that increased AC5/6 expression during development is associated with 

a contractile phenotype17, whereas the levels of these isoforms decrease during ageing and HF5. The 

AC6 isoform is localized in the plasma membrane outside the t-tubular region and is responsible for the 

β1-AR stimulation of the LTCC current ICa,L, whereas the AC5 isoform is localized mainly in the t-

tubular region and involved in β2-AR signaling18, 19. Two additional isoforms, AC1 and AC8, were 

identified in sinoatrial node cells20. Unlike AC5/6 which are inhibited by Ca2+, the AC8 isoform is 

stimulated by Ca2+ acting via calmodulin and is insensitive to Gs in vitro21. AC8 expression in 

pacemaker cells allows PKA-dependent phosphorylation of Ca2+ cycling proteins that contributes to the 

generation of action potential20. Compartmentalization of signaling pathways driven by different Ca2+-

sensitive ACs isoforms is based on the evidence that ACs act as central foci of cAMP microdomains, 

binding directly or indirectly, via A kinase anchoring proteins (AKAPs), numerous regulatory and 

effector proteins such as PDEs, PKA, PKC and calcineurin (PP2B)22, 23. Of note, functional 

reorganization of receptor-associated cAMP microdomains leading to altered cAMP signal propagation 

was reported in hypertrophied and failing cardiomyocytes24-26. 
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However, little is known about age-associated functional reorganization of cAMP/PKA/PDE signaling 

in cardiomyocytes. The question is of interest also because increased cAMP bioavailability could 

support contractile function in aged heart, despite the age-related desensitization of the -AR signaling. 

Transgenic mice (AC8TG) with cardiac overexpression of Ca2+/calmodulin–stimulated AC8 were 

created in order to increase the bioavailability of cardiac cAMP independent from -AR stimulation21. 

Previously we have reported augmented PKA activity and enhanced cardiac function in young adult 

AC8TG mice, including increased LV systolic pressure, heart rate (HR), relaxation and sensitivity to 

external Ca2+21, 27, 28. AC8-related cAMP appears to be confined at the level of longitudinal reticulum 

(LR), leading to large increase in SR Ca2+ transients and contraction, without an effect on LTCC current 

amplitude. This is due to the higher levels of activity of PDE1, 3 and 4 isoforms in AC8TG mice that 

shield LTCC from cAMP produced by AC827.  Given the beta adrenergic desensitization with age we 

hypothesized that increasing downstream cAMP levels through overexpression of AC8 would alleviate 

cardiac remodeling and dysfunction in the aged heart. 

Here, we took advantage of the interesting model of AC8TG mice to investigate the impact of ageing 

on 1) the remodeling of the cAMP/PKA signaling pathway and 2) the effects of AC8 overexpression on 

cardiac function. As opposed to our expectations we found evidence for cardiac dysfunction occurring 

at an early stage of ageing which was associated with altered subcellular PKA distribution. This 

redistribution of PKA then is likely to be behind the hyperphosphorylation of PLN observed, in effect 

aiming to compensate for the loss of SERCA2a. Myocardial cAMP overproduction at the level of LR 

and subsequent PKA-dependent phosphorylation of GSK-3/are probably accountable for 

precipitating structural remodeling and cardiac dysfunction, ultimately leading to the development of 

HF and reduced lifespan. 

2. Materials and Methods 

2.1 Animals 

The animal procedures used conformed to the guidelines from Directive 2010/63/EU of the European 

Parliament on the protection of animals used for scientific purposes. All animal experiments were 

approved (ref.14/04/15-8D) by the Institutional Animal Care and Use Committee of the French National 

Institute of Health and Medical Research (INSERM)–U955, Créteil, France. For biochemical studies, 

mice were euthanized by cervical dislocation, hearts were removed and snap-frozen immediately after 

euthanasia. We used heterozygous transgenic mice with cardiac AC8 overexpression (AC8TG), 

obtained as previously described21, and their control non-transgenic C57/Bl6 WT littermates (NTG) at 

two ages: 2- and 12-mo old. 

 

2.2. Echocardiography 

Closed-chest transthoracic echocardiography was performed in awaken mice with a 13-MHz linear-

array transducer with a digital ultrasound system (Vivid 7, GE Medical Systems), as previously 

described29. Wall thickness and LV dimensions were obtained in M-mode, at the level of the papillary 

muscles; the LV mass, FS, and relative wall thickness were calculated. Strain rate curves were obtained 

from a parasternal short-axis view at mid-ventricular level, at a frame rate of 450 frames per second and 

a depth of 1 cm. Peak systolic radial strain rate (StR, s−1) was computed from a region of interest 

positioned in the mid-posterior wall and was measured over an axial distance of 0.6 mm. Three 

consecutive cardiac cycles were selected and peak systolic velocities and peak StR were measured and 
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averaged. StR imaging analysis was performed offline (EchoPac Software, GE Medical Systems) by an 

observer blind to the age of the animals. 

 

2.3 Invasive hemodynamics 

After tracheal intubation, anesthetized mice (50mg/kg of sodium pentobarbital by i.p.) maintained at 

37°C were connected to a rodent ventilator (Minivent Mouse ventilator type 845, Harvard Apparatus, 

frequency of 170 stokes/min and a volume of 200 µl for 30 g). Invasive hemodynamic measurements 

were performed with a pressure transducer catheter (size 1.4 F, Millar Micro-tip catheter transducer, 

model SPR-671; Millar Instruments, Inc, Houston, TX, USA), introduced into the right carotid artery 

and pushed into the LV. Pressures were recorded on a Gould recorder (Model RS 3200; Gould 

Instrument Systems, Ohio, USA). Measurements obtained were: systolic, diastolic and mean arterial 

blood pressure; LV pressure with positive and negative derivatives of pressure (LV dP/dt maximum and 

minimum), HR. Hemodynamic measurements were recorded at baseline and five minutes after the 

injection of incremental doses of isoproterenol (ISO, 1 to 100 µg/kg). At least ten sequential beats were 

averaged for each parameter. Then, the thorax was opened and the lungs and heart were removed and 

used for morphometric and histological analysis. 

2.4 Morphometric and histological analysis 

Hearts were removed (atria were separated from ventricles) and weighed for the calculation of heart-

to-body weight ratio and heart weight-to-tibia length ratio. Ventricles were frozen in an embedding 

compound for cryosectioning (Tissue-Tek O.C.T) and used for histological analysis as described in 

supplemental methods.   

2.5 Confocal Immunofluorescence Microscopy 

Immunostaining was performed on frozen sections using primary antibodies anti-phospho-(Ser/Thr) 

PKA Substrate Antibody (#9621, Cell Signaling) and anti-alpha-Actinin (ab9465, Abcam) and 

secondary antibodies conjugated to Alexa-546 or Alexa-488 as described in supplemental methods.  

2.6 cAMP and PKA kinase activity assay 

[cAMP] was determined in cardiac tissues using the Mouse/Rat cAMP Parameter Assay Kit (Catalog 

No.KGE012B, R&D Systems). PKA (cAMP-dependent protein kinase) kinase activity was determined 

in cardiac tissues with the PKA Kinase Activity Assay Kit (Catalog No. ab139435, Abcam) according 

to manufacture instructions. 50 µg of total cardiac protein per well was used for assay.  

2.7 PDE activity assay 

PDE activity was measured according to the method of Thompson et al.30, on myocardial protein extracts 

from 2 mo-old and 12 mo-old NTG and AC8TG mice (n=6 in each group). In brief, samples (20 µg of 

myocardial proteins) were assayed in a 200 μL reaction mixture containing 40 mM Tris-HCl (pH 8.0), 

1 mM MgCl2, 1.4 mM β-mercaptoethanol, 1 µM cAMP, 0.75 mg/mL bovine serum albumin, and 0.1 

μCi of [3H]cAMP (Perkin Elmer) for 25 minutes at 33°C in the presence or in the absence of IBMX 

(1mM) (Sigma Aldrich). The reaction was terminated by heat inactivation. The PDE reaction product 

5'-AMP was then hydrolyzed by incubating the assay mixture with 50 μg of Crotalus atrox snake venom 

(Sigma Aldrich) for 20 minutes at 33°C, and the resulting nucleotide was then separated by anion 

exchange chromatography and quantified by scintillation counting. Total PDE activity was defined as a 
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fraction of [3H]cAMP hydrolyzed and calculated as follow: ((sample count – blanc)/(total count –

blanc)). IBMX-sensitive PDE activity was defined as the fraction of cAMP-PDE activity inhibited by 1 

mM IBMX. 

2.8 Protein and RNA analysis. 

Protein and RNA extraction, immunoblotting and Real-time qPCR analysis were performed using 

standard techniques as described in supplemental methods. 

2.9 Statistical analysis 

Quantitative data are presented as individual values + mean or mean ± SEM, as indicated. Statistical 

significance was determined using two-way ANOVA for two variables, one-way ANOVA for multiple 

comparisons, or Student unpaired t-tests for comparisons between two groups. When ANOVA 

indicated significance, the groups were compared using a Newman-Keuls post-hoc test (Prism 6.0, 

GraphPad Software, San Diego, CA). A P value < 0.05 was considered statistically significant. 

 

 

3. Results 

3.1 Age-related alterations of cAMP/PKA pathway  

To investigate the impact of AC8 on cAMP signaling with ageing, NTG and AC8TG mice were explored 

at the age of 2 and 12 months. First, we showed AC8 overexpression in both 2- and 12-mo-old AC8TG, 

whereas AC5 and AC6 were unchanged (Figure 1A, B & C). As expected, AC8 overexpression was 

associated with higher cardiac cAMP levels in both 2- and 12-mo-old AC8TG as compared with young 

NTG. Of note, ageing increased cAMP levels in both 12-mo-old AC8TG and NTG hearts as compared 

with young NTG (Figure 1D). Since PDEs control local cAMP levels, we analyzed the expression of 

the main cardiac isoforms. We found an increased expression of PDE1A&C, PDE3B and PDE4D 

isoforms in 2- and 12-mo-old AC8TG (Figure 1E, F, I & L) in line with previously reported increase 

of PDE1, 3 and 4 activities in young AC8TG27 . We also observed higher total and IBMX-sensitive PDE 

activity in 2- and 12-mo-old AC8TG (Figure 2A&B). While PDE isoform transcript levels were not 

modified in 12-mo-old NTG (Figure 1E-L), the total and IBMX-sensitive PDE activities were increased 

(Figure 2A&B). Consistent with our previous observations21, we demonstrated an increase in cardiac 

PKA activity in 2- and 12-mo-old AC8TG mice, but not in 12-mo old NTG (Figure 2C). 

Increase in cardiac cAMP levels and PDE activity in 12-mo-old NTG might suggest altered cAMP 

confinement compensating for age-related cardiac dysfunction25, 26. Therefore we assessed if PKA 

substrates were differently phosphorylated and found increased phosphorylation of several, but not all, 

PKA substrates in 12-mo-old NTG and AC8TG, in addition to 2-mo-old AC8TG hearts (Figure 2D & 

E). Furthermore these changes were associated with a different localization of PKA substrates between 

young NTG and the other groups. Indeed, AC8TG mice exhibited an “ageing” distribution of phospho-

PKA substrates, similar to old NTG and mainly in Z-line interspaces, confirming the increase of PKA 

activity in the compartment of PLN/SERCA2a (LR). In young NTG, phospho-PKA substrates were co-

localized with Z-line, suggesting RyR2 and LTCC to be the principal PKA targets in young 

cardiomyocytes (Figure 2F).  
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In line with the distribution of phospho-PKA substrates, (S16)-phosphorylation of PLN similarly 

increased in both 2- and 12-mo-old AC8TG mice and in 12-mo-old NTG (Figure 3A & B). As 

SERCA2a activity is critically regulated by cAMP-responsive PLN and its downregulation is recognized 

as a major feature of both aged heart and HF, we further examined SERCA2a expression. We confirmed 

the downregulation of SERCA2a in 12-mo-old NTG mice. Intriguingly, we also found a downregulation 

of SERCA2a as early as 2-mo-old in AC8TG compared to young NTG animals and reaching similar 

levels as in 12-mo-old AC8TG (Figure 3A & B).  

We finally immunoblotted for GSK3α/, ERK1/2 or the cAMP response element binding protein 

(CREB) which are PKA targets and regulators of cell growth and metabolism10.  Western blot analysis 

revealed an increased GSK3α/phosphorylation in both 2- and 12-mo-old AC8TG and in 12-mo-old 

NTG whilst total GSK3α/ expression remained unchanged (Figure 3C&D). The lack of difference in 

Thr308 or Ser473 Akt1 phosphorylation along with both expression and phosphorylation of CREB1 and 

ERK1/2 (not shown) made us speculate on a specific involvement of PKA-dependent GSK3α/ 

activation in the gross phenotype (Figure 3E&F).  

 

3.2 Contractile function in ageing animals 

Further to our previous data on enhanced cardiac function in young AC8TG mice21, 28, we compared in 

vivo hemodynamic function in 2-mo- and 12-mo-old NTG and AC8TG mice (Figure 4, Supplemental 

Table 1).  Under basal conditions we found that i) heart rate (HR) was higher in AC8TG than in NTG 

mice in both age groups (Figure 4A); ii) LV contractility (LV dP/dtmax) were twice as high in 2-mo-old 

AC8TG as in 2-mo-old NTG mice (Figure 4B & C); and iii) there was still a 30% increase in dP/dtmax 

in 12-mo-old AC8TG compared to 12-mo-old NTG mice (Figure 4C). In NTG mice, β-AR stimulation 

with isoprenaline (ISO) induced the expected dose-dependent stimulation of HR and LV contractility, 

even in 12-mo-old NTG animals (Figure 4A, C & D). By contrast, β-AR stimulation did not increase 

HR in AC8TG mice of either age, but markedly decreased dP/dtmax in young AC8TG and did not change 

it in 12-mo-old AC8TG mice (Figure 4A, C & D).  

Next, we have investigated evolution of cardiac morphology and function with age in NTG and AC8TG 

mice, by performing cross-sectional echocardiography in conscious mice from three age groups (2 mo-

old, 6 mo-old and 12 mo-old) (Figure 5). HR was higher in young AC8TG than in young NTG animals 

and did not change with age in AC8TG mice, but increased with age in NTG mice (Figure 5A). As 

expected, ageing was accompanied by alteration of cardiac function with a progressive increase in LV 

dimensions (Figure 5B) and a deterioration of LVEF in both NTG and AC8TG (Figure 5C). Strain rate 

(StR), a sensitive index of regional myocardial contractility, identified reduced regional contractile 

function as early as 2 mo-old in AC8TG mice, and confirmed the progressive decline of systolic function 

with age in both NTG and AC8TG group (Figure 5D). Those results obtained in cross-sectional study 

were confirmed in a longitudinal follow-up study performed in mice between the age of 2 and 14 months 

(Supplementary Figure 1).  

Furthermore lifespan monitoring revealed an increased mortality rate of AC8TG mice with median life 

span of 17 months as compared with over 24 months for NTG mice (75% still alive at 24 months) 

(Supplementary Figure 2).  

 

3.3 Impact of ageing on myocardial structure 

https://en.wikipedia.org/wiki/CREB
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Both morphometric analysis and qRT-PCR analysis confirmed age-related cardiac remodeling with 

increase of HW and HW/TL ratio in AC8TG mice (Table 1, Figure 6A) and increase of -myosin heavy 

chain expression (Figure 6B), respectively. However, the expression of the atrial natriuretic peptide 

(ANP) increased only in aged AC8TG mice suggesting a HF phenotype (Figure 6C). Furthermore, liver 

(1471 ± 175 vs. 1924 ± 98 mg, P<0.05) and lung (204 ± 11 vs. 257 ± 13 mg, P<0.05) weights were 

higher in the 12-mo-old AC8TG mice (n=10) than in the 12-mo-old NTG mice (n=10), indicating 

cardiac dysfunction. 

In young AC8TG histological analysis identified early alterations of myocardial structure, with 

cardiomyocyte hypertrophy and endocardial fibrosis (Figure 6D & E).  This increased with ageing 

while interstitial fibrosis extended towards epicardium (Figure 6D & E). Conversely, such 

abnormalities were observed only in 12-mo-old NTG, but not in young mice (Figure 6D & E).  

4. Discussion 

In this study we demonstrated that age-dependent cardiac remodeling is accelerated and exaggerated in 

AC8TG leading to myocardial dysfunction, development of HF and premature death.  

Our data confirm the impact of ageing on the heart and the major role of the fibrotic process associated 

with myocyte loss and hypertrophy of the remaining myocytes leading to contractile dysfunction1, 2, 31. 

Indeed in NTG animals, echocardiography combined with TDI revealed a progressive increase in LV 

dimension together with a decrease in LVEF and systolic strain rate with ageing, consistent with our 

previous observations29. These changes in systolic function were associated with an increase in 

myocardial collagen content in endocardial but not epicardial layers.  

Our results confirm age-related impact on cardiac function and remodeling such as cardiomyocyte 

hypertrophy associated with an increased GSK3 phosphorylation and decrease in SERCA2a expression 

in hearts32, 33. They also unmask an unexpected channeling of cAMP/PKA towards PLN/SERCA2a 

compartment, as demonstrated by the increase in the phosphorylation of PKA substrates and PDE 

activities similar to that observed in AC8TG mice. The novelty of our data consists in the demonstration 

that modification of PDE/cAMP signaling in aged heart, presumably aiming to compensate the loss of 

SERCA2a, is hampered by PKA-dependent phosphorylation of GSK3/ that may be responsible, along 

with other actors, for age-related cardiac remodeling. Indeed, the GSK3is known to be the main 

regulator of cardiac hypertrophic remodeling via calcineurin/NFAT signaling pathway, whereas GSK3 

promotes cardiac ageing via activation of mTOR9.  Other relevant factors, particularly those directly 

activated by cAMP factor EPAC, calcium activated CaMKII or PKA downstream phosphatase PP1 and 

inhibitor of protein phosphatase-I (I-1), may also be involved in myocardial ageing.  

Since the age-related cardiac dysfunction in NTG mice is characterized by a re-organization of the 

cAMP/PKA signaling pathway upstream of PLN, we hypothesized (Figure 7) that this reorganization 

can be achieved by channeling cAMP towards LR, similar to that described in the early compensated 

phase of heart disease25, 26. Thus, our results suggest that natural cardiac ageing is accompanied by a 

functional redistribution of cAMP compartments (i.e. available cAMP can be canalized towards PLN-

containing microdomains) together with a shift of local (-AR) towards global (1-AR) cAMP pool, -

AR desensitization and down-regulation of SERCA2a expression. The mechanism underlying this 

increase remains to be identified, but it may involve structural reorganization of the cardiomyocyte 

surface, including loss of T-tubules and the redistribution of 1- and 2-ARs, as previously reported in 

failing cardiomyocytes24. This mechanism probably compensates for the loss of SERCA2a and as such 

acutely adaptive, but becomes maladaptive on the long term.  
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The compartmentalization of cAMP signaling in cardiomyocytes depends on the anchoring of PKA to 

specific subcellular sites and the ability of PDEs to canalize cAMP towards these sites. The main four 

cardiac PDEs families responsible for cAMP hydrolysis (PDE1-4) are encoded by several genes and 

exhibit different subcellular localization5, 34, 35. The Ca2+/calmodulin activated isoform, PDE1 is 

predominantly cytosolic35, whereas PDE4B isoform is associated with LTCC complex and regulates 

ICa,L during -AR stimulation34. PDE4D is part of the RyR2 channel complex and also together with 

PDE3A1 is associated with PLN-SERCA2a complex and regulates Ca2+ reuptake in the SR34, 35. PDE3 

and PDE4 activity is regulated by PKA phosphorylation thereby providing negative feedback to -AR 

stimulation36, 37. The PDE3B interaction with PI3Kγ is thought to be important for the regulation of 

cardiac contractility and was found to affect cardiac hypertrophy in a mouse model of chronic pressure 

overload38. Under pathological conditions, numerous studies have reported alterations of expression 

and/or subcellular redistribution of cardiac PDE isoforms34. However to our knowledge, there has been 

no study investigating potential modifications of cardiac PDEs in the course of ageing. The modification 

of PDE activity observed here in aged NTG may be achieved through differential protein expression, 

phosphorylation by distinct kinases or posttranslational modifications35.  

We have reported previously that in young AC8TG cAMP produced by AC8 is specifically employed 

to increase SR Ca2+ transient amplitude and relaxation kinetics at the sarcolemma and has no effect on 

ICa,L
27. Our present finding imply that this is achieved in part by increased PLN phosphorylation. We 

have also reported the specific increase of PDE1 (+124%), PDE3 (+27%) and PDE4 (+28%) in young 

AC8TG 27, 28. In the present paper we have confirmed the increase of total PDE activity supported by 

the up-regulation of the predominantly cytosolic PDE1A&1C and the membrane associated PDE3B and 

PDE4D isoforms in AC8TG regardless of age. Our results suggest that in AC8TG cardiomyocytes AC8 

is located within lipid-rich microdomains proximal to longitudinal SR/PM junctions delimited by PDE1, 

PDE3B and PDE4D and containing the SERCA2a and its cofactor PLN (Figure 7). Further studies, 

employing subcellular cAMP measurements in cardiomyocytes should be performed to decipher the 

function of such compartments containing this Ca2+-operated AC isoform. 

In AC8TG mice SERCA2a is downregulated well before the development of any signs of HF. It can 

therefore be considered as a mechanism of adaptation to the continuous increase in SERCA2a activity 

triggered by the phosphorylation of PLN. In this context modifications of cAMP signaling in young 

AC8TG mice can be compared with those occurring during compensated stage of cardiac disease, 

becoming decompensated with ageing. This process is very similar to the first phase of HF compensation 

in the presence of high levels of circulating catecholamines, in which signs of HF are not detectable by 

conventional echocardiography due to physiological and molecular adaptations. However excessive -

AR stimulation and cAMP production can also activate pathological hypertrophic remodeling in part 

via PKA-dependent GSK3α/ phosphorylation. Moreover, EPAC can also be in part responsible for 

drastic age-related cardiac remodeling in AC8TG.  

We also found that cardiac remodeling and premature ageing in young AC8TG animals, leading to 

reduced median lifespan. Whereas traditional measures of echocardiography found no signs of impaired 

cardiac function in young AC8TG animals, tissue Doppler imaging revealed reduced myocardial strain 

rate compared to young NTG mice. These data indicate that the regional contractility assessed by strain 

rate was compromised even in young AC8TG. With regard to the development of HF in AC8TG mice 

with reduced lifespan, these early molecular and functional abnormalities may predict HF. 

Our data provide an important piece of evidence against the strategy consisting in targeting and 

enhancing -AR downstream effectors for preventing HF and age-related cardiac dysfunction. Indeed, 

we demonstrate the worsening of cardiac function resulting in progressive cardiomyopathy and 
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premature death in aged mice with cardiac overexpression of AC8 isoform. We previously reported the 

strong compartmentation of the AC8-dependent increase in cAMP levels in cardiomyocytes that 

translated into functional effects only in conditions of -AR stimulation21, 27, 28. Since AC8 

overexpression in cardiomyocytes specifically accelerates Ca2+ re-uptake in the SR, by increasing 

SERCA2a activity through PKA-mediated phosphorylation of the PLN without affecting Ca2+ influx 

into the cell27, one might consider that increasing Ca2+ uptake from the SR without increasing Ca2+ influx 

at the SR is beneficial to contractile function27. However, numerous TG models with chronic activation 

of the cAMP pathway in the heart (overexpressing 1-AR, -AR, Gs, PKA, I-I, etc) display enhanced 

cardiac function in young animals but evolving towards progressive cardiomyopathy and premature 

death with age (reviewed in7).  

In conclusion, using a cardiac overexpression of AC8 isoform we demonstrated that the increase of 

cardiac cAMP bioavailability and PKA activity precipitates and aggravates age-related myocardial 

dysfunction. Using systolic strain rate for assessing myocardial function we revealed early myocardial 

dysfunction in young AC8TG mice. Finally, we have demonstrated modifications of cAMP/PKA 

signaling in normal aged cardiomyocytes resulting in increased phosphorylation of PLN and GSK3 

by PKA. Whereas PLN phosphorylation is possibly a beneficial adaptation aiming to compensate for 

the loss of SERCA2a in ageing cardiomyocytes and rescue defective contractile function, it becomes 

maladaptive in the long term. The excessive PKA activation is hampered by induction of the 

hypertrophy-, fibrosis- and age-related GSK3 signaling pathways and may play a role in pathological 

hypertrophic remodeling and accelerated ageing.  
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Figure legends 

 

Figure 1. Increased cardiac cAMP by AC8 overexpression induces a subset of counter-regulators 

PDEs. A-L. Scatter-plots showing either myocardial cAMP level (D) or the relative mRNA expression 

normalized to 18S mRNA of AC8 (A), AC5 (B), AC6 (C), PDE1A (E), PDE1C (F), PDE2A (G), 

PDE3A (H), PDE3B (I), PDE4A (J), PDE4B (K) or PDE4D (L) in NTG () and AC8TG () mice. 

The horizontal line indicates the mean value for each group. 8-10 animals were analyzed in each group. 

*P <0.05; **P <0.01; ***P<0.001 (one-way ANOVA followed by Newman-Keuls post-hoc test).  

 

Figure 2. Altered localization of phospho-PKA substrates in the cardiomyocytes of AC8TG and 

ageing NTG animals. A, B, C. Scatter-plot showing the total (A) and IBMX-sensitive (B) cardiac PDE 

activity and basal cardiac PKA activity (C) in 2- and 12-mo-old NTG () and AC8TG () mice. D, E. 

Typical immunoblot (D) for the visualization of numerous of PKA substrates differently phosphorylated 

within 2-mo-old NTG and 12-mo-old NTG or AC8TG animals. Expression of three phosphorylated 

PKA-substrates (1, 2 and 3) was quantified in different groups of mice and normalized to GAPDH (E). 

The horizontal line indicates the mean value for each group. 8-10 animals were analyzed in each group. 

*P <0.05; **P <0.01; ***P<0.001 (one-way ANOVA followed by Newman-Keuls post-hoc test).  F. 

Confocal immunofluorescence of phospho-PKA substrate on snap-frozen cardiac cross sections. Scale 

bars: 10 µm. Position of Z-lines, corresponding to T-tubule/junctional reticulum space, are indicated by 

alpha-actinin (-Act) labelling (green). Z-line interspace corresponded to longitudinal reticulum 

containing SERCA2a/PLN. Preferential localizations of phosphorylated PKA substrates are indicated 

by labelling with anti-phospho-PKA substrate antibody (red). Line indicates the position of orthogonal 

views for each section. Three animals from each group were analyzed.   

 

Figure 3. Altered phosphorylation of several PKA targets in AC8TG and ageing NTG animals 

includes p(S16) PLN, p(S21)-GSK-3 and p(S9)-GSK-3. A, B. Typical immunoblot (A) and 

quantification (B) for the expression of p(S16)PLN, total PLN and SERCA2a in the heart. C, D. Typical 

immunoblot (C) and quantification (D) for the expression of Phospho-GSK3/(upper panel) and total 

GSK3/(down panel)Expression of GSK3 was normalized to GAPDH expression. E, F. Typical 

immunoblot (E) and quantification (F) for the expression of Phospho-Akt1(Ser473) and Phospho-

Akt1(Thr308) in the heart. The horizontal line indicates the mean value for each group. 8-10 animals 

were analyzed in each group. *P <0.05; **P <0.01; ***P<0.001 (one-way ANOVA followed by 

Newman-Keuls post-hoc test).  

Figure 4. Enhanced LV hemodynamics in young AC8TG evaluate towards normalized LV systolic 

pressure in aged AC8TG but blunted -AR responsibility in both ages NTG and AC8TG mice. 

Hemodynamic recording was performed in 2-mo-old (n=9) and 12-mo-old (n=12) NTG and 2-mo-old 

(n=9) and 12-mo-old (n=15) AC8TG mice. The following parameters were measured in NTG () and 

AC8TG () mice at baseline and after isoproterenol (ISO) stimulation: HR (beats/min) (A); LVSP–LV 

systolic pressure (B); ΔP–LV pressure variation; dp/dtmax (C) and dp/dtmin (D). E. Typical traces of 

hemodynamic recordings obtained in NTG and AC8TG mice. Isoproterenol (ISO) was injected IP at the 

indicated concentrations during hemodynamic recording. *P<0.05, **P<0.01; ***P<0.001; 

***P<0.001 vs NTG at the same condition (Student unpaired t-tests).  

Figure 5. Cardiac adenylyl cyclase overexpression accelerates deterioration of cardiac function 

with ageing. A, B, C, D. Echocardiographic assessment of global LV function in conscious 2- (n=13), 
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6- (n=12) and 12-mo-old (n=20) NTG and 2- (n=5), 6- (n=8) and 12-mo-old (n=20) AC8TG mice. The 

parameters measured in NTG () and AC8TM () mice were: (A) heart rate (HR) in beats/min; (B) 

LV end systolic diameter (LVESD) in mm; (C) LV ejection fraction (LVEF) in %. (D) LV anterior 

strain rates (StR, s-1). The horizontal line indicates the mean value for each group. *P<0.05, **P<0.01, 

***P<0.001 vs NTG (5-20 animals were analyzed in each group, as indicated on the figure; statistical 

significance was determined using one-way ANOVA followed by Newman-Keuls post-hoc test).  

 

Figure 6. Deterioration of cardiac morphology by ageing is accelerated by AC8 overexpression. 

A. Macro histological analysis of heart cross-sections from 2-, 6- and 12-mo-old mice. 

Hematoxylin/eosin staining. Representative images from 5 animals for each group. B, C. Slot-plot 

showing the relative mRNA expression normalized to β-actin mRNA of β-MHC (B) and ANP (C) in 

NTG () and AC8TG () mice. 10 animals were analyzed in each group. D. Histological analysis of 

myocardial tissue from 2- and 12-mo-old NTG and AC8TG animals. Heart cross sections. Scale bars: 

100 µm. Upper panel: hematoxylin/eosin. Middle panel: WGA-Alexa Fluor 488 staining showing 

cardiomyocytes size. Lower panel: Sirius red staining showing myocardial fibrosis (red). 

Representative images of 5 animals from each group. Bar: 100 µm. E. Quantification of histological 

analysis. Left panel: scarred plot of cardiomyocyte area. Two hundred individual measurements were 

performed on 5 sections for each animal. Five animals per group were analyzed; each point represents 

the mean value per animal. The horizontal line indicates the mean value for each group. ***P<0.001 

(one-way ANOVA followed by Newman-Keuls post-hoc test); #P<0.5; ##P<0.01(Student unpaired t-

tests). Middle and right panel: relative quantification of fibrosis based on 5 sections of the endocardial 

and epicardial area for each animal. **P<0.01; ***P<0.001 (one-way ANOVA followed by Newman-

Keuls post-hoc test).  

Figure 7.  Schematic showing proposed changes of cAMP/PKA signaling in 2-mo-old and 12-mop-

old NTG or AC8TG animals. A. In healthy cardiomyocytes major cAMP/PKA events are confined in 

the interspace T-tubule/junctional reticulum controlling inotropic response via LTCC and RyR 

phosphorylation. B. In AC8TG, cAMP produced by AC8 is confined at the level of longitudinal 

reticulum, having access to the SERCA2a/PLN compartment, but not to LTCC compartment. 

SERCA2A/PLN compartment is delimited by PDE1A&C, PDE3B and PDE4D. The benefit effect of 

PLN phosphorylation in AC8TG is hampered by phosphorylation GSK3&, apparently located in the 

same compartment. C. In early compensated age-related dysfunction, the effective junctional 

reticulum/T-tubule microdomain confining is lost, leading to channeling of cAMP towards  longitudinal 

reticulum and increased PLN phosphorylation in order to compensate for the loss of contractile function 

and degradation of tissue condition. However, GSK3 phosphorylation hampers this compensating 

adaptation via induction of hypertrophy-, fibrosis- and ageing-related pathways.  

 

 



A

N
TG

A
C
8T

G
N
TG

A
C
8T

G

0.1

1

10

100

1000

10000
***

***

***

12-mo2-mo

AC8

re
la

ti
v

e
 e

x
p

re
s

s
io

n

N
TG

A
C
8T

G
N
TG

A
C
8T

G

0.1

1

10

2-mo 12-mo

AC5

re
la

ti
v

e
 e

x
p

re
s

s
io

n

Figure 1

N
TG

A
C
8T

G
N
TG

A
C
8T

G

0.1

1

10

2-mo 12-mo

AC6

re
la

ti
v

e
 e

x
p

re
s

s
io

n

B C

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

1

2

3

4

5

**
**

*

2-mo 12-mo

cAMP

c
A

M
P

 (
p

m
o

l/
m

g
)

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

2

4

6 ***

2-mo 12-mo

PDE1C

***

re
la

ti
v
e

 e
x

p
re

s
s

io
n

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

2

4

6 ***

2-mo 12-mo

PDE1A

***
re

la
ti

v
e

 e
x

p
re

s
s

io
n

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

2

4

6

2-mo 12-mo

PDE2A

re
la

ti
v

e
 e

x
p

re
s

s
io

n

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

2

4

6

2-mo 12-mo

PDE3A

re
la

ti
v

e
 e

x
p

re
s

s
io

n

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

2

4

6
*

2-mo 12-mo

***

PDE3B

*
re

la
ti

v
e

 e
x

p
re

s
s

io
n

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

2

4

6

2-mo 12-mo

PDE4A

re
la

ti
v

e
 e

x
p

re
s

s
io

n

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

2

4

6

2-mo 12-mo

PDE4B

re
la

ti
v

e
 e

x
p

re
s

s
io

n

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

2

4

6 **

2-mo 12-mo

PDE4D

**

re
la

ti
v

e
 e

x
p

re
s

s
io

n

D F

G H I

E

J K L



N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

25

50

75

100

125 ***

2-mo 12-mo

***

Active PKA

p
g

/µ
g

 o
f 

p
ro

te
in

s

C

D

1 2 1 2 1 2 1 2

NTG NTG AC8TG AC8TG 

2-mo 12-mo

kDa

PKA sub2

PKA sub4

PKA sub3

PKA sub1

98
62

49

38

28

N
TG

A
C
8T

G
N
TG

A
C
8T

G

0

50

100

150

200

250

2-mo 12-mo

Total PDE activity

*
*

***
p

m
o

l/
m

in
/m

g

N
TG

A
C
8T

G
N
TG

A
C
8T

G

0

50

100

150

200

250

IBMX-sensitive PDE activity

*
**

**

2-mo 12-mo

p
m

o
l/
m

in
/m

g

A B

a-Akt

pPKA SAB

merge

a-Akt

pPKA SAB

merge

Orthogonal Views

10µ

Orthogonal Views

10µ10µ 10µ

Orthogonal Views Orthogonal Views

10µ

NTG NTG AC8TG AC8TG 

2-mo 12-mo

14

GAPDH
37

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

50

100

150

200

250

300 ***
***

**

2-mo 12-mo

phospho-PKA sub1,2,3/
GAPDH ratio

E

F

Figure 2



N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

50

100

150

***
*

***

2-mo 12-mo

SERCA2a/GAPDH ratio

p(S16)-PLN

total PLN

1 2 1 2 1 2 1 2

NTG NTG AC8TG AC8TG 

2-mo 12-mo

SERCA2a

GAPDH

kDa

14

110

37

23

14

23

A B

p(S473)-AKT

total AKT

p(T308)-AKT

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G

0

25

50

75

100

125

150

2-mo 12-mo

p
A

K
T

 3
0

8
/t

A
K

T
ra

ti
o

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G

0

25

50

75

100

125

150

2-mo 12-mo

p
A

K
T

 4
7

5
/t

A
K

T
ra

ti
o

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

200

400

600
**

*
***

2-mo 12-mo

p
G

S
K

3


/G
S

K


 r
a

ti
o

60

60

60

kDa

46

GAPDH

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

25

50

75

100

125

150

2-mo 12-mo

G
S

K
3


/G
A

P
D

H
 r

a
ti
o

kDa

p(S21)-GSK3a

46

37

1 2 1 2 1 2 1 2

NTG NTG AC8TG AC8TG 

2-mo 12-mo

C D

E F

1 2 1 2 1 2 1 2

NTG NTG AC8TG AC8TG 

2-mo 12-mo

p(S9)-GSK3

GSK3a
GSK3

51

51

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

200

400

600
**

**
**

2-mo 12-mo

p
G

S
K
a

/G
S

K
a

 r
a

ti
o

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0
50

100
150
200
250
300
350
400
450 *

*
*

2-mo 12-mo

pPLN/PLN ratio

N
TG

 

A
C
8T

G
 

N
TG

 

A
C
8T

G
 

0

25

50

75

100

125

150

2-mo 12-mo

G
S

K
3
a

/G
A

P
D

H
 r

a
ti
o

Figure 3



A

B

0 1 10 10
0

40

60

80

100

120

**** ***

**

ISO (µg/kg)

L
V

S
P

 (
m

m
 H

g
)

0 1 10 10
0

40

60

80

100

120

ISO (µg/kg)

L
V

S
P

 (
m

m
 H

g
)

0 1 10 10
0

400

500

600

700

*

ISO (µg/kg)

H
R

 (
b

e
a

ts
/m

in
)

0 1 10 10
0

400

500

600

700

**

ISO (µg/kg)

H
R

 (
b

e
a

ts
/m

in
)

C

D

0 1 10 10
0

0

5000

10000

15000

**** ***
**

ISO (µg/kg)

L
V

 d
P

/d
t m

a
x
 (

m
m

H
g

/s
)

0 1 10 10
0

0

5000

10000

15000

** *

ISO (µg/kg)

L
V

 d
P

/d
t m

a
x
 (

m
m

H
g

/s
)

0 1 10 10
0

-10000

-8000

-6000

-4000

-2000

0

***
** **

ISO (µg/kg)

L
V

 d
P

/d
t m

in
(m

m
H

G
/s

)

0 1 10 10
0

-10000

-8000

-6000

-4000

-2000

0

ISO (µg/kg)

L
V

 d
P

/d
t m

in
(m

m
H

G
/s

)

2-mo 12-mo E

NTG AC8TG

Speed of paper flow: 5mm/s

LVP(mmHg)

dp/dt max(mmHg/s)

dp/dt min(mmHg/s)

2-mo

12-mo

0 -

100 -

1 mm → 4 mmHg 

m
m

 H
g

- 100

- 0

0 -

100 - - 100

- 0

NTG AC8TG

LVP(mmHg)

0 -

m
m

 H
g

Speed of paper flow: 5mm/s

dp/dt max(mmHg/s)

dp/dt min(mmHg/s)

- 100

- 0

0 -

100 -

- 0

- 100

0 -

100 -

Figure 4



2-mo 6-mo 12-mo 2-mo 6-mo 12-mo
300

400

500

600

700

800

900

NTG AC8TG

***
**

**
H

R
 (

b
e

a
ts

/m
in

)

2-mo 6-mo 12-mo 2-mo 6-mo 12-mo
0.0

2.0

4.0

6.0

8.0

NTG AC8TG

**

*

*
*

*
**

L
V

E
S

D
 (

m
m

)

Figure 5

A

B

C

D

2-mo 6-mo 12-mo 2-mo 6-mo 12-mo
0

20

40

60

80

100

NTG AC8TG

***

***

**
**

*

L
V

E
F

 (
%

)

2-mo 6-mo 12-mo 2-mo 6-mo 12-mo
0

10

20

30

40

50

NTG AC8TG

****

**
**

***

****
****

S
R

 a
n

t 
(s

-1
)



C

NTG AC8TG NTG AC8TG 
0

200

400

600

800
***

***

# #

 #

2-mo 12-mo

Cardiomyocyte area (µm2) Endocardial fibrosis (%)

NTG y AC8TG y NTG AC8TG 
0

5

10

15

20 ***
***

2-mo 12-mo

*
*

Epicardial fibrosis (%)

NTG AC8TG NTG AC8TG 
0

5

10

15

20

2-mo 12-mo

***
***

NTG 12-mo NTG 2-mo AC8TG 2-mo AC8TG 12-mo

100µ

100µ

100µ

A B

D

Figure 6

NTG

AC8TG

12-mo2-mo 6-mo

N
TG

A
C
8T

G
N
TG

A
C
8T

G

0

1

2

3

4 ***
*

2-mo 12-mo

A
N

P
 r

e
la

ti
v

e
 e

x
p

re
s

s
io

n

N
TG

A
C
8T

G
N
TG

A
C
8T

G

0

5

10

15

**

**

2-mo 12-mo


-M

H
C

 r
e

la
ti

v
e

 e
x

p
re

s
s

io
n

E



T-tubule

S
R

L
T

T
C

L
T

T
C

A
C

5
,6

B
1
A

R

G
a

s

c
A

M
P

R
y
R

R
y
R

C
a

2
+

S
2

a

P
L

N

A
C

5
,6

B
1
A

R

G
a

s

c
A

M
P

P
K

A

c
o

n
tr

a
c
ti
o

n

C
a

2
+

B
2
A

R

Z
 l
in

e

P
K

A

P
K

A

C
a

2
+

P
D

E
4
D

P
D

E
4
D

P
D

E
4
B

P
D

E
3

P
D

E
2

P
D

E
4
D

P
D

E
3

P
D

E
4
D

P
D

E
3
A

P
D

E
2

P
D

E
1

T
-t

u
b

u
le

n
u
c
le

u
s

P
D

E
4
D

G
S

K
3

T-tubule

S
R

L
T

T
C

L
T

T
C

A
C

5
,6

B
1
A

R

G
a

s

c
A

M
P

R
y
R

R
y
R

C
a

2
+

S
2

a

P
L

N

A
C

5
,6

B
1
A

R

G
a

s

c
A

M
P

P
K

A

c
o
n
tr

a
c
ti
o
n

C
a

2
+

B
2
A

R

Z
 l
in

e

P
K

A

P
K

A

C
a

2
+

P
D

E
4
D

P
D

E
4
D

P
D

E
2

P
D

E
4
D

P
D

E
4
D

P
D

E
3
A

T
-t

u
b
u
le

n
u

c
le

u
s

P
D

E
4
D

G
S

K
3

P
D

E
1
A

h
y
p
e

rt
ro

p
h

y

a
g
in

g

P
K

A

T-tubule

S
R

L
T

T
C

L
T

T
C

A
C

5
,6

B
1
A

R

G
a

s

c
A

M
P

R
y
R

R
y
R

C
a

2
+

S
2

a

P
L

N

A
C

5
,6

B
1
A

R

G
a

s

c
A

M
P

P
K

A

c
o

n
tr

a
c
ti
o

n

C
a

2
+

B
2
A

R

Z
 l
in

e

P
K

A

P
K

A

C
a

2
+

P
D

E
4
D

P
D

E
4
D

P
D

E
4
B

P
D

E
3

P
D

E
2

P
D

E
4
D

P
D

E
3
B

P
D

E
4
D

P
D

E
3
A

P
D

E
2

P
D

E
1
C

T
-t

u
b

u
le

n
u

c
le

u
s

P
D

E
4
D

G
S

K
3

A
C

8

P
D

E
1
A

P
D

E
3
B

P
D

E
4
D

P
D

E
4
D

P
D

E
3
B

P
D

E
1
C

P
D

E
1
A

h
y
p
e

rt
ro

p
h

y

a
g
in

g

P
K

A

A
B C

N
T

G
, 
2
-m

o
 o

ld
, 
y
o

u
n

g
 h

e
a
lt

h
y

N
T

G
, 
1
2
 m

o
-o

ld
, 
e
a
rl

y
 n

o
rm

a
l 
 a

g
in

g

A
C

8
T

G
, 

2
-m

o
 o

r 
 1

2
-m

o
 o

ld
, 
a
c
c
e
le

ra
te

d
a
g

in
g

S
c
h

e
m

a
ti

c
s

h
o

w
in

g
p

ro
p

o
s

e
d

c
h

a
n

g
e
s

o
f

c
A

M
P

/P
K

A
s

ig
n

a
li

n
g

in
2

-m
o

-o
ld

(A
)

a
n

d
1
2

-m
o

-o
ld

(C
)

N
T

G
o

r
A

C
8
T

G
(B

)
a
n

im
a

ls
.

A
.

In
h
e
a
lt
h

y
c
a

rd
io

m
y
o

c
y
te

s

m
a
jo

rs
c
A

M
P

/P
K

A
e
v
e
n

ts
a

re
c
o
n

fi
n
e
d

in
th

e
in

te
rs

p
a
c
e

T
-t

u
b
u
le

/j
u
n
c
ti
o
n
a
l

re
ti
c
u
lu

m

(J
R

)
c
o
n

tr
o
lli

n
g

in
o
tr

o
p
e

re
s
p
o

n
s
e

v
ia

L
T

C
C

a
n
d

R
y
R

p
h

o
s
p
h

o
ry

la
ti
o
n

.
B

.
In

c
o
u

rs
o
f

a
g
e

-r
e
la

te
d

d
y
s
fu

n
c
ti
o

n
,

th
e

e
ff

e
c
ti
v
e

ju
n
c
ti
o
n

a
l
T

-t
u

b
u
le

/J
R

m
ic

ro
d

o
m

a
in

c
o
n

fi
n
in

g
is

lo
s
t,

le
a
d
in

g
to

c
h
a
n

n
e
lin

g
o

f
c
A

M
P

to
w

a
rd

s
L
R

a
n
d

in
c
re

a
s
e

d
P

L
N

p
h

o
s
p
h

o
ry

la
ti
o
n

in
o

rd
e

r
to

c
o
m

p
e
n

s
a

te
lo

s
s

o
f

c
o

n
tr

a
c
ti
o
n

fu
n
c
ti
o
n

a
n
d

d
e
g

ra
d
a

ti
o
n

o
f

ti
s
s
u

e

c
o
n
d
it
io

n
.

H
o

w
e
v
e

r,
G

S
K

3
p
h
o
s
p
h
o

ry
la

ti
o
n

h
a
m

p
e

r
th

is
c
o
m

p
e
n
s
a
ti
n
g

a
d

a
p
ta

ti
o
n

v
ia

in
d
u
c
ti
o
n

o
f

h
y
p
e

rt
ro

p
h

y
-,

fi
b

ro
s
is

-
a
n

d
a
g
in

g
-

re
la

te
d

p
a

th
w

a
y
s
.

C
.

In
A

C
8
T

G
,

c
A

M
P

p
ro

d
u
c
e

d
b

y
A

C
8

is
c
o

n
fi
n
e

d
a

t
th

e
le

v
e
l
o
f

L
R

,
h

a
v
in

g
a
c
c
e
s
s

to
th

e
S

E
R

C
A

2
a
/P

L
N

c
o
m

p
a

rt
m

e
n

t,
b

u
t

n
o

t
to

L
T

C
C

c
o
m

p
a
rt

m
e

n
t.

S
E

R
C

A
2
A

/P
L
N

c
o
m

p
a

rt
m

e
n
t

is

d
e
lim

it
e
d

b
y

P
D

E
1
A

&
C

,
P

D
E

3
B

a
n
d

P
D

E
4
D

.
T

h
e

b
e
n

e
fi
t

e
ff

e
c
t

o
f

P
L
N

p
h
o
s
p

h
o

ry
la

ti
o
n

in
A

C
8
T

G
is

h
a
m

p
e

re
d

b
y

p
h

o
s
p
h

o
ry

la
ti
o
n

G
S

K
3
,

a
p
p
a

re
n
tl
y

lo
c
a
te

d

a
t

th
e

s
a
m

e
c
o
m

p
a
rt

m
e

n
t.

A
b
b

re
v
ia

ti
o

n
s
:

A
C

8
,

5
,

6
–

a
d
e

n
yl

yl
c
y
c
la

s
e

is
o
fo

rm
s

8
,

5

o
r

6
;


1
(2

)A
R

s
-


1
(2

)-
a
d

re
n

e
rg

ic
re

c
e
p

to
rs

;
G
a

S
-

G
u
a
n
in

e
n
u
c
le

o
ti
d
e

-b
in

d
in

g

p
ro

te
in

G
s
u
b

u
n
it

a
lp

h
a
,

G
S

K
3
a

&


-
g
ly

c
o
g
e

n
s
y
n

th
a

s
e

k
in

a
s
e

3
a
lp

h
a

a
n
d

b
e
ta

is
o

fo
rm

e
s
;

P
D

E
–

p
h
o

s
p
h
o

d
is

te
ra

s
e
s

is
o

fo
rm

s
;

P
K

A
–

P
ro

te
in

K
in

a
s
e

A
(c

A
M

P
-

d
e
p
e
n

d
e
n

t)
;

R
yR

-
ry

a
n
o
d
in

e
re

c
e
p

to
r;

L
T

C
C

–
L

-t
y
p

e
C

a
2

+
c
h
a
n

n
e
l;

P
L
N

–

p
h
o
s
p

h
o
la

m
b
a

n
;

S
R

-
s
a
rc

o
p
la

s
m

ic
re

ti
c
u
lu

m
;

S
2
a

-
s
a
rc

o
(e

n
d
o

)p
la

s
m

ic
re

ti
c
u
lu

m

c
a
lc

iu
m

A
T

P
a
s
e

2
a

(S
E

R
C

A
2
a
).

F
ig

u
re

 7



A

2 4 6 8 10 12 14
0

10

20

30

40

50

60

*******

Months

L
V

F
S

 (
%

)

B C

2 4 6 8 10 12 14

1.0

2.0

3.0

4.0

5.0

*****

Months

L
V

E
S

D
 (

m
m

)

NTG

AC8TG

12-mo2-mo

[mm]

2

4

6

8

10

0.00-0.25-0.50-0.751.00

200mm/s

[mm]

2

4

6

8

10

0.00-0.25-0.50-0.751.00

200mm/s

[mm]

2

4

6

8

10

0.00-0.25-0.50-0.751.00

200mm/s

[mm]

2

4

6

8

10

0.00-0.25-0.50-0.751.00

200mm/s

NTG

AC8TG

Figure S1



Survival proportions

0 2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

NTG AC8TG

Months

P
e

rc
e

n
t 

s
u

rv
iv

a
l

p<0.0001 

Figure S2


