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Photon-assisted tunnelling with nonclassical light
J.-R. Souquet1,2, M.J. Woolley3, J. Gabelli1, P. Simon1 & A.A. Clerk2

Among the most exciting recent advances in the field of superconducting quantum circuits is

the ability to coherently couple microwave photons in low-loss cavities to quantum electronic

conductors. These hybrid quantum systems hold great promise for quantum information-

processing applications; even more strikingly, they enable exploration of new physical

regimes. Here we study theoretically the new physics emerging when a quantum electronic

conductor is exposed to nonclassical microwaves (for example, squeezed states, Fock states).

We study this interplay in the experimentally relevant situation where a superconducting

microwave cavity is coupled to a conductor in the tunnelling regime. We find that the

conductor acts as a nontrivial probe of the microwave state: the emission and absorption of

photons by the conductor is characterized by a nonpositive definite quasi-probability

distribution, which is related to the Glauber–Sudarshan P-function of quantum optics. These

negative quasi-probabilities have a direct influence on the conductance of the conductor.
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T
he physics of a tunnel junction illuminated by a purely
classical microwave field has been understood since the
1960s with the classic work of Tien and Gordon1. This

situation is equivalent to simply having an ac bias voltage across
the conductor, and the resulting modification of the current is
known as photon-assisted tunnelling; it has been measured in
countless experiments (for example, refs 2–4). Despite the word
‘photon’ in the effect’s name, in this standard formulation there is
nothing quantum in the treatment of the applied microwave field.

To study a more truly quantum version of photon-assisted
tunnelling, one could consider driving a tunnel junction with a
quantum microwave field produced in a cavity. The cavity
effectively acts as an ac voltage bias across the conductor; by
maintaining the cavity in a nonclassical state, the junction is
exposed to a nontrivial microwave field. Our goal will be to
understand how such nonclassical microwaves affect electronic
transport. Such cavity-plus-conductor set-ups have been realized
experimentally, both in experiments using metallic tunnel
junctions5–7, as well as more recent experiments with high-Q
microwave cavities coupled to either quantum dots8,9 or carbon
nanotubes10. Note that the converse problem of how an electronic
conductor can be used to produce nonclassical squeezed
microwaves was recently studied experimentally11. Motivated by
experiments with superconducting circuits, theoretical work has
also studied transport in undriven dot-plus-cavity set-ups12–15.

If the cavity is not driven (that is, not coherently populated
with photons), the cavity-plus-conductor set-up realizes another
well-studied quantum transport problem: dynamical Coulomb
blockade (DCB)16–19. Here the cavity acts as a structured
electromagnetic environment for the junction, one that can
absorb (and at non-zero temperature, emit) energy from
tunnelling electrons. The standard theory of this effect18–20

is based on the function P(E), which gives the probability of
the environment absorbing an energy E from a tunnelling
electron. DCB has been experimentally probed both for
nonresonant environments21–25 as well as for environments
formed by resonators5–7, with excellent theoretical agreement.
In stark contrast to standard DCB, our focus will be on a
nonequilibrium environment produced by preparing a cavity in a
nonclassical state.

In this paper, we develop a comprehensive theory describing
how nonequilibrium, driven states of a microwave cavity
influence electronic transport in a coupled tunnel junction, with
a particular focus on cavities which are maintained in truly
nonclassical states (such as a Fock state or a squeezed state).
Generalizing both standard photon-assisted tunnelling theory
and dynamical Coulomb blocakde theory, we show that the
emission and absorption of photons by the conductor is naturally
characterized by a quasi-probability distribution, which can fail to
be positive. The resulting negative probabilities can have a direct
influence on both the conductance and finite-frequency current
noise of the tunnel junction. We also show that this new quasi-
probability distribution has a direct connection to the well-known
Glauber–Sudarshan P-function of quantum optics. We present
results for parameter regimes relevant to state-of-the-art experi-
ments, and show that for sufficiently large tunnel resistances, the
tunnel junction acts as a nontrivial and nonlinear probe of the
cavity state.

Results
Model. We consider transport through a voltage-biased tunnel
junction (dc bias voltage V), which is coupled to the voltage
antinode of a microwave cavity in such a way that the cavity
voltage acts as an additional bias voltage across the junction.
One possible realization is depicted in Fig. 1, where a tunnel

junction is coupled to a coplanar waveguide resonator (see also
refs 26–28). We calculate the average current to lowest
nonvanishing order in the tunnelling strength. If the resonator
was in thermal equilibrium, we would recover the standard DCB
expression20. We generalize this approach to now allow for an
environment (that is, the cavity), which is in an arbitrary
nonequilibrium, non-stationary state. In general, the average
tunnel current is time-dependent and can be written as

Iðt;VÞ ¼ e
X
s¼�

s
Z

dE Gðs � eV �EÞPtotðE; t; sÞ: ð1Þ

The two terms here represent (respectively) left-to-right and
right-to-left tunnelling, and G(E) describes the energy-dependent
tunnelling rate of the uncoupled junction. For the usual case of
metallic leads, one has G(E)¼ (e2RT)� 1E/(1� exp(�E/kBTel)),
where Tel is the lead temperature and RT is the junction resistance
(see, for example, ref. 29). In this standard case, the current of the
uncoupled junction is purely Ohmic, I0(V)¼V/RT. The functions
Ptot(E;t,s) describe energy transfer to/from the electromagnetic
environment. They are given by a causal environment correlation
function, evaluated in the absence of tunnelling (see
Supplementary Note 1 for a full derivation):

Genvðt; t; sÞ ¼ � ði=‘ ÞyðtÞheisĵðtÞe� isĵðt� tÞi; ð2Þ

PtotðE; t; sÞ ¼ � 1
p
Im
Z1
�1

dteiEt=‘Genvðt; t; sÞ: ð3Þ

Here ĵ ¼ ðe=‘ Þ
R t

�1 Ûðt0Þdt0 is the phase operator, defined in
terms of the (Heisenberg picture) environment voltage operator
ÛðtÞ. As shown in Supplementary Note 1, equations (1)–(3)
reduce to standard DCB expressions in the usual case of a thermal
environment; equation (3) yields a Ptot(E) function, which is
positive definite and only depends on E.

In our system, we treat the environment as a single resonant
mode of a cavity, which can be represented as a quantum LC
circuit with frequency O¼ 1/(LC)1/2. ĵ is thus given by one
quadrature of the cavity mode annihilation operator â (ref. 30),

ĵðtÞ ¼ � i
ffiffiffi
r

p
âðtÞ� âyðtÞ
h i

; ð4Þ

with r¼ pZcav/RK parameterizing the strength of zero-point
voltage fluctuations in the cavity (Zcav ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
, RK¼ h/e2 the

resistance quantum). As we will see, the most interesting regime

Tunnel junction/QPC

I A

V

Figure 1 | Proposed set-up. Schematic showing a resonant mode of a half-

wavelength coplanar waveguide resonator, with a quantum conductor

(tunnel junction or quantum point contact (QPC)) that contacts the centre

strip and lower ground plane at a voltage antinode. A dc voltage is also

applied to the junction via the centre strip at a voltage node, so as not to

induce losses (see, for example, refs 26–28). The state of the resonant

mode provides a quantum ac voltage across the junction; we are interested

in how this influences the dc junction current I and what this current reveals

about the quantum voltage.
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in our system is when r\1. Using only geometric inductances,
Zcav is limited by the vacuum impedance31, implying roo1.
However, much larger impedances are possible using Josephson
junction arrays. Recent experiments have achieved high-Q
microwave cavities that have large inductances (B100 nH),
implying rB1 (ref. 32). The recent work of ref. 33 even
studied transport in a tunnel junction coupled to a high-
impedance resonator, achieving rB0.3. The rapid progress here
suggests that even larger values of r should be possible in the
near term.

Our focus will be on situations where the cavity is maintained
in some interesting nonvacuum state, either by continuous
driving, or via reservoir-engineering techniques34, which have
been used in several recent circuit QED experiments35,36. In
either case, this involves coupling the cavity to an external
dissipative channel; this gives the cavity a finite damping rate k.
Our main goal in what follows is to understand how transport
through the tunnel junction can be used as a probe of the
(possibly nonclassical) cavity state. We thus ideally would like the
backaction disturbance of the cavity state by the conductor
to be minimal. For clarity, we will thus focus our discussion on
regimes where this is the case. Formally, the backaction-induced
modification of the cavity state does not contribute to the
junction current to leading order in the tunnelling; neglecting it is
thus consistent with our perturbative treatment. In the Methods
section, we consider the impact of non-zero backaction and show
that it can be neglected if the tunnel resistance of the junction
RT is sufficiently large. As discussed in the Methods section, for
r ’ 1 and kB10� 2O, one needs RT=RKZO=k ¼ 102. Such
values can be obtained by using a sufficiently small and opaque
metallic tunnel junction or by using a single channel quantum
point contact in the tunnel regime (see for example, ref. 25). We
stress that, while our approach treats the electron tunnelling
perturbatively, the coupling between the cavity and conductor
(parameterized by r) is not assumed to be small.

Finally, for the conductor to accurately probe the cavity state at
the single photon level, one ideally also wants the electronic
temperature Tel to satisfy kBTeloo‘O. As typical experiments
involve GHz-frequency resonators and mK temperatures, this
condition is well satisfied, implying that the role of thermal
fluctuations (both in the cavity and in the electronic reservoirs)
will be minimal. For clarity, we will thus focus on the zero-
temperature limit in what follows; the small effect of non-zero
temperature is discussed in the Methods section.

Closed cavity. The simplest situation to consider is where the
coupling k to the dissipative channel used to maintain the cavity
state is strong enough to maintain the cavity in the desired state
irrespective of the junction current, but still weak enough that it
does not appreciably modify the cavity dynamics. We start by
analysing this situation, meaning that we can neglect the effects of
k in calculating Ptot(E;t,s); non-zero k will be addressed in the
next section.

In general, one finds that Ptot(E;t,s) and hence the average
current oscillates as a function of t. We will focus on the dc
current, and thus average over t. The resulting Ptot(E) function is
then only a function of E. In the k-0 limit, the energy of a cavity
photon is precisely ‘O, and hence Ptot(E) has the form

PtotðEÞ ¼
Xþ1

k¼�1
ptot½k�dðE� k‘OÞ: ð5Þ

For a simple Ohmic tunnel junction, the differential dc
conductance dI/dV will then exhibit a series of steps as a
function of dc voltage V, as different photon-assisted processes
become energetically allowed. As discussed in the Methods

section, by measuring dI/dV and the (symmetrized) finite-
frequency junction current noise �SI ½o;V �, one can directly
extract the weights ptot[k].

Without dissipation, the cavity evolves freely, and we can
calculate Ptot(E) for an arbitrary cavity state r̂cav . It can be written
as the convolution of two normalized distributions,

PtotðEÞ ¼
Z

dE0P0ðE� E0ÞPoccðE0Þ: ð6Þ

P0(E) describes the absorption of energy by a ground-state
cavity and only has weight for EZ0. In contrast, Pocc(E) is a
quasi-probability distribution that describes the additional
emission and absorption processes possible when the cavity is
occupied with photons. If the cavity was in its ground state, we
would simply have Pocc(E)¼ d(E) and Ptot(E)¼P0(E). P0(E) is a
Poisson distribution with mean r (refs 18,20):

P0ðEÞ ¼
Xþ1

k¼0

e�r r
k

k !
dðE� k‘OÞ �

Xþ1

k¼0

p0½k�dðE� k‘OÞ:

ð7Þ
The function Pocc(E) that we introduce captures the novel

physics we are after. For an arbitrary cavity state r̂cav, it is directly
related to the Glauber–Sudarshan P-function KðaÞ, which
represents r̂cav via a quasi-probability distribution in phase
space. Recall that KðaÞ is defined via37

r̂cav ¼
Z

d2aKðaÞ jaiha j; ð8Þ

where |aS denotes a cavity coherent state with complex
amplitude a. KðaÞ expresses r̂cav as an incoherent mixture of
coherent states.

For k-0, we find that Pocc(E) also reduces to a discrete
distribution,

PoccðEÞ ¼
Xþ1

k¼�1
pocc½k�dðE� k‘OÞ; ð9Þ

with weights directly determined by the Glauber–Sudarshan
P-function:

pocc½k� ¼
Z

d2aK½a� Jk 2
ffiffiffi
r

p ja j
� �� �2

: ð10Þ

Here Jk is a Bessel function.
If Pocc(E) is positive definite, equation (6) implies that we can

interpret the energy E absorbed by the cavity in a tunnel event as
the sum of two independent stochastic quantities: an amount
associated with vacuum fluctuations (as described by P0) and an
amount associated with the population of the cavity (as described
by Pocc). While Ptot(E) must always be positive definite (see
Supplementary Note 1), this is not necessarily true of Pocc(E): it
can become negative for nonclassical cavity states, that is, states
whose phase-space distribution K½a� either fails to be positive
definite or is highly singular37. Negativity in Pocc(E) will thus be a
direct sign of nonclassical light.

For further intuition into equation (10), consider the simple
case where the cavity is in a coherent state with amplitude
hâð0Þi ¼ a0. In this case K½a� ¼ dð2Þ½a� a0�, and

pocc½k� ¼ J2k 2
ffiffiffi
r

p
a0j j

� �
: ð11Þ

pocc[k] is precisely the weight for an k-photon process in the
standard Tien–Gordon theory for a purely classical ac voltage
Vac(t)p|a0| (ref. 1). Thus, equation (10) demonstrates that for a
general state, pocc[k] is a sum of Tien–Gordon distributions for
different amplitudes, with each term weighted by the Glauber–
Sudarshan P-function K½a�.
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Returning to the coherent state case, we see from equation (6)
that the full distribution Ptot(E) involves convolving the Tien–
Gordon distribution with the zero-temperature absorption
processes of the cavity. This thus generalizes Tien–Gordon
theory to include the contribution of cavity vacuum noise. Note
that a purely classical ac voltage does not modify the dc I–V
characteristic of a conventional tunnel junction because of the
lack of any rectification (that is, such a junction has a purely
linear I–V characteristic). This is however no longer true when we
include zero-point fluctuations of the field: now, the dc I–V
characteristic of the junction is indeed modified by the presence
of the ac voltage. This behaviour is demonstrated in Fig. 4.

Fock state. Consider now the case where the cavity is stabilized in
a Fock state |nS; this has been achieved recently via reservoir-
engineering protocols in circuit QED38. For the simple case n¼ 1,
one finds pocc[k]¼ 0 unless m¼ 0, ±1, in which case:

pocc½0� ¼ 1� 2r; pocc½ � 1� ¼ r: ð12Þ

Pocc(E) for this state describes the possibility to emit or absorb
0 or 1 photons because of the non-zero cavity population. The
quasi-probability for the 0-photon process becomes negative for
r41/2. Similar negativity is found for other Fock states (see
Supplementary Note 2 and Fig. 2); the larger the value of n, the

smaller the value of r needed to see negativity. As discussed, this
negativity is a direct consequence of the nonclassical nature of the
cavity state.

The negativity in Pocc(E) leads to a distinct signature in the
differential dc conductance of the junction (see Fig. 3). The
conductance exhibits regular plateaus as a function of dc voltage.
However, unlike the case of a cavity thermal state, the plateau
heights associated with a cavity Fock state do not increase
monotonically with voltage. These surprising decreases in
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Figure 2 | Quasi-probabilities for two-photon Fock state. (a) Probability

distributions describing photon emission and absorption by a cavity initially

prepared in the n¼ 2 Fock state, in the absence of cavity damping, and for a

dimensionless cavity impedance r�pZcav/RK¼0.5. The quasi-probabilities

pocc[k] characterize the additional photon emission/absorption processes

possible because of populating the cavity with photons, whereas the

probabilities ptot[k] also include the absorption events associated with

vacuum noise. While ptot[k] must always be positive definite, pocc[k] can

fail to be positive for nonclassical cavity states. Here we see that the weight

pocc[k¼0]r0. (b) Behaviour of the quasi-probabilities pocc[k] for a

closed cavity in the n¼ 2 Fock state, as a function of r (which characterizes

the strength of cavity zero-point voltage fluctuations seen by the

conductor). Negativity requires sufficiently large r, although the minimum

required r decreases with increasing n.
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Figure 3 | Differential conductance for classical states versus Fock

states. (a) Differential conductance dI/dV versus dc bias voltage V for a

tunnel junction coupled to a cavity having dimensionless impedance

r¼0.5. We assume that the cavity is initially prepared in some specific

state and neglect cavity dissipation for simplicity; we also take the limit of a

negligible electron temperature, Teloo�hO=kB. The dashed curve is for a

ground-state cavity, the solid blue curve for a thermal state with an average

photon number �nth ¼ 2, and the red curve for a coherent state with average

photon number |a|2¼ 2. For a thermal cavity state, the conductance

plateaus are always monotonically increasing in height with V. (b) Same as

a, but now the solid curve corresponds to a cavity prepared in the Fock state

|n¼ 2S. The striking signature of a nonclassical state here is the strongly

non-monotonic dependence of the first few conductance plateaus on

voltage; in particular, the height of the second plateau (h2) is smaller than

the first (h1). This is in sharp contrast to the classical states shown in a,

states which all have an identical average cavity photon number. As

discussed in Supplementary Note 3, if one assumes that the distribution

Pocc(E) describing the cavity is positive definite, then one can rigorously

bound how small h2 can be relative to the average height of the first and

third plateaus. This bound is shown as the green horizontal line in the

figure. The conductance clearly violates this bound, and thus provides direct

(and experimentally accessible) evidence for the negativity in Pocc(E).

Similar violations are possible with other choices of Fock state; higher n

Fock states allow violations at even smaller values of r (see Supplementary

Note 2).
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conductance plateau height are inconsistent with Pocc(E) being
positive definite. As shown in the Methods section, if Pocc(E) were
positive, there is a bound on how small the second plateau in
dI/dV can be compared with the first and third plateaus. This
bound is generically violated by the dI/dV obtained with a Fock
state in the cavity (for example, that shown in Fig. 3). Thus, the
differential conductance of the junction provides a direct probe of
the nonclassical nature of the cavity state.

Further evidence of the negativity in the Fock state pocc[k] can
be seen in the corresponding total emission/absorption prob-
ability ptot[k] (which includes the contribution from vacuum
noise). For a cavity maintained in an n-photon Fock state, we find
(see Supplementary Note 2):

ptot;n½k� ¼
e�rrkn !
ðkþ nÞ ! LðkÞn ðrÞ

h i2
; if k � � n;

0 otherwise:

(
ð13Þ

Here LðkÞn denotes a generalized Laguerre polynomial. As
expected, if the cavity is maintained in an n-photon Fock state,

then in a single tunnel event at most n photons can be absorbed.
However, for an appropriately chosen r, ptot,n[� k] can be zero
for kon, while at the same time ptot[� (kþ 1)] is non-zero. Such
a cancellation would be impossible if pocc[k] were positive
definite: if the probability to absorb kþ 1 photons from the
junction is non-zero, then the probability to absorb k photons
must also be non-zero. This is a simple consequence of ptot[k]
being the convolution of pocc[k] with a Poisson distribution, p0[k].

As discussed in the Methods section, one can directly measure
ptot[k] if one measures both the dc conductance of the junction
and its finite-frequency current noise. Using such a measurement
to detect the vanishing of ptot,n[� k] for krn would thus also
provide direct evidence for the nonclassical nature of the cavity
state. If one knows ptot[k], one can also undo the convolution in
equation (6) and extract the (possibly negative) quasi-probability
distribution pocc[k]. Writing things explicitly, we have:

pocc½k� ¼ er
Xþ1

j¼0

ð�rÞj

j !
ptot½k� j� ð14Þ

Cavity driving and dissipation. We now consider the case where
the cavity is maintained in an interesting state via continuous
driving through an input port, including the non-zero cavity
dissipation associated with this port. Our approach extends easily
to such situations if the driving field is Gaussian; this includes the
interesting case of a squeezed vacuum state input. Letting k
denote the damping rate because of the coupling to the trans-
mission line used to drive the cavity, one can use standard input–
output theory30 to derive a Heisenberg–Langevin equation for the
cavity field (see Methods). For Gaussian states, this equation can
be solved to obtain the phase–phase correlator and hence Ptot(E).

We find that even for a driven, dissipative cavity, Ptot(E) can
still be written in the general form of equation (6). The
distribution P0(E) describes photon absorption by the cavity
when it is driven solely by vacuum noise:

P0ðEÞ ¼ e�r dðEÞþ
Xþ1

n¼1

ðrn=n ! Þn‘k
ðE� n‘OÞ2 þ n‘k

2

� �2
" #

: ð15Þ

In comparison with equation (7), the effects of dissipation are to
simply broaden the peaks associated with absorbing nZ1
photons. The distribution Pocc(E) again describes additional
absorption/emission processes possible when the cavity drive
populates the cavity.

For the coherent state case, we take the cavity to be driven at a
frequency odr; in this case the average cavity amplitude is
hâi ¼ a0e� iodr t . We find that Pocc(E) is again given by the closed-
cavity expression equations (9)–(11), except that one replaces the
cavity frequency O with the drive frequency odr. In contrast to
the vacuum absorption peaks, these processes are not lifetime
broadened and correspond to a photon frequency set by the drive
frequency odr, and not the cavity resonance frequency O. Both
these features lead to interesting signatures in the differential
conductance; in particular, one sees steps in the conductance
corresponding to both relevant photon frequencies (the drive
frequency and the cavity resonance frequency). This behaviour is
demonstrated in Fig. 4.

Squeezed state. Consider next a cavity that is maintained in a
squeezed state, where the variance of one quadrature is reduced
below the zero-point value by a factor e� 2r (r40). While such a
state is Gaussian, it yields a highly singular Glauber–Sudarshan
P-function and is thus considered to be nonclassical37.
A squeezed state could be maintained in a superconducting
cavity using reservoir-engineering techniques39. Alternatively,
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Figure 4 | Results for a damped cavity driven with coherent state driving.

(a) Differential conductance dI/dV versus dc bias voltage V for a tunnel

junction coupled to a cavity that is continuously driven into a coherent state

having amplitude |a|¼ 1. We have taken a drive frequency that is detuned

from resonance: odr¼0.75O. Results for zero dissipation (k-0) and finite

dissipation k¼0.01O are shown; all curves correspond to zero cavity and

electron temperature (see Methods for finite temperature effects). The

steps in the conductance now occur at multiples of both the cavity and the

drive frequency. Note that standard photon-assisted tunnelling theory

(Tien–Gordon theory1) predicts that dI/dV¼ 1/RT independent of V and the

ac voltage. Classically, this is because of the linear I–V characteristic of a

tunnel junction and consequent lack of any rectification. The behaviour

shown here is starkly different because of the inclusion of zero-point

fluctuations. (b) Integrated probability function Ptot(E) for the same

situation as a. One again sees steps at multiples of the the cavity resonance

frequency and at multiples of the drive frequency. The steps associated with

the drive frequency remain sharp even in the presence of cavity dissipation.
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one could simply drive the cavity with squeezed vacuum noise (as
produced by a parametric amplifier); this kind of intracavity
squeezing has been recently realized in experiment40. We focus
on this situation in what follows.

Analytic expressions can be obtained for Pocc(E) in the case of a
cavity driven by squeezed microwaves, see Supplementary
equation (28). One finds that Pocc(E) for E ’ � ‘O can become
negative when r ’ 1. As discussed in the caption of Fig. 5,
this leads to a striking suppression of the peak in Ptot(E) near

E¼ �‘O, which describes the possibility to absorb a single
photon. The weight of this process is suppressed more than
would ever be possible if Pocc(E) were positive definite. Thus, by
measuring Ptot(E), for a squeezed state, one could directly infer
the negativity of Pocc(E).

As shown in Fig. 5, this negativity-induced suppression of
Ptot(E) yields a direct signature in the conductance: the height of
the fourth conductance plateau is higher than would be possible
with any positive definite Pocc(E). In this figure, we also show
results including finite cavity dissipation; for small levels of
dissipation (k=O � 10� 3) the results are unchanged. Ptot(E)
could also be extracted directly if one measures both the
differential conductance of the junction and the finite-frequency
junction current noise (see Methods). Note that the finite-
frequency current noise measurements for quantum point
contacts having RT44RK (as we require here) have been
performed previously41.

Conclusion. We have studied the interplay of nonclassical light
with electron transport through a tunnel junction, showing that
this basic light–matter interaction is naturally characterized
by negative quasi-probabilities for truly quantum states. This
negativity leads to direct signatures in the differential con-
ductance of the conductor, signatures that should be accessible
in state-of-the-art experiments. Our results can directly be gen-
eralized to describe biased Josephson junctions interacting
with quantum light; such systems allow even larger values
of r (ref. 20). They also suggest the general potential of using
quantum conductors as a powerful tool to characterize, and
perhaps control, quantum microwave states in hybrid
systems incorporating superconducting microwave cavities and
semiconductor electronic devices.

Methods
Quasi-probability distributions for a closed cavity. Using the definition of the
Glauber–Sudarshan P-function KðaÞ in equation (8) and the fact that âðtÞ ¼
âð0Þe� iOt for a closed cavity, one can explicitly calculate the RHS of equation (3).
Averaging over the observation time t then yields equation (10).

Alternatively, one can express Pocc(E) as (‘ ¼ 1)

PoccðEÞ ¼
Zþ1

�1

dteiEt
Z2p=O
0

dt
2p=O

w½zðt; tÞ�;

zðt; tÞ ¼ � 2i
ffiffiffi
r

p
eiOtsinOt=2

where we have shifted the time argument in equation (2) by t-t� t/2 for clarity,
and where the characteristic function w[l] is defined as

w½l� ¼ Trðr̂cavelâ
y
e� l	 âÞ;K½a� ¼

Z
dldl	w½l�el	a� la	 : ð17Þ

It follows that Pocc(E)¼ Pocc(� E), regardless of the cavity state (that is, there is
a perfect symmetry between absorption and emission processes, as one might
expect for purely classical noise30). Pocc(E) is determined by the normal-ordered
expectations h: ðâyâÞm :i of the cavity state; the larger the value of r, the more
sensitive one is to higher moments.

Connecting transport to probabilities. For low electron temperatures
Teloo‘O=kB, the differential conductance of the junction will exhibit sharp steps
as a function of V, with transitions at eV¼m‘O; these steps correspond to turning
on and off photon-assisted processes. We define the normalized height of the mth
step as

hm ¼ RT
dI
dV

����
V¼ðmþ 1=2Þ‘O=e

: ð18Þ

The height of these plateaus is directly linked to Ptot(E). Consider the simplest
case where Tel-0 and k-0 (so that the energy of a cavity photon is precisely ‘O).
By combining equations (1) and (5), the normalized first plateau height (that is,
zero-bias conductance) is

h1 ¼ ptot½0� þ 2
Xþ1

k¼1

ptot½ � k�; ð19Þ
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Figure 5 | Results for cavity-squeezed states. (a) Probability distributions

ptot[k] and pocc[k] associated with a dissipation-free cavity in a squeezed

vacuum state, with r¼ 1.4. We take the squeeze parameter to be r¼ 1,

meaning that the variance of one cavity quadrature is reduced to 1/e2B0.14

of its ground state value ground state (see inset of b). pocc[k] describes the

extra photon absorption and emission processes possible when the cavity is

occupied with photons, whereas the distribution ptot[k] also includes the

additional absorption processes associated with vacuum fluctuations.

Similar to a Fock state, the squeezed-state quasi-probabilities pocc[k] can

exhibit negativity, which occurs here most strongly for k¼±1. This in turn

leads to a strong suppression in the value of the distribution ptot[k] at

k¼ � 1. If ptot[k] were positive, then ptot[� 1] has a minimum possible

value pmin[� 1] (dashed green line); this lower bound is based on the values

of ptot[k] at k¼ � 2,� 3. As clearly shown in the figure, the negativity in

pocc[±1] causes a large violation of this bound. (b) Differential

conductance for the the same set-up in a; we now, however, also include

the effects of non-zero cavity damping k. By measuring the heights of the

first three conductance plateaus (h1� h3), one can bound the maximum

possible value of the fourth plateau (h4) possible with any positive definite

pocc[k]. This value is h4,max and is indicated with a horizontal line. We see

that the conductance violates this bound, and thus provides direct evidence

for the negativity of pocc[k]. One can also directly measure the ptot[k]

shown in a by combining the conductance measurement shown here with a

measurement of the excess current noise D�SI½o;V� � �SI½o;V� � �SI½o;0�
(see Methods). All curves correspond to zero electron and cavity

temperatures (see Methods for finite temperature effects).
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while the height of subsequent plateaus is

hnþ 1 ¼ hn þ ptot½ þ n� � ptot½ � n�: ð20Þ
The behaviour of dI/dV with V allows us to easily extract (ptot[þ n]� ptot[� n]),

the probability difference between an n-photon absorption and emission processes.
To extract the sum of these probabilities (and hence reconstruct the full

distribution ptot[n]), one also needs to measure the finite-frequency current noise of
the junction. We define the (symmetrized) finite-frequency current noise of the
junction as

�SI ½o;V � � 1
2T

ZþT=2

�T=2

d�t
Z

dteiot Îðtþ�tÞ; Îð�tÞ
� 	
 �

; ð21Þ

where Î is the junction current operator. The average over �t is to pick out the
stationary part of the noise (with the averaging time T441=O). This noise spectral
density depends both on the drain-source voltage V and the cavity state. In the
tunnelling regime, and for eVo‘O, one finds that the excess noise D�SI ½o;V� �
�SI ½o;V� ��SI ½o; 0� exhibits regular peaks as a function of o, occurring at o¼mO
(ref. 42). These noise peaks again correspond to the turning on and off of photon-
assisted transport processes. In the low temperature, low-dissipation case, the
heights of these peaks can be directly related to ptot[n] (ref. 42)

D�SI ½o ¼ nO;V � ¼ eV
RT

ptot½ þ n� þ ptot½ � n�ð Þ: ð22Þ

Thus, measuring both the steps in the differential conductance and the peaks in
the frequency-dependent excess current noise allow one to directly extract the
probabilities ptot[n]. As mentioned in the main text (c.f. equation (14)), once one
has measured ptot[m] (as described above), one can explicitly extract the values of
quasi-probabilities pocc[m].

Detecting negative quasi-probability. The distribution ptot[k] governing photon
absorption/emission events is a convolution of p0[k] (absorption because of
vacuum noise) and pocc[k] (absorption and emission because of the presence of
photons in the cavity). p0[k] is a Poisson distribution and is completely determined
by the cavity frequency and dimensionless impedance r; r could be extracted by,
for example, measuring dI/dV for a ground-state cavity. This then gives a route for
detecting the negative values of pocc[k] associated with quantum states. By using the
known behaviour of p0[k], one can derive general bounds on the differential
conductance and excess noise that must be satisfied for any positive definite pocc[k].
A violation of such a bound provides direct evidence of negativity in pocc[k], and
hence of the nonclassical nature of the cavity state.

For example, for values of ro
ffiffiffi
3

p
, one can derive a minimum possible value for

h2 consistent with a positive Pocc(E) (see Supplementary Note 3):

h24
1
2
ðh1 þ h3Þ�

1
4

p0½1� þ 2p0½4�ð Þ � h2;min: ð23Þ

Heuristically, this bound tells us that for positive weights pocc[k], the second
conductance step cannot be arbitrarily lower than the average height of the first
and third steps. As shown in Fig. 3, this inequality is violated if one prepares a
r¼ 0.5 cavity in a n¼ 2 Fock state. Thus, the differential conductance of the
junction gives a direct signature of nonclassical behaviour.

In a similar manner, one can derive bounds on the behaviour of ptot[k] that are
true for any positive definite pocc[k]; such bounds are in general even more easily
violated by the presence of negativity in pocc[k]. For example, for ro2, one finds
that any positive definite pocc[k] must yield (see Supplementary Note 3):

ptot½n�4
p0½1�
p0½0�

ptot½n� 1� � ptot½n� 2�ð Þ � pmin½n�: ð24Þ

For n¼ 1, this bound is violated for a cavity with r¼ 1.4 prepared in a r¼ 1
squeezed vacuum state (see Fig. 5a). This violation can be detected experimentally,
as ptot[� 1] can be extracted from the behaviour of dI/dV and DSI[o,V], c.f.
equations (20) and (22).

Heisenberg–Langevin equation. A damped, driven cavity can be described using
standard input–output theory30, with the cavity equation of motion

_̂a ¼ � iOâ� k
2
â�

ffiffiffi
k

p
âinðtÞ: ð25Þ

Here âinðtÞ ¼ ainðtÞþ x̂ðtÞ describes the input field on the cavity: it has an
average part ain(t) that describes the classical amplitude of the drive, and a noise
part x̂ðtÞ that describes both thermal and quantum noise incident on the cavity. As
with standard input–output theory treatments, this noise is taken to be operator-
valued Gaussian white noise. For a coherent state drive, x̂ describes vacuum noise,
and the average cavity amplitude is hâi ¼ aine� ioLt . Squeezed input noise can be
simply included in the formalism; it corresponds to anomalous correlators
hx̂ðtÞx̂ðt0Þi being non-zero.

As the input noise is Gaussian and the cavity has no nonlinearities, the cavity
will also be in a Gaussian state. As a result, the phase–phase correlator in
equation (3) is completely determined by two-point correlation functions and is
thus easily found from the solution of equation (25).

Effects of finite temperature. Our discussion in the main text focused on the case
where the electronic leads of the tunnel junction are at zero temperature. We stress
that equations (1) and (6) remain valid even if the electronic temperature is non-
zero. Qualitatively speaking, the effect of finite temperature on the lead electrons is
to smear the sharp Fermi step in their energy distribution function; the steps now
have a finite slope proportional to (kBT)� 1. This smearing of the Fermi step
directly leads to a broadening of the sharp steps seen in the differential con-
ductance versus dc voltage V (see, for example, Fig. 6). It thus follows that to
resolve clear plateaus in the differential conductance, one requires kBToo‘O. This
condition is also consistent with our desire to have the cavity prepared in an
interesting quantum state, which requires that the number of thermal quanta in the
resonator �nth ¼ ðexpðb‘OÞ� 1Þ� 1 be extremely small.

For concreteness, we consider the realistic case of a microwave cavity with
frequency O/2p in the range 5–10GHz and an environment temperature in the
range 15–30mK. For these parameters, b‘OA[15,30], implying that the thermal
number of quanta in the cavity is exponentially suppressed. The main influence of
temperature will thus be through the electrons and the smearing of the lead Fermi
functions, which manifests itself in the temperature dependence of the tunnelling
rates G(E). The net result is that the height of the various plateaus in the differential
conductance are not affected by temperature; however, the transitions between
them are rounded off. This behaviour is shown explicitly in Fig. 6.

It is also interesting to consider the effect of having a thermal population of
photons in the cavity. The simplest situation is where a cavity is driven by thermal
noise via an input port; in this case Pocc(E) reduces to the convolution of two
Poisson distribution, one for absorption and the other one for emission
(see equation (15)). Setting ‘ ¼ 1, we have

PoccðEÞ ¼ e� 2r�nth dðEÞþ
Xþ1

n;m¼0;nþm 6¼ 0

ðr�nthÞnþm

n !m !

4ðnþmÞk
ðnþmÞ2k2 þ 4 E�ðn�mÞO½ �2

 !
: ð26Þ
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Figure 6 | Temperature effects. (a) Effects of the temperature on the

differential conductance of a tunnel junction coupled to a ground-state

closed cavity (dashed line) and to a closed cavity in a coherent state of

amplitude a ¼
ffiffiffiffiffiffi
1:5

p
. Parameters are as indicated in the figure, and

b¼ 1/kBT, where T is the temperature of both the cavity and electronic

leads. The heights of the plateaus are not affected by the temperature;

however, the smearing of transitions decreases their effective width.

(b) Same as a, but for a cavity prepared in a squeezed state with (solid line)

and without damping (dashed line). For these parameters, the smearing

of transitions between conductance plateaus is more affected by the

non-zero cavity damping k than by temperature.
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In the limit k-0, this reduces to the well-known DCB expression for a
resonator in thermal equilibrium20.

Another interesting case is where the damped cavity is driven both by a
coherent tone and by thermal noise. In this case the cavity will be in a displaced
thermal state, and Pocc[E] reduces to the convolution of the thermal distribution
given above with the Tien–Gordon distribution (see equation (11)). Again, setting
‘ ¼ 1, we find

PoccðEÞ ¼e� 2r�nth
Xþ1

p¼�1
J2p 2

ffiffiffi
r

p
a0j j

� �

dðE� pOÞþ
Xþ1

n;m¼0;nþm 6¼ 0

ðr�nthÞnþm

n !m !

4kðnþmÞ
ðnþmÞ2k2 þ 4ðE�ðnþ p�mÞOÞ2

 !
:

ð27Þ
Finally, consider the case of a squeezed state. In the main text, we consider the

ideal case where the cavity is driven by a pure squeezed input field. This calculation
is easily generalized to the case where the input field describes a squeezed thermal
state with thermal population �nth. For the small levels of squeezing considered here
(that is, r¼ 1 in Fig. 5), even thermal populations �nth � 1 have a negligible
influence. This behaviour is shown in Fig. 6.

Transport-induced cavity dissipation. The discussion in the main text focused on
regimes where the conductor makes a minimal backaction disturbance to the state
of the cavity; as discussed, such backaction effects formally play no role in deter-
mining the junction current to lowest order in the tunnelling amplitude. A full
treatment of backaction effects (that is, working beyond the tunnelling approx-
imation while still allowing for r � 1) is beyond the scope of this article and will be
the focus of future work. Nonetheless, one can use our approach to estimate the
size of such backaction effects in the weak-tunnelling regime; we do this here. The
results we obtain are consistent with previous studies of related backaction effects
in nanoelectromechanical systems where a tunnel junction is weakly coupled to a
mechanical resonator43–45; such weak-coupling theory would rigorously only apply
to roo1 in our system.

In general, the tunnel junction will act as an additional dissipative reservoir
coupled to the cavity; for weak coupling and a high-Q cavity, it is equivalent to a
Gaussian bath held at some effective temperature (see, for example, refs 43,44).
One effect will thus be an increase in the cavity dissipation rate from k to kþ k0 . If
we simply modelled the tunnel junction as an Ohmic resistance (modelled as an
infinite oscillator bath, as per the Caldeira–Leggett approach46), we would find
k0 ¼ 1/RTC. The approaches of refs 43,44 yield an identical expression. This
dissipation can be expressed as k0 ¼ rORK/RTp. We thus see that k0 is negligible
compared with k as long as pRT/rRK is larger than the quality factor of the cavity.

One must also consider the heating of the cavity because of the tunnel junction,
that is, what is the effect of the fluctuations associated with the dissipation rate k0?
To estimate this heating, consider first an undamped cavity and suppose we have
calculated ptot[k] for some given cavity state. We now want to understand how
photon-assisted transitions involving the junction lead to heating (or cooling) of
the cavity. Using a Golden rule approach, the rate of change of the average cavity
photon number because of such transitions will be given by:

d
dt

hâyâi j junc¼
X
k

X
s¼�

kptot½k�GðseV � kOÞ � Pem; ð28Þ

where Pem denotes the power emitted by the junction to the cavity (in units of
cavity quanta per unit time). Consider the case Tel-0 and eVo‘O. In this case,
one finds easily:

Pem ¼ � RK

pRT
O
Xþ1

k¼1

k2ptot½ � k� � �P0

Xþ1

k¼1

k2ptot½ � k�: ð29Þ

We see that in this low-voltage regime, there is a net power transfer from the
cavity to the conductor; its value involves a weighted sum over all processes where
a photon is absorbed from the cavity. This is consistent with the results of refs
43,44, which show that for weak couplings and for low voltages, the resonator sees
the conductor as an effective thermal reservoir with an effective temperature much
less than ‘O/kB. For roo1, the sum in equation (29) necessarily scales as r (as
such processes are impossible without having a coupling between the cavity and
conductor). In contrast, for the regime of interest here r � 1, and the value of the
summation could be of order 1 depending on the cavity state. The scale for Pem is
thus set by the rate P0 ¼ ORK=pRT ¼ k0=r0; as expected, the weaker the
tunnelling (that is, the larger the tunnel resistance RT), the smaller this rate
becomes.

One can, in an analogous manner, calculate Pem for larger junction voltages
satisfying eV4‘O. We are interested in values of r � 1 and in voltages that
are at most only a few times larger than ‘O. In this regime (and for the kinds
of cavity states considered in the main text), one again finds that the scale of
Pemj j is set by P0. This is shown explicitly in the Methods and in Supplementary
Fig. 1 and where we explicitly calculate Pem for a variety of states (see
Supplementary Figs 1 and 2).

Having understood the power flow into and out of the cavity, we can now
calculate the resulting change in the average cavity photon number, Dncav, using a

simple rate equation. We find that

Dncavj j � Pinj j
kþ k0

� P0

kþ k0
� P0

k
; ð30Þ

where we have assumed that the intrinsic cavity dissipation k dominates any
additional damping k0 because of the coupling to the junction. Insisting that Dncav
is smaller than a single quantum thus results in the condition:

RK

RT
o

k
O
: ð31Þ

Thus, if we use a cavity with k¼ 10� 2O, the above estimate tells us that the
junction resistance needs to be much larger than B102RK.
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