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Introduction

In this work, we introduce and study a new class of optimal switching problems in stochastic control theory. The interest in switching problems comes mainly from their connections to financial and economic problems, like the pricing of real options [START_REF] Carmona | Valuation of energy storage: An optimal switching approach[END_REF]. In a celebrated article [START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF], Hamadène and Jeanblanc study the fair valuation of a company producing electricity. In their work, the company management can choose between two modes of production for their power plant -operating or close -and times of switching from one state to another, in order to maximise its expected return. Typically, the company will buy electricity on the market if the power station is not operating. The company receives a profit for delivering electricity in each regime. The main point here is that a fixed cost penalizes the profit upon switching. This switching problem has been generalized to more than two modes of production [START_REF] Djehiche | A finite horizon optimal multiple switching problem[END_REF]. Let us now discuss this switching problem with d ě 2 modes in more details. The costs to switch from one state to another are given by a matrix pc i,j q 1ďi,jďd . The management optimises the expected company profits by choosing switching strategies which are sequences of stopping times pτ n q ně0 and modes pζ n q ně0 . The current state of the strategy is given by a t " ř `8 k"0 ζ k 1 rτ k ,τ k`1 q ptq, t P r0, T s, where T is a terminal time. To formalise the problem, we assume that we are working on a complete probability space pΩ, A, Pq supporting a Brownian motion W . The stopping times are defined with respect to the filtration pF 0 t q tě0 generated by this Brownian motion. Denoting by f i ptq the instantaneous profit received at time t in mode i, the time cumulated profit associated to a switching strategy is given by ş T 0 f at ptqdt ´ř`8 k"0 c ζ k ,ζ k`1 1 tτ k`1 ďT u . The management solves then at the initial time the following control problem

V 0 " sup aPA E « ż T 0 f at ptqdt ´`8 ÿ k"0 c ζ k ,ζ k`1 1 tτ k`1 ďT u ff , (1.1) 
where A is a set of admissible strategies that will be precisely described below in our framework (see Section 2.1). We shall refer to problems of the form (1.1) under the name of classical switching problems. These problems have received a lot of interest and are now quite well understood [START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF][START_REF] Djehiche | A finite horizon optimal multiple switching problem[END_REF][START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF][START_REF] Chassagneux | A note on existence and uniqueness for solutions of multidimensional reflected BSDEs[END_REF]. In our work, we introduce a new kind of switching problems, to model more realistic situations, by taking into account uncertainties that are encountered in practice. Coming back to the simple but enlightening example of an electricity producer described in [START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF], we introduce some extra-randomness in the production process. Namely, when switching to the operating mode, it may happen with -hopefully -a small probability that the station will have some dysfunction. This can be represented by a new mode of "production" with a greater switching cost than the business as usual one. To capture this phenomenon in our mathematical model, we introduce a randomisation procedure: the management decides the time of switching but the mode is chosen randomly according to some extra noise source. We shall refer to this kind of problems by randomised switching problems. However, we do not limit our study to this framework. Indeed, we allow some control by the agent on this randomisation. Namely, the agent can choose optimally a probability distribution P u on the modes space given some parameter u P C , the control space. The new mode ζ k`1 is then drawn, independently of everything up to now, according to this distribution P u , and a specific switching cost c u ζ k ,ζ k`1 is applied. The management strategy is thus given now by the sequence pτ k , u k q kě0 of switching times and controls. The maximisation problem is still given by (1.1). Let us observe however that E

" c u k ζ k ,ζ k`1 ı " E " ř 1ďjďd P u k ζ k ,j c u k ζ k ,j
ı , thanks to the tower property of conditional expectation. In particular, we will only work with the mean switching costs cu i :" ř 1ďjďd P u i,j c u i,j in (1.1). We name this kind of control problems switching problems with controlled randomisation. Although their apparent modeling power, this kind of control problems has not been considered in the literature before, to the best of our knowledge. In particular, we will show that classical and randomised switching problems are just special instances of this more generic problem. The switching problem with controlled randomisation is introduced rigorously in Section 2.1 below.

A key point in our work is to relate these control problems to a new class of obliquely reflected Backward Stochastic Differential Equations (BSDEs). In the first part, following the approach of [START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF][START_REF] Djehiche | A finite horizon optimal multiple switching problem[END_REF][START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF], we completely solve the switching problem with controlled randomisation by providing an optimal strategy. The optimal strategy is built using the solution to a well chosen obliquely reflected BSDE. Although this approach is not new, the link between the obliquely reflected BSDE and the switching problem is more subtle than in the classical case due to the state uncertainty. In particular, some care must be taken when defining the adaptedness property of the strategy and associated quantities. Indeed, a tailor-made filtration, studied in details in Appendix A.2, is associated to each admissible strategy. The state and cumulative cost processes are adapted to this filtration, and the associated reward process is defined as the Y -component of the solution to some "switched" BSDE in this filtration. The classical estimates used to identify an optimal strategy have to be adapted to take into account the extra orthogonal martingale arising when solving this "switched" BSDE in a non Brownian filtration. In the second part of our work, we study the auxiliary obliquely reflected BSDE, which is written in the Brownian filtration and represents the optimal value in all the possible starting modes. Reflected BSDEs were first considered by Gegout-Petit and Pardoux [START_REF] Gegout | Equations différentielles stochastiques rétrogrades réfléchies dans un convexe[END_REF], in the multidimensional setting of normal reflections. In one dimension, they have also been studied in [START_REF] Karoui | Reflected solutions of backward SDEs, and related obstacle problems for PDEs[END_REF] in the so called simply reflected case, and in [START_REF] Cvitanic | Backward stochastic differential equations with reflection and Dynkin games[END_REF] in the doubly reflected case. The multidimensional RBSDE associated to the classical switching problem is reflected in a specific convex domain and involves oblique directions of reflection. Due to the controlled randomisation, the domain in which the Y -component of the auxiliary RBSDE is constrained is different from the classical switching problem domain and its shape varies a lot from one model specification to another. The existence of a solution to the obliquely reflected BSDE has thus to be studied carefully. We do so by relying on the article [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF] that studies, in a generic way, the obliquely reflected BSDE in a fixed convex domain in both Markovian and non-Markovian setting. The main step for us here is to exhibit an oblique reflection operator, with the good properties to use the results in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF]. We are able to obtain new existence results for this class of obliquely reflected BSDEs. Because we are primarily interested in solving the control problem, we derive the uniqueness of the obliquely reflected BSDEs in the Hu and Tang specification for the driver [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF], namely f i pt, y, zq :" f i pt, y i , z i q for i P t1, . . . , du. But our results could be easily generalized to the specification f i pt, y, zq :" f i pt, y, z i q by using similar arguments as in [START_REF] Chassagneux | A note on existence and uniqueness for solutions of multidimensional reflected BSDEs[END_REF].

The rest of the paper is organised as follows. In Section 2, we introduce the switching problem with controlled randomisation. We prove that, if the costs are positive and there exists a solution to the associated BSDE with oblique reflections, then its Y -component coincides with the value of the switching problem. A verification argument allows then to deduce uniqueness of the solution of the obliquely reflected BSDE, and we obtain an uniqueness result in the signed costs setting as a byproduct, assuming non-emptiness of the interior of the domain of reflection. In Section 3, we study the geometry of the domain of reflection in the signed costs case, and we provide explicit conditions on the coefficients which are equivalent to a domain of reflection with a non-empty interior. In Section 4, we show that there exists indeed a solution to the obliquely reflected BSDE under the previous conditions in a Markovian setting, and in some particular instances in the non-Markovian case. We also prove uniqueness of the solution under some structural condition on the driver f . Finally, we gather in the Appendix section some technical results. In particular, in a positive costs setting, we prove a Martingale decomposition theorem in the filtration associated to an admissible strategy, which is a new result.

Notations If n ě 1, we let B n be the Borelian sigma-algebra on R n . If E is a measurable susbet of R n , we denote by E its interior and by E its closure. For any filtered probability space pΩ, A, F :" pF t q tě0 , Pq and constants T ą 0 and p ě 1, we define the following spaces:

• L p n pAq is the set of A-measurable random variables X valued in R n satisfying Er|X| p s ă `8,
• PpFq is the predictable sigma-algebra on Ω ˆr0, T s,

• H p n pFq is the set of predictable processes φ valued in R n such that }φ} H p n pFq :" E "ż T 0 |φ t | p dt  1 p ă `8, (1.2) 
• S p n pFq is the set of càdlàg adapted processes φ valued in R n such that

}φ} S p n pFq :" E " sup 0ďtďT |φ t | p  1 p ă `8, (1.3) 
• A p n pFq is the set of adapted continuous processes φ valued in R n such that φ T P L p n pF T q and φ i is non-decreasing for all i " 1, . . . , n.

For X, Y two càdlàg processes, the quadratic covariation process is denoted rX, Y s and the quadratic variation process rXs.

If n " 1, we omit the subscript n in previous notations.

For d ě 1, we denote by pe i q d i"1 the canonical basis of R d and S d pRq the set of symmetric matrices of size d ˆd with real coefficients. Moreover, we let 1 :"

ř d i"1 e i . If D is a convex subset of R d (d ě 1
) and y P D, we define the set Cpyq by Cpyq :"

! v P R d ˇˇv J pz ´yq ď 0 for all z P D ) . (1.4)
This is the outward normal cone at y when y is a boundary point of D, and it is obviously reduced to t0u when y is an interior point. We also set npyq :" Cpyq X v P R d ˇˇ|v| " 1 ( . For any closed convex set O, we denote by P O p¨q the projection onto O.

If X is a matrix of size n ˆm, I Ă t1, . . . , nu and J Ă t1, . . . , mu, we set X pI,J q the matrix of size pn ´|I|q ˆpm ´|J |q obtained from X by deleting rows with index i P I and columns with index j P J . If I " tiu we set X pi,J q :" X pI,J q , and similarly if J " tju. If v is a vector of size n and 1 ď i ď n, we set v piq the vector of size n ´1 obtained from v by deleting coefficient i. For pi, jq P t1, . . . , du, we define i pjq :" i ´1tiąju P t1, . . . , d ´1u , for d ě 2. We denote by ě the component by component partial ordering relation on vectors and matrices.

Switching problems with controlled randomisation

We introduce here a new kind of stochastic control problems that we name switching problems with controlled randomisation. In contrast with the usual switching problems [START_REF] Hamadène | On the starting and stopping problem: application in reversible investments[END_REF][START_REF] Hamadène | Switching problem and related system of reflected backward SDEs[END_REF][START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF], the agent cannot choose directly the new state, but chooses a probability distribution under which the new state will be determined. In this section, we assume the existence of a solution to some auxiliary obliquely reflected BSDE to characterize the value process and an optimal strategy for the problem, see Assumption 2.2 below.

Let pΩ, G, Pq be a probability space. We fix a finite time horizon T ą 0 and κ ě 1, d ě 2 two integers. We assume that there exists a κ-dimensional Brownian motion W and a sequence pU n q ně1 of independent random variables, independent of W , uniformly distributed on r0, 1s. We also assume that G is generated by the Brownian motion W and the family pU n q ně1 . We define F 0 " pF 0 t q tě0 as the augmented Brownian filtration, which satisfies the usual conditions. Let C be an ordered compact metric space and F : C ˆt1, . . . , du ˆr0, 1s Ñ t1, . . . , du a measurable map. To each u P C is associated a transition probability function on the state space t1, . . . , du, given by P u i,j :" PpF pu, i, Uq " jq for U uniformly distributed on r0, 1s. We assume that for all pi, jq P t1, . . . , du 2 , the map u Þ Ñ P u i,j is continuous. Let c : t1, . . . , du ˆC Ñ R, pi, uq Þ Ñ cu i a map such that u Þ Ñ cu i is continuous for all i " 1, . . . , d. We denote sup iPt1,...,du,uPC cu i :" č and inf iPt1,...,du,uPC cu i :" ĉ. Let ξ " pξ 1 , . . . , ξ d q P L 2 d pF 0 T q and f : Ω ˆr0, T s ˆRd ˆRdˆκ Ñ R d a map satisfying • f is PpF 0 q b B d b B dˆκ -measurable and f p¨, 0, 0q P H 2 d pF 0 q. • There exists L ě 0 such that, for all pt, y, y 1 , z, z 1 q P r0, T sˆR d ˆRd ˆRdˆκ ˆRdˆκ , |f pt, y, zq ´f pt, y 1 , z 1 q| ď Lp|y ´y1 | `|z ´z1 |q.

The above assumptions will be in force throughout our work. We shall also use, in this section only, the following additional assumptions. Assumption 2.1. i) Switching costs are positive, i.e. ĉ ą 0.

ii) For all pt, y, zq P r0, T s ˆRd ˆRdˆκ , it holds almost-surely, f pt, y, zq " pf i pt, y i , z i qq 1ďiďd .

(2.1)

iii) For all u P C and i P t1, . . . , du, we have P u i,i ‰ 1.

Remark 2.1. i) It is usual to assume positive costs in the literature on switching problem. In particular, it implies that the cumulative cost process, see (2.2), is nondecreasing. Introducing signed costs adds extra technical difficulties in the proof of the representation theorem (see e.g. [START_REF] Martyr | Finite-horizon optimal multiple switching with signed switching costs[END_REF] and references therein). We postpone the adaptation of our results in this more general framework to future works.

ii) The structural condition on f is also standard: it allows to get a comparison result for BSDEs, which is a key point to obtain the representation theorem. Note however that our results can be generalized to the case f i pt, y, zq " f i pt, y, z i q for i P t1, ..., du by using similar arguments as in [START_REF] Chassagneux | A note on existence and uniqueness for solutions of multidimensional reflected BSDEs[END_REF].

Solving the control problem using obliquely reflected BSDEs

We define in this section the stochastic optimal control problem. We first introduce the strategies available to the agent and related processes. The definition of the strategy is more involved than in the usual switching problem setting since its adaptedness property is understood with respect to a filtration built recursively.

A strategy is thus given by φ " pζ 0 , pτ n q ně0 , pα n q ně1 q where ζ 0 P t1, . . . , du, pτ n q ně0 is a non-decreasing sequence of random times and pα n q ně1 is a sequence of C -valued random variables, which satisfy:

• τ 0 P r0, T s and ζ 0 P t1, . . . , du are deterministic.

• For all n ě 0, τ n`1 is a F n -stopping time and α n`1 is F n τ n`1 -measurable (recall that F 0 is the augmented Brownian filtration). We then set F n`1 " pF n`1 t q tě0 with F n`1 t :" F n t _ σpU n`1 1 tτ n`1 ďtu q for all t ě 0.

Lastly, we define F 8 " pF 8 t q tě0 with F 8 t :" Ž ně0 F n t , t ě 0. For a strategy φ " pζ 0 , pτ n q ně0 , pα n q ně1 q, we set, for n ě 0 and t ě 0,

ζ n`1 :" F pα n`1 , ζ n , U n`1 q and a t :" `8 ÿ k"0 ζ k 1 rτ k ,τ k`1 q ptq,
which represent the state after a switch and the state process, respectively. We also introduce two processes, for t ě 0,

A φ t " `8 ÿ k"0 cα k`1 ζ k 1 tτ k`1 ďtu and N φ t :" ÿ kě0 1 tτ k`1 ďtu . (2.
2)

The random variable A φ t is the cumulative cost up to time t and N φ t is the number of switches before time t. Notice that the processes pa, A φ , N φ q are adapted to F 8 and that A φ is a non-decreasing process.

We say that a strategy φ " pζ 0 , pτ n q ně0 , pα n q ně1 q is an admissible strategy if the cumulative cost process satisfies

A φ T ´Aφ τ 0 P L 2 pF 8 T q and E " ´Aφ τ 0 ¯2 ˇˇˇF 0 τ 0  ă `8 a.s. (2.3)
We denote by A the set of admissible strategies, and for t P r0, T s and i P t1, . . . , du, we denote by A i t the subset of admissible strategies satisfying ζ 0 " i and τ 0 " t.

Remark 2.2. i) The recursive definition of an admissible strategy allows to construct strategies for which decisions are taken using all the information available at that time: the Brownian trajectory up to that time and the values of the noise factors U k associated to earlier decisions. When switching costs are positive, the integrability conditions ensure that the total cost and the total number of switches are almostsurely finite and are square integrable.

ii) The definition of an admissible strategy is slightly weaker than usual [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF], which requires the stronger property A φ T P L 2 pF 8 T q. But, importantly, the above definition is enough to define the switched BSDE associated to an admissible control, see below. Moreover, we observe in the next section that optimal strategies are admissible with respect to our definition, but not necessarily with the usual one, due to possible simultaneous jumps at the initial time.

iii) For technical reasons involving possible simultaneous jumps, we cannot consider the generated filtration associated to the state process a, which is contained in F 8 .

We are now in position to introduce the reward associated to an admissible strategy.

If φ " pζ 0 , pτ n q ně0 , pα n q ně1 q P A , the reward is defined as the value E

" U φ τ 0 ´Aφ τ 0 ˇˇF 0 τ 0 ı ,
where pU φ , V φ , M φ q P S 2 pF 8 q ˆH2 κ pF 8 q ˆH2 pF 8 q is the solution of the following switched BSDE (see e.g. [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF] for the definition of a switched BSDE) on the filtered probability space pΩ, G, F 8 , Pq: For t P r0, T s and i P t1, . . . , du, the agent aims thus to solve the following maximisation problem:

U t " ξ a T `ż T t f as ps, U s , V
V i t " ess sup φPA i t E " U φ t ´Aφ t ˇˇF 0 t ı . (2.5) 
We first remark that this control problem corresponds to (1.1) as soon as f does not depend on y and z. Moreover, the term E " A φ t ˇˇF 0 t ı is non-zero if and only if we have at least one instantaneous switch at initial time t. Notice that in the context of usual switching problems, this control probem reduces to the classical one studied in [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF]. We also remark that, if we study a problem (1.1) where the randomness of the running profit comes from a diffusion X and where the manager is allowed to control the drift of this diffusion (continuously in time), then we get a generator f that depends on z (see [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF] for some precise results), which justify the level of generality of (2.4).

The main result of this section is the Theorem 2.1 below that relates the value process V to the solution of an obliquely reflected BSDE, introduced in the following assumption: Assumption 2.2. There exists a solution pY, Z, Kq P S 2 d pF 0 q ˆH2 dˆκ pF 0 q ˆA2 d pF 0 q to the following obliquely reflected BSDE:

Y i t " ξ i `ż T t f i ps, Y i s , Z i s qds ´ż T t Z i s dW s `ż T t dK i s , t P r0, T s, i P I, (2.6) 
Y t P D, t P r0, T s, (2.7) 
ż T 0 ˜Y i t ´sup uPC # d ÿ j"1 P u i,j Y j t ´c u i +¸d K i t " 0, i P I, (2.8) 
where I :" t1, . . . , du and D is the following convex subset of R d :

D :" # y P R d ˇˇˇˇy i ě sup uPC # d ÿ j"1 P u i,j y j ´c u i + , i P I + .
(2.9)

Let us observe that the positive costs assumption, Assumption 2.1-i), implies that D has a non-empty interior, since y " 0 is an interior point. Except for Section 2.2, this is the main setting for this part, recall Remark 2.1. In Section 4, the system (2.6)-(2.7)-(2.8) is studied in details in a general costs setting: Then, an important step will be to understand when D has a non-empty interior, see Section 3.

We also introduce a strategy which turns out to be optimal for the control problem. This strategy is the natural extension to our setting of the optimal one for classical switching problem, see e.g. [START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF]. A key step is to prove that this strategy is admissible, which is more involved than in the classical case due to the randomisation, see Section 2.3.2.

For pt, iq P r0, T s ˆI, let φ ‹ " pζ ‹ 0 , pτ ‹ n q ně0 , pα ‹ n q ně1 q defined by τ ‹ 0 " t and ζ ‹ 0 " i and inductively by:

τ ‹ k`1 " inf # τ ‹ k ď s ď T ˇˇˇˇY ζ ‹ k s " max uPC # d ÿ j"1 P u ζ ‹ k ,j Y j s ´c u ζ ‹ k ++ ^pT `1q, (2.10) 
α ‹ k`1 " min arg max uPC # d ÿ j"1 P u ζ ‹ k ,j Y j τ ‹ k`1 ´c u ζ ‹ k + , (2.11) 
recall that C is ordered.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold.

1. For all i P t1, . . . , du, t P r0, T s and φ P A i t , we have

Y i t ě E " U φ t ´Aφ t ˇˇF 0 t ı . 2. We have Y i t " E " U φ ‹ t ´Aφ ‹ t ˇˇF 0 t ı
, where φ ‹ " pi, pτ ‹ n q ně0 , pα ‹ n q ně1 q P A i t is defined in (2.10)- (2.11).

The proof is given in Section 2.3. We first remark that, as an immediate consequence, we obtain the uniqueness for the first BSDE component used to characterize the value process of the control problem. Uniqueness of Z follows as usual by applying Itô's formula to |Y ´Y 1 | 2 where pY, Z, Kq and pY 1 , Z 1 , K 1 q are two solutions since necessarily Y " Y 1 . Finally, K is uniquely defined in (2.6) as soon as Y and Z are unique.

Corollary 2.1. Under Assumptions 2.1 and 2.2, there exists a unique solution pY, Z, Kq P S 2 d pF 0 q ˆH2 dˆκ pF 0 q ˆA2 d pF 0 q to the obliquely reflected BSDE (2.6)-(2.7)-(2.8).

Remark 2.4. The classical switching problem is an example of switching problem with controlled randomisation. Indeed, we just have to consider C " t1, ..., d ´1u,

P u i,j " # 1 if j ´i " u mod d, 0 otherwise, @u P C , 1 ď i, j ď d, and 
c u i " # c i,i`u if i `u ď d, c i,i`u´d if i `u ą d, @u P C , 1 ď i ď d,
where pc i,j q 1ďi,jďd are the switching costs from the classical switching problem.

We observe that, in this specific case, there is no extra-randomness introduced at each switching time and so there is no need to consider an enlarged filtration. In this setting, if Assumption 2.1-i)&ii) are satisfied, then Theorem 2.1 is already known and Assumption 2.2 is fulfilled, see e.g. [START_REF] Hamadène | Switching problem and related system of reflected backward SDEs[END_REF][START_REF] Hu | Multi-dimensional BSDE with oblique reflection and optimal switching[END_REF].

Uniqueness of solutions to reflected BSDEs with general costs

In this section, we extend the uniqueness result of Corollary 2.1. Namely, we consider the case where inf 1ďiďd,uPC cu i " ĉ can be non-positive, meaning that only Assumption 2.1-ii)&iii) hold here. Assuming in addition that D has a non-empty interior, we are then able to show uniqueness to (2.6)-(2.7)-(2.8) in Proposition 2.1 below. Fix y 0 in the interior of D. It is clear that for all 1 ď i ď d,

y 0 i ą sup uPC # d ÿ j"1 P u i,j y 0 j ´c u i + .
We set, for all 1 ď i ď d and u P C , cu i :" y 0 i ´d ÿ j"1 P u i,j y 0 j `c u i ą 0, so that ĉ :" inf 1ďiďd,uPC cu i ą 0 by compactness of C and continuity of u Þ Ñ pc u i , P u i,j q for all 1 ď i, j ď d. We also consider the following set D :"

# ỹ P R d ˇˇˇˇỹ i ě sup uPC # d ÿ j"1 P u i,j ỹj ´c u i + , 1 ď i ď d + .
Lemma 2.1. Assume that D has a non-empty interior and let y 0 in its interior. Then, D " y ´y0 ˇˇy P D ( .

Proof. If y P D, let ỹ :" y ´y0 . For 1 ď i ď d and u P C , we have

ỹi " y i ´y0 i ě d ÿ j"1 P u i,j y j ´c u i ´y0 i " d ÿ j"1 P u i,j py j ´y0 j q ´pc u i `y0 i ´d ÿ j"1 P u i,j y 0 j q " d ÿ j"1 P u i,j ỹj ´c u i ,
hence ỹ P D. Conversely, let ỹ P D and let y :" ỹ `y0 . We can show by the same kind of calculation that y P D. l Proposition 2.1. Let Assumption 2.1-ii)&iii) hold and assume furthermore that D has a non-empty interior. Then there exists at most one solution to (2.6)-(2.7)-(2.8) in S 2 d pF 0 q ˆH2 dˆκ pF 0 q ˆA2 d pF 0 q.

Proof. Let us assume that pY 1 , Z 1 , K 1 q and pY 2 , Z 2 , K 2 q are two solutions to (2.6)-(2.7)-(2.8). We set Ỹ 1 :" Y 1 ´y0 and Ỹ 2 :" Y 2 ´y0 . Then one checks easily that p Ỹ 1 , Z 1 , K 1 q and p Ỹ 2 , Z 2 , K 2 q are solutions to (2.6)-(2.7)-(2.8) with terminal condition ξ " ξ ´y0 , driver f given by

f i pt, ỹi , z i q :" f i pt, ỹi `y0 i , z i q, 1 ď i ď d, t P r0, T s, ỹ P R d , z P R dˆκ ,
and domain D. This domain is associated to a switching problem with controlled randomisation with ĉ ą 0, hence Corollary 2.1 gives that p Ỹ 1 , Z 1 , K 1 q " p Ỹ 2 , Z 2 , K 2 q which implies the uniqueness. l

Proof of the representation result

We prove here our main result for this part, namely Theorem 2.1. The proof is divided in several steps.

Preliminary estimates

We first introduce auxiliary processes associated to an admissible strategy and prove some key integrability properties.

Suppose that Assumption 2.2 is in force, and let pY, Z, Kq be a solution to (2.6)-(2.7)-(2.8). Let i P t1, . . . , du and t P r0, T s. We set, for φ P A i t and t ď s ď T ,

Y φ s :" ÿ kě0 Y ζ k s 1 rτ k ,τ k`1 q psq , (2.12) 
Z φ s :"

ÿ kě0 Z ζ k s 1 rτ k ,τ k`1 q psq , (2.13) 
K φ s :" ÿ kě0 ż τ k`1 ^s τ k ^s dK ζ k u , (2.14) 
M φ s :"

ÿ kě0 ´Y ζ k`1 τ k`1 ´E" Y ζ k`1 τ k`1 ˇˇF k τ k`1 ı¯1 ttăτ k`1 ďsu , (2.15) 
A φ s " ÿ kě0 ´Y ζ k τ k`1 ´E" Y ζ k`1 τ k`1 ˇˇF k τ k`1 ı `c α k`1 ζ k ¯1ttăτ k`1 ďsu . (2.16) Remark 2.5. For all k ě 0, since α k`1 is F k τ k`1 -measurable, we have E " Y ζ k`1 τ k`1 ˇˇF k τ k`1 ı " d ÿ j"1 P ´ζk`1 " j ˇˇF k τ k`1 ¯Y j τ k`1 " d ÿ j"1 P α k`1 ζ k ,j Y j τ k`1 .
(2.17)

Lemma 2.2. Suppose that Assumption 2.1-i) and Assumption 2.2 are satisfied. For any admissible strategy φ P A i t , M φ is a square integrable F 8 -martingale with M φ t " 0, K φ is a non-decreasing continuous process with K φ t " 0, A φ is non-decreasing and satisfies A φ t " 0 and A φ T P L 2 pF 8 T q. In addition, 

E » - ˜ÿ kě0 ´Y ζ k`1 τ k`1 ´E" Y ζ k`1 τ k`1 ˇˇF k τ k`1 ı¯1 tτ k`1 ďtu ¸2 ˇˇˇˇˇF 0 t fi fl ă `8 a.s. ( 2 
M φ is a F 8 -local martingale. We are going to show that E " ş T 0 d " M φ ‰ s ı ă `8, which
implies that M φ is a F 8 -martingale, and we show at the same time that A φ T P L 2 pF 8 T q. Eventually, (2.18) will be proved.

Using (2.16) and (2.17), we have, for all s P rt, T s,

A φ s " ÿ kě0 ˜Y ζ k τ k`1 ´d ÿ j"1 P α k`1 ζ k ,j Y j τ k`1 `c α k`1 ζ k ¸1ttăτ k`1 ďsu , (2.19) 
hence A φ is non-decreasing since each summand is positive as Y P D. For t ď s ď T , distinguishing for each k ě 0 between what happens on rτ k , τ k`1 q (i.e. following the dynamics of Y ζ k ) and at time τ k`1 (i.e. switching from

Y ζ k to Y ζ k`1 ), we have Y φ s ´Yφ t " ÿ kě0 ´Y ζ k τ k`1 ^s ´Y ζ k τ k ^s¯`ÿ kě0 ´Y ζ k`1 τ k`1 ´Y ζ k τ k`1 ¯1ttăτ k`1 ďsu . (2.20)
Using (2.6), we get, for all k ě 0,

Y ζ k τ k`1 ^s ´Y ζ k τ k ^s " ´ż τ k`1 ^s τ k ^s f ζ k pu, Y ζ k u , Z ζ k u qdu `ż τ k`1 ^s τ k ^s Z ζ k u dW u ´ż τ k`1 ^s τ k ^s dK ζ k u , recalling ζ k is F τ k -measurable.
We also have, using (2.17), for all k ě 0,

Y ζ k`1 τ k`1 ´Y ζ k τ k`1 " ´Y ζ k`1 τ k`1 ´E" Y ζ k`1 τ k`1 ˇˇF k τ k`1 ı¯´˜Y ζ k τ k`1 ´d ÿ j"1 P α k`1 ζ k ,j Y j τ k`1 `c α k`1 ζ k ¸`c α k`1 ζ k .
Inserting the two previous equalities into (2.20), we get:

Y φ s ´Yφ t " ÿ kě0 ˆ´ż τ k`1 ^s τ k ^s f ζ k pu, Y ζ k u , Z ζ k u qdu `ż τ k`1 ^s τ k ^s Z ζ k u dW u ´ż τ k`1 ^s τ k ^s dK ζ k u ÿ kě0 ´Y ζ k`1 τ k`1 ´E" Y ζ k`1 τ k`1 ˇˇF k τ k`1 ı¯1 ttăτ k`1 ďsu `Aφ s ´Aφ t ´ÿ kě0 ˜Y ζ k τ k`1 ´d ÿ j"1 P α k`1 ζ k ,j Y j τ k`1 `c α k`1 ζ k ¸1ttăτ k`1 ďsu . (2.21)
Considering the previous equality also with s " T , substracting with the previous one and using the definition of

Y φ , Z φ , K φ , M φ , A φ (in particular that, for example, Y φ u " Y ζ k u on tτ k ď u ă τ k`1 u for each k ě 0)
, we obtain, for all s P rt, T s,

Y φ s "ξ a T `ż T s f au pu, Y φ u , Z φ u qdu ´ż T s Z φ u dW u ´ż T s dM φ u ´ż T s dA φ u `"´A φ T `Kφ T ¯´´A φ s `Kφ s ¯ı . (2.22)
For any n ě 1, we consider the admissible strategy φ n " pζ 0 , pτ n k q kě0 , pα n k q kě1 q defined by ζ n 0 " i " ζ 0 , τ n k " τ k , α n k " α k for k ď n, and τ n k " T `1 for all k ą n. We set We obtain, for a constant Λ ą 0, recalling that K n t " 0,

Y n :" Y φ n , Z n :" Z φ n ,
E " |A n τn^T | 2 ‰ ďΛ ˆE" |Y n t | 2 `|Y n τn^T | 2 `ż τn^T t |f a n s ps, Y n s , Z n s q| 2 ds (2.24) `ż τn^T t |Z n s | 2 ds `ż τn^T t drM n s s `pA φ T ´Aφ t q 2 `pK n T q 2
˙, with rM n s the quadratic variation process of M n , using 0 ď A n T ´An t ď A φ T ´Aφ t as the costs are positive. We have

E " |Y n r | 2 ‰ ď d ÿ j"1 E " |Y j r | 2 ‰ " E " |Y r | 2 ‰ ď E " sup tďrďT |Y r | 2  " }Y } 2 S 2 d pF 0 q , E "ż τn^T t |Z n s | 2 ds  ď }Z} H 2 dˆκ pF 0 q , E "ż τn^T t |f a n s ps, Y n s , Z n s q| 2 ds  ď 4L 2 T }Y } 2 S 2 d pF 0 q `4L 2 }Z} H 2 d pF 0 q `2}f p¨, 0, 0q} 2 H 2 d pF 0 q and E " pK n T q 2 ‰ ď E " |K T | 2 ‰ .
Thus, by these estimates and the fact that A φ T ´Aφ t P L 2 pF 8 T q as φ is admissible, there exists a constant Λ 1 ą 0 such that

E " |A n τn^T | 2 ‰ ď Λ 1 `ΛE "ż τn^T t drM n s s  . (2.25)
Using (2.22) applied to φ n , we apply Itô's formula between t and τ n ^T . Since the number of switches is bounded by n, M n is a square integrable F 8 -martingale orthogonal to W and rW, M n s " 0, see Remark A.2. As K n is non-decreasing and continuous, r¨, K n s " 0. Moreover, we also observe that, for

0 ď k ď n ´1, as τ k`1 ď τ n ^T is equivalent to τ k`1 ď T and cα k`1 ζ k 1 tăτ k`1 ďT is F k τ k`1 -measurable, E "ż τn^T t d rM n , A n s s  " E « n´1 ÿ k"0 ´Y ζ k`1 τ k`1 ´E" Y ζ k`1 τ k`1 ˇˇF k τ k`1 ı¯c α k`1 ζ k 1 tăτ k`1 ďτn^T ff " n´1 ÿ k"0 E "´Y ζ k`1 τ k`1 ´E" Y ζ k`1 τ k`1 ˇˇF k τ k`1 ı¯c α k`1 ζ k 1 tăτ k`1 ďT ı " 0 .
The same argument gives E " ş τn^T t drM n , A n s s ı " 0 as A n is also a sum of F k τ k`1measurable random variables. Thus, Itô's formula gives, as ş τn^T t drA n s s ě 0 and

ş τn^T t drA n s s ě 0, E " |Y n t | 2 `ż τn^T t |Z n s | 2 ds `ż τn^T t drM n s s  ďE " |Y n τn^T | 2 `2 ż τn^T t Y n s f a n s ps, Y n s , Z n s qds ´2 ż τn^T t Y n s dA n s `2 ż τn^T t Y n s dA n s `2 ż τn^T t Y n s dK n s  ď E " |Y n τn^T | 2 ‰ `2E "ż τn^T t |Y n s f a n s ps, Y n s , Z n s q|ds  `2E "ż τn^T t |Y n s |dA n s  `2E "ż τn^T t |Y n s |dA n s  `2E "ż τn^T t |Y n s |dK n s  . (2.26)
We have, using Young's inequality, for some ą 0, and (2.25),

E "ż τn^T t |Y n s f a n s ps, Y n s , Z n s q|ds  ď 1 2 E "ż τn^T t |Y n s | 2 ds  `1 2 E "ż τn^T t |f a n s ps, Y n s , Z n s q| 2 ds  ď T p 1 2 `2L 2 q}Y } 2 S 2 d pF 0 q `2L 2 }Z} H 2 d pF 0 q `}f p¨, 0, 0q} 2 H 2 d pF 0 q , E "ż τn^T t |Y n s |dA n s  ď 1 2 }Y } 2 S 2 d pF 0 q `1 2 E " pA φ T ´Aφ t q 2 ı , E "ż τn^T t |Y n s |dK n s  ď 1 2 }Y } 2 S 2 d pF 0 q `1 2 E " |K T | 2 ‰ , and 
E "ż τn^T t |Y n s |dA n s  ď 1 2 }Y } 2 S 2 d pF 0 q ` 2 E " pA n τn^T q 2 ‰ ď 1 2 }Y } 2 S 2 d pF 0 q ` 2 ˆΛ1 `ΛE "ż τn^T t drM n s s ˙.
Using these estimates together with (2.26) gives, for a constant C ą 0 independent of n,

p1 ´ Λq E "ż τn^T t drM n s s  ď C ´}Y } 2 S 2 d pF 0 q `}Z} H 2 dˆκ pF 0 q `}f p¨, 0, 0q} 2 H 2 d pF 0 q `E" |K T | 2 ‰ ¯, (2.27) 
and choosing

" 1 2Λ gives that E " ş τn^T t drM n s s ı is upper bounded independently of n.
We also get an upper bound independent of n for E " pA n τn^T q 2 ‰ by (2.25).

Since

ş τn^T t drM n s s (resp. |A n τn^T | 2 ) is non-decreasing to ş T t drM φ s s (resp. to |A φ T | 2 )
, we obtain by monotone convergence the first part of Lemma 2.2, i.e. that M φ is a square integrable F 8 -martingale with M φ t " 0, that A φ is non-decreasing with A φ t " 0 and A φ T P L 2 pF 8 T q. We now prove (2.18). Using that E " pN φ t q 2 ˇˇF 0 t ı is almost-surely finite as φ is admissible,

ĉ ą 0 and τ k`1 " t " τ 0 on tτ k`1 ď tu, we compute, E » - ˜ÿ kě0 ´Y ζ k`1 τ k`1 ´E" Y ζ k`1 τ k`1 ˇˇF k τ k`1 ı¯1 tτ k`1 ďtu ¸2 ˇˇˇˇˇF 0 t fi fl ď E » - ˜ÿ kě0 ˇˇˇˇY ζ k`1 t ´d ÿ j"1 P α k`1 ζ k ,j Y j t ˇˇˇˇ1 tτ k`1 ďtu ¸2 ˇˇˇˇˇF 0 t fi fl ď 4|Y t | 2 E " pN φ t q 2 ˇˇF 0 t ı ă `8 a.s. (2.28) l 2.

An optimal strategy

In the following lemma, we show that, since D has a non-empty interior, the number of switches (hence the cost), following the strategy φ ‹ (recall (2. 

P u i,j y j ´c u i ++ , (2.29) 
and pu i q iPSpyq the family of elements of C given by

u i " min arg max uPC # d ÿ j"1 P u i,j y j ´c u i + .
Consider the homogeneous Markov Chain X on Spyq Y t0u defined by, for k ě 0 and i, j P Spyq 2 ,

P pX k`1 " j | X k " iq " P u i i,j , P pX k`1 " 0 | X k " iq " 1 ´ÿ jPSpyq P u i i,j , P pX k`1 " 0 | X k " 0q " 1, P pX k`1 " i | X k " 0q " 0.
Then 0 is accessible from every i P Spyq, meaning that X is an absorbing Markov Chain. Moreover, let N pyq " inf tn ě 0 | X n " 0u. Then N pyq P L 2 pP i q for all i P Spyq, where P i is the probability satisfying P i pX 0 " iq " 1.

Proof. Assume that there exists i P Spyq from which 0 is not accessible. Then every communicating class accessible from i is included in Spyq. In particular, there exists a recurrent class S 1 Ă Spyq. For all i P S 1 , we have P u i i,j " 0 if j R S 1 since S 1 is recurrent. Moreover, since S 1 Ă Spyq, we obtain, for all i P S 1 , by definition of Spyq,

y i " ÿ jPS 1 P u i i,j y j ´c u i i .
(2.30)

Since S 1 is a recurrent class, the matrix P " pP u i i,j q i,jPS 1 is stochastic and irreducible. By definition of D, we have

D Ă R d´|S 1 | ˆ$ & % z P R |S 1 | ˇˇˇˇˇz i ě ÿ jPS 1 P u i i,j z j ´c u i i , i P S 1
, .

-

" R d´|S 1 | ˆD1 .
With a slight abuse of notation, we do not renumber coordinates of vectors in D 1 . Let i 0 P S 1 and let us restrict ourself to the domain D 1 . According to Lemma 3.1, D 1 is invariant by translation along the vector p1, ..., 1q of R |S 1 | . Moreover, Assumption 3.1 is fulfilled since P is irreducible and controls pu i q iPSpyq are set. So, Proposition 3.1 yields

that D 1 X ! z P R |S 1 | ˇˇz i 0 " 0
) is a compact convex polytope. Recalling (2.30), we see

that py i ´yi 0 q iPS 1 is a point of D 1 X ! z P R |S 1 | ˇˇz i 0 " 0
) that saturates all the inequalities.

So, py i ´yi 0 q iPS 1 is an extreme point of D 1 X

! z P R |S 1 | ˇˇz i 0 " 0
) and all extreme points are given by

E :" $ & % z P R |S 1 | ˇˇˇˇˇz i " ÿ jPS 1 P u i i,j z j ´c u i i , i P S 1 , z i 0 " 0 , . - . Recalling that D 1 is compact, E is a non-empty bounded affine subspace of R |S 1 | , so it is a singleton. Since D 1 X tz i 0 " 0u is a compact convex polytope, it is the convex hull of E and so it is also a singleton. Hence D 1 is a line in R |S 1 | . Moreover, |S 1 | ě 2 as P u i,i
‰ 1 for all u P C and i P t1, . . . , du. Thus D Ă R d´|S 1 | ˆD1 gives a contradiction with the fact that D has a non-empty interior and the first part of the lemma is proved. Finally, we have N pyq P L 2 pP i q for all i P Spyq thanks to Theorem 3.3.5 in [START_REF] John | Finite Markov Chains: With a New Appendix" Generalization of a Fundamental Matrix[END_REF]. l Lemma 2.4. Suppose that Assumption 2.1-i),iii) and Assumption 2.2 are in force. Then the strategy φ ‹ is admissible, recall (2.10)-(2.11).

Proof. For n ě 1, we consider the admissible strategy φ n " pζ 0 , pτ n k q kě0 , pα n k q kě1 q defined by 

ζ n 0 " i " ζ ‹ 0 , τ n k " τ ‹ k , α n k " α ‹ k for k ď n,
ş τ ‹ k`1 ^s τ ‹ k ^s dK ζ ‹ k u "
0 for all k ă n and s P rt, T s. The identity (2.22) for the admissible strategy φ n gives

Y n t " Y n τ ‹ n ^T `ż τ ‹ n ^T t f a n s ps, Y n s , Z n s qds ´ż τ ‹ n ^T t Z n s dW s ´ż τ ‹ n ^T t dM n s ´ż τ ‹ n ^T t dA n s .
Using similar arguments and estimates as in the proof of Lemma 2.2 (see equation (2.25) and its derivation), we get

E " |A n τ ‹ n ^T ´An t | 2 ı ď Λ 1 `ΛE « ż τ ‹ n ^T t drM n s s ff , (2.31) 
and (see equation (2.27) and its derivation), for ą 0,

p1 ´ Λq E « ż τ ‹ n ^T t drM n s s ff ď C ´}Y } 2 S 2 d pF 0 q `}Z} H 2 dˆκ pF 0 q `}f p¨, 0, 0q} 2 H 2 d pF 0 q ¯. (2.32) Choosing " 1 2Λ gives that E " ş τ ‹ n ^T t drM n s s ı and E " |A n τ ‹ n ^T ´An t | 2
ı are upper bounded uniformly in n, hence by monotone convergence, we get that 

A φ ‹ T ´Aφ ‹ t P L 2 pF 8 T q. It remains to prove that E " ´Aφ ‹ t ¯2 ˇˇˇF 0 t  ă `8. We have A φ ‹ t ď čN φ ‹ t ,
Y φ t " Y i t `ÿ kě0 ´Y ζ k`1 t ´Y ζ k t ¯1tτ k`1 ďtu " Y i t `ÿ kě0 ´Y ζ k`1 t ´E" Y ζ k`1 t ˇˇF k τ k`1 ı¯1 tτ k`1 ďtu ´ÿ kě0 ˜Y ζ k t ´d ÿ j"1 P α k`1 ζ k,j Y j τ k`1 `c α k`1 ζ k ¸1tτ k`1 ďtu `Aφ t . (2.33) Since U φ t ď Y φ t and ř kě0 ´Y ζ k t ´řd j"1 P α k`1 ζ k,j Y j τ k`1 `c α k`1 ζ k ¯1tτ k`1 ďtu ě 0, we get U φ t ´Aφ t ď Y i t `ÿ kě0 ´Y ζ k`1 t ´E" Y ζ k`1 t ˇˇF k τ k`1 ı¯1 tτ k`1 ďtu ´ÿ kě0 ˜Y ζ k t ´d ÿ j"1 P α k`1 ζ k,j Y j τ k`1 `c α k`1 ζ k ¸1tτ k`1 ďtu ď Y i t `ÿ kě0 ´Y ζ k`1 t ´E" Y ζ k`1 t ˇˇF k τ k`1 ı¯1 tτ k`1 ďtu . (2.34)
Using (2.18), we can take conditional expectation on both side with respect to F 0 t to obtain the result. 2. Lemma 2.4 shows that the strategy φ ‹ is admissible. Using (2.22), since A φ ‹ " 0 and

ş τ ‹ k`1 ^T τ ‹ k ^T dK ζ ‹ k u " 0 for all k ě 0, we obtain Y φ ‹ s " ξ a ‹ T `ż T s f a ‹ u pu, Y φ ‹ u , Z φ ‹ u qdu ´ż T s Z φ ‹ u dW u ´ż T s dM φ ‹ u ´ż T s dA φ ‹ u . (2.35)
By uniqueness from Theorem A.4 and Remark A.3, we get that Y φ ‹ t " U φ ‹ t , recall (2.4). We also have We give in this section some general properties of the domain D and identify necessary and sufficient conditions linked to the non-emptiness of its interior, which is not trivially obtained in the setting of signed costs.

Y φ ‹ t " Y i t `ÿ kě0 ´Y ζ ‹ k`1 t ´Y ζ ‹ k t ¯1tτ ‹ k`1 ďtu " Y i t `Mφ ‹ t `Aφ ‹ t , thus U φ ‹ t ´Aφ ‹ t " Y φ ‹ t ´Aφ ‹ t " Y i t `Mφ ‹ t ,
The first result shows that the domain D defined in (2.9) is invariant by translation along the vector 1:" p1, . . . , 1q " ř d i"1 e i and deduces some property for its normal cone. Most of the time, we will thus be able to limit our study to

D ˝" D X ! y P R d ˇˇy d " 0 ) . (3.1) 
Lemma 3.1. For all x P D, we have 1) for all h P R, x `h1 P D,

2) there is a unique decomposition x " y x `zx with y x P D ˝and z x P R1 :" tλ1 | λ P Ru,

3) we have Cpxq Ă

! v P R d ˇˇř d i"1 v i " 0 ) , 4)
Cpxq " Cpy x q, where y x is given in 2).

Proof. Fix x P D.

1. If i P t1, . . . , du, we have, for all h P R,

x i `h ě max uPC ˜d ÿ j"1 P u i,j x j ´cu i ¸`h " max uPC ˜d ÿ j"1 P u i,j px j `hq ´cu i ¸,
and thus x `h1 P D.

2. We set y x " x ´zx with z x " x d 1. It is clear that y x d " 0, and y x P D thanks to the first point. The uniqueness is clear since we have necessarily z x " x d 1.

3. Point 1. shows that x ˘1 P D. Let v P Cpxq. Then we have, by definition,

0 ě v J px ˘1 ´xq " ˘vJ 1 " ˘d ÿ i"1 v i ,
and thus, ř d i"1 v i " 0. 4. Since x " y x `xd 1, it is enough to show that for all w P D and all a P R, Cpwq Ă Cpw `a1q, as taking pw, aq " py x , x d q (resp. pw, aq " px, ´xd q) yields Cpy x q Ă Cpy x xd 1q " Cpxq (resp. Cpxq Ă Cpx ´xd 1q " Cpy x q). Let v P Cpwq. We have, for all z P D, since ř d i"1 v i " 0 and v J pz ´wq ď 0, v J pz ´pw `a1qq " v J pz ´wq ´av J 1 " v J pz ´wq ď 0, and thus v P Cpw `a1q. l

Before studying the domain of reflection, we introduce three examples in dimension 3 of switching problems. On Figure 1, we draw the domain D ˝for these three different switching problems to illustrate the impact of the various controlled randomisations on the shape of the reflecting domain.

Example 1: Classical switching problem with a constant cost 1, i.e. C " t1, 2u,

P 1 " ¨0 1 0 0 0 1 1 0 0 ' , P 2 " ¨0 0 1 1 0 0 0 1 0 ' , c1 " ¨1 1 1 ' and c2 " ¨1 1 1 '.
Here, when the agent decides to switch, she directly chooses the new mode which is attained with probability 1, at fixed cost 1.

Example 2: Randomised switching problem with C " t0u,

P 0 " ¨0 1{2 1{2 1{2 0 1{2 1{2 1{2 0 ' and c0 " ¨1 1 1 '.
Here, when the agent decides to switch, the two remaining modes are reached with probability 1 2 .

Example 3: Switching problem with controlled randomisation where C " r0, 1s,

P u " ¨0 u 1 ´u 1 ´u 0 u u 1 ´u 0 
' and c0 " ¨1 ´up1 ´uq 1 ´up1 ´uq 1 ´up1 ´uq ' @u P r0, 1s.

(3.2) In this example, the transition matrices are given by convex combinations of transition matrices of Example 1. When the agent decides to switch using control u P r0, 1s, one of the other mode is reached with probability u while the last mode is reached with probability 1 ´u, with cost 1 ´up1 ´uq. The agent can increase the probability to reach one given state by taking u close to 0 or 1, but the price to pay will be higher than when u is close to 1 2 , meaning that the two remaining states can be reached with almost equal probability. Remark 3.1. For the randomised switching problem, in any dimension, we can replace pP i,j q 1ďjďd by ´Pi,j 1´P i,i 1 i‰j ¯1ďjďd and ci by ci 1´P i,i as soon as P i,i ă 1, without changing D. The factor p1 ´Pi,i q ´1 in the cost has to be seen as the expectation of the geometric law of the number of trials needed to exit state i. So assuming that diagonal terms are zero is equivalent to assume that P i,i ă 1, for all 1 ď i ď d.

The uncontrolled case

In this part, we study the domain D for a fixed control, which is set to be 0, without loss of generality. The properties of the domain are closely linked in this case to the homogeneous Markov chain, denoted X, associated to the stochastic matrix P . For this part, we shall work with the following assumption.

Assumption 3.1. The set of control is reduced to C " t0u. The Markov chain X with stochastic matrix P " pP i,j q 1ďi,jďd :" pP 0 i,j q 1ďi,jďd is irreducible.

Our main goal is to find necessary and sufficient conditions to characterize the nonemptiness of the domain D. To this end, we will introduce some quantities related to the Markov Chain X and the costs vector c :" c0 .

For 1 ď i, j ď d, we consider the expected cost along an "excursion" from state i to j:

Ci,j :" E « τ j ´1 ÿ n"0 cXn ˇˇX 0 " i ff " E « τ j ´1 ÿ n"0 c Xn,X n`1 ˇˇX 0 " i ff , (3.3) 
where (as defined in the Introduction) c " pc i,j q 1ďi,jďd is a matrix, whose entry c i,j represents the cost applied when j is the drawn state switching from state i, and which is linked to the vector c through the relations, for all 1 ď i ď d, ci "

ÿ 1ďjďd P i,j c i,j , and 
τ j :" inf tn ě 1 | X n " ju .
We also define C j,j :" 0 and C i,j " Ci,j for

1 ď i ‰ j ď d . (3.4) 
We observe that, introducing τj :" inf tn ě 0 | X n " ju, the cost C rewrites as C:

C i,j :" E » - τj ´1 ÿ n"0 cXn ˇˇX 0 " i fi fl , for 1 ď i, j ď d .
Let us remark that Erτ `τ s ă `8 and so C and C are finite since the Markov chain is irreducible recurrent. Setting Q " I d ´P , the domain D, defined in (2.9), rewrites:

D " ! x P R d ˇˇQx `c ě 0 ) . (3.5) 
Since P is irreducible, it is well known (see for example [3, Section 2.5]) that for all 1 ď i, j ď d, the matrix Q pi,jq is invertible, and that we have

μi :" det Q pi,iq " p´1q i`j det Q pi,jq ą 0. (3.6)
Moreover, μQ " 0 with μ " pμ i q d i"1 , i.e. µ :"

μ ř d i"1 μi
is the unique invariant probability measure for the Markov chain with transition matrix P .

The main result of this section is the following.

Theorem 3.1. Let Assumption 3.1 hold. The following conditions are equivalent:

i) The domain D is non-empty (resp. has a non-empty interior). More precisely, for each 1 ď i ď d, ´C¨,i P D as rQp´C ¨,i q `cs j " Ci,i 1 i"j .

ii) There exists

1 ď i ‰ j ď d such that C i,j `Cj,i ě 0 (resp. C i,j `Cj,i ą 0).
iii) The inequality µc ě 0 (resp. µc ą 0) is satisfied.

iv) For all 1 ď i ‰ j ď d, C i,j `Cj,i ě 0 (resp. C i,j `Cj,i ą 0).

The proof of this theorem is postponed to Section 3.1.2, as it requires to prove technical preliminary results, which are given in Section 3.1.1.

Prelimilary results

We now state and prove several technical results that are useful to prove Theorem 3.1, see Section 3.1.2. Lemma 3.2. Let Assumption 3.1 hold. The mean costs C are given for 1 ď i ‰ j ď d by C i,j " ´pQ pj,jq q ´1c pjq ¯i´1 tiąju .

(3.7)

Proof. 1. We first show that for 1 ď i, j ď d:

Ci,j " ci `ÿ ‰j C ,j P i, . (3.8) 
From (3.3), we have

Ci,j " E « `8 ÿ n"0 cXn 1 tnăτ j u ˇˇX 0 " i ff " ci `E« `8 ÿ n"1 cXn 1 tnăτ j u ˇˇX 0 " i ff .
Then, since for all n ě 1, tX 1 " ju X tn ă τ j u " H, we get

Ci,j " ci `E» - `8 ÿ n"1 ÿ ‰j cXn 1 tX 1 " u 1 tnăτ j u ˇˇX 0 " i fi fl .
We compute that, for ‰ j,

E « `8 ÿ n"1 cXn 1 tX 1 " u 1 tnăτ j u ˇˇX 0 " i ff " E « `8 ÿ n"1 cXn 1 tnăτ j u ˇˇX 1 " ff P i, .
The proof of (3.8) is then concluded observing that, from the Markov property,

E « `8 ÿ n"1 cXn 1 tnăτ j u ˇˇX 1 " ff " C ,j .
2. From (3.8), we deduce, recall Definition (3.4), that, for i ‰ j,

C i,j " ci `d ÿ "1 C ,j P i, " ci `ÿ ‰j C ,j P i, . (3.9) 
This equality simply rewrites Q pj,jq C ¨,j " cpjq , which concludes the proof. l For j P t1, . . . , du and x P R d , we introduce π j pxq P R d´1 , given by, π j pxq k " x k`1 tkěju ´xj , k P t1, . . . , d ´1u.

Let x P D and j P t1, . . . , du. For all i P t1, . . . , du, i ‰ j, we have, by definition of D and since ř d k"1 P i,k " 1,

x i ´xj ě d ÿ k"1 P i,k px k ´xj q ´c i .
Thus π j pxq satisfies to Q pj,jq π j pxq ě ´c pjq .

Since P is irreducible, [9, Proposition 2.20 (iii)] applies to P pj,jq and one obtains `Qpj,jq ˘´1 " ř kě0 `P pj,jq ˘k ě 0. We then obtain, using inequality (3.7)

π j pxq ě ´´Q pj,jq ¯´1 cpjq " ´Cpjq ¨,j , (3.14) 
which means x i ´xj ě ´Ci,j for all i ‰ j. Let 1 ď i ‰ j ď d. The precedent reasoning gives x i ´xj ě ´Ci,j and x j ´xi ě ´Cj,i , thus (3.13) is proved. From (3.13), we straightforwardly obtain (3.11) and the fact that D ˝is compact in y P R d ˇˇy d " 0 ( . 1.b Since D is non-empty, the following holds for some x P R d , recalling (3.5), Qx `c ě 0 .

Multiplying by µ the previous inequality, we obtain (3.10), since µQ " 0.

2. Assume now that D has a non-empty interior and consider x P D. Then, for all 1 ď i ď d, we have that x ´ e i belongs to D for ą 0 small enough. Thus, we get

x i ´ ě d ÿ "1 P i, x ´ P i,i ´c i and then Qx `c ě min 1ďiďd p1 ´Pi,i q d ÿ "1 e .
Since P is irreducible, min 1ďiďd p1 ´Pi,i q ą 0, and multiplying by µ both sides of the previous inequality we obtain µc ą 0. For any j ‰ i, since x ´ e i P D, we deduce from (3.13), ´Ci,j ` ď x i ´xj . Using again (3.13), we get ´Ci,j ` ď C j,i . This proves the right hand side of (3.12). l

The next lemma, whose proof is postponed to Appendix A.1, links the condition (3.10) to costly round-trip.

Lemma 3.3. Under Assumption 3.1, the following statements hold, for 1 ď j ď d,

Cjj " µc µ j , (3.15) 
and, for

1 ď i ‰ j ď d, C i,j `Cj,i " µc µ i ˆ"Q pj,jq ı ´1˙i
pjq ,i pjq .

(3.16)

Proof of Theorem 3.1 and useful consequences

We are now in position to prove the main result of this section.

Proof of Theorem 3.1. 1. We first note that in Proposition 3.1 we have proved iq ùñ ivq. We also remark that ivq ùñ iiq trivially, and iiq ùñ iiiq in a straightforward way from equality (3.16), recalling that `Qpj,jq ˘´1 " ř kě0 `P pj,jq ˘k ě 0. 2. We now study iiiq ùñ iq. 2.a Assume that µc ě 0. For 1 ď j ď d, we denote z j :" ´C¨,j . Then from (3.9), we straightforwardly observe that, for all i ‰ j,

z j i " d ÿ "1 z j P i, ´c i . (3.17) 
which reads `Qz j `c ˘i " 0.

We now take care of the case i " j by computing, recall z j j " 0, `Qz j `c ˘j " z j j ´d ÿ "1

z j P j, `c j " d ÿ "1
C ,j P j, `c j " Cj,j ,

where we used (3.8) with i " j. Then, combining (3.15) and the assumption µc ě 0 for this step, we obtain `Qz j `c ˘j ě 0. Equations (3.17) and (3.18) thus imply z j P D and so D is non-empty.

2.b We assume that µc ą 0, which implies that Cj,j " µc µ j ą 0 for all 1 ď j ď d, recalling (3.15). Fix any j P t1, . . . , du and consider z j :" ´C¨,j introduced in the previous step. We then set x :" z j `1 2pd ´1q ÿ k‰j pz k ´zj q.

(3.19)

Next, we compute, for i ‰ j, recalling `Qz j `c ˘i " 0 and `Qz j ˘i " `Qz k ˘i " ´c i for k ‰ i, j (coming from (3.17)) and `Qz i ˘i " Ci,i ´c i (from (3.18)), pQx `cq i " `Qz j `c ˘i `1 2pd ´1q ÿ k‰j pQz k ´Qz j q i " 0 `1 2pd ´1q pQz i ´Qz j q i " 1 2pd ´1q ppQz i q i `c i q " 1 2pd ´1q

Ci,i ą 0.

For i " j, we compute, using the same identities, pQx `cq j " `Qz j `c ˘j `1 2pd ´1q ÿ k‰j pQz k ´Qz j q j " Cj,j `1 2pd ´1q ÿ k‰j p´c j `c j ´C j,j q " Cj,j 2 ą 0.

Combining the two previous inequalities, we obtain that

Qx `c ě δ 2 1 with δ " min 1ďiďd Ci,i .
From this, we easily deduce that x `Bp0, δ 4 sup i }Q i,¨}2 q Ă D, which proves that D has a non-empty interior. l To conclude this part, we give two useful consequences of Theorem 3.1. First, we provide extra conditions that are linked to the non-emptiness of the domain D.

We then completely characterize the domain D ˝as the convex hull of d points whose coordinates are explicit, see Proposition 3.3. This result will only be used in the proof of Theorem 4.2, which provides existence to solutions to (2.6)-(2.7)-(2.8) in a Markovian framework in the setting of Assumption 3.1 with signed costs. Proposition 3.2. Let Assumption 3.1 hold. The following assertions are equivalent: i) D is non-empty, ii) For all 1 ď i, j, k ď d, the following holds

C j,k ď C j,i `Ci,k , (3.20) 
iii) For any round trip of length less than d, i.e. 1 ď n ď d,

1 ď i 1 ‰ ¨¨¨‰ i n ď d, we have n´1 ÿ k"1 C i k ,i k`1 `Cin,i 1 ě 0. (3.21)
Proof. 1. iq ùñ iiq is a direct consequence of Theorem 3.1 and (3.13). Indeed, let us set 1 ď i, j, k ď d. If j " k, this comes directly from the fourth item of Theorem 3.1 as C j,j " 0. Otherwise, the second inequality of (3.13) used together with x " ´C¨,k , which is in D by the first item of Theorem 3.1, writes ´Ci,k `Cj,k ď C j,i , for all 1 ď i, j ď d , which concludes the proof for this step. 2. iiq ùñ iiiq is direct since C i,i " 0 for all 1 ď i ď d. Finally iiiq ùñ iq is already proved in Theorem 3.1 for a 2-state round trip. l pλ 1 , . . . , λ d´1 q P R d´1 such that y " ř d j"1 ´λj θ ¨,j , with λ d " 1 ´řd´1 j"1 λ j . Assuming that y P D, we have that v :" Qy `c " d ÿ j"1 ´λj Qθ ¨,j `c " d ÿ j"1 λ j rQp´θ .,j q `cs ě 0 .

Since, from Theorem 3.1, rQp´θ .,j q `cs i " rQp´C ¨,j q `cs i `Cd,j pQ1q i " 0 for all i ‰ j, we get, for all 1 ď i ď d, v i " λ i prQp´θ ¨,i qs i `c i q ě 0 .

Recalling that rQp´θ ¨,i qs i `c i ě 0 as ´θ¨,i P D, we obtain λ i ě 0 which concludes the proof. l

The setting of controlled randomisation

In this part we adapt Assumption 3.1 in the following natural way.

Assumption 3.2. For all u P C , the Markov chain with stochastic matrix P u :" pP u i,j q 1ďi,jďd is irreducible.

For each u P C , let µ u the unique invariant probability distribution of P u . We then consider the matrix p C defined, for all pi, jq P t1, . . . , du, by

p C i,j :" min uPC C u i,j , (3.24) 
recall the Definition of C u i,j for a fixed control in (3.4). Let us note that p C i,j is well defined in R under Assumption 3.2 since C is compact and u Þ Ñ C u i,j is continuous for all 1 ď i, j ď d.

The following result is similar to Proposition 3.1 but in the context of switching with controlled randomisation. Proof. 1. Let x P D. From (3.13), we have for each u P C , ´Cu i,j ď x i ´xj ď C u j,i . Minimising (resp. maximising) the upper (resp. lower) bound with respect to u P C , we then obtain

´p C i,j ď x i ´xj ď p C j,i . (3.26) 
From this, we deduce that D ˝is compact in y P R d ˇˇy d " 0 ( and we get the right hand side of (3.25). We also have that, for all u P C , Q u x `c u ě 0 , then multiplying by µ u we obtain µ u cu ě 0. This leads to min u µ u cu ě 0. 2. Then, results concerning the non-empty interior framework can be obtained as in the proof of Proposition 3.1. l

The case of controlled costs only

To conclude this section, we consider the case where there exists a transition matrix P such that P u " P for all u P C , i.e. the controller only controls the costs. In this setting, it is intuitively clear that, optimally, one chooses the control u P C for which the cost to pay is the smallest. Let us start by introducing the minimal controlled mean cost:

ĉi :" min

uPC cu i , for 1 ď i ď d .
We thus have D :"

! x P R d ˇˇpQxq i `c u i ě 0 , for all u P C , 1 ď i ď d ) " ! x P R d ˇˇpQxq i `ĉ i ě 0 , for all 1 ď i ď d
) .

Using the result of Proposition 3.1 with the new costs ĉ, we know that a necessary and sufficient condition for D to be non-empty is µĉ ě 0. Moreover, the matrix C is defined here by C i,j " ´pQ pj,jq q ´1ĉ pjq ¯i´1 tiąju ,

1 ď i ‰ j ď d , (3.27) 
and C i,i " 0, for 1 ď i ď d. Comparing the above expression with the definition of p C in (3.24), we observe that C i,j ď p C i,j , 1 ď i, j ď d. The following example confirms that min 1ďi‰jďd ´p C i,j `p C j,i ¯ě 0 , recall Proposition 3.4, is not a sufficient condition in this context for non-emptiness of the domain. Observe that µ " p 1 3 , 1 3 , 1 3 q and ĉ " p´0.5, 0.2, 0.2q J . Then, one computes that min 1ďi‰jďd ´p C i,j `p C j,i ¯ą 0 but µĉ ă 0 .

Existence results for obliquely reflected BSDEs

In this section, we study the obliquely reflected BSDE (2.6)-(2.7)-(2.8) associated to the switching problem with controlled randomisation. We first prove existence results for the BSDE in the Markovian framework, see Section 4.1, and then in the non-Markovian framework, see Section 4.2, relying on the approach in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF]. Existence results in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF] are obtained for general obliquely reflected BSDEs where the oblique reflection is specified through an operator H that transforms, on the boundary of the domain, the normal cone into the oblique direction of reflection. Thus, the main difficulty is to construct this operator H with some specific properties needed to apply the existence theorems of [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF]. This task is carried out successfully for the randomised switching problem in the Markovian framework. We also consider an example of switching problem with controlled randomisation in this framework. In the non-Markovian framework, which is more challenging as more properties are required on H, we prove the well-posedness of the BSDE for some examples of randomised switching problem.

The Markovian framework

We now introduce a Markovian framework, and prove that a solution to (2.6)-(2.7)-(2.8) exists for the randomised switching problem under Assumption 3.1 and a technical copositivity hypothesis, see Assumption 4.2 below. We also investigate the example of switching problem with controlled randomisation given by (3.2).

To this effect, we rely on the existence theorem obtained in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF], which we recall next. For all pt, xq P r0, T s ˆRq , let X t,x be the solution to the following SDE: dX s " bps, X s qds `σps, X s qdW s , s P rt, T s , (4.1)

X t " x . (4.2)
We are interested in the solutions pY t,x , Z t,x , K t,x q P S 2 d pF 0 qˆH 2 dˆκ pF 0 qˆA 2 d pF 0 q of (2.6)-(2.7)- (2.8), where the terminal condition satisfies ξ " gpX t,x T q, and the driver satisfies f pω, s, y, zq " ψps, X t,x s pωq, y, zq for some deterministic measurable functions g, ψ. We next give the precise set of assumptions we need to obtain our results. For sake of completeness, we recall here the existence result proved in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF], see also [START_REF] De Angelis | A note on a new existence result for reflected BSDEs with interconnected obstacles[END_REF]. Moreover, ψpt, x, ¨, ¨q is continuous on R d ˆRdˆκ for all pt, xq P r0, T s ˆRq .

ii) pb, σq : r0, T sˆR q Ñ R q ˆRqˆκ is a measurable function satisfying, for all pt, x, yq P r0, T s ˆRq ˆRq , iii) g : R q Ñ D is measurable and for all pt, xq P r0, T s ˆRq , we have

|gpxq| ď Lp1 `|x| p q.
iv) Let X " tµpt, x; s, dyq | x P R q and 0 ď t ď s ď T u be the family of laws of X t,x on R q , i.e., the measures such that @A P BpR q q, µpt, x; s, Aq " PpX t,x s P Aq. There exists a P R q such that, for any t P r0, T q, any δ P r0, T ´tq and for µp0, a; t, dyqalmost every x P R q , there exists an application φ t,x : rt, T s ˆRd Ñ R `such that:

(a) @k ě 1, φ t,x P L 2 prt `δ, T s ˆr´k, ks q ; µp0, a; s, dyqdsq, (b) µpt, x; s, dyqds " φ t,x ps, yqµp0, a; s, dyqds on rt `δ, T s ˆRq . v) H : R d Ñ R dˆd is a measurable function, and there exists η ą 0 such that, for all py, y 1 q P R d ˆRd and v P npP D pyqq, we have

v J Hpyqv ě η, |Hpy 1 q| ď L.
Moreover, H is continuous on D.

Remark 4.1. Due to Aronson estimates on the density function of X t,x , Assumption 4.1-iv) is true for all a P R q as soon as σ is uniformly elliptic: see [15, Section 28] for a proof.

The existence result in the Markovian setting reads as follows.

Theorem 4.1 ([6], Theorem 4.1). Under Assumption 4.1, there exists a solution pY t,x , Z t,x , Ψ t,x q P S 2 d pF 0 q ˆH2 dˆκ pF 0 q ˆH2 d pF 0 q of the following system Y s " gpX t,x T q `ż T s ψpu, X 

ą sup uPC ! ř d j"1 P u i,j Y t,x,j s ´c u i )
, then the ith coordinate of HpY t,x s qΨ t,x s is zero by definition of C o pY t,x s q. This proves that the second integral is also zero, and (2.8) is proved.

Well-posedness result in the uncontrolled case

We need to introduce the following technical assumption in order to construct H satisfying Assumption 4.1-v) and (4.6). Assumption 4.2. For all 1 ď i ď d, the matrix Q pi,iq is strictly copositive, meaning that for all 0 ď x P R d´1 , x ‰ 0, we have

x J Q pi,iq x ą 0. (4.8)
Our main result for this section is the following theorem. Consequently, if Assumption 4.1 i), ii), iii), iv) also holds, for all pt, xq P r0, T s Rq , there exists a solution to (2.6)-(2.7)-(2.8) with ξ " gpX t,x T q and f pω, s, y, zq " ψps, X t,x s pωq, y, zq. Moreover, this solution is unique if we suppose also Assumption 2.1-ii).

Proof. We first observe that uniqueness follows from Proposition 2.1 as, under Assumption 3.1, irreducibility implies Assumption 2.1-iii) namely P i,i ‰ 1 for all 1 ď i ď d. We now focus on proving existence of a solution, which amounts to exhibit a convenient H function. The construction of such a function is done in three steps. By Proposition 3.3, we know that D ˝is the convex hull of the family of points py i " ´θ¨,i q 1ďiďd defined by y i :" pC d,i ´Cj,i q 1ďjďd , 1 ď i ď d.

(4.9)

To define Hpy i q for each 1 ď i ď d so that (4.6) is met at these points, we compute the cones Cpy i q, which is the goal of the first step below.

In the second step, we show that, for each 1 ď i ď d, there exists a unique matrix Hpy i q satisfying Assumption 4.1-v) and (4.6). Using Proposition 3.3, we then extend H to D ˝by linear combinations and we check that Assumption 4.1-v) and (4.6) are still satisfied.

In the third step, we extend H to D and then to R d . To construct H on D, we set Hpxq " Hpy x q for each x P D, where x writes uniquely x " y x `zx with y x P D ˝and z x P R1, as proved by the second item in Lemma 3.1. We eventually define H on R d by projection onto D. Thanks to Proposition 3.3, there exists a unique pλ i q 1ďiďd P r0, 1s d such that y "

d ÿ i"1 λ i y i , d ÿ i"1 λ i " 1. Let us denote E y " t1 ď i ď d | λ i ą 0u. We will show that Cpyq " ÿ jREy R `nj , (4.10) 
where n i :" p´Q i,j q 1ďjďd , and with the convention Cpyq " t0u when E y " t1, ..., du. Let us remark that the result is obvious when Cpyq " t0u, since, in this case, y is in the interior of D. So we will assume in the following that Cpyq ‰ t0u. 1.a. First, let us show that for any 1 ď i ď d, pn j q j‰i is a basis of

! v P R d ˇˇř d k"1 v k " 0 ) . Let 1 ď i ‰ j ď d. Since ř d k"1 n j,k " ´řd k"1 Q j,k " ř d k"1 P j,k ´1 " 0, we have n j P ! v P R d ˇˇř d k"1 v k " 0
) . Since it is a hyperplane of R d and that the family pn j q j‰i has d ´1 elements, it is enough to show that the vectors are linearly independent. We observe that the matrix whose lines are the n piq j , j ‰ i, is ´Qpi,iq . Since P is irreducible, Q pi,iq is invertible. The vectors n piq j , j ‰ i form a basis of R d´1 , hence the vectors pn j q j‰i form a basis of

! v P R d ˇˇř d k"1 v k " 0
) , as pn j q j‰i is the image of pn

piq j q j‰i under the linear isomorphism R d´1 Ñ ! v P R d ˇˇř d k"1 v k " 0 ) , px 1 , . . . , x i´1 , x i`1 , . . . , x d q Þ Ñ px 1 , . . . , x i´1 , ´řj‰i x j , x i`1 , . . . , x d q.
1.b. We now fix j R E y and we will show that n j P Cpyq. For any z P D, by definition of D, we have

cj ě d ÿ k"1 P j,k z k ´zj " n J j z,
and for all i P E y , by definition of y i , we have cj "

d ÿ k"1 P j,k y i k ´yi j " n J j y i , recalling (3.22 
) and the fact that y i " ´θ.,i . This gives n J j pz´yq " n J j z´ř iPEy λ i n J j y i ď 0, hence n j P Cpyq. 1.c. We now set i " min E y . Since pn j q j‰i is a basis of

! v P R d ˇˇř d i"1 v i " 0
) Ą Cpyq, see Lemma 3.1, for v P Cpyq there exists a unique α " pα j q j‰i P R d´1 such that v " ř j‰i α j n j " pn j q j‰i α, where we identify pn j q j‰i with the matrix whose columns are given by the family of vectors. We will show here that α " 0 for all P E y ztiu and α ě 0 for all R E y . For all z P D, previous calculations yield:

0 ě α J rpn j q j‰i s J pz ´yq " ´αJ Q pi,¨q pz ´ÿ PEy λ y q " ´αJ » -Q pi,¨q z ´ÿ PEy λ Q pi,¨q y fi fl .
Let us recall that for any j ‰ i, we have y j " ´θ.,j . So computations made in the proof of Proposition 3.3 yield Q pi,¨q y j `c piq " µc µ j e j , and Q pi,¨q y i `c piq " 0. Thus, the previous inequality becomes

0 ď α J » -Q pi,¨q z ´ÿ PEyztiu λ ˆµc µ e ´c piq ˙`λ i cpiq fi fl " α J » -Q pi,¨q z `c piq ´ÿ PEyztiu λ µc µ e fi fl . (4.11) 
By taking z " y j in (4.11), with j P E y ztiu, we get

0 ď α J » -µc µ j e j ´ÿ PEyztiu λ µc µ e fi fl (4.12) 
and so, we can sum, over j, previous inequality with positive weights λ j , to obtain

0 ď ¨1 ´ÿ jPEyztiu λ j 'α J » - ÿ PEyztiu λ µc µ e fi fl .
Then 0 ď α J We recall that µc ą 0 since D has a non-empty interior (see Theorem 3.1). Inserting (4.13) into (4.12) yields that α j ě 0 for all j P E y ztiu, which, combined with (4.13) allows to conclude that α j " 0 for all j P E y ztiu. Now we apply (4.11) with z " y j for j R E y : hence 0 ď α j µc µ j for all j R E y , which concludes the proof of (4.10). 2. Then, we construct H on D ˝. Let us start by Hpy i q for any 1 ď i ď d. Fix 1 ď i ď d, and let B i P R pd´1qˆpd´1q be the base change matrix from p´n piq j q j‰i to the canonical basis of R d´1 . We set Hpy i q :" I i B i Π i , with I i : R d´1 Ñ R d and Π i : R d Ñ R d´1 the linear maps defined by

I i px 1 , . . . , x d´1 q " px 1 , . . . , x i´1 , 0, x i , . . . , x d´1 q, (4.14) 
Π i px 1 , . . . , x d q " px 1 , . . . , x i´1 , x i`1 , . . . , x d q.

(4.15)

Now we set Hpyq :" ř iPEy λ i Hpy i q. Let us take v P Cpyq. Thanks to (4.10), we know that v " ř d j"1 α j n j for some pα j q 1ďjďd P pR `qd and such that α j " 0 when j P E y . Since n k " ´QJ k , for all 1 ď k ď d, we have v " ´QJ α. By construction, we get that Hpyqv " ´ÿ jREy α j e j " ´α P C o pyq.

It remains to check that Assumption 4.1-v) is fulfilled. If v ‰ 0, which is equivalent to α ‰ 0, we have, for i P E y , v J Hpyqv " α J Qα " pα piq q J Q pi,iq α piq ą 0, due to Assumption 4.2 and the fact that α i " 0.

3. We have constructed H on D ˝with the required properties. Finally, we set Hpxq " Hpx ´xd 1q for all x P D and Hpxq " HpP D pxqq for x P R d and the proof is finished. l Remark 4.2. i) Assumption 4.2 is satisfied as soon as P is symmetric and irreducible. Indeed, Q pi,iq is then non-singular, symmetric and diagonally dominant, hence positive definite, for all i P t1, . . . , du.

ii) In dimension 3, if the Markov chain is irreducible, then Assumption 4.2 is automatically satisfied. Indeed, under irreducibility, all diagonal coefficients are different from 1.

Then, as already noticed in Remark 3.1, the domain D can be defined with an irreducible matrix P whose diagonal entries are all equal to 0. We then set

P " ¨0 p 1 ´p q 0 1 ´q r 1 ´r 0 ' (4.16)
for some p, q, r P r0, 1s satisfying 0 ď p `q, 1 `r ´p, 2 ´pq `rq ă 2 by irreducibility. Thus, for i " 1 for example,

Q p1,1q `´Q p1,1q ¯J " ˆ2 ´pp `qq ´pp `qq 2 
˙(4.17)
is non-singular, symmetric and diagonally dominant, hence positive definite. Thus

x J Q p1,1q x " 1 2 x J ´Qp1,1q ``Q p1,1q
˘J¯x ą 0 for all x ‰ 0. iii) However, in dimension greater than 3, it is not always possible to construct a function H satisfying Assumption 4.1. For example in dimension 4, consider the following matrix:

P " ¨0 ? 3 2 0 1 ´?3 2 1 
´?3

2 0 ? 3 ´1 1 ´?3 2 0 1 0 0 1 3 1 3 1 3 0 ‹ ‹ ‹ ' , (4.18) 
together with positive costs c to ensure that the domain has a non-empty interior.

It is an irreducible stochastic matrix, and let us consider the extremal point y 4 such that

y 4 4 " 0, (4.19) 
y 4 1 " ? 3 2 y 4 2 ´c1 , (4.20) 
y 4 2 " p1 ´?3 2 qy 4 1 `p? 3 ´1qy 4 3 ´c2 , (4.21) 
y 4 3 " y 4 2 ´c3 . (4.22) 
We have Cpy 4 q " R `p´1, ?

2 , 0, 1´? 3 2 q J `R`p 1´? 3 2 , ´1, ? 3´1, 1´? 3 2 q J `R`p 0, 1, ´1, 0q J ":

ř 3 i"1 R `ni .
If Hpy 4 q satisfies Hpy 4 qn 1 " p´1, 0, 0, 0q, Hpy 4 qn 2 " p0, ´1, 0, 0q and Hpy 4 qn 3 " p0, 0, ´1, 0q, consider v " 1 2 n 1 `n2 `?3 2 n 3 P Cpy 4 q. Then it is easy to compute v J Hv " 0, hence it is not possible to construct Hpy 4 q at this point satisfying Assumption 4.1.

An example of switching problem with controlled randomization

We assume here that C " r0, 1s and we consider the example of switching problem with controlled randomisation given by (3.2). Since the cost functions are positive, D has a non-empty interior. Theorem 4.3. There exists a function H : R 3 Ñ R 3ˆ3 that satisfies Assumption 4.1-v) and such that Hpyqv P C o pyq, @y P D, v P Cpyq.

Consequently, if we assume that Assumption 4.1 i), ii), iii), iv) is fulfilled, for all pt, xq P r0, T sˆR q , there exists a solution to (2.6)-(2.7)-(2.8) with ξ " gpX t,x T q and f pω, s, y, zq " ψps, X t,x s pωq, y, zq. Moreover, this solution is unique if Assumption 2.1-ii) holds also. Proof. We first observe that uniqueness follows once again from Proposition 2.1. 1. We start by constructing H on the boundary of D. Recalling Lemma 3.1, it is enough to construct it on its intersection with D ˝which is made up of 3 vertices y 1 " p1, 0, 0q, y 2 " p0, 1, 0q, y 3 " p´1, ´1, 0q , and three edges that are smooth curves. We denote E 1 (respectively E 2 and E 3 ) the curve between y 1 and y 2 (respectively between y 2 and y 3 and between y 3 and y 1 ). Let us construct Hpy 1 q and Hpy 2 q: we must have

Hpy 1 q ¨1 1 0 ´1 ´1 0 '" ¨0 0 0 ´b ´a 0 ', Hpy 2 q ¨´1 0 1 1 0 ´1 '" ¨´c 0 0 0 0 ´d ', with a, b, c, d ą 0. Let us set a " b " c " d " 1.
Then we can take

Hpy 1 q " ¨1 1 1 1 2 1 1 1 2 ', Hpy 2 q " ¨2 1 1 1 1 1 1 1 2 '.
We define now H on E 1 . We denote px s q sPr0,1s a continuous parametrization of E 1 such that x 0 " y 1 and x 1 " y 2 . For all s P r0, 1s, we also denote R s the matrix that send the standard basis to a local orthonormal basis at point x s defined as: the two first vectors are in the plane tz " 0u, the first one is orthogonal to E 1 at the point x s , pointing towards the exterior of D ˝, the third one is e 3 , while the second one is tangent to E 1 at the point x s and is directed such that this basis has a direct orientation. We have in particular Q 0 " Id. Then we just have to set

Hpx s q " R s rsHpy 1 q `p1 ´sqR ´1 1 Hpy 2 qR 1 sR ´1 s .
We can check that, by construction, Assumption 

The non-Markovian framework

We now switch to the non-Markovian case, which is more challenging. We prove the well-posedness of the obliquely reflected BSDE in the uncontrolled setting for two cases: problems in dimension 3 and the example of a symmetric transition matrix P , in any dimension.

We first recall Proposition 3.1 in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF] that gives an existence result for non-Markovian obliquely reflected BSDEs and the corresponding assumptions, see Assumption 4.3 below. Let us remark that the non-Markovian case is more challenging for our approach as it requires more structural conditions on H, which must be symmetric and smooth in this case.

Assumption 4.3. There exists L ą 0 such that i) ξ :" gppX t q tPr0,T s q with g : Cpr0, T s, R q q Ñ D a bounded uniformly continuous function and X solution of the SDE (4.1) where pb, σq : r0, T s ˆRq Ñ R q ˆRqˆκ is a measurable function satisfying, for all pt, x, yq P r0, T s ˆRq ˆRq , ii) f : Ω ˆr0, T s ˆRd ˆRdˆκ Ñ R d is a PpF 0 q b BpR d ˆRdˆκ q-measurable function such that, for all pt, y, y 1 , z, z 1 q P r0, T s ˆRd ˆRd ˆRdˆκ ˆRdˆκ , |f pt, y, zq ´f pt, y 1 , z The assumption on the terminal condition is slightly less general than the one needed in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF] (see Assumption SB(i) and Corollary 2.2 in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF]). One could get a more general result by assuming that E " ξ 0 ˇˇF . ‰ is a BMO martingale such that its bracket has sufficiently large exponential moment.

ii) We cannot use Theorem 3.1 in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF] since the domain D is not smooth enough (see Assumption SB(iv) in [START_REF] Chassagneux | Obliquely reflected backward stochastic differential equations[END_REF]). Consequently, we have to assume the extra assumption that ξ is bounded.

iii) The uniqueness result for this part is also obtained by invoking Proposition 2.1.

iv) The discussion following Theorem 4. for some a, b ą 0. Taking a " 1 q , b " 1 p , we consider, for any α ą 0,

Hpv 1 q " ´¨1 0 0 1 0 0 'ˆ´q pq pq ´p ˙´1 ¨1 0 0 0 1 0 0 0 0 '`¨α α α α α α α α α ' (4.34) " 1 pqp1 ´pqq ¨α `p α `pq α α `pq α `q α α α α '. (4.35)
It is easy to check that this matrix Hpv 1 q is symmetric and positive definite for any α ą 0, so we can set α " 1 in the following. Similarly, we construct H on vertices v 2 , v 3 ,

Hpv 2 q " 1 rp1 ´pqp1 ´rp1 ´pqq ¨1 `p1 ´pq 1 1 `rp1 ´pq 1 1 1 1 `rp1 ´pq 1 1 `r ', (4.36) 
Hpv 3 q " 1 p1 ´qqp1 ´rqp1 ´p1 ´qqp1 ´rqq

¨1 1 1 1 1 `p1 ´qq 1 `p1 ´qqp1 ´rq 1 1 `p1 ´qqp1 ´rq 1 `p1 ´rq '.
We can extend H on all D ˝by convex combination, i.e. linear interpolation. Thus H stays valued in the set of positive definite symmetric matrices and is smooth enough. Thanks to Lemma 3.1, the extension to D is straightforward. We could also define H outside D X px, y, zq P R 3 ˇˇz " 0 ( by linear interpolation but we will lose the boundedness and the positivity of H. Nevertheless we can find a bounded and convex, C 2 open neighborhood V of D, small enough, such that H (still defined by linear interpolation) stays valued in the set of positive definite symmetric matrices on V. Then we define Hpyq for y R V by HpP V pyqq. In this way, H is a bounded function with values in the set of positive definite symmetric matrices, that satisfies (4.23), (4.28) and that is C 0 pR 2 q X C 2 pR 2 zBVq smooth, with BV the boundary of V. Finally, we just have to mollify H in a neighborhood of BV, small enough to stay outside D X px, y, zq P R 3 ˇˇz " 0 ( . l Remark 4.4. When pqrp1 ´pqp1 ´qqp1 ´rq " 0, one can show that it is not possible to construct a function H that satisfies Assumption 4.3-iii) and (4.28).

Existence of solutions for a symmetric multidimensional example

We focus in this part on the uncontrolled case C " t0u, in dimension d ě 3 with a unique transition matrix P given by

P i,j " 1 d ´1 1 i‰j .
Theorem 4.6. Assume that D has a non-empty interior. There exists a function H : R d Ñ R dˆd that satisfies Assumption 4.3-iii) and such that Hpyqv P C o pyq, @y P D, v P Cpyq.

Consequently, if we assume that Assumption 4.3-i)&ii) are fulfilled, then there exists a solution to the obliquely reflected BSDE (2.6)-(2.7)- (2.8). Moreover this solution is unique if we assume also Assumption 2.1-ii).

Proof. The proof follows exactly the same lines as the proof of Theorem 4.5. D ˝is a convex polytope with d vertices py i q 1ďiďd satisfying: for all 1 ď i ď d, y i " ÿ j‰i 1 d ´1 y j ´c i , @i ‰ , and y i d " 0.

Let us construct H on vertex y d . It is easy to compute its outward normal cone, which is positively generated by vectors f 1 , ..., f d´1 where

f k i " ´1i"k `1 d ´1 1 i‰k .
For any 1 ď k ď d ´1, we impose Hpy d qf k " ´αk e k with α k ą 0. We can check that it is true with α k " 1 for all 1 ď k ď d ´1, if we set, for any a ą 0, d . Thus we can set a " 2. By simple permutations of rows and columns in Hpy d q we can construct easily Hpy k q for any 1 ď k ď d. We then follow the proof of Theorem 4.5 to extend H from vertices of D ˝to the whole space. l

Hpy d q "

A Appendix

A.1 Proof of Lemma 3.3

For all I, J Ă t1, . . . , du 2 , let adrQ pI,J q s be the adjunct matrix of Q pI,J q . For 1 ď j ď d, we denote, for ease of presentation, Q j :" adrQ pj,jq s, and we have

Q j i pjq , pjq " p´1q i pjq ` pjq det Q ptj, u,tj,iuq . (A.1)
for all p , iq P t1, . . . , duztju. For all 1 ď i ‰ j ď d, we define C i,j :" ´pQ pj,jq q ´1c pjq ¯i´1 tiąju and C j,j " 0.

Using Q j the adjunct matrix of Q pj,jq , we observe then, for latter use,

C i,j " 1 µ j ÿ ‰j Q j i pjq , pjq c , for i ‰ j . (A.2)
force, which is the case whenever the results of this section are applied.

For each 0 ď n ă `8, we define a new filtration G n " pG n t q tě0 by the relations G 0 t " F 0 t , t ě 0 and for 1 ď n ă `8, G n t " F 0 t _ σpU i , i ď nq " G n´1 t _ σpU n q, t ě 0. The difference between filtrations F n and G n is that the random variables U i , 1 ď i ď n are already known at time 0 in G n , while in the filtration F n , each U i is only known at the switching time τ i , for each 1 ď i ď n.

A.2.1 Representation Theorems

The goal of this section is to derive Integral Representation Theorems for filtrations

F n , n P N Y t`8u.
We first recall, see [START_REF] Aksamit | Enlargement of filtration with finance in view[END_REF]Theorem 1.11]:

Theorem A.1 (Lévy). Let pΩ, F, F, Pq a filtered probability space with F not necessarily right-continuous. Let ξ P L 1 pFq and X a F´supermartingale.

1. We have Erξ |F t s Ñ Erξ |F 8 s a.s. and in L 1 , as t Ñ 8.

2. If t m decreases to t, we have X tm Ñ X t `a.s. and in L 1 as m Ñ 8.

In particular, if X t " Erξ |F t s, we get that Erξ |F tm s Ñ Erξ |F t `s a.s. and in L 1 as m Ñ 8, for t m decreasing to t.

We now recall an important notion of coincidence of filtrations between two stopping times, introduced in [1, Definition 1.28]. This will be useful for our purpose in the sequel. Let H 1 " pH 1 t q tě0 and H 2 " pH 2 t q tě0 be two filtrations, and let S, T two H 1 -stopping times, which are also H 2 -stopping times. We set S, T :" tpω, sq P Ω ˆR`| Spωq ď s ă T pωqu , and we say that H 1 and H 2 coincide on S, T if 1. for each t ě 0 and each H 1 t -measurable variable ξ, there exists a H 2 t -measurable variable χ such that ξ1 tSďtăT u " χ1 tSďtăT u , 2. for each t ě 0 and each H 2 t -measurable variable χ, there exists a H 1 t -measurable variable ξ such that χ1 tSďtăT u " ξ1 tSďtăT u .

We now study the right-continuity of the filtration G n for some n ě 0. Using its specific structure, it is easy to compute conditional expectations. Lévy's theorem then allows to obtain the right-continuity.

Lemma A.1. Let 0 ď n ă `8.

1. If ξ P L 1 pF 0 8 q and ξ 1 P L 1 pσpU i , 1 ď i ď nqq, then for t ě 0, we have Erξξ

1 |G n t s " E " ξ ˇˇF 0 t ‰ ξ 1 .
2. G n is right-continuous.

Proof.

1. If F P F 0 t and F 1 P σpU i , 1 ď i ď nq, since σpU 1 , . . . , U n q K K F 0 8 (recall that F 0 8 is generated by the Brownian motion path), we have, using at the last equality that

F 0 t Ă F 0 8 is also independent from σpU 1 , . . . , U n q, E " ξξ 1 1 F XF 1 ‰ " Erξ1 F s E " ξ 1 1 F 1 ‰ " E " E " ξ ˇˇF 0 t ‰ 1 F ‰ E " ξ 1 1 F 1 ‰ " E " ξ 1 E " ξ ˇˇF 0 t ‰ 1 F XF 1 ‰ .
Since tF X F 1 |F P F 0 t , F 1 P σpU i , 1 ď i ď nqu is a π-system generating G n t , the result follows by a monotone class argument.

2. Let t ě 0 and t m decreasing to t. We have, using Lévy's Theorem, the previous point and the right-continuity of F 0 ,

E " ξξ 1 ˇˇG n t `‰ " lim m E " ξξ 1 ˇˇG n tm ‰ " lim m ξ 1 E " ξ ˇˇF 0 tm ‰ " ξ 1 E " ξ ˇˇF 0 t ‰ " E " ξξ 1 ˇˇG n t ‰ .
By a monotone class argument, we have E " ξ ˇˇG n t `‰ " Erξ |G n t s for all bounded G n 8measurable ξ, hence the right-continuity of G n follows. l

Using the previous lemma, we show how to compute conditional expectations in F n for all n P N Y t`8u, and that these filtrations are right-continuous.

Proposition A.1.

1. For all 0 ď n ď m ă `8, F n , F m and F 8 coincide on 0, τ n`1 . For all 0 ď n ă `8, F n and G n coincide on τ n , `8 .

2. For all 0 ď n ă `8 and t ě 0, we have, for ξ P L 1 pF n`1 8 q:

E " ξ ˇˇF n`1 t ‰ " Erξ |F n t s 1 ttăτ n`1 u `E" ξ ˇˇG n`1 t ‰ 1 tτ n`1 ďtu . (A.5)
Let t ě 0 such that ř `8 n"0 Ppτ n ď t ă τ n`1 q " 1. Then, for ξ P L 1 pF 8 8 q,

Erξ |F 8 t s " `8 ÿ n"0 Erξ |F n t s 1 tτnďtăτ n`1 u .
3. For all 0 ď n ă `8, F n is right-continuous.

4. The filtration F 8 is right-continuous on r0, T s.

Proof.

1. Let t ě 0 be fixed. If ξ is F n t -measurable, since F n t Ă F m t Ă F 8 t for m ě n, taking χ " ξ gives a F m t -measurable (resp. F 8 t -measurable) random variable such that ξ1 ttăτ n`1 u " χ1 ttăτ n`1 u . Conversely, if χ is a F m t -measurable random variable, then χ " f p χ, U 1 1 tτ 1 ďtu , . . . , U m 1 tτmďtu q, for a measurable f and a F 0 t -measurable variable χ. Since U k 1 tτ k ďtu " 0 on tt ă τ n`1 u when k ě n, one gets:

χ1 ttăτ n`1 u " f p χ, U 1 1 tτ 1 ďtu , . . . , U n 1 tτnďtu , 0, . . . , 0q1 ttăτ n`1 u ": ξ1 ttăτ n`1 u ,
where ξ is F n t -measurable. Last, let χ be a F 8 t -measurable variable. Then χ " f p χ, U i 1 1 tτ i 1 ďtu , . . . , U i N 1 tτ i N ďtu q for some N ě 0 and 1 ď i 1 ď ¨¨¨ď i N , and the same arguments applies.

The proof of the second claim is straightforward as one remarks that for t ě 0 and 1 ď n ă 8, the equality f pξ, U 1 , . . . , U n q1 tτnďtu " f pξ, U 1 1 tτ 1 ďtu , . . . , U n 1 tτnďtu q1 tτnďtu holds, since the random times τ i , i ě 0 are non-decreasing. This concludes the proof of this first item by definition of coincidence of filtrations.

2. Let 0 ď n ă `8 and ξ P L 1 pF n`1 8 q. We have

E " ξ ˇˇF n`1 t ‰ " E " ξ ˇˇF n`1 t ‰ 1 ttăτ n`1 u È" ξ ˇˇF n`1 t ‰
1 tτ n`1 ďtu , and we compute both terms separately. Since F n and F n`1 coincide on 0, τ n`1 , we have E " ξ ˇˇF n`1 t ‰ 1 ttăτ n`1 u " ξ1 ttăτ n`1 u for a F n t -measurable variable ξ. In particular, the left hand side is also

F n t - measurable. Hence E " ξ ˇˇF n`1 t ‰ 1 ttăτ n`1 u " E " E " ξ ˇˇF n`1 t ‰ 1 ttăτ n`1 u ˇˇF n t ‰ " Erξ |F n t s 1 ttăτ n`1 u . Similarly, since F n`1 and G n`1 coincide on τ n`1 , `8 , we have E " ξ ˇˇG n`1 t ‰ 1 tτ n`1 ďtu " ξ1 tτ n`1 ďtu for a F n`1 t -measurable variable ξ. In particular, the left hand side is F n`1 t -measurable. Hence E " ξ ˇˇG n`1 t ‰ 1 tτ n`1 ďtu " E " E " ξ ˇˇG n`1 t ‰ 1 tτ n`1 ďtu ˇˇF n`1 t ‰ " E " ξ ˇˇF n`1 t ‰ 1 tτ n`1 ďtu . Let t ě 0 such that ř n Ppτ n ď t ă τ n`1 q " 1.
We have, since F 8 and F n coincide on 0, τ n`1 , using the same arguments as before,

Erξ |F 8 t s " ÿ n Erξ |F 8 t s 1 tτnďtăτ n`1 u " ÿ n Erξ |F n t s 1 tτnďtăτ n`1 u .
3. We prove by induction that F n is right-continuous. Since F 0 is the augmented Brownian filtration, the result is true for n " 0. Assume now that F n´1 , n ě 1, is right-continuous. Let t ě 0, ξ P L 1 pF n 8 q and pt m q mě0 such that t m ě t m`1 and lim m t m " t. We have, using the previous point and the right-continuity of F n´1 and G n :

E " ξ ˇˇF n t `‰ " lim m E " ξ ˇˇF n tm ‰ " lim m E " ξ ˇˇF n tm ‰ 1 ttmăτnu `E" ξ ˇˇF n tm ‰ 1 tτnďtmu " lim m E " ξ ˇˇF n´1 tm ‰ 1 ttmăτnu `E" ξ ˇˇG n tm ‰ 1 tτnďtmu " E " ξ ˇˇF n´1 t ‰ 1 ttăτnu `Erξ |G n t s 1 tτnďtu " Erξ |F n t s .
4. Let t ă T, ξ P L 1 pF 8 8 q, pt m q mě0 such that T ą t m ą t m`1 and lim m t m " t. We have, by Lévy's Theorem and the first point,

E " ξ ˇˇF 8 t `‰ " lim m E " ξ ˇˇF 8 tm ‰ " lim m `8 ÿ n"0 E " ξ ˇˇF 8 tm ‰ 1 tτnďtmăτ n`1 u " lim m `8 ÿ n"0 E " ξ ˇˇF n tm ‰ 1 tτnďtmăτ n`1 u .
Fix ω P Ω. We have that t m ă T ă τ N pωq`1 pωq with N pωq :" N φ T pωq assumed to be almost-surely finite, hence

E " ξ ˇˇF 8 t `‰ pωq " lim m `8 ÿ n"0 E " ξ ˇˇF n tm ‰ pωq1 tτnpωqďtmăτ n`1 pωqu " lim m N pωq`1 ÿ n"0 E " ξ ˇˇF n tm ‰ pωq1 tτnpωqďtmăτ n`1 pωqu " N pωq`1 ÿ n"0 lim m E " ξ ˇˇF n tm ‰ pωq1 tτnpωqďtmăτ n`1 pωqu " `8 ÿ n"0 lim m E " ξ ˇˇF n tm ‰ pωq1 tτnpωqďtmăτ n`1 pωqu .
Finally using the right-continuity of each F n , we get

E " ξ ˇˇF 8 t `‰ " `8 ÿ n"0 lim m E " ξ ˇˇF n tm ‰ 1 tτnďtmăτ n`1 u " `8 ÿ n"0 Erξ |F n t s 1 tτnďtăτ n`1 u " Erξ |F 8 t s ,
which proves that F 8 is right-continuous on r0, T s. l Lemma A.2. Let 0 ď n ă `8 and ξ P L 1 pF n 8 q. Let σ be a F n ´stopping time. We have:

E " ξ ˇˇF n`1 σ ‰ " Erξ |F n σ s . (A.6)
Proof. Assume first that σ " s is deterministic. Let ξ " ψpχ, U n`1 1 tτ n`1 ďsu q be a F n`1 s -measurable bounded variable, where χ is F n smeasurable and ψ is deterministic and bounded measurable. We need to show

E " ξ ξı " E " Erξ |F n s s ξı .
We have, with ψpyq :" ş ψpy, xqP U n`1 pdxq " ş 1 0 ψpy, xqdx (as P U n`1 , the law of U n`1 , is the uniform distribution on r0, 1s by definition),

E " Erξ |F n s s ψpχ, U n`1 1 tτ n`1 ďsu q ‰ " E " Erξ |F n s s ψpχ, 0q1 tsăτ n`1 u ‰ `E" Erξ |F n s s ψpχ, U n`1 q1 tτ n`1 ďsu ‰ " E " ξψpχ, 0q1 tsăτ n`1 u ‰ `E" ξ ψpχq1 tτ n`1 ďsu ı ,
and the same computation with ξ instead of Erξ |F n s s gives the same result. Let σ be a F n -stopping time, and let ξ

s " Erξ |F n s s " E " ξ ˇˇF n`1 s ‰ . Since F n (or F n`1
) is right-continuous, there exists a right-continuous modification of pξ s q sě0 . Applying Doob's Theorem twice gives ξ σ " Erξ |F n σ s and ξ σ " E " ξ ˇˇF n`1 σ ‰ , hence we get the result. l We are now in position to prove an Integral Representation Theorem in the filtration F n , for all 0 ď n ă `8.

Proposition A.2. Let 0 ď n ă `8 and ξ P L 2 pF n T q. Then there exists a process ψ P H 2 pF n q such that ξ

" E " ξ ˇˇF n T ^τn ‰ `ż T T ^τn ψ s dW s .
Proof. We prove the theorem by induction on n ě 0, following ideas from [START_REF] Amendinger | Martingale representation theorems for initially enlarged filtrations[END_REF]. The case n " 0 is the usual Martingale Representation Theorem in the augmented Brownian filtration F 0 . Assume now that the statement is true for all ξ P L 2 pF n´1 T q pn ě 1q. Let ξ P L 2 pF n T q. Since F n T " F n´1 T _ σpU n 1 tτnďT u q, we get that ξ " lim mÑ8 ξ m in L 2 pF n T q, with ξ m " ř lm i"1 χ i m ζ i m and pχ i m , ζ i m q P L 8 pF n´1 T qˆL 8 pσpU n 1 tτnďT u qq for all m ě 0 and 1 ď i ď l m . By induction, there exist F n´1 -predictable processes ψ i,m such that

χ i m " E " χ i m ˇˇF n´1 T ^τn´1 ı `ż T T ^τn´1 ψ i,m s dW s .
Since τ n is a F n´1 -stopping time with τ n ě τ n´1 and ş 0 ψ i,m s dW s is a square integrable F n´1 -martingale, we get

E " χ i m ˇˇF n´1 T ^τn ‰ " E « E " χ i m ˇˇF n´1 ψ m s dW s ,
where ψ m :" ř lm i"1 ζ i m ψ i,m P H 2 pF n q. Finally, since ξ m Ñ ξ in L 2 pF n T q, we get that E

" ξ m ˇˇF n T ^τn ‰ Ñ E " ξ ˇˇF n T ^τn
‰ in L 2 pF n T q, hence ş T T ^τn ψ m s dW s converges to a limit ş T T ^τn ψ s dW s for a process ψ P H 2 pF n q. l Theorem A.2. Let 0 ď n ă `8 and ξ P L 2 pF n T q. There exist some processes ψ k P H 2 pF k q, for all 0 ď k ď n, such that:

ξ " E " ξ ˇˇF 0 T ^τ0 ‰ `n´1 ÿ k"0 ż T ^τk`1 T ^τk ψ k s dW s `ż T T ^τn ψ n s dW s `n´1 ÿ k"0 ´E" ξ ˇˇF k`1 T ^τk`1 ı ´E" ξ ˇˇF k T ^τk`1 ı" E " ξ ˇˇF 0 T ^τ0 ‰ `ż T T ^τ0 Ψ n s dW s `n´1 ÿ k"0 ´E" ξ ˇˇF k`1 T ^τk`1 ı ´E" ξ ˇˇF k T ^τk`1
ı¯, with Ψ n t :" ř n´1 k"0 ψ k t 1 tT ^τk ătďT ^τk`1 u `ψn t 1 tT ^τnătďT u .

Proof. This is an immediate consequence of the previous theorem. l

Last, we extend this theorem to obtain an Integral Representation Theorem in F 8 . We now fix ξ P L 2 pF 8 T q and consider the filtration pF n T q ně0 . By Lévy's Theorem, since F 8

T " where Ψ :" ψ ´11 t0ď¨ďT ^τ0 u `Ψ.

Ž ně0 F n T ,
where n corresponds to the underlying filtration F n . When d " 1, one can easily deal with linear BSDEs in F n , and the specific form of its solutions allows to prove a Comparison Theorem. The proofs follow closely [12, Theorem 2.2].

Theorem A.5. Let pb, cq be a bounded pR ˆRκ q-valued predictable process and let a P H 2 pF n q. Let ξ P L 2 pF n T q and let pY, Z, M q P S 2 pF n q ˆH2 κ pF n q ˆH2 pF n q be the unique solution to Proof. We fix t P r0, T s and we apply Itô's formula to the process Y t Γ t : d pY t Γ t q " Y t ´dΓ t `Γt ´dY t `d rY, Γs t .

Y t "
Since Γ is continuous, we get rY, Γs t " Y c , Γ c t `řsďt p∆Y s q p∆Γ s q " Y c , Γ t , thus, d pY t Γ t q " Γ t pb t Y t `Zt q dW t `Γt dM t ´Γt c t dt.

We define a martingale by N t " ş t 0 Γ s pb s Y s `Zs qdW s `şt 0 Γ s dM s , and the previous equality gives

Y T Γ T " Y t Γ t ´ż T t Γ s c s ds `NT ´Nt .
Taking conditional expectation with respect to F n t on both sides gives the result. l Theorem A.6. Let pξ, f q and pξ 1 , f 1 q two standard parameters. Let pY, Z, M q P S 2 pF n qĤ 2 κ pF n q ˆH2 pF n q (resp. pY 1 , Z 1 , M 1 q) the solution associated with pξ, f q (resp. pξ 1 , f 1 q). Assume that • ξ ě ξ 1 a.s.,

• f p., Y 1

. , Z 1 . q ě f 1 p., Y 1 . , Z 1 . q dP ˆdt a.e.

Then Y t ě Y 1 t almost surely for all t P r0, T s.

53

Proof. Since f is Lipschitz, we consider the bounded processes a, b and c defined, for t P r0, T s, by: a t " f pt, Y t , Z t q ´f pt, Y where ξ and f are standard parameters and where A is a given non-decreasing process with A T ´A0 P L 2 pF n T q. Let p ξ :" ξ `AT , f pω, t, y, zq :" f pω, t, y ´At pωq, zqq, which is easily seen to be standard parameters. Then Theorem A.4 implies that there exists a unique solution p Ỹ , Z, M qP S 2 pF n q ˆH2 κ pF n q ˆH2 pF n q to

Ỹt " ξ `ż and setting pY, Z, M q :" p Ỹ ´A, Z, M q, we easily see that it is a solution to (A.13).

In addition, if pY i , Z i , M i q (i " 1, 2) are two solutions to (A.13), then p Ỹ i , Zi , M i q :" pY i `A, Z i , M i q are two solutions to (A.14) and the uniqueness result from Theorem A.4 gives Z 1 " Z 2 , M 1 " M 2 and Y 1 `A " Y 2 `A, i.e. Y 1 " Y 2 , so (A.13) admits a unique solution. These considerations also allow to extend the comparison theorem to this setting, which is used in the proof of Theorem 2.1, see Section 2.3.3.
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 1 Figure 1: Domain D ˝for three examples of switching problems with or without controlled randomisation.
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 313 Let Assumption 3.1 holds and assume furthermore that D is nonempty. Then, 1. the mean cost with respect to the invariant measure is non-negative, namely: µc ě 0.(3.10)2. For all 1 ď i, j ď d, min 1ďi,jďd pC i,j `Cj,i q ě 0. (3.11) The set D ˝is compact in y P R d ˇˇy d " 0 ( . Moreover, if D has a non-empty interior, then µc ą 0 and min 1ďi‰jďd pC i,j `Cj,i q ą 0 . (3.12) Proof. 1.a We first show the key relation, for all x P D, ´Ci,j ď x i ´xj ď C j,i , for 1 ď i, j ď d. (3.13)
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 34 Let Assumption 3.2 hold and assume that D is non-empty (resp. has a non-empty interior). Then, min u µ u cu ě 0 presp. ą 0q and min 1ďi‰jďd ´p C i,j `p C j,i ¯ě 0 presp. ą 0q . (3.25) Moreover, the set D ˝is compact in y P R d ˇˇy d " 0 ( .
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 31 Set C " t0, 1u,

Assumption 4 . 1 .

 41 There exist p ě 0 and L ě 0 such that i) The function ψ satisfies |ψpt, x, y, zq| ď Lp1 `|x| p `|y| `|z|q.

  |bpt, xq| `|σpt, xq| ď Lp1 `|x|q, |bpt, xq ´bpt, yq| `|σpt, xq ´σpt, yq| ď L|x ´y|.

Theorem 4 . 2 .

 42 Suppose that Assumption 3.1 and Assumption 4.2 are satisfied and that D has a non-empty interior. Then, there exists H : R d Ñ R dˆd satisfying Assumption 4.1-v).

1 .

 1 We start by computing the outward normal cone Cpyq for all y P D ˝. Let us fix y P D ˝.

" ř PEyztiu λ µc µ e ı since λ i ą 0 .

 0 Moreover, we have also 0 ě α J

  |σpt, xq| ď L, |bpt, xq ´bpt, yq| `|σpt, xq ´σpt, yq| ď L|x ´y|.

  eigenvalue of Hpy d q with multiplicity d ´2, det Hpy d q " `a ´2 d´1 d ˘pd 1q `d´1 d ˘d´2 and TrpHpy d qq " da ´2 d´1 d , Hpy d q is a positive definite symmetric matrix as soon as a ą 2 d´1

  Using Theorem A.3, we obtain that each summand in (2.15) is a F 8 -martingale, hence

.18) Proof. Let φ P A i t . It is clear by (2.14) that K φ is non-decreasing, continuous and satisfies K φ t " 0. Moreover, by (2.15) and (2.16), we have that M φ t " 0 and A φ t " 0.

  and so on. By(2.22) applied to the strategy φ n , we get, recalling that A n t " 0,

	A n τn^T "Y n t	´Yn τn^T	´ż τn^T	f a n s ps, Y n s , Z n s qds	`ż τn^T	Z n s dW s
					t			t
	`ż τn^T	dM n s	`ż τn^T	dA n s	´ż τn^T	dK n s .	(2.23)
		t			t			t

  By definition of τ ‹ , α ‹ , recall (2.10)-(2.11), it is clear that A n s^τ ‹

and τ n k " T `1 for all k ą n. We set Y n s :" Y φ n s , Z n s :" Z φ n s and so on, for all s P rt, T s.

n " 0 and that

  The main point to invoke Theorem 4.1 is then to construct a function H : R d Ñ R dˆd which satisfies Assumption 4.1-v) and such that

	If Assumption 4.1 i), ii), iii), iv) is also satisfied, we obtain the existence of a solution
	to (4.3)-(4.4)-(4.5). Setting K t,x s pY t,x , Z t,x , K t,x q is a solution to (2.6)-(2.7)-(2.8). Indeed, (2.6)-(2.7) are clearly satisfied :" ´şs u qΨ t,x u du for t ď s ď T shows that t HpY t,x
	by definition of K t,x and by (4.3)-(4.4). Let us check that (2.8) is also satisfied. We
	have, for each 1 ď i ď d,				
	´ż T t	˜Y t,x,i s	´sup uPC	#	d j"1 ÿ	P u i,j Y t,x,j s	´c u i	+¸d K t,x,i s
	"	ż T t	1 tY t,x s RBDu	˜Y t,x,i s	´sup uPC	# j"1 d ÿ	P u i,j Y t,x,j s	´c u i	+¸`H	pY t,x s qΨ t,x s ˘i ds
	`ż T t	1 tY t,x s PBDu	˜Y t,x,i s	´sup uPC	#	d j"1 ÿ	P u i,j Y t,x,j s	´c u i	+¸`H	pY t,x s qΨ t,x s ˘i ds .
	On tY t,x s	R BDu, we have Ψ t,x s " 0 a.s. by (4.5), which shows that the first integral is
	zero.									
	On tY t,x									
								t,x u , Y u , Z u qdu	´ż T Z u dW u	´ż T
											s
											(4.4)
	ż T									
	1 tYsRBDu |Ψ s |ds " 0.					(4.5)
	t									
											Hpyqv P C o pyq,	(4.6)
	for all y P D and v P Cpyq, where C o pyq is the cone of directions of reflection, given here
	by									
					C o pyq :"	´d ÿ i"1	R `ei 1 tyi"maxuPC t	ř d j"1 P u i,j y j ´c u i uu .	(4.7)

s HpY u qΨ u du, s P rt, T s, (4.3) Y s P D, Ψ s P CpY s q, t ď s ď T, s P BDu, we have HpY t,x s qΨ t,x s P C o pY t,x s q by (4.4) and (4.6), and if moreover Y t,x,i s

  4.1-v) and (4.6) are fulfilled for points on E 1 . Moreover, we are able to construct by the same method H on y 3 , and then on E 2 and E 3 , satisfying Assumption 4.1-v) and (4.6). 2. By using Lemma 3.1 we can extend H on all the boundary of D. Finally, we can extend H by continuity on the whole space R 3 by following [6, Remark 2.1]. l

  1 q| ď L `|y ´y1 | `|z ´z1 | ˘. H : R d Ñ R dˆd is valued in the set of symmetric matrices Q satisfying |Q| ď L , L|υ| 2 ě υ J Qυ ě 1 L |υ| 2 , @υ P R d . (4.23) H is a C 1 -function and H ´1 is a C 2 -function satisfying |B y H| `|H ´1| `|B y H ´1| `|B 2 yy H ´1| ď L.

	Moreover we have					
			ess sup	E	"ż T	|f ps, 0, 0q| 2 ds ˇˇˇF 0 t		ď L.
			ωPΩ,tPr0,T s		t		
	iii) From this assumption is deduced the following general existence result in the non-
	Markovian setting.						
	Theorem 4.4 ([6], Proposition 3.1). We assume that D has a non-empty interior.
	Under Assumption 4.3, there exists a solution pY, Z, Ψq P S 2 d pF 0 q ˆH2 dˆκ pF 0 q ˆH2 d pF 0 q
	of the following system					
	Y s " ξ	`ż T	f pu, Y u , Z u qdu	´ż T	Z u dW u	´ż T	HpY u qΨ u du, s P r0, T s,	(4.24)
		s			s			s
	Y s P D, Ψ s P CpY s q, 0 ď s ď T,				(4.25)
	ż T							
	1 tYsRBDu |Ψ s |ds " 0.						(4.26)
	0							
	Remark 4.3. i)						

  1 shows, once again in this non-Markovian setting, that a solution to (4.24)-(4.25)-(4.26), with H satisfying to Hpyqv P C o pyq for all y P D and v P Cpyq, induces a solution to (2.6)-(2.7)-(2.8).

  we get Erξ |F n T s Ñ nÑ8 Erξ |F 8 T s " ξ, a.s. (A.7)For all n ě 0, using Theorem A.2, we can write:Lemma A.3. We have ψ n,k " ψ k,k on rT ^τk , T ^τk`1 q, for all n ě k. For all n ě 0, we define ψ n :" ψ n,n . Thus we have, for all n ě 0, Theorem A.3 (Integral Representation Theorem for F 8 ). Suppose that Assumption 2.1-i) holds. For ξ P L 2 pF 8 T q, we have Proof. By definition (2.2) of N :" N φ T , we have T ă τ n`1 on tn ě N u. Thus, Moreover, if k ě n, we have, since T ^τk`1 " T , Since N is assumed to be finite almost surely, we have 1 tN ďnu Ñ nÑ8 1 almost surely.Sending n to infinity in the previous equation, using (A.7), we finally obtain Using the classical Martingale Representation Theorem in the Brownian filtration, there exists a F 0 -predictable process ψ ´1 such that Hence one easily obtains the representation, for ξ P L 2 pF n T q with n P N Y t`8u

	1 tN ďnu	ż T	Ψ n s dW s "	˜ż T ^τn`1	Ψ s dW s		`ż T	ψ n s dW s ¸1tNďnu " 1 tN ďnu	ż T	Ψ s dW s .
		T ^τ0		T ^τ0					T ^τn`1	T ^τ0
		Erξ |F n T s "E " ∆ k T 1 tN ďnu " ξ ˇˇF 0 T ^τ0 ´E" ‰ ξ ˇˇF k`1 `n´1 ÿ k"0 ż T ^τk`1 T ^τk T ^τk`1 ı ´E" ψ n,k s dW s ξ ˇˇF k T ^τk`1 `ż T ı¯1 T ^τn tN ďnu ψ n,n s dW s " ´E" ξ ˇˇF k`1 T ı ´E" ı¯1 ξ ˇˇF k T tN ďnu .
	`n´1 ÿ Applying (A.5) to χ " E " ξ ˇˇF k`1 ´E" ξ ˇˇF k`1 T ^τk`1 ı T , we get	ı	´E" ξ ˇˇF k T ^τk`1	ı¯.
			k"0 χ ˇˇF k`1 " χ " E T ı	" E " χ ˇˇF k T	ı	1 tT ăτ k`1 u	`E" χ ˇˇG k`1
	Proof.	It follows easily by induction, comparing E "	ξ ˇˇF k T	‰	and E "	Erξ |F n T s ˇˇF k T	‰	and
	using Itô's isometry.						
										l
		Erξ |F n T s "E " Erξ |F n T s 1 tN ďnu " ξ ˇˇF 0 T ^τ0 ˜E" ξ ˇˇF 0 ‰ `n´1 ÿ k"0 T ^τ0 ‰	ż T ^τk`1 T ^τk T ^τ0 `ż T	ψ k s dW s Ψ n s dW s	`ż T T ^τn k"0 `n´1 ÿ ∆ k ψ n s dW s T ¸1tNďnu
				`n´1 ÿ k"0 " ˜E" ´E" ξ ˇˇF k`1 T ^τk`1 ξ ˇˇF 0 T ^τ0 ‰ `ż T ı ´E" ξ ˇˇF k T ^τk`1 k"0 ı¯. T ^τ0 Ψ s dW s ``8 ÿ ∆ k T ¸1tNďnu .
	We set, for 0 ď s ď T ,						
			Ψ s " Ψ n s " Ψ s 1 tsďT ^τn`1 u `8 ÿ k"0 ψ k s 1 tT ^τk ďsăT ^τk`1 u , `ψn s 1 tT ^τn`1 ăsu , and ξ " E " ξ ˇˇF 0 k"0 T ^τ0 T ^τ0 ‰ `ż T Ψ s dW s ``8 ÿ ∆ k T .
			∆ k s :" E " ξ ˇˇF k`1 s^τ k`1	ı	´E" ξ ˇˇF k s^τ k`1	ı	,
	so that								
			Erξ |F n T s " E " E " ξ ˇˇF 0 T ^τ0 ξ ˇˇF 0 T ^τ0 ‰ " Erξs ‰ `ż T T ^τ0 0 `ż T ^τ0 Ψ n s dW s ψ ´1 s dW s . `n´1 ÿ k"0	∆ k T .
			ξ " E " ξ " Erξs ξ ˇˇF 0 T ^τ0 `ż T ‰ 0 `ż T T ^τ0 Ψs dW s Ψ s dW s k"0 ``8 ÿ k"0 `n´1 ÿ ∆ k T ,	∆ k T .	(A.8)

T ı 1 tτ k`1 ďT u .

Since T ă τ n`1 ď τ k`1 on tN ď nu, we finally obtain

E " ξ ˇˇF k`1 T ı 1 tN ďnu " χ1 tN ďnu " E " χ ˇˇF k T ı 1 tN ďnu " E " ξ ˇˇF k T ı 1 tN ďnu ,

which gives ∆ k T 1 tN ďnu " 0. Thus:

l Remark A.1.

  Let Γ P H 2 pF n q the solution to

	ξ	`ż T	pa s Y s `bs Z s `cs q ds	´ż T	Z s dW s	´ż T	dM s .
		t					t	t
			Γ t " 1	`ż t	Γ s a s ds	`ż t
				0			

0 Γ s b s dW s .

Then, for all t P r0, T s, one has almost surely,

Y t " Γ ´1 t E " Γ T ξ `ż T t Γ s c s ds ˇˇˇF n t  .

  Setting δY t " Y t ´Y 1 t , δZ t " Z t ´Z1 t and δM t " M t ´M 1 t , we observe that pδY, δZ, δM q is the solution to the following linear BSDE: δY t " δY T `ż T t pa s δY s `bs δZ s `cs q ds ´ż T Using the previous Theorem, we get Y t " Γ ´1 t E " δY T Γ T `şT t Γ s c s ds ˇˇF n Γ is a positive process, and δY t and c are non negative by hypothesis, hence Y t ě 0. l Remark A.3. In Section 2, see (2.4) and (2.35), we apply Theorems A.4 and A.6 to more general BSDEs in F n , n P N Y t`8u, of the form

				Y t ´Y 1 t	1 t , Z t q	1 tYt‰Y 1 t u ,		
	b t "	pf pt, Y 1 t , Z t q ´f pt, Y 1 t , Z 1 t qq pZ t |Z t ´Z1 t | 2	´Z1 t q J	1 tZt‰Z 1 t u ,
	c t " f pt, Y 1 t , Z 1 t q ´f 1 pt, Y 1 t , Z 1 t q,			
								δZ s dW s	´ż T	dδM s .	(A.12)
							t				t
											ı
											t	. By definition,
	Y t " ξ	`ż T	f ps, Y s , Z s qds	´ż T	Z s dW s	´ż T	dM s	´ż T	dA s ,	(A.13)
			t		t			t			t

Proposition 3.3. Let Assumption 3.1 hold and assume that D has a non-empty interior. Define θ ¨,j " C ¨,j ´Cd,j 1, for all 1 ď j ď d. Then p´θ ¨,j q 1ďjďd are affinely independent and D ˝is the convex hull of these points.

Proof. We know from Theorem 3.1 that ´C¨,j P D for all 1 ď j ď d. The invariance by translation along 1 of the domain proves that ´θ¨,j is in D ˝. More precisely, we obtain from (3.9) that, θ i,j ´d ÿ "1 θ ,j P i, " ci , for 1 ď i ‰ j ď d .

(3.22)

1. We now prove that pθ ¨,j q 1ďjďd are affinely independent. We consider thus α P R d such that d ÿ j"1 α j " 0 and z :"

and we aim to prove that α j " 0, for j P t1, . . . , du. To this end, we compute, for i P t1, . . . , du, using (3.22) and θ i,i " C i,i ´Cd,i " ´Cd,i by definition,

Using (3.23), ř d "1 P i, " 1 and (3.9), we obtain

´αi Ci,i .

We thus deduce that α i " 0 since Ci,i " µc µ i ą 0 from Theorem 3.1, which concludes the proof for this step. 2. We now show that D ˝is the convex hull of points p´θ ¨,j q 1ďjďd , which are affinely independent from the previous step. For y P R d X ty d " 0u, there exists thus a unique

Existence of solutions in dimension 3

We focus in this part on the uncontrolled case C " t0u, in dimension d " 3 and in the irreducible case. Thus, there is a unique transition matrix given by P :" P 0 "

for some p, q, r P r0, 1s. Indeed, as already mentioned in Remark 4.2 for the Markovian case, irreducibility implies that diagonal entries are different from 1, and Remark 3.1 explains how to obtain a matrix with diagonal entries set to 0.

Theorem 4.5. Let us assume that 0 ă p, q, r ă 1 and that D has a non-empty interior.

Then there exists a function H : R 3 Ñ R 3ˆ3 that satisfies Assumption 4.3-iii) and such that Hpyqv P C o pyq, @y P D, v P Cpyq. (4.28)

Consequently, if we assume that Assumption 4.3-i)&(ii) are fulfilled, then there exists a solution to the obliquely reflected BSDE (2.6)-(2.7)- (2.8). Moreover this solution is unique if we assume also Assumption 2.1-ii).

Proof.

We first observe that uniqueness follows once again from Proposition 2.1. Concerning existence, once again we exhibit a convenient H. Thanks to Lemma 3.1, it is enough to construct H only on R 3 X px, y, zq P R 3 ˇˇz " 0 ( . We start by D ˝, which is a triangle with three vertices v i " pv i 1 , v i 2 , v i 3 q, i " 1, 2, 3, defined as

Let us now construct H on each vertex. We consider first the point v 1 . It is easy to compute its outward normal cone, which is given by Cpv 1 q " R `p´1, p, 1 ´pq J `R`p q, ´1, 1 ´qq J .

(4.32)

The matrix Hpv 1 q must satisfy

Proof. 1. We first show that (3.3) holds true. From (3.3), we observe that

Thus,

From [20, Theorem 1.7.5], we know that γ j " µ µ j .

2. We prove (3.16) assuming the following for the moment: for all distinct 1 ď i, j, k ď d,

Using the previous point and the fact that Q j i pjq ,i pjq " Q i j piq ,j piq , we get

which is the result we wanted to prove.

We now prove (A.3).

Let i, j P t1, . . . , du and i ‰ j. We observe first, using (A.1), that

For k P t1, . . . , duzti, ju, we denote by k ij P t1, . . . , d ´2u (resp. i jk , j ik ) the index such that:

namely k ij " k ´1tkąiu ´1tkąju , i jk " i ´1tiąku ´1tiąju and j ik " j ´1tjąku ´1tjąiu .

Let σ k be the permutation of t1, . . . , d ´2u given by

is the composition of k ij ´1 transpositions. Applying σ ´1 k to the row of Q ptj,iu,tj,iuq , we obtain a matrix denoted simply Q ptj,iu,tj,iuq σ k p¨q,¨w hose first row is Q ptj,iu,tj,iuq k,¨, and we have

. .

. .

Let σ i (resp. σ j ) be constructed as σ k but with i jk (resp. j ik ) instead of k ji then one observes

We compute that p´1q i jk ´1`k ij ´1`i pjq `kpjq " ´1 and p´1q j ik ´1`k ij ´1`j piq `kpiq " ´1, leading to

2 Enlargement of a filtration along a sequence of increasing stopping times

We fix an admissible strategy φ P A and we study the associated filtrations F 

In particular, the martingales ş 0 Ψs dW s and ř k ∆ k are orthogonal.

A.2.2 Backward Stochastic Differential Equations

Using the results from the previous section, in particular that the filtrations F n , n P N Y t`8u, are right-continuous and that a Martingale Representation Theorem is available in these filtrations, we recall that (switched) BSDEs with Lipschitz driver have a unique solution and that a comparison theorem is available.

Let n P N Y t`8u. Let ξ be a F n T -measurable random variable and f : Ω ˆr0, T s Rd ˆRdˆκ Ñ R d a measurable function. We assume here that ξ and f are standard parameters [12, Section 5]:

• ξ P L 2 pF n T q,

• f p¨, 0, 0q P H 2 d pF n q,

• There exists C ą 0 such that |f pt, y 1 , z 1 q ´f pt, y 2 , z 2 q| ď C p|y 1 ´y2 | `|z 1 `z2 |q .

Under these hypothesis, since F n is right-continuous (see Proposition A.1), one can prove (see [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]Theorem 5.1]):

Theorem A.4. There exists a unique solution pY, Z, M q P S 2 d pF n q ˆH2 dˆκ pF n q ˆH2 d pF n q such that M is a martingale with M 0 " 0, orthogonal to the Brownian motion, and satisfying