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Switching problems with controlled randomisation and
associated obliquely reflected BSDESs

Cyril Bénézet? Jean-Francois Chassagneux! Adrien Richou!

December 13, 2021

Abstract

We introduce and study a new class of optimal switching problems, namely
switching problem with controlled randomisation, where some extra-randomness
impacts the choice of switching modes and associated costs. We show that the
optimal value of the switching problem is related to a new class of multidimen-
sional obliquely reflected BSDEs. These BSDEs allow as well to construct an
optimal strategy and thus to solve completely the initial problem. The other main
contribution of our work is to prove new existence and uniqueness results for these
obliquely reflected BSDEs. This is achieved by a careful study of the domain of re-
flection and the construction of an appropriate oblique reflection operator in order
to invoke results from [6].

1 Introduction

In this work, we introduce and study a new class of optimal switching problems in
stochastic control theory. The interest in switching problems comes mainly from their
connections to financial and economic problems, like the pricing of real options [4]. In a
celebrated article [14], Hamadéne and Jeanblanc study the fair valuation of a company
producing electricity. In their work, the company management can choose between two
modes of production for their power plant — operating or close — and times of switch-
ing from one state to another, in order to maximise its expected return. Typically,
the company will buy electricity on the market if the power station is not operating.
The company receives a profit for delivering electricity in each regime. The main point
here is that a fixed cost penalizes the profit upon switching. This switching problem
has been generalized to more than two modes of production [10]. Let us now discuss
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this switching problem with d > 2 modes in more details. The costs to switch from
one state to another are given by a matrix (¢;;)1<ij<d- The management optimises
the expected company profits by choosing switching strategies which are sequences of
stopping times (7, )n>0 and modes ({,)n>0. The current state of the strategy is given
by ar = >40% Celiry mpa)(t), t € [0,T], where T is a terminal time. To formalise the
problem, we assume that we are working on a complete probability space (2,4, P) sup-
porting a Brownian motion W. The stopping times are defined with respect to the
filtration (F});=0 generated by this Brownian motion. Denoting by f(¢) the instan-
taneous profit received at time ¢ in mode 4, the time cumulated profit associated to a
switching strategy is given by S(:]F fee(t)de — ,jzo% CluiCrar Ly <7y The management
solves then at the initial time the following control problem

+00

T
f fe)de — Z ch’Ck+11{Tk+1$T} ) (1.1)
k=0

aced

Vo = supE
0

where 7 is a set of admissible strategies that will be precisely described below in our
framework (see Section [2.1)). We shall refer to problems of the form under the name
of classical switching problems. These problems have received a lot of interest and are
now quite well understood [14 10} 17,5]. In our work, we introduce a new kind of switch-
ing problems, to model more realistic situations, by taking into account uncertainties
that are encountered in practice. Coming back to the simple but enlightening example
of an electricity producer described in [I4], we introduce some extra-randomness in the
production process. Namely, when switching to the operating mode, it may happen
with — hopefully — a small probability that the station will have some dysfunction. This
can be represented by a new mode of “production” with a greater switching cost than
the business as usual one. To capture this phenomenon in our mathematical model, we
introduce a randomisation procedure: the management decides the time of switching
but the mode is chosen randomly according to some extra noise source. We shall refer to
this kind of problems by randomised switching problems. However, we do not limit our
study to this framework. Indeed, we allow some control by the agent on this randomi-
sation. Namely, the agent can choose optimally a probability distribution P" on the
modes space given some parameter u € €, the control space. The new mode (i, 1 is then
drawn, independently of everything up to now, according to this distribution P, and a
specific switching cost c"szyck+1 is applied. The management strategy is thus given now
by the sequence (7x, ug)r=0 of switching times and controls. The maximisation problem

is still given by (1.1). Let us observe however that E[cg:7ck+l] = E[Zl <j<d ch * jcz‘:’ j],

thanks to the tower property of conditional expectation. In particular, we will only
work with the mean switching costs ¢ := Zlgjgd P in . We name this kind
of control problems switching problems with controlled randomisation. Although their
apparent modeling power, this kind of control problems has not been considered in the
literature before, to the best of our knowledge. In particular, we will show that clas-
sical and randomised switching problems are just special instances of this more generic
problem. The switching problem with controlled randomisation is introduced rigorously

in Section 2.1] below.



A key point in our work is to relate these control problems to a new class of obliquely

reflected Backward Stochastic Differential Equations (BSDEs). In the first part, follow-
ing the approach of [14} 10, [17], we completely solve the switching problem with controlled
randomisation by providing an optimal strategy. The optimal strategy is built using the
solution to a well chosen obliquely reflected BSDE. Although this approach is not new,
the link between the obliquely reflected BSDE and the switching problem is more subtle
than in the classical case due to the state uncertainty. In particular, some care must be
taken when defining the adaptedness property of the strategy and associated quantities.
Indeed, a tailor-made filtration, studied in details in Appendix A.2, is associated to each
admissible strategy. The state and cumulative cost processes are adapted to this filtra-
tion, and the associated reward process is defined as the Y-component of the solution to
some “switched” BSDE in this filtration. The classical estimates used to identify an op-
timal strategy have to be adapted to take into account the extra orthogonal martingale
arising when solving this “switched” BSDE in a non Brownian filtration.
In the second part of our work, we study the auxiliary obliquely reflected BSDE, which
is written in the Brownian filtration and represents the optimal value in all the possible
starting modes. Reflected BSDEs were first considered by Gegout-Petit and Pardoux
[13], in the multidimensional setting of normal reflections. In one dimension, they have
also been studied in [11] in the so called simply reflected case, and in [7] in the doubly
reflected case. The multidimensional RBSDE associated to the classical switching prob-
lem is reflected in a specific convex domain and involves oblique directions of reflection.
Due to the controlled randomisation, the domain in which the Y-component of the aux-
iliary RBSDE is constrained is different from the classical switching problem domain
and its shape varies a lot from one model specification to another. The existence of a
solution to the obliquely reflected BSDE has thus to be studied carefully. We do so by
relying on the article [6] that studies, in a generic way, the obliquely reflected BSDE in
a fixed convex domain in both Markovian and non-Markovian setting. The main step
for us here is to exhibit an oblique reflection operator, with the good properties to use
the results in [6]. We are able to obtain new existence results for this class of obliquely
reflected BSDEs. Because we are primarily interested in solving the control problem, we
derive the uniqueness of the obliquely reflected BSDEs in the Hu and Tang specification
for the driver [17], namely f(t,y,z) := fi(t,y",2") for i € {1,...,d}. But our results
could be easily generalized to the specification fi(t,y, z) := fi(t,y, z*) by using similar
arguments as in [5].

The rest of the paper is organised as follows. In Section 2] we introduce the switching
problem with controlled randomisation. We prove that, if the costs are positive and there
exists a solution to the associated BSDE with oblique reflections, then its Y-component
coincides with the value of the switching problem. A verification argument allows then
to deduce uniqueness of the solution of the obliquely reflected BSDE, and we obtain an
uniqueness result in the signed costs setting as a byproduct, assuming non-emptiness
of the interior of the domain of reflection. In Section |3, we study the geometry of the
domain of reflection in the signed costs case, and we provide explicit conditions on the
coefficients which are equivalent to a domain of reflection with a non-empty interior. In
Section [d] we show that there exists indeed a solution to the obliquely reflected BSDE



under the previous conditions in a Markovian setting, and in some particular instances in
the non-Markovian case. We also prove uniqueness of the solution under some structural
condition on the driver f. Finally, we gather in the Appendix section some technical
results. In particular, in a positive costs setting, we prove a Martingale decomposition
theorem in the filtration associated to an admissible strategy, which is a new result.

Notations If n > 1, we let B" be the Borelian sigma-algebra on R™. If E is a

measurable susbet of R, we denote by F its interior and by F its closure. For any
filtered probability space (Q, A, F := (F;)i=0,P) and constants 7" > 0 and p > 1, we
define the following spaces:

o Lh(A) is the set of A-measurable random variables X valued in R"™ satisfying
H|X[P] < +eo,

P(F) is the predictable sigma-algebra on Q x [0, 7],

e H(F) is the set of predictable processes ¢ valued in R™ such that

1
T »
MMWW=QL1@WQ < +o0, (1.2

Sh(IF) is the set of cadlag adapted processes ¢ valued in R™ such that

P
wwmy=qi@\@ﬂ < +o0, (13)

Xl

AL (F) is the set of adapted continuous processes ¢ valued in R™ such that ¢r €
L5 (Fr) and ¢' is non-decreasing for all i = 1,...,n.

For X, Y two cadlag processes, the quadratic covariation process is denoted [X, Y] and
the quadratic variation process [X].

If n = 1, we omit the subscript n in previous notations.

For d > 1, we denote by (e;)%_, the canonical basis of R% and Sy(R) the set of symmetric
matrices of size d x d with real coefficients. Moreover, we let 1 := Zle €;-

If D is a convex subset of R? (d > 1) and y € D, we define the set C(y) by
Cy) := {veRd‘vT(z—y) < 0 for allzeD}. (1.4)

This is the outward normal cone at y when y is a boundary point of D, and it is obviously
reduced to {0} when y is an interior point. We also set n(y) := C(y) n {v e R?||v| = 1}.
For any closed convex set O, we denote by PBo(-) the projection onto O.

If X is a matrix of size n x m, T < {1,...,n} and J < {1,...,m}, we set XTJ) the



matrix of size (n — |Z|) x (m — |J|) obtained from X by deleting rows with index i € Z
and columns with index j € J. If T = {i} we set X(7) := X@.J) and similarly if
7 = i

If v is a vector of size n and 1 < i < n, we set v(® the vector of size n — 1 obtained from
v by deleting coeflicient i.

For (i,j) € {1,...,d}, we define i) := i — 1.5 e {1,...,d— 1} , for d > 2.

We denote by > the component by component partial ordering relation on vectors and
matrices.

2 Switching problems with controlled randomisation

We introduce here a new kind of stochastic control problems that we name switching
problems with controlled randomisation. In contrast with the usual switching problems
[14, 16l [I7], the agent cannot choose directly the new state, but chooses a probability
distribution under which the new state will be determined. In this section, we assume
the existence of a solution to some auxiliary obliquely reflected BSDE to characterize
the value process and an optimal strategy for the problem, see Assumption [2.2] below.

Let (2,G,P) be a probability space. We fix a finite time horizon 7" > 0 and x >
1,d > 2 two integers. We assume that there exists a x-dimensional Brownian motion W
and a sequence (i, ),>1 of independent random variables, independent of W, uniformly
distributed on [0, 1]. We also assume that G is generated by the Brownian motion W
and the family (i0,),>1. We define FO = (F);>0 as the augmented Brownian filtration,
which satisfies the usual conditions.

Let € be an ordered compact metric space and F : ¢ x {1,...,d} x [0,1] — {1,...,d}
a measurable map. To each u € ¥ is associated a transition probability function on the
state space {1,...,d}, given by Pl = P(F(u,i,4) = j) for & uniformly distributed on
[0,1]. We assume that for all (i,7) € {1,...,d}?, the map u P}, is continuous.

Let ¢ : {1,...,d} x ¥ — R, (i,u) — ¢ a map such that v — ¢} is continuous for all
i=1,...,d. We denote supjc(y, . gy uew ¢ := ¢ and infiey gy uew &' = C.

Let £ = (¢1,...,¢%) e L3(FP) and f:Q x [0,T] x R? x R¥>* — R? a map satisfying

e fis P(F%) ® B ® B¥**-measurable and f(-,0,0) € H3(F?).
e There exists L > 0 such that, for all (¢,y,/, 2, 2') € [0, T] x R? x R% x RE** x RI**%,

|f(ty,2) = f(t,y, 2 < L(ly = ¢/| + |2 = &)

The above assumptions will be in force throughout our work. We shall also use, in this
section only, the following additional assumptions.

Assumption 2.1. i) Switching costs are positive, i.e. ¢ > 0.

i) For all (t,y,2) € [0,T] x R? x R™** it holds almost-surely,

f(tvyv 2) = (fi(ta yi7zi))1Si<d' (21)



ii) For allu e % andi€{1,...,d}, we have Pl # 1.

Remark 2.1. i) It is usual to assume positive costs in the literature on switching
problem. In particular, it implies that the cumulative cost process, see , 18 nomn-
decreasing. Introducing signed costs adds extra technical difficulties in the proof of the
representation theorem (see e.g. [19] and references therein). We postpone the adapta-
tion of our results in this more general framework to future works.

i1) The structural condition on f is also standard: it allows to get a comparison result
for BSDEs, which is a key point to obtain the representation theorem. Note however
that our results can be generalized to the case fi(t,y,z) = fi(t,y,2") forie {1,...,d} by
using similar arguments as in [5].

2.1 Solving the control problem using obliquely reflected BSDEs

We define in this section the stochastic optimal control problem. We first introduce the
strategies available to the agent and related processes. The definition of the strategy is
more involved than in the usual switching problem setting since its adaptedness property
is understood with respect to a filtration built recursively.

A strategy is thus given by ¢ = (o, (Tn)n>0, (n)n>1) where (g € {1,...,d}, (Tn)n>0
is a non-decreasing sequence of random times and (ay,)n>1 is a sequence of @-valued
random variables, which satisfy:

e 790 €[0,7] and {p € {1,...,d} are deterministic.

e For all n > 0, 75,41 is a F"-stopping time and ay4+1 is 7, -measurable (recall
that FO is the augmented Brownian filtration). We then set F*+!1 = (F/1)5
with 7' o= FP' v o0 (Uni1lys,, <) for all £ > 0.

Lastly, we define F* = (F{°)i=0 with F° :=\/, o F{', t = 0.
For a strategy ¢ = (o, (Tn)n=0, (@n)n>1), we set, for n = 0 and ¢ > 0,

+00

Cn1 := Flanst, Gy Ypyr) and a; := Z Celiry ) (B),
k=0

which represent the state after a switch and the state process, respectively. We also
introduce two processes, for ¢t = 0,

+00
A? = Z E?:Hl{ﬁcﬂﬁt} and Nt¢ = Z 1{Tk+1<t}' (22)
k=0 k=0

The random variable Af is the cumulative cost up to time ¢ and Ntd) is the number of
switches before time t. Notice that the processes (a,A¢, N ¢) are adapted to F® and
that A? is a non-decreasing process.



We say that a strategy ¢ = (Co, (Tn)n=0, (@n)n>1) is an admissible strategy if the cumu-
lative cost process satisfies

2
AD — A¢ e IX(FF) and E[ (Afo)

.7:790} < 4 a.s. (2.3)

We denote by 7 the set of admissible strategies, and for ¢ € [0,7] and i € {1,...,d},
we denote by &7 the subset of admissible strategies satisfying ¢y = i and 79 = t.

Remark 2.2. i) The recursive definition of an admissible strategy allows to construct
strategies for which decisions are taken using all the information available at that
time: the Brownian trajectory up to that time and the values of the noise factors Uy
associated to earlier decisions. When switching costs are positive, the integrability
conditions ensure that the total cost and the total number of switches are almost-
surely finite and are square integrable.

ii) The definition of an admissible strategy is slightly weaker than usual [I7], which
requires the stronger property Ag,)w € LQ(f:}‘?). But, importantly, the above definition
is enough to define the switched BSDE associated to an admissible control, see be-
low. Moreover, we observe in the next section that optimal strategies are admissible
with respect to our definition, but not necessarily with the usual one, due to possible
simultaneous jumps at the initial time.

i11) For technical reasons involving possible simultaneous jumps, we cannot consider the
generated filtration associated to the state process a, which is contained in F®.

We are now in position to introduce the reward associated to an admissible strategy.
If ¢ = (Co, (Tn)n=0, (n)n>1) € &, the reward is defined as the value E[U;% — Afo ]—"go],
where (U?,V? M?) e S%2(F®) x H2(F®) x H2(F®) is the solution of the following
switched BSDE (see e.g. [17] for the definition of a switched BSDE) on the filtered
probability space (2,G,F*,P):

T T T T
U, = gor +f f“S(s,US,V;)ds—f vsdws—f dMs—f A4°, te[r T], (2.4)
t t t t

where StT dX, = S(t,T] dX, = X7 — X, for X = M and A?, noticing that these processes
are discontinuous.

Remark 2.3. This switched BSDE rewrites as a classical BSDE in F*  see Remark
[A-3, hence existence, uniqueness and a comparison theorem are available in this setting.

We refer to Section[A.2.3 for more details.

Forte [0,T] and i € {1,...,d}, the agent aims thus to solve the following maximisation
problem:
Vi = esssup H-z[Uf5 —A? ‘f?] . (2.5)
pest



We first remark that this control problem corresponds to (|1.1)) as soon as f does not
depend on y and z. Moreover, the term ]E[Af’ ’]—}0] is non-zero if and only if we have

at least one instantaneous switch at initial time ¢. Notice that in the context of usual
switching problems, this control probem reduces to the classical one studied in [17]. We
also remark that, if we study a problem where the randomness of the running
profit comes from a diffusion X and where the manager is allowed to control the drift of
this diffusion (continuously in time), then we get a generator f that depends on z (see
[L7] for some precise results), which justify the level of generality of (2.4)).

The main result of this section is the Theorem below that relates the value process V
to the solution of an obliquely reflected BSDE, introduced in the following assumption:

Assumption 2.2. There exists a solution (Y, Z,K) € S3(F%) x H2 _(F°) x A%(F°) to
the following obliquely reflected BSDE:

T T

T
Yi=&+ | fi(s,YE ZY)ds —f ZL W, +f dK, te[0,T],ieZ, (2.6)
t t t

YieD, te]0,T], (2.7)

f (Yt — sup {Z PLY{ — cy}> dK} =0, iel, (2.8)
0 UEE

where T :={1,...,d} and D is the following conver subset of R%:

D := {yeRd sup{ZP]y]—c},ieZ}. (2.9)

UEE

Let us observe that the positive costs assumption, Assumption i), implies that
D has a non-empty interior, since y = 0 is an interior point. Except for Section [2.2] this
is the main setting for this part, recall Remark In Section |4} the system ——
is studied in details in a general costs setting: Then, an important step will be to
understand when D has a non-empty interior, see Section

We also introduce a strategy which turns out to be optimal for the control problem.
This strategy is the natural extension to our setting of the optimal one for classical
switching problem, see e.g. [1T]. A key step is to prove that this strategy is admissible,
which is more involved than in the classical case due to the randomisation, see Section

2.0.2)

For (t,i) € [0,T] x Z, let ¢* = (5, (75 )n>0, (0 )n=1) defined by 75 = t and (j = i and
inductively by:

d
Tpyq = inf {T,: <s<T YC’“ = MaXucy {Z PC* Y] — E?}:}} A(T+1), (2.10)
]:

d
a2+1=minargr<r;ax{2 de Tk+1 ECk} (2.11)
ue? —



recall that & is ordered.

Theorem 2.1. Let Assumptions and [2-9 hold.

1. Forallie{l,...,d}, te[0,T] and ¢ € <, we have Y} > E[Utd’ - Af ‘fto].

2. We have Y} = E[Uf* - Af* ’f-f], where ¢* = (i, (T})n=0, (0 )n=1) € ! is defined
in (2.10)-(2.11)).

The proof is given in Section We first remark that, as an immediate consequence,
we obtain the uniqueness for the first BSDE component used to characterize the value
process of the control problem. Uniqueness of Z follows as usual by applying It6’s
formula to |Y —Y’|? where (Y, Z, K) and (Y, Z', K') are two solutions since necessarily
Y =Y. Finally, K is uniquely defined in as soon as Y and Z are unique.

Corollary 2.1. Under Assumptz’ons and there exists a unique solution (Y, Z,K) €
SZ(F%) x H2,  (F°) x AZ(FO) to the obliquely reflected BSDE ([2.6)-(2.7)-([2-8).

Remark 2.4. The classical switching problem is an example of switching problem with
controlled randomisation. Indeed, we just have to consider € = {1,...,d — 1},

i Yue?€,1<1,j<d,

pu _ 1 ifj—i=wumodd,
0 otherwise,

and

7 VUE%,1<Z<CZ,

“ Ciitu if i +u <d,
C. =

Ciitu—d i 1+u>d,
where (¢;5)1<ij<d are the switching costs from the classical switching problem.
We observe that, in this specific case, there is no extra-randommness introduced at each

switching time and so there is no need to consider an enlarged filtration. In this setting, if

Assumption z)é’ﬁzz) are satisfied, then Theorem 1s already known and Assumption
is fulfilled, see e.g. [16, [17].

2.2 Uniqueness of solutions to reflected BSDEs with general costs

In this section, we extend the uniqueness result of Corollary Namely, we consider
the case where infi<;<quev ¢ = ¢ can be non-positive, meaning that only Assumption
ii)&iii) hold here. Assuming in addition that D has a non-empty interior, we are

then able to show uniqueness to (2.6)-(2.7)-(2.8) in Proposition below.

Fix y" in the interior of D. It is clear that for all 1 < i < d,

d
0 0 =
y; > sup{Z Py; —c?}.

UE? ]:1



We set, forall 1 <i<dand ue ¥,
- Z Ply) + e >0,

so that ¢ := infi<i<duew €' > 0 by compactness of € and continuity of u — (¢}, P;fj)
for all 1 < 7,7 < d. We also consider the following set

sup{Z jy] i},lgigd}.
ueé

Lemma 2.1. Assume that D has a non-empty interior and let y° in its interior. Then,
D= {y—yolyeD}.

Proof. IfyeD,let j:=y—y°. For1<i<dandue%, we have

d

Yi = Z iiYi — G — ZP _yJ — @ty - ZPJyJ
n
Z 137 = Ci

D= {ﬂeRd

hence § € D. Conversely, let § € D and let y := § + y°. We can show by the same kind
of calculation that y € D. O

Proposition 2.1. Let Assumption ii)&:m’) hold and assume furthermore that D has
a non-empty interior. Then there exists at most one solution to (2.6)-(2.7)-(2.8]) in
S3(F®) x H, , (F°) x AZ(°).

Proof. Let us assume that (Y1, Z1 , K1) and (Y2, Z2 K2) are two solutions to ([2.6])-
. . We set Y1 := Y1 — 40 and Y2 .= Y2 — 0. Then one checks easily that
(Y1, Z',K") and (Y2 Z?, K?) are solutions to (2.6)-(2.7)-(2-8) with terminal condition
5 & — 90, driver f given by

Fit,ginz) o= it g+ ydz), 1<i<d, te[0,T],jeR?, ze R,
and domain D. This domain is associated to a switching problem with controlled ran-

domisation with ¢ > 0, hence Corollary gives that (Y1, Z!, K') = (Y2, 22 K?)
which implies the uniqueness. L]

10



2.3 Proof of the representation result

We prove here our main result for this part, namely Theorem [2.1] The proof is divided
in several steps.

2.3.1 Preliminary estimates

We first introduce auxiliary processes associated to an admissible strategy and prove
some key integrability properties.

Suppose that Assumption is in force, and let (Y, Z, K) be a solution to (2.6)-
2. 7)-@2.8). Let i € {1,...,d} and t € [0,T]. We set, for p € & and t < s < T,

V9= Y Y m)(8) (2.12)
k=0
Zg) = Z ng]‘[Tk,Tk+1)(8) ) (213>
k=0
Tk+1NS
Ko=) f dKSr (2.14)
k‘ZO T NS
M= 3 (v =B FE L)) V<o (2.15)
k=0
¢ _
A2 = (yfkkﬂ _ E[YTkk++11 ]—“fkﬂ] + c?:H) Lty <o) - (2.16)
k=0
Remark 2.5. For all k = 0, since a1 i ffkﬂ—measumble, we have
¢ : i
k . Lk i (o ;
B[Vt |75 | = (G = 3| 7R ) Vi, = DRI (2.17)
J=1 j=1

Lemma 2.2. Suppose that Assumption z') and Assumptz’on are satisfied. For any
admissible strategy ¢ € <7, M? is a square integrable F*-martingale with ./\/l;f5 =0, K
18 a mon-decreasing continuous process with /Cf =0, A® is non-decreasing and satisfies
A? =0 and A? e LX(F®). In addition,

2
‘/—_fk+1]> 1{Tk+1<t}> ]_-t() < 4+ a.s. (2.18)

E (Z (vt — vy

k=0

Proof. Let ¢ € &'. It is clear by (2.14)) that K¢ is non-decreasing, continuous and
satisfies ICZ) = 0. Moreover, by (2.15) and (2.16), we have that Mf =0 and Af = 0.
Using Theorem we obtain that each summand in (2.15)) is a F*-martingale, hence

M? is a F®-local martingale. We are going to show that E [SOT d [./\/l‘z’]s] < +00, which

implies that M? is a F®-martingale, and we show at the same time that .Ag,)w e LA(FP).
Eventually, (2.18) will be proved.
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Using (2.16) and (2.17)), we have, for all s € [¢,T],

d
A? = Z (Yékﬂ B Z Pg:;rIYTJkH + E?:+1) 1{t<7k+1<8}’ (2'19)
k=0 Jj=1

hence A? is non-decreasing since each summand is positive as Y € D.

For t < s < T, distinguishing for each k > 0 between what happens on [7x, 7,41) (i.e.
following the dynamics of Y% ) and at time 75 (i.e. switching from Y% to Y+1), we
have

yg) o ygﬁ = Z (YT%H NS T YT%AS) + Z (Yékjll o YT%H) 1{t<7'k+1<8}’ (2.20)
k>0 k>0

Using ([2.6)), we get, for all k£ > 0,

chklil AS chkk/\s
Tk4+1NS Tk+1NS Tk4+1NS

- - J £ (u, Y55, Z5)du + f Z5dW,, — dKS,
TeNS TeNS TekNS

recalling (j is Fr,-measurable. We also have, using (2.17)), for all £ > 0,

YCkJrl _ YCk

Tk+1 Thk+1

— <YCk+1 _ EI:ka+1

Tk+1 Tk+1

d
k o G Qk+1y/] —Ok+1 Q1
FTk“]) (Yﬂckﬂ ZPCM Y‘fk+1 *C >+CCk )
j=1

Inserting the two previous equalities into ([2.20)), we get:

Tk+1AS Th+1AS Th+1AS
ye-yp=>3 <— J F (u, Yk, ZSk)du + f Z8dW,, — dK5k>
k=0 TEAS TLAS T AS
+ Z (YTik++11 - ]E[Yékjll ffk+1:|> 1{t<7k+1<3} + A? o AZ)
k=0
d
a ] —
B Z (YTCkk-%—l - Z PCk€;1Y¥k+l + CC:H> Li<rirssy- (2.21)
k=0 j=1
Considering the previous equality also with s = T, substracting with the previous

one and using the definition of Y?, 2%, K% M?, A? (in particular that, for example,
V=Y on {r, < u < 741} for each k > 0), we obtain, for all s € [t,T],

T T T T
V¢ =¢o1 + f o (u, Y2, 28)du — J Z8dW,, — J dMﬁ—f dA?

s

+ [(A? + /cgi) - (Af + lcf)] . (2.22)

For any n > 1, we consider the admissible strategy ¢" = (o, (70') k=0, (o} )k>1) defined
by (¢ =t = (o, 7} = Tk, = ap for k < n, and 7' = T + 1 for all & > n. We set

12



YY" o= y¢”,zn ;= Z¢" and so on.
By (2.22)) applied to the strategy ¢, we get, recalling that A} = 0,

Tn AT " Tn AT
‘A:—L AT yt Tn/\T f fas (S,yg",Z?)derJ Z;LdWs
¢ t
T AT Tn AT Tn AT
+ J dM} + j dAY — f dKicy. (2.23)
t t t
We obtain, for a constant A > 0, recalling that X' =0
) 2 Tn AT n )
1AL o) < (B2 92 [ 1 02 2 P 2.24)

Tn AT Tn AT
[ zpas [T atm o+ cag — az <ic%>2]) ,
t t

with [M™] the quadratic variation process of M", using 0 < A} — A} < A? - Af’ as
the costs are positive. We have

d
7] < 3P~ < B sup %] = 1Y Iy

t<r<T
Tn AT )
B[ 120Pas] <121y, o

Tn AT
EU £ (s, 0, zs>|2ds] < ALPTY [ oy + 4L2] Zl ) + 21 £ 0,0)] 2 g0,
and

B (K7)?] < H|Krl].

Thus, by these estimates and the fact that A# - A? € L?(F¥) as ¢ is admissible, there
exists a constant A1 > 0 such that

B[A7 7*] < A+ AE{ﬁ

Using applied to ¢", we apply It6’s formula between t and 7, A T. Since the
number of switches is bounded by n, M™ is a square integrable F*-martingale orthogonal
to W and [W, M"] = 0, see Remark As K™ is non-decreasing and continuous,
[, "] = 0. Moreover, we also observe that, for 0 < k < n—1, as 7411 < 7, A T is
equivalent to 74,1 < T and E?kk+11t<7—k+1<T is F¥ _-measurable,

Tk+1
Tn AT
EU d[M",A”]s] —E
t

= E[ (YTCIck++11 - E[Yéckjll

T AT

d[/\/l"]s} . (2.25)

S (v v

k —O+1
ka+1:|> Ck ]-t<7'k+1<7'n/\T]

k _a
‘FTkH]) C:+ 1t<7’k+1<T] =0.

13



The same argument gives IE[ AT d[M™, A", ] 0 as A" is also a sum of FF

Th+1
measurable random variables. Thus, It6’s formula gives, as ST"AT d[A"]s > 0 and

Tn/\T n
d[A"], >
Tn AT Tn AT
EUWF+[ 22+ [ MMW4
t t
T AT " Tn AT
<Bl 2 [T et znas 2 [ yraa
t t

Tn AT Tn AT
+2 f YrAAT 42 f ygdzcg]
t t

T AT

Tn AT
<ﬁﬂﬂm+mU |Wﬁ%m&%w4+mu |w@ﬂ
t t

Tn AT 7 Tn AT
+2EU V7 d A +2EU rlakn | (2.26)
t i t i

We have, using Young’s inequality, for some € > 0, and (2.25)),

T AT n N T AT h 1 Tn AT n
o [ e zmias| < g [ rpas| « gE [T 1 o zpas]
t | t | t

1
<T(;+ 2L7?)

¥ 12 g0y + 2221 Zl o) + 10, 0) s o,

Tn AT . . 1 4 4
B riaa; < IV Bageoy + 55 (A2 — 492,

T AT
ﬁﬁ |xwm} IV 2oy + SV,

\)

N —

and
E Tn AT |yn|dAn lHYHQ + EE{( n )2]
: S 9l lagee) T Mt

1 Tn AT
t

Using these estimates together with (2.26|) gives, for a constant C. > 0 independent of
n?

T AT
- anm [*7 M| < G (Y, + 120, w+f<m»WW+HTﬂp
2.27

and choosing € = 5 A gives that IE[ AT d[M"]s ] is upper bounded independently of n.
We also get an upper bound independent of n for E[ r roor) ] by ([2.25)).

14



Since ST”AT d[M"] (resp. |AZ  ,|?) is non-decreasing to St [M?], (resp. to A2 )
we obtain by monotone convergence the first part of Lemma n, ie. that M¢ is
square mtegrable F®-martingale with ./\/lt = 0, that A? is non-decreasing with At = 0

and A% e L2(FP).

We now prove (2.18)). Using that E[(Nf’ )2 ’]_-to] is almost-surely finite as ¢ is admissible,

¢>0and 1y =t =719 on {Tp41 < t}, we compute,

E (Z (v vy

k=0

2
ffkﬂ]) 1{Tk+1<t}> ‘7:19

YtCkH - 2 Pak+lyj

2
1 FP
Choj {Th+1<t} t

<E (Z

k=0

< 4|Yt|2E[(Nt¢)2 ‘f?] <+ as.

2.3.2 An optimal strategy

(2.28)

In the following lemma, we show that, since D has a non-empty interior, the number
of switches (hence the cost), following the strategy ¢* (recall (2.10)-(2.11))), required to
leave any point on the boundary of D, is square integrable. This result will be used to

o 2
prove that the cost associated to ¢* satisfies E[ (Af )

Lemma 2.3. Let Assumption i)&z'ii) hold. For y € D, we define

—%{ZPJ% }}

and (u;)ies(y) the family of elements of € given by

d
u; = min arg max{z il — Z“} .

UEEG j 1

S(y)={1<i<

Consider the homogeneous Markov Chain X on S(y) u {0} defined by, for k >

i,j €Sy,
P (Xp41 =Jj| Xy = 1) = P,
P(Xp1 =0 Xp=0)=1- > P,
JeS(y)
P(Xgi1 =0 Xz =0) =1,
P(Xgi1=i|Xp=0)=0.

15
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Then 0 is accessible from every i € S(y), meaning that X is an absorbing Markov Chain.
Moreover, let N(y) = inf {n > 0| X,, = 0}. Then N(y) € L*>(P") for all i € S(y), where
P is the probability satisfying P'(Xo = i) = 1.

Proof. Assume that there exists i € S(y) from which 0 is not accessible. Then every
communicating class accessible from i is included in S(y). In particular, there exists a
recurrent class S’ < S(y). For all i € §’, we have P}t = 0 if j ¢ S’ since 5" is recurrent.
Moreover, since S’ < S(y), we obtain, for all i € S’, by definition of S(y),

= > Pliy; — e (2.30)
jes’

Since S is a recurrent class, the matrix P = (PZ“;)”E o is stochastic and irreducible.
By definition of D, we have

! !’ !
D c R x { 2 e RIS ZZ‘ZZPUZZJ—CW’LGS, = RIS x D
jes’

With a slight abuse of notation, we do not renumber coordinates of vectors in D’.

Let ig € S" and let us restrict ourself to the domain D’. According to Lemma [3.1} D’ is
invariant by translation along the vector (1,...,1) of RIS Moreover, Assumption is
fulfilled since P is irreducible and controls (4i)ies(y) are set. So, Proposition yields

that D' n {z e

Ziy = 0} is a compact convex polytope. Recalling (2.30)), we see
that (yi —vi, )ics’ is a point of D' n {z e RIS

Zip = 0} that saturates all the inequalities.

So, (Vi — Yiy )ies’ is an extreme point of D' N { Ziy = O} and all extreme points

are given by

!
E:=4zeR¥l|z = ZPUZZ]—C €S 2z, =0
jes’

Recalling that D’ is compact, £ is a non-empty bounded affine subspace of RIS so it is
a singleton. Since D' n {z;, = 0} is a compact convex polytope, it is the convex hull of
£ and so it is also a singleton. Hence D’ is a line in RI¥'l. Moreover, |S’| = 2 as Py #1
for all u € % and i € {1,...,d}. Thus D c R* 19l x D’ gives a contradiction with the
fact that D has a non-empty interior and the first part of the lemma is proved.

Finally, we have N(y) € L?(P?) for all i € S(y) thanks to Theorem 3.3.5 in [I8]. O

Lemma 2.4. Suppose that Assumptionz’),z’ii) and Assumption are in force. Then
the strategy ¢* is admissible, recall (2.10))-(2.11]).

Proof. For n > 1, we consider the admissible strategy ¢™ = (o, (7})k=0, (0} )k>1)
defined by ¢y =i = (5,7 = 75,0} = af for k <n,and 7} =T + 1 for all k > n. We

set Y= V2" 2Zn = 22" and so on, for all s € [t, T).
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Tk+1AS

C*
sars = 0and that ST ARG =
0 for all £ < n and s € [¢,T]. The identity - ) for the admissible strategy d)” gives

By definition of 7%, a*, recall (2.10)-(2.11)), it is clear that A?

AT AT TH AT

Th AT
Zndw, — f dM? — J dA™.
t t

* *
Tn Tn

VP =V g+ f

t

fa?(svygvzg)ds_f

t

Using similar arguments and estimates as in the proof of Lemma (see equation (2.25))
and its derivation), we get

T AT
H|A7, 7 — APP] < A + AE[ | d[w]s] , (2.31)
t

and (see equation (2.27)) and its derivation), for € > 0,
T AT
(1—€eAE J d[M"]s
t

Choosing € = 3¢ gives that E[ Tt d[/\/l”]s] and E[|A¢*AT - Af|2] are upper bounded

< Ce (1Y agoy + 121z, ooy + 170, 0) o)) - (232)

uniformly in n, hence by monotone convergence, we get that A?* — Af e LA(FF).

* 2 * * *
It remains to prove that IE[ (AZ5 ) FO| < +00. We have A" < éN?”, and E[(Nfb )2 )]—“,9] <

+00 a.s. is immediate from Lemma since IE[(N,?*)2 ’]—'E] = U(Y;) with ¥(y) =

E'[(N(y))?],y € D, where E is the expectation under the probability P* defined in
Lemma Ul

2.3.3 Proof of Theorem 2.1]

We now have all the key ingredients to conclude the proof of Theorem

1. Let ¢ € </, and consider the identity (2.22)). Since M? is a square integrable F®-
martingale, orthogonal to W by Remark and since .A? + /C? € L?(F¥) and the
process A? + K¢ is non-negative and non-decreasing, the comparison Theorem and
Remark E give yf’ = Ufﬁ, recall (2.4).

Now, we have

_ 1/;2 + Z <Y<k+1 YCk) 1{Tk+1ét}
k=0
_ }/;Z + Z (YCk-#l o [ Ck+1 ’F‘I]'Ck+l:|> 1{7k+1$t}
k=0
— Z (Yf’“ 2 Pakleng + 5?k+1> Lrpo<ty T Af. (2.33)
k=0
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Since Uy < V¢ and 3, ( Zj 1 PO"““YTJ,CJrl Ck“) Lz, <ty = 0, we get

k=0

fkarl]) 1{Tk+1<t}

_ Z (Yfk Z PakHYTJk+1 + CC:H) 1{7—k+1<t}

k=0

< Ytz + Z (Y;Ckﬂ _ E[YCkﬂ
k>0

‘7:7]'€k+1:|) 1{7'k+1<t}' (2.34)

Using (2.18), we can take conditional expectation on both side with respect to F; to
obtain the result.
2. Lemma [2.4]shows that the strategy ¢* is admissible. Using ([2.22), since A?" = 0 and

S:Ztilq:\T dKfL’; = 0 for all k£ > 0, we obtain
* * T * * * T * T * T *
V& = ¢or +f [ (u, Yo", 29 )du—f Z9dw, —j dMm? —f dA?" . (2.35)
By uniqueness from Theorem and Remark we get that yt = , recall (| .

We also have
d)* . . C* C*
v B ()

=Y+ M 4+ A

thus Utd) - Af = yf’ - Af T = Y+ /\/lf ", and taking conditional expectation gives the
result. ]

3 Properties of the domain of reflection with signed costs

As observed in the previous section, see in particular Proposition uniqueness of
solutions to the obliquely reflected BSDE —— in the case of signed costs
is deduced from the uniqueness result with positive costs, which follows directly from
the control problem representation, see Corollary The additional assumption to
apply Proposition is that the domain D, where the Y-component of the solution
of the reflected BSDE is constrained to take its values, has a non-empty interior. We
give in this section some general properties of the domain D and identify necessary and
sufficient conditions linked to the non-emptiness of its interior, which is not trivially
obtained in the setting of signed costs.

The first result shows that the domain D defined in is invariant by translation
along the vector 1:= (1,...,1) = Z?zl e; and deduces some property for its normal cone.
Most of the time, we will thus be able to limit our study to

Dosz{yeRd‘yd=0}. (3.1)
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Lemma 3.1. For all x € D, we have

1) forallhe R, x + hl e D,

2) there is a unique decomposition x = y*+ 2" with y* € D, and z* € R1 := {A1| X € R},
3) we have C(x) < {U e R? ‘ Zle v; = 0},

4) C(z) = C(y™), where y* is given in 2).

Proof. FixzxeD.
1. If i e {1,...,d}, we have, for all h € R,

d d
. U .U _ U . _u
Ti+h = max (Z Pix; ci) +h = max (; P (xj+h) Ci> ,

and thus x + h1l € D.

2. We set y* = x — 2% with 2¥ = x41. It is clear that y7 = 0, and y* € D thanks to the
first point. The uniqueness is clear since we have necessarily z* = x41.

3. Point 1. shows that x 1 € D. Let v € C(x). Then we have, by definition,

d
00 (z+1-2)=+v'1==%) v,
i=1

and thus, ch'l=1 v; = 0.

4. Since x = y* + x41, it is enough to show that for all w € D and all a € R,C(w) <
C(w + al), as taking (w,a) = (y*,zq) (resp. (w,a) = (x,—x4)) yields C(y*) < C(y* +
xql) = C(x) (resp. C(x) < C(x — x41) = C(y")).

Let v € C(w). We have, for all z € D, since Y%, v; = 0 and v' (z — w) <0,

v (z—(w+al)=v"(z—w)—av'1 =v"(z —w) <0,

and thus v € C(w + al). O

Before studying the domain of reflection, we introduce three examples in dimension 3
of switching problems. On Figure [I| we draw the domain D, for these three different
switching problems to illustrate the impact of the various controlled randomisations on
the shape of the reflecting domain.

Example 1: Classical switching problem with a constant cost 1, i.e. ¥ = {1, 2},

010 00 1 1 1
Pl=| o001 |,PP=|100],e=|1]ad=]|1
1 00 010 1 1

Here, when the agent decides to switch, she directly chooses the new mode which
is attained with probability 1, at fixed cost 1.
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Example 2: Randomised switching problem with & = {0},

0 1/2 1/2 1
PP= | 1/2 0 1/2 | and &= | 1
1/2 1/2 0 1

Here, when the agent decides to switch, the two remaining modes are reached with
probability %

Example 3: Switching problem with controlled randomisation where ¢ = [0, 1],

0 u l—wu 1 —u(l—u)
Pl=|1-u 0 u and & = | 1—u(l—u) Yu € [0,1].
u l—u O 1—u(l—u)

(3.2)
In this example, the transition matrices are given by convex combinations of tran-
sition matrices of Example 1. When the agent decides to switch using control
u € [0, 1], one of the other mode is reached with probability u while the last mode
is reached with probability 1 — u, with cost 1 — u(1 — u). The agent can increase
the probability to reach one given state by taking u close to 0 or 1, but the price
to pay will be higher than when u is close to %, meaning that the two remaining
states can be reached with almost equal probability.

—— Example 1
—— Example 2
Example 3

Figure 1: Domain D, for three examples of switching problems with or without controlled
randomisation.
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Remark 3.1. For the randomised switching problem, in any dimension, we can replace
(Pij)i<j<d by (%12-#) . and ¢; by 175},_ - as soon as P;; < 1, without changing
1,1 1<5< 1,1

D. The factor (1 — P, ;)™ in the cost has to be seen as the expectation of the geometric
law of the number of trials needed to exit state i. So assuming that diagonal terms are
zero is equivalent to assume that P;; <1, for all 1 <i <d.

3.1 The uncontrolled case

In this part, we study the domain D for a fixed control, which is set to be 0, without
loss of generality. The properties of the domain are closely linked in this case to the
homogeneous Markov chain, denoted X, associated to the stochastic matrix P. For this
part, we shall work with the following assumption.

Assumption 3.1. The set of control is reduced to € = {0}. The Markov chain X with
stochastic matriz P = (P j)1<ij<d = (ng)lgi’jgd 15 irreducible.

Our main goal is to find necessary and sufficient conditions to characterize the non-
emptiness of the domain D. To this end, we will introduce some quantities related to

the Markov Chain X and the costs vector ¢ := &.

For 1 < 4,5 < d, we consider the expected cost along an “excursion” from state i to j:

7—1 T;—1
Cm‘ = E[ Z EX" Xo = ’L] = E[ Z CXn,Xn+1 X() = Z] s (3.3)
n=0 n=0

where (as defined in the Introduction) ¢ = (¢;;)i<ij<d is @ matrix, whose entry c; ;
represents the cost applied when j is the drawn state switching from state ¢, and which
is linked to the vector ¢ through the relations, for all 1 <1 < d,

ci= ), Pycij,

1<j<d
and
7; = inf {n > 1] X, = j} .
We also define
C;j=0and C;; =C; for 1<i##j<d. (3.4)

We observe that, introducing 7; := inf {n > 0] X,, = j}, the cost C rewrites as C:

Xo=i| ,for1<ij<d.
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Let us remark that 7 + 7] < +00 and so C' and C are finite since the Markov chain is

irreducible recurrent.
Setting @ = I; — P, the domain D, defined in ({2.9)), rewrites:

D:{xeRd‘Qx+E>0}. (3.5)

Since P is irreducible, it is well known (see for example [3, Section 2.5|) that for all
1 <14,5 < d, the matrix QU9 is invertible, and that we have

fii i= det QU9 = (=1)"7 det Q) > 0. (3.6)

Moreover, i@ = 0 with fi = (fi;)%,, i.e. p:= is the unique invariant probability

i
Z?:l ﬁz
measure for the Markov chain with transition matrix P.

The main result of this section is the following.
Theorem 3.1. Let Assumption[3.1] hold. The following conditions are equivalent:

i) The domain D is non-empty (resp. has a non-empty interior). More precisely, for
each1<i<d, —=C; €D as [Q(—C.) +¢]; = Ciilizy.

i) There exists 1 < i # j < d such that C; ; + Cj; =0 (resp. Cy; +Cj; > 0).
ii1) The inequality uc = 0 (resp. puc > 0) is satisfied.
i) Forall1<i#j<d, Cij+Cj; >0 (resp. C;j +Cj;>0).
The proof of this theorem is postponed to Section [3.1.2] as it requires to prove
technical preliminary results, which are given in Section [3.1.1
3.1.1 Prelimilary results

We now state and prove several technical results that are useful to prove Theorem
see Section [3.1.21

Lemma 3.2. Let Assumption [3.1] hold. The mean costs C' are given for 1 <i # j <d

by
Cij = (QUN1eD) (37)
i=L{i>5}
Proof. 1. We first show that for 1 <i,j < d:
C_'m‘ =c + Z C_'g,jPi’g . (3.8)
0+

From (3.3, we have

_ T +00

n=0




Then, since for all n > 1, {X; = j} n {n < 7;} = &, we get

+00

C_'i,j =c¢+E Z Z EXn]-{Xlzf}]-{n<-rj}
n=1/0+#j

Xo=1

We compute that, for £ # j,

X, = (| Py

+00
Xo = 7,] = E[Z Ean{n<Tj}
n=1

The proof of (3.8)) is then concluded observing that, from the Markov property,

+00
n=1

2. From (3.8), we deduce, recall Definition (3.4)), that, for i # j,

+oo
E[ Z CXn, 1{X1 =/} 1{n<7j}

n=1

Xy =0|=Coy.

d
Cij= ¢ + Z CrjPip=¢ + Z CrjPig - (3.9)
=1 ]
This equality simply rewrites Q(j’j)C‘,j = ¢\ which concludes the proof. O

Proposition 3.1. Let Assumption holds and assume furthermore that D is non-
empty. Then,

1. the mean cost with respect to the invariant measure is non-negative, namely:

c=0. 3.10
I

2. Forall1<1,5 <d,

min (Ciyj + Cjﬁ') = 0. (3.11)

1<i,j<d

3. The set D, is compact in {y e R? | Yd = 0}.
Moreover, if D has a non-empty interior, then

pue >0 and min (C;; +Cj;) >0. (3.12)

1<i#j<d

Proof. 1.a We first show the key relation, for all z € D,

—Ci’j ST —T; < Cjﬂ' , for1<i,j<d. (3.13)
For j € {1,...,d} and = € R%, we introduce 77 (z) € R¥"!, given by,
7Tj<$)k:$k+1{k>j} —Zj, ke{l,...,d—l}.
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Let z € D and j € {1,...,d}. Forallie {1,...,d},i # j, we have, by definition of D
and since 22:1 P =1,

d
Z Tp — x] — G-
Thus 7;(z) satisfies to
Q(j’j)ﬂ'j(x) > —E(j).

Since P is irreducible [9 Proposition 2.20 (iii)] applies to PU7) and one obtains
(Q ) = D=0 ( ) > 0. We then obtain, using inequality (3.7 .

. . 1
w(@) > - (QUP) e = —cf, (3.14)

which means x; — z; > —C; ; for all @ # j.
Let 1 1 ;é J < d. The precedent reasoning gives x; — x; > —Cj;; and z; — z; = —Cj;,

thus is proved.
From li we straightforwardly obtain (3.11) and the fact that D, is compact in

{yERd‘deO}.
1.b Since D is non-empty, the following holds for some z € R?, recalling (3.5)),

Qr+c¢c>0.

Multiplying by u the previous inequality, we obtain (3.10J), since u@ = 0.
2. Assume now that D has a non-empty interior and consider z € D. Then, for all
1 <4 < d, we have that x — ee; belongs to D for € > 0 small enough. Thus, we get

ZZCL'E_GPzz_ &

||M&

and then

d
Qx + ¢ > € min ( Z

1<z<d

Since P is irreducible, min;<;<4(1 — P;;) > 0, and multiplying by p both sides of the
previous inequality we obtain uc > 0.

For any j # i, since x — ee; € D, we deduce from , —C;j +€ < x; —xj. Using
again , we get —C; ;j + € < Cj;. This proves the right hand side of . O

The next lemma, whose proof is postponed to Appendix links the condition (3.10)
to costly round-trip.
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Lemma 3.3. Under Assumption[3.1], the following statements hold, for 1 < j < d,

_ ME
Cii="—, 3.15
= (3.15)
and, for 1 <i# j <d,
é -1
Cij+Cja == ([Q(“)] ) : (3.16)
27 i) 45()

3.1.2 Proof of Theorem and useful consequences

We are now in position to prove the main result of this section.

Proof of Theorem 1. We first note that in Proposition [3.I] we have proved
i) = iv). We also remark that i) = i) trivially, and i) == i) in a
straightforward way from equality , recalling that (Q(jvj))_l = D=0 (P(jvj))k > 0.
2. We now study #ii) = 1).

2.a Assume that ué > 0. For 1 < j < d, we denote 27 := —C'. ;. Then from , we
straightforwardly observe that, for all ¢ # j,

zlj = Z Z?B’g -G . (3.17)

which reads (sz + E) = 0.

( .
We now take care of the case ¢ = j by computing, recall zg =0,

d d
(QZJ + é)j = Zg — Z Zsz,Z +c¢j = Z C&jpjj +¢ = Cj,j , (3.18)
/=1 (=1
where we used with ¢ = j. Then, combining @ and the assumption pc > 0 for
this step, we obtain (sz + E) > 0. Equations (]3__]—7D and thus imply 2/ € D and
so D is non-empty.
2.b We assume that u¢ > 0, which implies that C; ; = l’j—f > ( for all 1 < j < d, recalling

J

(3:15). Fix any j € {1,...,d} and consider 2/ := —C. ; introduced in the previous step.
We then set
, 1 ,
] _ k_ L0y, 3.19
x z+2(d_1)]§j(z 27) (3.19)

Next, we compute, for ¢ # j, recalling (sz + E)i = 0 and (sz)i = (sz)i = —¢; for
k # i,7 (coming from (3.17)) and (Qz"), = Ci; — ¢ (from (3.18)),

(Qz + E)i = (sz + E)i + 2(d1—1) kZ (sz - sz)i
o
1 i gy 1 7Y =, _444}44774
=0+ 5oy (@ @ = 5y (@ + ) = 5 G > 0
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For ¢ = j, we compute, using the same identities,

kg
A 1 _ C .
=Gt 3oy I;j(—cj +ej—Cij) =2 >0

Combining the two previous inequalities, we obtain that

Qxr+c>= él with 6 = min Cj;.
2 I<isd

From this, we easily deduce that = + B(0, m) < D, which proves that D has a
non-empty interior. ]
To conclude this part, we give two useful consequences of Theorem

First, we provide extra conditions that are linked to the non-emptiness of the domain
D.

We then completely characterize the domain D, as the convex hull of d points whose
coordinates are explicit, see Proposition [3.3] This result will only be used in the proof

of Theorem [4.2] which provides existence to solutions to ([2.6))-(2.7)-(2.8) in a Markovian
framework in the setting of Assumption [3.1] with signed costs.

Proposition 3.2. Let Assumption[3.1] hold. The following assertions are equivalent:
i) D is non-empty,
ii) For all 1 <1i,j,k < d, the following holds
Cir < Cji+Cig, (3.20)

i11) For any round trip of length less than d, i.e. 1 <n<d, 1 <iy # -+ # i, < d, we
have

n—1
Z Cik’ik+1 + Ci,ip 2 0. (3.21)
k=1

Proof. 1. i) = i) is a direct consequence of Theorem and (3.13). Indeed, let
us set 1 <1,7,k <d. If j =k, this comes directly from the fourth item of Theorem
as Cj; = 0. Otherwise, the second inequality of used together with x = —C.,
which is in D by the first item of Theorem writes

—Cip+Cjp<Cj;, forall1<i,5<d,

which concludes the proof for this step.
2. 1) = iii) is direct since Cj; = 0 for all 1 < ¢ < d. Finally iii) — i) is already
proved in Theorem [3.1] for a 2-state round trip. O
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Proposition 3.3. Let Assumption[3.1 hold and assume that D has a non-empty interior.
Define 0. ; = C.j — Cy 41, for all 1 < j < d. Then (—0.j)1<j<a are affinely independent
and D, is the convex hull of these points.

Proof. We know from Theorem [3.1]that —C. ; € D for all 1 < j < d. The invariance by
translation along 1 of the domain proves that —0.; is in D.. More precisely, we obtain

from (3.9) that,

Oij— > OpiPe=c, forl<izj<d. (3.22)

1. We now prove that (6. j)1<j<q are affinely independent. We consider thus o € R?
such that

d d
Z aj =0 and z:= Z a;f.; =0, (3.23)
j=1 J=1
and we aim to prove that a; = 0, for j € {1,...,d}. To this end, we compute, for

ie{l,...,d}, using (3.22) and 0;; = C;; — Cq; = —Cyq,; by definition,

ZO‘J ij = ZO‘JG,JWLO‘@H 012%4'2%29@ it — iCaj

J#i J#i J#z (=1
=G Z a; + Z PM Z Ozjegu' — aiCd,i
j#i =1 j;ﬁz‘
d
=G Z a; + Z Py Z oy — Z P paiflp; — iCyy
YE) (=1

Using ((3.23), 2?:1 P,y =1 and (3.9), we obtain

d d d
0=—cia; + Z P gz — o Z P 0y — ;iCqi = —ay (51‘ + Z P; 80 + Cd,i)
=1 =1
d
= (Cz + Z Cri—Cai) P+ Cdz) = —oy (Ci + Z CE,iPi,é>
=1
= —057, (X

We thus deduce that «; = 0 since C’i,i = Z—ZE > 0 from Theorem which concludes
the proof for this step.

2. We now show that D, is the convex hull of points (—6. j)1<j<d, which are affinely
independent from the previous step. For y € R? n {y4 = 0}, there exists thus a unique
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(A, .., Ag—1) € R¥! such that y = Z?:l —A;0. 5, with Ay = 1 — Z?;% Aj. Assuming
that y € D, we have that

d d
v = 2 = > N[Q(—0.5) +¢ >0.
j=1 j=1

Since, from Theorem [Q(—0.,) +¢cli = [Q(—=C.;) +¢], + Cq;(Q1); = 0 for all i # j,
we get, for all 1 <17 < d

V; = AZ([Q(—HJ)L + EZ') =>0.

Recalling that [Q(—0.,;)]; + ¢ = 0 as —0.,; € D, we obtain \; > 0 which concludes the
proof. ]

3.2 The setting of controlled randomisation

In this part we adapt Assumption in the following natural way.

Assumption 3.2. For all uw € €, the Markov chain with stochastic matriz P* :=

(Pizfj)lgi7j<d 1s 1rreducible.

For each u € ¢, let " the unique invariant probability distribution of P*.
We then consider the matrix C' defined, for all (i,7) € {1,...,d}, by

C;,j == min C}'

24
g =minCy;, (3.24)

recall the Definition of C“] for a fixed control in Let us note that CZ j s well
deﬁned in R under Assumption since € is compact and u — C}'; is continuous for
all 1 <1,7 <d.

The following result is similar to Proposition but in the context of switching with
controlled randomisation.

Proposition 3.4. Let Assumption hold and assume that D is non-empty (resp. has
a non-empty interior). Then,

. usu : A A >
min pfet > 0 (resp. >0) and 1<rz'n¢13n<d (Cw + CLZ) >0 (resp. > 0) . (3.25)

Moreover, the set D, is compact in {y e R¢ ’ Yq = O}.

Proof. 1. Let z € D. From , we have for each u € ¢, —C}' i S T — Tj < C}fi .

Minimising (resp. maximising) the upper (resp. lower) bound with respect to u € €,
we then obtain

—ém’ <X —rj < éjﬁ' . (3.26)
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From this, we deduce that D, is compact in {y e R? | Yd = 0} and we get the right hand

side of ([3.25)).

We also have that, for all u € €,
Q'z+c" =0,

then multiplying by p* we obtain p*c* = 0. This leads to min, p*c* = 0.
2. Then, results concerning the non-empty interior framework can be obtained as in the
proof of Proposition O

3.2.1 The case of controlled costs only

To conclude this section, we consider the case where there exists a transition matrix
P such that P* = P for all u € €, i.e. the controller only controls the costs. In this
setting, it is intuitively clear that, optimally, one chooses the control v € ¥ for which
the cost to pay is the smallest. Let us start by introducing the minimal controlled mean
cost:

¢ :=minc;, forl<i<d.
ue?

We thus have
D::{xeRd‘(Qx)i—i—E?>O,f0rallue%ﬂ, 1<i<d}

={xeRd‘(Qx)i+éi>0,foraH 1<i<d}.

Using the result of Proposition [3.1] with the new costs ¢, we know that a necessary and
sufficient condition for D to be non-empty is pué = 0. Moreover, the matrix C' is defined
here by

Cij = <(Q(j7j))—1é(j)> 1<i#j<d, (3.27)

3 )
= 1{i>5)

and C;; = 0, for 1 <7 < d. Comparing the above expression with the definition of C in
(3.24)), we observe that C; ; < C;;, 1 <1, j < d. The following example confirms that
min (é@j + (j’,l) =0,
1<i#j<d

recall Proposition [3.4] is not a sufficient condition in this context for non-emptiness of
the domain.

Example 3.1. Set ¢ = {0,1},

0 05 05 —0.5 1.5
P=|05 0 05 |,&= 1.2 and @ = | 0.2
05 05 0 0.7 0.2

Observe that = (%, %, %) and ¢ = (—0.5,0.2,0.2)T. Then, one computes that

min 6’-‘+6'-~)>0 but c<0.
1<i¢j<d< i, Jsi H
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4 Existence results for obliquely reflected BSDEs

In this section, we study the obliquely reflected BSDE —— associated to
the switching problem with controlled randomisation. We first prove existence results for
the BSDE in the Markovian framework, see Section [4.1] and then in the non-Markovian
framework, see Section relying on the approach in [6]. Existence results in [6] are
obtained for general obliquely reflected BSDEs where the oblique reflection is specified
through an operator H that transforms, on the boundary of the domain, the normal
cone into the oblique direction of reflection. Thus, the main difficulty is to construct
this operator H with some specific properties needed to apply the existence theorems
of [6]. This task is carried out successfully for the randomised switching problem in
the Markovian framework. We also consider an example of switching problem with
controlled randomisation in this framework. In the non-Markovian framework, which is
more challenging as more properties are required on H, we prove the well-posedness of
the BSDE for some examples of randomised switching problem.

4.1 The Markovian framework

We now introduce a Markovian framework, and prove that a solution to ——
(2.8]) exists for the randomised switching problem under Assumption and a technical
copositivity hypothesis, see Assumption below. We also investigate the example of
switching problem with controlled randomisation given by .

To this effect, we rely on the existence theorem obtained in [6], which we recall next.
For all (t,z) € [0,T] x RY, let X% be the solution to the following SDE:

dXs =b(s, Xs)ds + o(s, Xs)dWs, se[t,T], (4.1)

We are interested in the solutions (Y, 2% K*) € S2(F0) xH3  (F?) x AZ(F°) of (2.6)-
—, where the terminal condition satisfies & = g(X;m), and the driver satisfies
flw,s,y,2) = w(s,Xﬁ’z(w), y, z) for some deterministic measurable functions g,. We
next give the precise set of assumptions we need to obtain our results.

For sake of completeness, we recall here the existence result proved in [6], see also [§].

Assumption 4.1. There exist p = 0 and L = 0 such that
i) The function v satisfies
[tz y,2)| < L+ |2 + |y[ + |z])-
Moreover, (t,x,-,-) is continuous on R% x R¥* for all (t,x) € [0,T] x RY.

ii) (b,0) : [0, T] xR? — RIx R?** 4s a measurable function satisfying, for all (t,z,y) €
[0, 7] x R? x RY,

[b(t, 2)| + |o(t, )]
[b(t, ) = b(t, y)| + |o(t, 2) — o(t, y)|
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iii) g : R? — D is measurable and for all (t,x) € [0,T] x R?, we have
lg(@)| < L1 + [2]).

i) Let X = {u(t,x;s,dy) |z € R? and 0 <t < s < T} be the family of laws of X“* on
RY, i.e., the measures such that YA € B(RY), u(t,z;s,A) = ]P’(Xg’x € A). There
exists a € RY such that, for any t € [0,T), any 6 € [0,T —t) and for u(0,a;t,dy)-
almost every x € RY, there exists an application ¢igq - [t,T] X R? — R, such that:

(a’) Vk = 1; ¢t,:p € LQ([t + 5a T] X [_k¢ k]q; ,LL(O, a; s,dy)ds),
(b) u(t,x;s,dy)ds = ¢r (s, y)u(0,a;s,dy)ds on [t +9,T] x RI.

v) H : R4 - R s a measurable function, and there exists n > 0 such that, for all
(y,v') e R x RY and v e n(Pp(y)), we have

Moreover, H is continuous on D.

Remark 4.1. Due to Aronson estimates on the density function of Xb*, Assumption
iv) is true for all a € R? as soon as o is uniformly elliptic: see [15, Section 28] for
a proof.

The existence result in the Markovian setting reads as follows.

Theorem 4.1 ([6], Theorem 4.1). Under Assumption[4.1], there exists a solution (Y%, ZH% UtT) e
SZ(F%) x HZ , (F°) x HZ(F°) of the following system

dXK

T T
= g(X tw f@z) X5 Y, Zy)du — J ZudW,, — JH(YU)\IJudu, se[t,T], (4.3)

s

Y,eD, U,eC(Ys), t<s<T, (4.4)

T
f 1{Y5¢8D}|\Ps|d5 = 0. (45)
t

The main point to invoke Theoremis then to construct a function H : RY — R4*d
which satisfies Assumption [4.1}v) and such that

H(y)v e Co(y), (4.6)

for all y € D and v € C(y), where C,(y) is the cone of directions of reflection, given here
by

Co( Z;R+ezl{y maXue%{ZJ L z]yJ cu}} (47)
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If Assumption i), ii), iii), iv) is also satisfied, we obtain the existence of a solution
to ([£3)-[@E4)-[E5). Setting Ko := — {7 H(Y,,")Uy"du for t < s < T shows that

(Yte zbe K4%) is a solution to . . . Indeed, . . are clearly satisfied

by deﬁmtlon of K% and by (4.3)-(4.4). Let us check that is also satisfied. We
have, for each 1 < < d,

T
_J Yta:z sup ZPuytz’,j tha:z
t ue€

T d .
:L (Vi aD) (Yt’ ) — sup {2 p;ijst,:cu —E;‘}) (H(Kst’z)\p?x)zds

UE? 1

T d .
+f Liytecopy <Y“” sup {2 Py e — }) (H(Y?")The)" ds.
t ue

On {YI™" ¢ 0D}, we have U5” = 0 a.s. by (£.5), which shows that the first integral is
Z€ro.

On {Y!™ € 0D}, we have H(Y")UL" e C,(YE™) by @4) and ([@.6), and if moreover
Y5 > supeq {Z] P Yo g }, then the ith coordinate of H(Y{™)W5™ is zero
by definition of CO(Y;t ¥). This proves that the second integral is also zero, and (2.8) is
proved.

4.1.1 Well-posedness result in the uncontrolled case

We need to introduce the following technical assumption in order to construct H satis-
fying Assumption [4.1tv) and (4.6)).

Assumption 4.2. For all 1 < i < d, the matrix Q(i’i) s strictly copositive, meaning
that for all 0 < x € R 2 # 0, we have

2" Qg > 0. (4.8)
Our main result for this section is the following theorem.

Theorem 4.2. Suppose that Assumption[3.1] and Assumption[{.3 are satisfied and that
D has a non-empty interior.

Then, there exists H : R% — RdXd satisfying Assumption v).

Consequently, if Assumption z') i), m) i) also holds, for all (t,z) € [0,T] x
RY, there exists a solution to 2.6)-2.7)-2.8) with ¢ = g(X t‘r) and f(w,s,y,z) =

U(s, XE*(w),y,2). Moreover, thzs solution is unique if we suppose also Assumption
2

Proof. We first observe that uniqueness follows from Proposition [2.1]as, under Assump—
tion irreducibility implies Assumption iii) namely P;; # 1 for all 1 <i <d. We
now focus on proving existence of a solution, which amounts to exhibit a convenlent H
function. The construction of such a function is done in three steps.
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By Proposition [3.3] we know that D, is the convex hull of the family of points

(y' = _0~,z‘)1<i<d defined by

y' = (Cai — Cji)icjed, 1<i<d. (4.9)

To define H(y') for each 1 < i < d so that is met at these points, we compute the
cones C(y'), which is the goal of the first step below.

In the second step, we show that, for each 1 < ¢ < d, there exists a unique matrix
H(y') satisfying Assumption v) and (4.6). Using Proposition we then extend
H to D, by linear combinations and we check that Assumption {4.1}v) and are still
satisfied.

In the third step, we extend H to D and then to R?. To construct H on D, we set
H(x) = H(y") for each x € D, where = writes uniquely z = y* + 2% with y* € D, and
z¥ € R1, as proved by the second item in Lemma We eventually define H on R? by
projection onto D.

1. We start by computing the outward normal cone C(y) for all y € D,. Let us fix y € D,.
Thanks to Proposition there exists a unique ()\;)1<i<a € [0, 1]? such that

d d
i=1 i=1
Let us denote £, = {1 <i < d|\; > 0}. We will show that

Cly) = > Ryny, (4.10)
JEEy
where n; := (—Q; j)1<j<d, and with the convention C(y) = {0} when &, = {1,...,d}. Let
us remark that the result is obvious when C(y) = {0}, since, in this case, y is in the
interior of D. So we will assume in the following that C(y) # {0}.
l.a. First, let us show that for any 1 < i < d, (n;);x; is a basis of {v e R? ’ Zi:l v = 0}.
Let 1 < i # j < d. Since Zzzl njx = —Zzzl Qjr = Zzzl Pj, —1 = 0, we have
n;j € {v e R4 ‘ ZZ=1 v = 0}. Since it is a hyperplane of R? and that the family (1)
has d — 1 elements, it is enough to show that the vectors are linearly independent. We
(i)

observe that the matrix whose lines are the n\”, j # i, is —Q(. Since P is irreducible,

J
;Z), j # i form a basis of R¥! hence the vectors

(nj);j-i form a basis of {v e R? ’ S o = 0}, as (n;) ;i is the image of (ng.i))j# under

Q9 is invertible. The vectors n

the linear isomorphism R41 — {v e R4 ‘ 22:1 Vv = 0} (X1 T, Tig 1y e, Tg)

(.1‘1, ey Lj—1, _Zj;éi :L'j,xi+1, ey xd).
1.b. We now fix j ¢ £, and we will show that n; € C(y). For any z € D, by definition of
D, we have

d
G =Y Pirzy—2zi=n]
j = Kk — 25 =Ny 2,
k=1
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and for all i € &, by definition of yi, we have

recalling (3.22)) and the fact that yi = —0 ;. This gives an(z—y) = n]Tz—Ziegy /\ianyi <
0, hence n; € C(y).

l.c. We now set i = min&,. Since (n;);; is a basis of {U e R? ’ Z?:l v = 0} o> C(y),
see Lemma [3.1) for v € C(y) there exists a unique o = ()2 € R?! such that
v = Dl oynj = (nj)jzia, where we identify (n;);-; with the matrix whose columns
are given by the family of vectors. We will show here that ay = 0 for all £ € £,\{i} and
ap =0 forall £ ¢ &,.

For all z € D, previous calculations yield:

0= [(n))jel" (z—y) = =T QW (z= > Ay') = —aT [ Q12— Y XQU)y!

le&y le&y

Let us recall that for any ] ;é 1, we have yJ = —0_j. So computations made in the proof
of Prop031t10ny1e1d QU yd + &) = Z ej, and QU)yt + & = 0. Thus, the previous
inequality becomes

0< al Z Ay (63 — ¢l )> + )\15(1)
ey
— ol (4,) Z L
al | QU z 4l )\g eg . (4.11)
I ey M

By taking z = 3/ in (4.11), with j € &,\{i}, we get

0<a |[Ee;—- 3 Ag—eg (4.12)
Hi ™ geen iy

and so, we can sum, over j, previous inequality with positive weights A;, to obtain

1-— Z Aj al Z )\g—geg

je&y\{i} te&y\{i}

o
N

Then0 < a' [degy\{i} Agﬁ—feg] since \; > 0. Moreover, we have also 0 > o [Z€eey\{i} Agl’j—fee]

by taking z = y* in (4.11]), which yields

Yy Aer| =0 (4.13)
« y) eg . )
ey M
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We recall that u¢ > 0 since D has a non-empty interior (see Theorem . Inserting

(4.13)) into (4.12) yields that a; > 0 for all j € &,\{i}, which, combined with (4.13))

allows to conclude that o; = 0 for all j € £,\{i}.

Now we apply with z = y/ for j ¢ &, hence 0 < oajl’f—f for all j ¢ &,, which
concludes the proof of .

2. Then, we construct H on D,. Let us start by H(y*) for any 1 <i <d. Fix 1 <i <d,

and let B' € R@1)x(d=1) be the base change matrix from (— ) +i to the canonlcal
basis of R4~1. We set H(y') := I'BII’, with I’ : R~ — R4 and I’ : RY — R the
linear maps defined by
Ii(xl,...,xd 1) (xl,...,xi_l,O,xi,...,xd,l), (414)
) =

Hi(‘rlv"'axd (:I;l,...,$i_1,$i+1,...,$d)- (415)

Now we set H(y) := >, ce, MH (y'). Let us take v € C(y). Thanks to (4.10), we know

D).
that v = Z;l Lajn; for some (a)1<j<a € (R+)? and such that a; = 0 when j € &,.

Since ny = —Qk, for all 1 < k < d, we have v = —Q ' a. By construction, we get that
— Z ajej = —a € Co(y).
JEEy

It remains to check that Assumption {4.1}v) is fulfilled. If v # 0, which is equivalent to
a # 0, we have, for i € &,

v H(y)v = o' Qo = () TQIal) > 0,

due to Assumption [£.2) and the fact that a; = 0.
3. We have conbtructed H on D, with the required properties. Finally, we set H(x) =
H(x —x41) for all z € D and H(z) = H(Pp(z)) for z € R? and the proof is finished. []

Remark 4.2. i) Assumption is satisfied as soon as P is symmetric and irreducible.
Indeed, QU is then non-singular, symmetric and diagonally dominant, hence positive
definite, for all i€ {1,...,d}.

it) In dimension 3, if the Markov chain is irreducible, then Assumption 18 automati-
cally satisfied. Indeed, under irreducibility, all diagonal coefficients are different from 1.
Then, as already noticed in Remark[3.1], the domain D can be defined with an irreducible
matriz P whose diagonal entries are all equal to 0. We then set

0 p 1-p
P=|q¢g 0 1-—g (4.16)
r 1l—r 0

for some p,q,r € [0,1] satisfying 0 < p+q,1+1r—p,2— (q+7r) <2 by irreducibility.
Thus, fori =1 for example,

QD 4 <Q(1,1))T _ ( . 2 —(p2+ q) ) (4.17)

p+q)
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18 non-singular, symmetric and diagonally dominant, hence positive definite. Thus
2TQUVz = 1gT (Qu,l) " (Q(U))T> x>0 for all z # 0.

i11) However, in dimension greater than 3, it is not always possible to construct a func-
tion H satisfying Assumption[{.1. For example in dimension 4, consider the following
matrix:

0 XL 0 1-

5
V3 V3

p_|1-% 0 V3-1 1-% | (4.18)
0 1 0 0
1 1 1
3 3 3 0

together with positive costs ¢ to ensure that the domain has a non-empty interior.
It is an irreducible stochastic matriz, and let us consider the extremal point y* such that

yi =0, (4.19)
V3
i =5 ¥z —c1, (4.20)
V3
vo = (1= =)yt + (V3= Dz — e, (4.21)
Y3 =y — c3. (4.22)
We have C(y*) = Ry (—1,%2,0,1-¥3)T+R, (1=, —1,v/3-1,1-¥))T+R, (0,1,-1,0) =:

Z?:l Ryn;.

If H(y*) SatisﬁesH( Yny = (—1,0,0,0), H(y*)ns = (0,—1,0,0) and H(y*)n3 = (0,0, —1

consider v = 2n1 + no + \fng eC(y ) Then it is easy to compute v Hv =0, hence it
is not possible to construct H(y*) at this point satisfying Assumption .

4.1.2 An example of switching problem with controlled randomization

We assume here that 4 = [0, 1] and we consider the example of switching problem with
controlled randomisation given by (3.2]). Since the cost functions are positive, D has a
non-empty interior.

Theorem 4.3. There exists a function H : R3 — R3*3 that satisfies Assumption v)
and such that

H(y)veColy), VyeD,vel(y).

Consequently, if we assume that Assumption[.1]1), i), iti), w) is fulfilled, for all (t,z) €
[0, T xR, there exists a solution to (2.6))-(2.7))-(2.8) with & = g(X;x) and f(w,s,y,z) =
w(s,Xg’x(w),y, z). Moreover, this solution is unique if Assumption z'i) holds also.

Proof. We first observe that uniqueness follows once again from Proposition
1. We start by constructing H on the boundary of D. Recalling Lemma [3.1] it is enough
to construct it on its intersection with D, which is made up of 3 vertices

= (17070)7 ?JQ = (07170)7 y3 = (_17_170) 9
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and three edges that are smooth curves. We denote & (respectively & and &3) the
curve between y! and y? (respectively between 3? and y3 and between y® and y'). Let
us construct H(y') and H(y?): we must have

1 1 0 0 -1 0 — 0
HyH)| o -1 |= o - |, H®| 1 1 |= 0o 0o |,
-1 0 —a 0 0 -1 0 —d

with a,b,c,d > 0. Let us set a = b =c =d = 1. Then we can take
111 2 11

HyhY=[12 1|, Hy)=|1 11

1 1 2 11 2

We define now H on &. We denote (s)se[p,1] @ continuous parametrization of £; such
that x¢p = y! and 1 = y2. For all s € [0, 1], we also denote R, the matrix that send the
standard basis to a local orthonormal basis at point x; defined as: the two first vectors
are in the plane {z = 0}, the first one is orthogonal to & at the point z,, pointing
towards the exterior of D, the third one is e3, while the second one is tangent to £ at
the point zs and is directed such that this basis has a direct orientation. We have in
particular Qg = Id. Then we just have to set

H(xs) = Ry[sH(y") + (1 — s) Ry "H(y*) R R

We can check that, by construction, Assumption v) and are fulfilled for points
on &£;. Moreover, we are able to construct by the same method H on %3, and then on
& and &3, satisfying Assumption [4.1}v) and (4.6).

2. By using Lemma [3.1] we can extend H on all the boundary of D. Finally, we can
extend H by continuity on the whole space R? by following [6, Remark 2.1]. O

4.2 The non-Markovian framework

We now switch to the non-Markovian case, which is more challenging. We prove the
well-posedness of the obliquely reflected BSDE in the uncontrolled setting for two cases:
problems in dimension 3 and the example of a symmetric transition matrix P, in any
dimension.

We first recall Proposition 3.1 in [6] that gives an existence result for non-Markovian
obliquely reflected BSDEs and the corresponding assumptions, see Assumption be-
low. Let us remark that the non-Markovian case is more challenging for our approach
as it requires more structural conditions on H, which must be symmetric and smooth
in this case.

Assumption 4.3. There exists L > 0 such that
i) & == g((Xt)sejo,r)) with g = C([0,T],RY) — D a bounded uniformly continuous
function and X solution of the SDE (4.1)) where (b,o) : [0,T] x R? — R x RI7** s
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a measurable function satisfying, for all (t,x,y) € [0,T] x R? x RY,

i) f:Qx[0,T] x R x R*F — R? js g P(F) @ B(R? x R**)-measurable function
such that, for all (t,y,y,2,2') € [0,T] x R% x RY x RI*F x RI*~

\f(t,y,z) - f(tay/7zl)‘ <L (|y - y/’ + ’Z - Z/|) .

Moreover we have

T
ess sup E[J |£(5,0,0)|*ds
we,te[0,T] t

J—“to} < L.

ii) H : R — R4 is valued in the set of symmetric matrices Q satisfying
0l<L, L?s=0"Qus %W, Vo e RY. (4.23)
H is a C'-function and H™" is a C?-function satisfying
|oyH| + [H [+ |0,H | +|05,H'| < L.

From this assumption is deduced the following general existence result in the non-
Markovian setting.

Theorem 4.4 ([6], Proposition 3.1). We assume that D has a non-empty interior.
Under Assumption there exists a solution (Y, Z, V) € S3(F%) x H2__(F%) x H2(F°)
of the following system

T T T
Y, = ¢+ f Fu, Yy, Zy)du — f Z, AW, — f H(Y,)U,du,s€[0,T],  (4.24)

s

Y,eD, U,eC(Ys), 0<s<T, (4.25)
T

J 1{Ys¢ap}|\1fs|d8 = 0. (426)
0

Remark 4.3. i) The assumption on the terminal condition is slightly less general
than the one needed in [0] (see Assumption SB(i) and Corollary 2.2 in [0]). One
could get a more general result by assuming that E [50 |]—"] is a BMO martingale
such that its bracket has sufficiently large exponential moment.

it) We cannot use Theorem 3.1 in [6] since the domain D is not smooth enough (see

Assumption SB(iv) in [0]). Consequently, we have to assume the extra assumption
that & is bounded.

ii1) The uniqueness result for this part is also obtained by invoking Proposition .

i) The discussion following Theorem shows, once again in this non-Markovian
setting, that a solution to (4.24))-(4.25)-(4.26), with H satisfying to H(y)v € Co(y)

for all y € D and v € C(y), induces a solution to (2.6)-(2.7)-(2.8)]).
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4.2.1 Existence of solutions in dimension 3

We focus in this part on the uncontrolled case ¥ = {0}, in dimension d = 3 and in the
irreducible case. Thus, there is a unique transition matrix given by

0O p 1-p
P=P'=|q¢ 0 1-q |, (4.27)
r 1—r 0

for some p,q,r € [0,1]. Indeed, as already mentioned in Remark for the Markovian
case, irreducibility implies that diagonal entries are different from 1, and Remark [3.]]
explains how to obtain a matrix with diagonal entries set to 0.

Theorem 4.5. Let us assume that 0 < p,q,r <1 and that D has a non-empty interior.
Then there exists a function H : R3 — R3*3 that satisfies Assumption m‘) and such
that

H(y)veCyly), YyeD,veCl(y). (4.28)

Consequently, if we assume that Assumptz'on z)é’i(zz) are fulfilled, then there exists

a solution to the obliquely reflected BSDE . . Moreover this solution is
unique if we assume also Assumption (2.1 mu).

Proof.  We first observe that uniqueness follows once again from Proposition
Concerning existence, once again we exhibit a convenient H. Thanks to Lemma it
is enough to construct H only on R3 n {(x, y,2) e R3 ‘ z = O}. We start by D,, which is
a triangle with three vertices v* = (v], v5,v43),i = 1,2, 3, defined as

v =puy + (1= p)v —c1,v ?=pv§+(1—p)v§—01,v§’=qv:{’+(1—Q)v§’—02> (4.29)
% = qu % + (1 — q) — 9,V 3 = 7"1)1 +(1— ’I“)U% - 03,1)??: = rv% +(1— r)v% —c3, (4.30)
vy = 0,03 = 0,v5 = 0. (4.31)

Let us now construct H on each vertex. We consider first the point v!. It is easy to
compute its outward normal cone, which is given by

C(v') =Ry(~1,p,1 —p)" +Ry(q,-1,1—¢q)". (4.32)

The matrix H(v!) must satisfy

—1 q —a 0
H(vh) P -1 |=( 0o -b (4.33)
1—p 1—g¢q 0 O
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for some a,b > 0. Taking a = %, b= 1 we consider, for any o > 0,

5?
10 B - 1 0 0 a a «
Ho')=—-[ 0 1 ( a f‘J) 010 |+ aaa (4.34)
0o0)\PL 7P 000 a o a
1 a+p oa+pg «
—— | a+pg a+q «a (4.35)
pq(1 = pg) N 0 o

It is easy to check that this matrix H(v') is symmetric and positive definite for any

a > 0, so we can set & = 1 in the following. Similarly, we construct H on vertices v2, v3,

1+(1-=p) 1 1+r(1l-p)

2 1
H(v") = r(l—p)(1—r(l-p)) 1+ 7“(11 —p) i 1 j— r ’ 439
, 1 1 1 1
= agana-a-a0-m 1 0 i,y e

We can extend H on all D, by convex combination, i.e. linear interpolation. Thus H
stays valued in the set of positive definite symmetric matrices and is smooth enough.
Thanks to Lemma the extension to D is straightforward.

We could also define H outside D n {(z,y,z) € R*|z = 0} by linear interpolation
but we will lose the boundedness and the positivity of H. Nevertheless we can find a
bounded and convex, C? open neighborhood V of D, small enough, such that H (still
defined by linear interpolation) stays valued in the set of positive definite symmetric
matrices on V. Then we define H(y) for y ¢ V by H(Py(y)). In this way, H is a
bounded function with values in the set of positive definite symmetric matrices, that
satisfies ([4.23), and that is C°(R?) n C?(R?\0V) smooth, with 0V the boundary
of V. Finally, we just have to mollify H in a neighborhood of ), small enough to stay
outside D n {(z,y,2) e R*| z = 0}. m

Remark 4.4. When pqr(1 —p)(1 — q)(1 —r) = 0, one can show that it is not possible
to construct a function H that satisfies Assumption [4.5iii) and ([{£.28)).
4.2.2 Existence of solutions for a symmetric multidimensional example

We focus in this part on the uncontrolled case ¥ = {0}, in dimension d > 3 with a
unique transition matrix P given by

1
Fij = g7tz

Theorem 4.6. Assume that D has a non-empty interior. There exists a function H :
R? — RI*4 that satisfies Assumption m) and such that

H(y)veCyly), YyeD,vel(y).
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Consequently, if we assume that Assumption i)é’%i) are fulfilled, then there exists
a solution to the obliquely reflected BSDE (22.6))-(2.7))-(2.8). Moreover this solution is
unique if we assume also Assumption zz)

Proof. The proof follows exactly the same lines as the proof of Theorem [£.5] D, is a
convex polytope with d vertices (y%)1<i<q satisfying: for all 1 <i < d,
, 1 . .
— J_ G ; —
Yp = Z TV~ G Vi# /¢, and yy;=0.
J#Fi
Let us construct H on vertex y. It is easy to compute its outward normal cone, which

is positively generated by vectors f1, ..., f41 where

1
fE=—Lick + 1.

d—1
For any 1 < k < d — 1, we impose H(y%)f* = —agep with oy, > 0. We can check that
it is true with o = 1 for all 1 < k < d — 1, if we set, for any a > 0,
N
H(y’) =
a— % a ;
d—1 d—1
a—25 a—25

Since d;; i;*. an eigenvalue of H (y?) with multiplicity d—2, det H(y?) = (a — 2%) (d—
1) (d%dl) "~ and Tr(H (y?)) = da — 2‘%1, H(y%) is a positive definite symmetric matrix
as soon as a > 2%. Thus we can set a = 2. By simple permutations of rows and

columns in H (y?) we can construct easily H(y*) for any 1 < k < d. We then follow the
proof of Theorem [£.5] to extend H from vertices of D, to the whole space. O

A Appendix

A.1 Proof of Lemma [3.3

For all Z, 7  {1,...,d}?, let ad[Q"7)] be the adjunct matrix of Q%J).
For 1 < j < d, we denote, for ease of presentation, Q7 := ad[Q(j’j)], and we have

j i(9) () i i
ng,g(j) = (=) qet QUIAHT) (A.1)
for all (¢,7) € {1,...,d}\{j}. For all 1 <i # j < d, we define

Cij = ((Q(j’j))_lé(j)) and ij = 0.
’ i=1(i>5) ’

Using £ the adjunct matrix of QU%7), we observe then, for latter use,

1 . .
Cij=—2, Qi) g e » for i # . (A.2)
J 5
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Proof. 1. We first show that (3.3]) holds true. From ({3.3)), we observe that

T;—1
Cjj = E[ D ex,| Xo = j]
n=0
ijl d
= E[ D) el x, gl Xo = j] :
n=0 (=1

Thus,

n=0

d ) ' T;—1
Cj,j = Z E[}/g with ’yi = E[ Z l{ang}|X0 = j] .
/=1
From [20, Theorem 1.7.5], we know that ,YZ = %

2. We prove (3.16) assuming the following for the moment: for all distinct 1 <
ia j7 k < d7

1w + Q0 ko = Lo jo ke = o) 0k (A-3)
Let 1 < i # j < d. We have, using (A.2)),

chi 4 it = L (Qjé(j))z'(j) - (Qié(i))j@

Hj i
1 ; 1 ,
= J = i _
T Z i) jonCh T Z Qi) (i) Ck
Hi k3 Hi 1 Zi
1

I i
§ _ 1, _ “zgim,km + MJQj(i),k(i) _
= 79 NN 753, () -(i)Cj + Ck.-
3 1,(]),7,(]) . J sJ T
e Hi k#i,j Hi [

Using the previous point and the fact that ngﬂ-(g‘) = Q§<i)7j(i), we get

_ _ _ Q7
HiCi + [45C4 n PECE | @) 40)

1114 W bty )

C 4 ¢ = Q)

HORIE)

which is the result we wanted to prove.
3. We now prove (A.3)).
Let i, € {1,...,d} and ¢ # j. We observe first, using (A.1)), that

Q) i = det QUM = L, ) .

For ke {1,...,d}\{7,7}, we denote by k;; € {1,...,d —2} (resp. i, jir) the index such
that:

Qk,~ — Q({Z]’z}f{.]ﬂ}) (resp. Qi,' — Q({]vk}f{.]ﬂ}) ,ij. — Q({kﬂ}v{.]ﬂ}))? (A4)

kij, Uikt Jiks
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namely
kij =k = Ligsiy — Liksgys Gk = @ — Lgsgy — Lgsgy and ik = J — Lgopy — 1)
Let o be the permutation of {1,...,d — 2} given by

2 ... kij 1 kj+1 ... d-—2
1 ... k:l'j—l kij ]Cij-i-l .o d—2

which is the composition of k;; —1 transpositions. Applying 0,; to the row of QUU»i}{s:4})

we obtain a matrix denoted simply @ {] Z} {J Y whose first row is Q.- {J $a) , and we have

det Q({],Z},{j,’b}) — (_1)kij_1 det Qg{:éz)}:{%l}) .

Since p@ = 0, we have Q. = — Zh&k £L@Qy.. and then,
Qe Qi Qj.-
({51}, {J i}) ({5,4,{4.1}) ({53,454
et QUM _ 2 Bt Do) | _ _pua | Qo | gy | Qoo
ik Pk : ok
({ 71}»{ ji}) ({5.4}.{5.1}) « 71}{ /i})
QU;j(d*QJ),- QU;j(d*QJ),- QO’:(CI 2]

Let o; (resp. o) be constructed as o), but with ij; (resp. ji;) instead of kj; then one
observes

_ :ul ( )lgk 1 det Q({] k} {74}) _ ( 1)]%*1 det Q({l’k}v{J:Z})
273 273
We compute that

(71)ijk—1+kij—1+i(j)+k(j) — 1 and (71)jik—1+kij—1+j(i)+k(i) _ 71’
leading to

j
Nsz-u MzQ G ko) T MJQJ@ k() -

U

A.2 Enlargement of a filtration along a sequence of increasing stop-
ping times

We fix an admissible strategy ¢ € &/ and we study the associated filtrations F",n €
N U {+o0} which are constructed in Section In all this section we assume that
N;f < 400 a.s. Let us remark that this is satisfied as soon as Assumption i) is in
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force, which is the case whenever the results of this section are applied.

For each 0 < n < +o0, we define a new filtration G" = (G}");>0 by the relations
G =F)t=0andfor 1 <n< +w, G =Fvolll,i<n)=G""'vaoll)t=D0.
The difference between filtrations F™ and G"™ is that the random variables ;, 1 <i < n
are already known at time 0 in G™, while in the filtration F™, each l; is only known at
the switching time 7;, for each 1 < i < n.

A.2.1 Representation Theorems

The goal of this section is to derive Integral Representation Theorems for filtrations
F* neNu {+0o0}.
We first recall, see [I, Theorem 1.11]:

Theorem A.1 (Lévy). Let (0, F,F,P) a filtered probability space with F not necessarily
right-continuous. Let & € LY(F) and X a F—supermartingale.

1. We have H¢ | F] — HE | Fy] a.s. and in LY, as t — oo.
2. If t,, decreases to t, we have X, — X+ a.s. and in L' as m — oo.

In particular, if X; = HE|F], we get that HE|F, ] — HE|Fr] as. and in L' as
m — o0, for t,, decreasing to t.

We now recall an important notion of coincidence of filtrations between two stopping
times, introduced in [1l Definition 1.28|. This will be useful for our purpose in the sequel.
Let $' = (H})i=0 and $H% = (H?)i=0 be two filtrations, and let S,T two $'-stopping
times, which are also $)2-stopping times. We set

[S,T[:={(w,s) e A xRy |S(w) <s<T(w)},
and we say that ! and $2 coincide on [S, T if

1. for each t > 0 and each H}-measurable variable ¢, there exists a HZ-measurable
variable x such that {1(g<ic7y = X1{s5<t<T}

2. for each t > 0 and each H?-measurable variable y, there exists a H}-measurable
variable § such that x1(s<i<7) = {1l{s<i<T)-

We now study the right-continuity of the filtration G™ for some n > 0. Using its
specific structure, it is easy to compute conditional expectations. Lévy’s theorem then
allows to obtain the right-continuity.

Lemma A.1. Let 0 < n < +00.

1. If ¢ e LYFY) and &' € L' (o(U;, 1 < i < n)), then for t = 0, we have HEE |G =
B¢ R ¢

2. G" is right-continuous.
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Proof.

1.

If Fe 7Y and F' € o(th;,1 < i < n), since o(8hy, ..., 4,) 1L FO (recall that FY is
generated by the Brownian motion path), we have, using at the last equality that
F) < FY is also independent from o (g, ..., 4,),

Eé€ 1 pam] = HE1p]| HE 1]
= HE¢ |7 17 HE1p]
= H'He |7 1rar] -

Since {F' n F'|F € FY,F' € o(4;,1 < i < n)} is a 7-system generating G, the
result follows by a monotone class argument.

. Let t > 0 and t,, decreasing to t. We have, using Lévy’s Theorem, the previous

point and the right-continuity of F°,
Hee' |67 ] = limE[¢e’ |67 | = limH ¢ |7 |
= ¢He|F] = Hee' o]

By a monotone class argument, we have E[§ |g;1] = F¢ |G| for all bounded G-
measurable &, hence the right-continuity of G™ follows. O

Using the previous lemma, we show how to compute conditional expectations in F"
for all n € N U {400}, and that these filtrations are right-continuous.

Proposition A.1. 1. For all 0 < n < m < +oo, F*, F™ and F* coincide on

3.
4.

[[OaTnJrl[['
For all 0 < n < +o0, F" and G"™ coincide on [1,, +0][.

For all 0 <n < +o0 and t = 0, we have, for £ € LY(F2):
B |7 ] = HEIF T L,y + BE 1G] ir i<y (A.5)
Lett >0 such that 37X (1, <t < Tps1) = 1. Then, for & € LYFP),
+00
HE[FP] = D HEF ] L ctan, )
n=0
For all 0 < n < +00, F" is right-continuous.

The filtration F® is right-continuous on [0,T].

Proof.
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1. Let t > 0 be fixed. If £ is F}-measurable, since F;* < F* < F;° for m > n, taking
X = & gives a F}"-measurable (resp. JF;°-measurable) random variable such that

51{t<7—n+1} = Xl{t<Tn+1}'
Conversely, if x is a F}"-measurable random variable, then

X = f<>~<7u11{7'1$t}7 cee 7u7n1{TmSt})7

for a measurable f and a JFP-measurable variable Y. Since Ul <ty = 0 on
{t < Th+1} when k > n, one gets:

Xl{t<7'n+1} = f(f(aul]-{nst}a s 71’(711{Tn<t}7 0,... 70)1{t<Tn+1}
= 51{t<7'n+1}7

where ¢ is F{'-measurable.
Last, let x be a F;°-measurable variable. Then x = f(, ;, L <t} ,LliNl{TiN <t})
for some N > 0 and 1 <i; < --- < iy, and the same arguments applies.

The proof of the second claim is straightforward as one remarks that for ¢ > 0 and
1 <n < oo, theequality f(&, ..., t) 7 <y = F(E L n <y Unir <)) Lir, <ty

holds, since the random times 7;,% > 0 are non-decreasing.
This concludes the proof of this first item by definition of coincidence of filtrations.

2. Let 0 < n < +o0 and € € LY(FLtY). We have H¢ |7 = | F Lyar g +
IE‘{{ ‘.7-"[”“] 1. ..1<¢), and we compute both terms separately.
Since F™ and F"*! coincide on [0, 7,41 [, we have E[¢ ’]—"t"H] Lgaryy = gl{t<m+1}
for a F}'-measurable variable {. In particular, the left hand side is also F'-

measurable. Hence IE‘{&’ ’.F;”H] Tger i} = IE{]E{& |]3;”+1] | P |ft"] = E¢ | F] Tger, i}

SAimilarly, since F**! and G™*! coincide on [[TPH, +oo[, we have B[ ¢ ‘Q’f“] L i<t} =
§1(r,,,<y for a .7:{‘+1—measurable variable £. In particular, the left hand side is
Fi'*l-measurable. Hence B¢ |G| 17, <oy = BE[E|G ] 1r, <y [F7] =

¢ A Ly
Let ¢ > 0 such that >, P(7, <t < 7,41) = 1. We have, since F* and F" coincide
on [0, 7p+1[, using the same arguments as before,

]E[f ’ffo] = ZHS |]:too] 1{Tn<t<7n+1} = ZH§ |~7:tn] 1{Tn<t<rn+1}-

3. We prove by induction that F” is right-continuous. Since F° is the augmented
Brownian filtration, the result is true for n = 0.
Assume now that F*~! n > 1, is right-continuous. Let t > 0,& € L'(FZ) and
(tm)m=o such that t,, = t,,+1 and lim,, t,,, = t. We have, using the previous point
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and the right-continuity of F*~! and G™:

B¢ |7 ] = im ¢ |7, ]
= 117}1T1E[€| Ford Litm<ray + EEFL 1 Lt
= Um B¢ |7 L ry + LG ] Lzt
= B¢ F ) Lpary + HEIGH ] 1<y
= H¢ AT

4. Let t < T,& € LYFL), (tm)mso such that T' > t,,, > t,, 41 and lim,, t,,, = t. We
have, by Lévy’s Theorem and the first point,

+o0
Bg |775] =l B¢ 77 ] = Tim 3 BEFT ] L temein)

n=0

+o0
SIS I L P
n=0

Fix w € Q. We have that t,, <T < Ty(y)41(w) with N(w) := Njf(w) assumed to
be almost-surely finite, hence

E[§ ‘ = hm Z ]E{{ ‘}—tm 1{7-n (W)<tm<Tnt1(w)}
= hm Z ]E{f ’ 1{Tn(w)<tm<Tn+1(w)}
(w)Jrl
= > MBI (W)L @)<tm<mii@)
n=0

— Z hmE[§ | Fi @) L @) <t < ()}

Finally using the right-continuity of each F", we get

+a0 +00
n=0 n=0
which proves that F® is right-continuous on [0, T]. I

Lemma A.2. Let 0 < n < +o0 and £ € LY(F2). Let o be a F"—stopping time. We
have:

B¢ |F ] = He|F (A.6)
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Proof. Assume first that o = s is deterministic.
Let & = (X, %nt11¢r,,,<s}) e a FFlmeasurable bounded variable, where y is F7-
measurable and v is deterministic and bounded measurable. We need to show

B &] - B |77 5] .

We have, with ¥ (y) := = {U(y, 2)Py, ., ( SO
the uniform dlstrlbutlon on [0, 1] by deﬁmtlon)

x)dz (as Py, ., the law of £, 1, is

+19

E{H§ |Fg] ¢(X7ﬂn+11{m+1<s})] = E{Hé |Fg] 1/J(X7 0)1{s<‘rn+1}] + E{]E[E ’f:sn] T/J(X,ﬂn+1)1{m+1<s}]

= IE{gdj(Xa 0)1{S<Tn+1}] + E[E,(&(X)l{ﬁ”lgs}] )

and the same computation with £ instead of H¢ |F1'] gives the same result.
Let o be a F"-stopping time, and let & = F[¢|F7] = E[¢|Fr]. Since F™ (or F*+1)
is right-continuous, there exists a right-continuous modification of (&5)s=0. Applying
Doob’s Theorem twice gives &, = H¢ |F] and & = F[¢ ‘.7-";‘“], hence we get the result.
(]
We are now in position to prove an Integral Representation Theorem in the filtration
F™, for all 0 < n < 4oo0.

Proposition A.2. Let 0 < n < +w and £ € L*(F3). Then there exists a process
Y € H2(F™) such that

T

§ = E{§ ‘f%myl] + J %dWs-

TATh

Proof. We prove the theorem by induction on n > 0, following ideas from [2]. The
case n = 0 is the usual Martingale Representation Theorem in the augmented Brownian
filtration FO.
Assume now that the statement is true for all £ € L2(Fp™1) (n = 1). Let & e L2(FR).
Since F = Fpt v o(Un1r, <7y), We get that £ = limy, o0 & in L2(F2), with fm =
S X G and (X, ¢h) € L2 (Fp ) x L2 (0(Un 1 <7y)) forallm > 0 and 1 < i < I,
By induction, there exist F*~!-predictable processes 1™ such that

X?Zn:[

Since 7, is a F*~!-stopping time with 7,, > 7,,_1 and So 1/)2 " AW, is a square integrable
F*~ L martingale, we get

T .
T/\Tn 1] +J ?deS'

TATh—1

T ATn ) T ]
T:rn_l] + J YU AW + J YL AW

TATHh—1 TATh

RN EAREER

.

n—1
]:T/\Tn]

T ATh )
T/\Tn 1] +J w?des )

TATn—1
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and the two previous relation give

Vo =BG |7+ [ wimaw,

T ATn

Since ¢}, € L®(0(Unlyr, <1y)) © LQ(]:%M"), we get

G, f gimaw, = [ ¢ gimaw,.

TATh TATh
In addition, since x%, € L®(Fr ') < LY(F21) and T A 7, is a F"~l-stopping time,
Lemma gives X%, ’]—"%AT"] =E[x}, ’f?;in] Since ¢}, € L*(Fg,, ), we get
Gl X [Finr ] = Gl [FRar, ] = B X G [F o, ] -

Combining the three last equalities and the definition of &,,, we obtain
lm . .
gm = Z X;nC;n
i=1

lm 4 ' lm T ' '
= NN Fan ]+ fT ¢y,
=1 =1 ANTn
T

—He, PR ]+ f G,

T ATh,

where ™ = Ylm ¢1 ™ € HE(F™).
Finally, since &, — £ in L*(F7}), we get that B[, |[Fp . | = B[¢|FE,,, | in LA(FP),
hence X;Mn AWy converges to a limit S;Mn 1sdWy for a process 1 € H?(F"). O

Theorem A.2. Let 0 < n < 400 and £ € L%(F2). There exist some processes ¥* €
H2(F*), for all 0 < k < n, such that:

n—1 TATk+1 T
E=Hel A+ Y | vkaws [ vtaw,
k=0

T ATk T ATn,
n—1
+ 2 (qel7n] -Helrten))
k=0

e |+ [ waws kZZ (e 7t ] - He|Foan]) -

T ATo

. —1
with \I]? = ZZ= wf]'{T/\Tk<t<T/\Tk+1} + wyl{T/\Tn<t<T}~

Proof. This is an immediate consequence of the previous theorem. O
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Last, we extend this theorem to obtain an Integral Representation Theorem in F®.
We now fix £ € L*(F3?) and consider the filtration (F22),>0. By Lévy’s Theorem, since
FF =V nso F1» we get

HE | F7] —noso HE[FF] =€, as. (A7)
For all n > 0, using Theorem we can write:

n=1 ~"TAT 1 T
HE |77 ~H[€ | Fan] + Y, | phaw,+ [ g,
k=0

TATk T ATh
+ :z_l: (E[§ ’ffﬁw] - E[§ ‘}—%MW]) |

Lemma A.3. We have "™F = %k on [T A 74, T A Tiy1), for alln > k.

Proof. It follows easily by induction, comparing E[¢|F5]| and E[H¢ |F2]|[FF] and
using [t6’s isometry.
O]

For all n = 0, we define ¢™ := ¢™"™. Thus we have, for all n > 0,

n—1 T/\’Tk+1 T
He |78 =Fe |79, ]+ Y J Eaw, + f naw,
k=0

T ATy T AT
n—1
k+1 k
+ 2 (Ble |7, ] - Ble 7))
k=0
We set, for 0 < s < T,

+00
k
U, = Z 1/13 1{T/\Tk<s<TA‘rk+1}7
k=0

\II? = \Ils]-{ssT/\T»,L+1} + w?]-{T/\Tn+1<s}7 and
ab = He|Fha | - HeF L]
so that

n—1

T
He | 73] = He [, ] + f wraw, + Y Ak,
k=0

T ATo

Theorem A.3 (Integral Representation Theorem for F*®). Suppose that Assumption
i) holds. For & € L*(FF), we have

T +00
£ =EE|FPan] + f T dW, + Y AL
T ATo k=0
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Proof. By definition (2.2) of N := N%, we have T' < 7,41 on {n = N}. Thus,

T TATnt1 T T
1{N<n} ‘llgdWS = J U, dW, + f wgdWS 1{N$n} = 1{N<n} . dWs.

T ATo T AT1o TATh+1 T ATo

Moreover, if k = n, we have, since T A 711 = T,
Afliveny = (E[f ‘fﬁiw] — E[S ‘féiwﬁ]) L{n<n}
- (] e ] v
Applying to y = E[f ]féi“], we get
v = B[ FE = x| ey + B |0 1<y
Since T' < Tp41 < The1 on {N < n}, we finally obtain
B¢ |7 tven = XLivany = B |PF] Lovany = B€]FH] 1ivam,

which gives A%l{Ngn} = (. Thus:

ATO

T n—1
HE|FF] Lineny = (E{f | FPnm ] + L UrAW, + ) A'%) Lin<n)
k=0

T

+00
- (E[g 7]+ JT T dW, + ) A{%) 1(nen)-
ATO k=0

Since N is assumed to be finite almost surely, we have 1(y<,} —n—-o 1 almost surely.
Sending n to infinity in the previous equation, using 1A.7: , we finally obtain

+00
£ =HE|FPan] + f VAW, + Y Ak

T ATo k=0

T

O

Remark A.1. Using the classical Martingale Representation Theorem in the Brownian
filtration, there exists a FO-predictable process =" such that

T ATo
e[~ He)+ | v,
Hence one easily obtains the representation, for & € L2(FR) with n € N U {+o0}

n—1

T
E—Hg+ | Taw.+ ), Ak, (A.8)
0 k=0
where ¥ := w_ll{og.gT/\To} + 0.
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Remark A.2. The process Z;ﬁ% A¥ is a purely discontinuous martingale and SOT U, AWV,
is a continuous one, so computing (co)variations gives,

- +00 ]
U T dW,, > AR =0, (A.9)
0

k=0 ¢

. 7 t
U U, dW, :J W2ds, (A.10)

0 dt 0

+00 T
DAkl = T jAfP. (A.11)
k=0

dt TSt

In particular, the martingales SO U, dW, and Dk AF are orthogonal.

A.2.2 Backward Stochastic Differential Equations

Using the results from the previous section, in particular that the filtrations F*,n € Nu
{+o0}, are right-continuous and that a Martingale Representation Theorem is available
in these filtrations, we recall that (switched) BSDEs with Lipschitz driver have a unique
solution and that a comparison theorem is available.

Let n € Nu {+0}. Let £ be a Fj-measurable random variable and f : Q x [0,T] x
R? x R¥*® — R? a measurable function. We assume here that ¢ and f are standard
parameters [12), Section 5]:

o £ L*(Fy),
i f('7070) € HZ(F”),
e There exists C > 0 such that

[F(t 515 21) = [ (892, 20)| < O (lyn — yaf + [21 + 22])-

Under these hypothesis, since F™ is right-continuous (see Proposition|A.1]), one can prove
(see [12, Theorem 5.1]):

Theorem A.4. There exists a unique solution (Y, Z, M) € S3(F") x H2 _(F™) x H3(F")

such that M is a martingale with My = 0, orthogonal to the Brownian motion, and
satisfying

T

T T
Yt=§+f f(s,Ys,Zs)ds—f stws—f dM,.
t t t

Using Theorem [A.2] and Theorem [A-3] M is of the form

M, = He] + nz—]l (E[g ’Ff;iﬂ] - E[{ ‘ffmkﬂD ;
k=0
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where n corresponds to the underlying filtration F™.

When d = 1, one can easily deal with linear BSDEs in F", and the specific form
of its solutions allows to prove a Comparison Theorem. The proofs follow closely [12]
Theorem 2.2].

Theorem A.5. Let (b,c) be a bounded (R x R¥)-valued predictable process and let a €
H2(F"). Let & € L2(F}) and let (Y,Z,M) € S*(F") x H2(F") x H*(F") be the unique
solution to

T T

(asYs + bsZs + c5) ds — J

T
ZsdWs — J dMs.
t t

m—ﬁ+£

Let T € H3(F™) the solution to
t t
I'i=1 —i—f I'sasds —|—f I'sbsdWs.
0 0
Then, for all t € [0,T], one has almost surely,

T
Y; = r;lE[rTg + f [sesds
t

7|
Proof. We fix t € [0, 7] and we apply Ito’s formula to the process Y;I';:
d(Y;Ty) = Y,-dTy + T,-dY; + d[Y,T],.
Since T is continuous, we get [V, T'], = (Y, T°), + >, (AY;) (Al's) = (Y, T'),, thus,
d (Ytl“t) = Ft (bt}/t + Zt) th + Ftht - Ftctdt.

We define a martingale by N; = S(t) [s(bsYs + Zs)dWs + Sé I'sdM, and the previous
equality gives
T
YrI'r =Yy — J I'scsds + Np — Ny.
t

Taking conditional expectation with respect to Fj* on both sides gives the result.

0

Theorem A.6. Let (¢, f) and (€', f') two standard parameters. Let (Y, Z, M) € S?(F") x
H2 (F™) x H2(F") (resp. (Y',Z',M')) the solution associated with (£, f) (resp. (€, f')).
Assume that

e £>¢ as,
o (LY ZN = f(,Y',Z') dP x dt a.e.

Then Yy =Y/ almost surely for all t € [0,T].
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Proof. Since f is Lipschitz, we consider the bounded processes a,b and ¢ defined, for
t € [0,T], by:

f(ta n? Zt) - f(ta YZ; Zt)

ar = )/t _ }/;/ {Yt#YVtI}’
o FOYL 20~ YN Z-2)T
t — |Zt o Z£|2 {Zt#Zt}7

Ct = f(ta Yy» Zt/) - f/(t,Y;/, Zg)’

Setting 0Y; =Y, —Y/,02; = Zy — Z, and 6M; = M; — M/, we observe that (§Y,0Z,0M)
is the solution to the following linear BSDE:

T

5Y2=5YT+J‘

T T
(as8Ys + b6 Z4 + ¢5) ds — J 5 Z, AW, — f A5 M,. (A.12)
t t t

Using the previous Theorem, we get ¥; = r;lE[éyTrT + {7 Tyeqds ‘]—"t"]. By definition,
I" is a positive process, and §Y; and ¢ are non negative by hypothesis, hence Y; = 0.

[
Remark A.3. In Section@ see (2.4) and (2.35)), we apply Theorems and to

more general BSDEs in F", n € N u {+w}, of the form

T

T T T
Y, =€+ f £(s,Ys, Z5)ds — f ZodW, — f dM, — f dA,, (A.13)
t t t t

where £ and f are standard parameters and where A is a given non-decreasing process
with Ay — Ag € L*(FR). Let (€= &+ Ap, fw,t,y,2) i= f(w,t,y — Ay(w), 2)), which
is easily seen to be standard parameters. Then Theorem [A]] implies that there exists a
unique solution (Y, Z, M)e S*(F") x H2(F") x H2(F") to

T T T

V- &+ f F(s, Vs, Z0)ds j Z,dW, — j air,, (A.14)
¢ t ¢

and setting (Y, Z, M) := (Y — A, Z, M), we easily see that it is a solution to .
In addition, if (Y, Z%, M) (i = 1,2) are two solutions to , then (Y*,Z', M") :=
(Yi+ A, Z, M%) are two solutions to and the uniqueness result from Theorem
gives Z' =72, M' = M?> and Y' + A=Y? 4+ A, ie. Y =Y?2, s0 admits
a unique solution.

These considerations also allow to extend the comparison theorem to this setting,
which is used in the proof of Theorem 2.1, see Section[2.3.3
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