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Switching problems with controlled randomisation and

associated obliquely re�ected BSDEs

Cyril Bénézet∗, Jean-François Chassagneux†, Adrien Richou‡

January 30, 2020

Abstract

We introduce and study a new class of optimal switching problems, namely
switching problem with controlled randomisation, where some extra-randomness
impacts the choice of switching modes and associated costs. We show that the
optimal value of the switching problem is related to a new class of multidimen-
sional obliquely re�ected BSDEs. These BSDEs allow as well to construct an
optimal strategy and thus to solve completely the initial problem. The other main
contribution of our work is to prove new existence and uniqueness results for these
obliquely re�ected BSDEs. This is achieved by a careful study of the domain of re-
�ection and the construction of an appropriate oblique re�ection operator in order
to invoke results from [7].

1 Introduction

In this work, we introduce and study a new class of optimal switching problems in
stochastic control theory. The interest in switching problems comes mainly from their
connections to �nancial and economic problems, like the pricing of real options [4]. In a
celebrated article [14], Hamadène and Jeanblanc study the fair valuation of a company
producing electricity. In their work, the company management can choose between two
modes of production for their power plant �operating or close� and a time of switch-
ing from one state to another, in order to maximise its expected return. Typically,
the company will buy electricity on the market if the power station is not operating.
The company receives a pro�t for delivering electricity in each regime. The main point
here is that a �xed cost penalizes the pro�t upon switching. This switching problem
has been generalized to more than two modes of production [10]. Let us now discuss
this switching problem with d ¥ 2 modes in more details. The costs to switch from
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one state to another are given by a matrix pci,jq1¤i,j¤d. The management optimises
the expected company pro�ts by choosing switching strategies which are sequences of
stopping times pτnqn¥0 and modes pζnqn¥0. The current state of the strategy is given
by at �

°�8
k�0 ζk1rτk,τk�1qptq, t P r0, T s , where T is a terminal time. To formalise

the problem, we assume that we are working on a complete probability space pΩ,A,Pq
supporting a Brownian Motion W . The stopping times are de�ned with respect to the
�ltration pFtqt¥0 generated by this Brownian motion. Denoting by fpt, iq the instan-
taneous pro�t received at time t in mode i, the time cumulated pro�t associated to a
switching strategy is given by

³T
0 fpt, atqdt�

°�8
k�0 cζk,ζk�1

1tτk�1¤t^T u. The management
solves then at the initial time the following control problem

V0 � sup
aPA

E

�» T
0
fpt, atqdt�

�8̧

k�0

cζk,ζk�1
1tτk�1¤T u

�
, (1.1)

where A is a set of admissible strategies that will be precisely described below (see
Section 2.1). We shall refer to problems of the form (1.1) under the name of classical
switching problems. These problems have received a lot of interest and are now quite
well understood [14, 10, 17, 5]. In our work, we introduce a new kind of switching
problem, to model more realistic situations, by taking into account uncertainties that
are encountered in practice. Coming back to the simple but enlightning example of
an electricity producer described in [14], we introduce some extra-randomness in the
production process. Namely, when switching to the operating mode, it may happen
with �hopefully� a small probability that the station will have some dysfunction. This
can be represented by a new mode of �production� with a greater switching cost than
the business as usual one. To capture this phenomenon in our mathematical model, we
introduce a randomisation procedure: the management decides the time of switching but
the mode is chosen randomly according to some extra noise source. We shall refer to this
kind of problem by randomised switching problem. However, we do not limit our study
to this framework. Indeed, we allow some control by the agent on this randomisation.
Namely, the agent can chose optimally a probability distributions P u on the modes
space given some parameter u P C, in the control space. The new mode ζk�1 is then
drawn, independently of everything up to now, according to this distribution P u and a
speci�c switching cost cuζk,ζk�1

is applied. The management strategy is thus given now
by the sequence pτk, ukqk¥0 of switching times and controls. The maximisation problem

is still given by (1.1). Let us observe however that E
�
cukζk,ζk�1

�
� E

�°
1¤j¤d P

uk
ζk,j

cukζk,j

�
,

thanks to the tower property of conditional expectation. In particular, we will only
work with the mean switching costs c̄uki :� °

1¤j¤d P
uk
i,j c

uk
i,j in (1.1). We name this kind

of control problem switching problem with controlled randomisation. Although their
apparent modeling power, this kind of control problem has not been considered in the
literature before, to the best of our knowledge. In particular, we will show that the
classical or randomised switching problem are just special instances of this more generic
problem. The switching problem with controlled randomisation is introduced rigorously
in Section 2.1 below.

A key point in our work is to relate the control problem under consideration to a
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new class of obliquely re�ected Backward Stochastic Di�erential Equations (BSDEs).
In the �rst part, following the approach of [14, 10, 17], we completely solve the switching
problem with controlled randomisation by providing an optimal strategy. The optimal
strategy is built by using the solution to a well chosen obliquely re�ected BSDE. Al-
though this approach is not new, the link between the obliquely re�ected BSDE and the
switching problem is more subtle than in the classical case due to the state uncertainty.
In particular, some care must be taken when de�ning the adaptedness property of the
strategy and associated quantities. Indeed, a tailor-made �ltration, studied in details
in Appendix A.2, is associated to each admissible strategy. The state and cumulative
cost processes are adapted to this �ltration, and the associated reward process is de�ned
as the Y -component of the solution to some �switched� BSDE in this �ltration. The
classical estimates used to identify an optimal strategy have to be adapted to take into
account the extra orthogonal martingale arising when solving this �switched� BSDE in
a non Brownian �ltration.
In the second part of our work, we study the auxiliary obliquely re�ected BSDE, which
is written in the Brownian �ltration and represents the optimal value in all the possible
starting modes. Re�ected BSDEs were �rst considered by Gegout-Petit and Pardoux
[13], in a multidimensional setting of normal re�ections. In one dimension, they have also
been studied in [11] in the so called simply re�ected case, and in [8] in the doubly re�ected
case. The multidimensional RBSDE associated to the classical switching problem is
re�ected in a speci�c convex domain and involves oblique directions of re�ection. Due
to the controlled randomisation, the domain in which the Y -component of the auxiliary
RBSDE is constrained is di�erent from the classical switching problem domain and its
shape varies a lot from one model speci�cation to another. The existence of a solution
to the obliquely re�ected BSDE has thus to be studied carefully. We do so by relying
on the article [7], that studies, in a generic way, the obliquely re�ected BSDE in a
�xed convex domain in both Markovian and non-Markovian setting. The main step
for us here is to exhibit an oblique re�ection operator, with the good properties to use
the results in [7]. We are able to obtain new existence results for this class of obliquely
re�ected BSDEs. Because we are primarily interested in solving the control problem, we
derive the uniqueness of the obliquely re�ected BSDEs in the Hu and Tang speci�cation
for the driver [17], namely f ipt, y, zq :� f ipt, yi, ziq for i P t1, . . . , du. But our results
can be easily generalized to the speci�cation f ipt, y, zq :� f ipt, y, ziq by using similar
arguments as in [6].

The rest of the paper is organised as follows. In Section 2, we introduce the switching
problem with controlled randomisation. We prove that, if there exists a solution to
the associated BSDE with oblique re�ections, then its Y -component coincides with
the value of the switching problem. A veri�cation argument allows then to deduce
uniqueness of the solution of the obliquely re�ected BSDE. In Section 3, we show that
there exists indeed a solution to the obliquely re�ected BSDE under some conditions
on the parameters of the switching problem and its randomisation. We also prove
uniqueness of the solution under some structural condition on the driver f . Finally, we
gather in the Appendix section some technical results.
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Notations If n ¥ 1, we let Bn be the Borelian sigma-algebra on Rn.
For any �ltered probability space pΩ,G,F,Pq and constants T ¡ 0 and p ¥ 1, we de�ne
the following spaces:

• LpnpGq is the set of G-measurable random variables X valued in Rn satisfying
Er|X|ps   �8,

• PpFq is the predictable sigma-algebra on Ω� r0, T s,
• Hp

npFq is the set of predictable processes φ valued in Rn such that

E
�» T

0
|φt|pdt

�
  �8, (1.2)

• SpnpFq is the set of càdlàg processes φ valued in Rn such that

E
�

sup
0¤t¤T

|φt|p
�
  �8, (1.3)

• ApnpFq is the set of continuous processes φ valued in Rn such that φT P LpnpFT q
and φi is nondecreasing for all i � 1, . . . , n.

If n � 1, we omit the subscript n in previous notations.

For d ¥ 1, we denote by peiqdi�1 the canonical basis of Rd and SdpRq the set of symmetric
matrices of size d� d with real coe�cients.

If D is a convex subset of Rd (d ¥ 1) and y P D, we denote by Cpyq the outward normal
cone at y, de�ned by

Cpyq :� tv P Rd : vJpz � yq ¤ 0 for all z P Du. (1.4)

We also set npyq :� Cpyq X tv P Rd : |v| � 1u.
If X is a matrix of size n �m, I � t1, . . . , nu and J � t1, . . . ,mu, we set XpI,J q the
matrix of size pn� |I|q � pm� |J |q obtained from X by deleting rows with index i P I
and columns with index j P J . If I � tiu we set Xpi,J q :� XpI,J q, and similarly if
J � tju.
If v is a vector of size n and 1 ¤ i ¤ n, we set vpiq the vector of size n� 1 obtained from
v by deleting coe�cient i.
For pi, jq P t1, . . . , du, we de�ne ipjq :� i� 1ti¡ju P t1, . . . , d� 1u , for d ¥ 2.
We denote by ¥ the component by component partial ordering relation on vectors and
matrices.
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2 Switching problem with controlled randomisation

We introduce here a new kind of stochastic control problem that we name switching
problem with controlled randomisation. In contrast with the usual switching problems
[14, 16, 17], the agent cannot choose directly the new state, but chooses a probability
distribution under which the new state will be determined. In this section, we assume
the existence of a solution to some auxiliary obliquely re�ected BSDE to characterize
the value process and an optimal strategy for the problem, see Assumption 2.2 below.

Let pΩ,G,Pq be a probability space. We �x a �nite time horizon T ¡ 0 and κ ¥
1, d ¥ 2 two integers. We assume that there exists a κ-dimensional Brownian motion W
and a sequence pUnqn¥1 of independent random variables, independent of W , uniformly
distributed on r0, 1s. We also assume that G is generated by the Brownian motion W
and the family pUnqn¥1. We de�ne F0 � pF0

t qt¥0 as the augmented Brownian �ltration,
which satis�es the usual conditions.
Let C be an ordered compact metric space and F : C � t1, . . . , du � r0, 1s Ñ t1, . . . , du
a measurable map. To each u P C is associated a transition probability function on the
state space t1, . . . , du, given by P ui,j :� PpF pu, i,Uq � jq for U uniformly distributed on
r0, 1s. We assume that for all pi, jq P t1, . . . , du2, the map u ÞÑ P ui,j is continuous.
Let c̄ : t1, . . . , du � C Ñ R�, pi, uq ÞÑ c̄ui a map such that u ÞÑ c̄ui is continuous for all
i � 1, . . . , d. We denote supiPt1,...,du,uPC c̄ui :� č and infiPt1,...,du,uPC c̄ui :� ĉ.
Let ξ � pξ1, . . . , ξdq P L2

dpF0
T q and f : Ω� r0, T s � Rd � Rd�κ Ñ Rd a map satisfying

• f is PpF0q b Bd b Bd�κ-measurable and fp�, 0, 0q P H2
dpF0q.

• There exists L ¥ 0 such that, for all pt, y, y1, z, z1q P r0, T s�Rd�Rd�Rd�κ�Rd�κ,

|fpt, y, zq � fpt, y1, z1q| ¤ Lp|y � y1| � |z � z1|q.

These assumptions will be in force throughout our work. We shall also use, in this
section only, the following additional assumptions.

Assumption 2.1. i) Switching costs are assumed to be positive, i.e. ĉ ¡ 0.

ii) For all pt, y, zq P r0, T s � Rd � Rd�κ, it holds almost surely,

fpt, y, zq � pf ipt, yi, ziqq1¤i¤d. (2.1)

Remark 2.1. i) It is usual to assume positive costs in the litterature on switching prob-
lem. In particular, the cumulative cost process, see (2.2), is non decreasing. Introducing
signed costs adds extra technical di�culties in the proof of the representation theorem
(see e.g. [19] and references therein). We postpone the adaptation of our results in this
more general framework to future works.
ii) Assumption (2.1) is also classical since it allows to get a comparison result for BS-
DEs which is key to obtain the representation theorem. Note however than our results
can be generalized to the case f ipt, y, zq � f ipt, y, ziq for i P t1, ..., du by using similar
arguments as in [5].
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2.1 Solving the control problem using obliquely re�ected BSDEs

We de�ne in this section the stochastic optimal control problem. We �rst introduce the
strategies available to the agent and related processes. The de�nition of the strategy
is more involved than in the usual switching problem setting since its adaptiveness
property is understood with respect to a �ltration built recursively.

A strategy is thus given by φ � pζ0, pτnqn¥0, pαnqn¥1q where ζ0 P t1, . . . , du, pτnqn¥0

is a nondecreasing sequence of random times and pαnqn¥1 is a sequence of C-valued
random variables, which satisfy:

• τ0 P r0, T s and ζ0 P t1, . . . , du are deterministic.

• For all n ¥ 0, τn�1 is a Fn-stopping time and αn�1 is Fnτn�1
-measurable (recall

that F0 is the augmented Brownian �ltration). We then set Fn�1 � pFn�1
t qt¥0

with Fn�1
t :� Fnt _ σpUn�11tτn�1¤tuq.

Lastly, we de�ne F8 � pF8t qt¥0 with F8t :��
n¥0Fnt , t ¥ 0.

For a strategy φ � pζ0, pτnqn¥0, pαnqn¥1q, we set, for n ¥ 0,

ζn�1 :� F pαn�1, ζn,Un�1q and at :�
�8̧

k�0

ζk1rτk,τk�1qptq, t ¥ 0 ,

which represents the state after a switch and the state process respectively. We also
introduce two processes, for t ¥ 0,

Aφt �
�8̧

k�0

c̄
αk�1

ζk
1tτk�1¤tu and N

φ
t :�

¸
k¥0

1tτk�1¤tu. (2.2)

The random variable Aφt is the cumulative cost up to time t and Nφ
t is the number of

switches before time t. Notice that the processes pa,Aφ, Nφq are adapted to F8 and
that Aφ is a non decreasing process.
We say that a strategy φ � pζ0, pτnqn¥0, pαnqn¥1q is an admissible strategy if the cumu-
lative cost process satis�es

AφT �Aφτ0 P L2pF8T q and E
��
Aφτ0

	2
����F0

τ0

�
  �8 a.s. (2.3)

We denote by A the set of admissible strategies, and for t P r0, T s and i P t1, . . . , du,
we denote by A i

t the subset of admissible strategies satisfying ζ0 � i and τ0 � t.

Remark 2.2. i) The de�nition of an admissible strategy is slightly weaker than usual

[17], which requires the stronger property AφT P L2pF8T q. But, importantly, the
above de�nition is enough to de�ne the switched BSDE associated to an admissible
control, see below. Moreover, we observe in the next section that optimal strategies
are admissible with respect to our de�nition, but not necessarily with the usual one,
due to possible simultaneous jumps at the initial time.
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ii) For technical reasons involving possible simultaneous jumps, we cannot consider the
generated �ltration associated to a, which is contained in F8.

We are now in position to introduce the reward associated to an admissible strategy. If

φ � pζ0, pτnqn¥0, pαnqn¥1q P A , the reward is de�ned as the value E
�
Uφτ0 �Aφτ0

���F0
τ0

�
,

where pUφ, V φ,Mφq P S2pF8q � H2
κpF8q � H2pF8q is the solution of the following

�switched� BSDE [17] on the �ltered probability space pΩ,G,F8,Pq:

Ut � ξaT �
» T
t
fasps, Us, Vsqds�

» T
t
VsdWs �

» T
t

dMs �
» T
t

dAφs , t P rτ0, T s. (2.4)

Remark 2.3. This switched BSDE rewrites as a classical BSDE in F8, and since
Aφ� �Aφt P S2pF8q, the terminal condition and the driver are standard parameters, there
exists a unique solution to (2.4) for all φ P A . We refer to Section A.2.2 for more
details.

For t P r0, T s and i P t1, . . . , du, the agent aims thus to solve the following maximisation
problem:

V it � ess sup
φPA i

t

E
�
Uφt �Aφt

���F0
t

�
. (2.5)

We �rst remark that this control problem corresponds to (1.1) as soon as f does not

depend on y and z. Moreover, the term E
�
Aφt

���F0
t

�
is non zero if and only if we have at

least one instantaneous switch at initial time t.
The main result of this section is the next theorem that relates the value process V to the
solution of an obliquely re�ected BSDEs, that is introduced in the following assumption:

Assumption 2.2. i) There exists a solution pY, Z,Kq P S2
dpF0q �H2

d�κpF0q �A2
dpF0q

to the following obliquely re�ected BSDE:

Y i
t � ξ �

» T
t
f ips, Y i

s , Z
i
sqds�

» T
t
ZisdWs �

» T
t

dKi
s, t P r0, T s, i P I, (2.6)

Yt P D, t P r0, T s, (2.7)» T
0

�
Y i
t � sup

uPC

#
ḑ

j�1

P ui,jY
j
t � c̄ui

+�
dKi

t � 0, i P I, (2.8)

where I :� t1, . . . , du and D is the following convex subset of Rd:

D :�
#
y P Rd : yi ¥ sup

uPC

#
ḑ

j�1

P ui,jyj � c̄ui

+
, i P I

+
. (2.9)

ii) For all u P C and i P t1, . . . , du, we have P ui,i � 1.
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Let us observe that the positive costs assumption implies that D has a non-empty
interior. Except for Section 2.2, this is the main setting for this part, recall Remark 2.1.
In Section 3, the system (2.6)-(2.7)-(2.8) is studied in details in a general costs setting.
An important step is then to understand when D has non-empty interior.

Theorem 2.1. Assume that Assumptions 2.1 and 2.2 are satis�ed.

1. For all i P t1, . . . , du, t P r0, T s and φ P A i
t , we have Y i

t ¥ E
�
Uφt �Aφt

���F0
t

�
.

2. We have Y i
t � E

�
Uφ

�

t �Aφ
�

t

���F0
t

�
, where φ� � pi, pτ�nqn¥0, pα�nqn¥1q P A i

t is de�ned

in (2.27)-(2.28).

The proof is given at the end of Section 2.3. It will use several lemmata that we introduce
below. We �rst remark, that as an immediate consequence, we obtain the uniqueness of
the BSDE used to characterize the value process of the control problem.

Corollary 2.1. Under Assumptions 2.1 and 2.2, there exists a unique solution pY,Z,Kq P
S2
dpF0q �H2

d�κpF0q � A2
dpF0q to the obliquely re�ected BSDE (2.6)-(2.7)-(2.8).

Remark 2.4. The classical switching problem is an example of switching problem with
controlled randomisation. Indeed, we just have to consider C � t1, ..., d� 1u,

P ui,j �
#

1 if j � i � u mod d,

0 otherwise.
, @u P C, 1 ¤ i, j ¤ d

and

ci,j �

$'&'%
c̄j�ii if j ¡ i

c̄j�i�di if j   i

0 if j � i.

@u P C, 1 ¤ i, j ¤ d.

We observe that, in this speci�c case, there is no extra-randomness introduced at each
switching time and so there is no need to consider an enlarged �ltration. In this setting,
Theorem 2.1 is already known and Assumption 2.2 is ful�lled, see e.g. [16, 17].

2.2 Uniqueness of solutions to re�ected BSDEs with general costs

In this section, we extend the uniqueness result of Corollary 2.1. Namely, we consider
the case where inf1¤i¤d,uPC c̄ui � ĉ can be nonpositive, meaning that only Assumptions
2.1-ii) and 2.2 hold here. Assuming that D has a non empty interior, we are then able
to show uniqueness to (2.6)-(2.7)-(2.8) in Proposition 2.1 below.

Fix y0 in the interior of D. It is clear that for all 1 ¤ i ¤ d,

y0
i ¡ sup

uPC

#
ḑ

j�1

P ui,jy
0
j � c̄ui

+
.
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We set, for all 1 ¤ i ¤ d and u P C,

c̃ui :� y0
i �

ḑ

j�1

P ui,jy
0
j � c̄ui ¡ 0,

so that ˆ̃c :� inf1¤i¤d,uPC c̃ui ¡ 0 by compactness of C. We also consider the following set

D̃ :�
#
ỹ P Rd : ỹi ¥ sup

uPC

#
ḑ

j�1

P ui,j ỹj � c̃ui

+
, 1 ¤ i ¤ d

+
.

Lemma 2.1. Assume that D has a non empty interior. Then,

D̃ �  
y � y0 : y P D( .

Proof. If y P D, let ỹ :� y � y0. For 1 ¤ i ¤ d and u P C, we have

ỹi � yi � y0
i ¥

ḑ

j�1

P ui,jyj � c̄ui � y0
i �

ḑ

j�1

P ui,jpyj � y0
j q � pc̄ui � y0

i �
ḑ

j�1

P ui,jy
0
j q

�
ḑ

j�1

P ui,j ỹj � c̃ui ,

hence ỹ P D̃.
Conversely, let ỹ P D̃ and let y :� ỹ � y0. We can show by the same kind of calculation
that y P D. l

Proposition 2.1. Assume that D has a non empty interior. Under Assumptions 2.1-ii)
and 2.2-ii), there exists at most one solution to (2.6)-(2.7)-(2.8) in S2

dpF0q�H2
d�κpF0q�

A2
dpF0q.

Proof. Let us assume that pY 1, Z1,K1q and pY 2, Z2,K2q are two solutions to (2.6)-
(2.7)-(2.8). We set Ỹ 1 :� Y 1 � y0 and Ỹ 2 :� Y 2 � y0. Then one checks easily that
pỸ 1, Z1,K1q and pỸ 2, Z2,K2q are solutions to (2.6)-(2.7)-(2.8) with terminal condition
ξ̃ � ξ � y0, driver f̃ given by

f̃ ipt, ỹi, ziq :� f ipt, ỹi � y0
i , ziq, 1 ¤ i ¤ d, t P r0, T s, ỹ P Rd, z P Rd�κ,

and domain D̃. This domain is associated to a randomised switching problem with
ˆ̃c ¡ 0, hence Corollary 2.1 gives that pỸ 1, Z1,K1q � pỸ 2, Z2,K2q which implies the
uniqueness. l
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2.3 Proof of the representation result

We prove here our main result for this part, namely Theorem 2.1. It is divided in several
steps.
2.3.1 Preliminary estimates

We �rst introduce auxiliary processes associated to an admissible strategy and prove
some key integrability properties.

Let i P t1, . . . , du and t P r0, T s. We set, for φ P A i
t and t ¤ s ¤ T ,

Yφs :�
¸
k¥0

Y ζk
s 1rτk,τk�1qpsq, (2.10)

Zφs :�
¸
k¥0

Zζks 1rτk,τk�1qpsq, (2.11)

Kφs :�
¸
k¥0

Kζk
s 1rτk,τk�1qpsq, (2.12)

Mφ
s :�

¸
k¥0

�
Y
ζk�1
τk�1 � E

�
Y
ζk�1
τk�1

���Fkτk�1

�	
1tt τk�1¤su, (2.13)

Aφs �
¸
k¥0

�
Y ζk
τk�1

� E
�
Y
ζk�1
τk�1

���Fkτk�1

�
� c̄

αk�1

ζk

	
1tt τk�1¤su. (2.14)

Remark 2.5. For all k ¥ 0, since αk�1 P Fkτk�1
, we have

E
�
Y
ζk�1
τk�1

���Fkτk�1

�
�

ḑ

j�1

P
�
ζk�1 � j|Fkτk�1

	
Y j
τk�1

�
ḑ

j�1

Pαkζk,jY
j
τk�1

. (2.15)

Lemma 2.2. Assume that assumption (2.2) is satis�ed. For any admissible strategy

φ P A i
t ,Mφ is a square integrable martingale withMφ

t � 0. Moreover, Aφ is increasing

and satis�es AφT P L2pF8T q. In addition,

E

���¸
k¥0

�
Y
ζk�1
τk�1 � E

�
Y
ζk�1
τk�1

���Fkτk�1

�	
1tτk�1¤tu

�2
������F0

t

��   �8 a.s. (2.16)

Proof. Let φ P A i
t . Using (2.14) and (2.15), we have, for all s P rt, T s,

Aφs �
¸
k¥0

�
Y ζk
τk�1

�
ḑ

j�1

P
αk�1

ζk,j
Y j
τk�1

� c̄
αk�1

ζk

�
1tt τk�1¤su, (2.17)

which is increasing since each summand is positive as Y P D.
We have, for t ¤ s ¤ T ,

Yφs � Yφt �
¸
k¥0

�
Y ζk
τk�1^s � Y ζk

τk^s
	
�

¸
k¥0

�
Y
ζk�1
τk�1 � Y ζk

τk�1

	
1tt τk�1¤su. (2.18)
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Using (2.6), we get, for all k ¥ 0,

Y ζk
τk�1^s � Y ζk

τk^s

� �
» τk�1^s

τk^s
f ζkpu, Y ζk

u , Zζku qdu�
» τk�1^s

τk^s
Zζku dWu �

» τk�1^s

τk^s
dKζk

u ,

Recalling ζk is Fτk -measurable. We also have, using (2.15), for all k ¥ 0,

Y
ζk�1
τk�1 � Y ζk

τk�1

�
�
Y
ζk�1
τk�1 � E

�
Y
ζk�1
τk�1

���Fkτk�1

�	
�
�
Y ζk
τk�1

�
ḑ

j�1

P
αk�1

ζk,j
Y j
τk�1

� c̄
αk�1

ζk

�
� c̄

αk�1

ζk
.

Plugging the two previous equalities into (2.18), we get:

Yφs � Yφt �
¸
k¥0

�
�
» τk�1^s

τk^s
f ζkpu, Y ζk

u , Zζku qdu�
» τk�1^s

τk^s
Zζku dWu �

» τk�1^s

τk^s
dKζk

u



�

¸
k¥0

�
Y
ζk�1
τk�1 � E

�
Y
ζk�1
τk�1

���Fkτk�1

�	
1tt τk�1¤su �Aφs �Aφt

�
¸
k¥0

�
Y ζk
τk�1

�
ḑ

j�1

P
αk�1

ζk,j
Y j
τk�1

� c̄
αk�1

ζk

�
1tt τk�1¤su. (2.19)

By de�nition of Yφ,Zφ,Kφ,Mφ,Aφ, we obtain, for all s P rt, T s,

Yφs �ξaT �
» T
s
faupu,Yφu ,Zφu qdu�

» T
s
ZφudWu �

» T
s

dMφ
u �

» T
s

dAφu

�
��
AφT �KφT

	
�
�
Aφs �Kφs

	�
. (2.20)

For any n ¥ 1, we consider the admissible strategy φn � pζ0, pτnk qk¥0, pαnkqk¥1q de�ned
by ζn0 � i � ζ0, τ

n
k � τk, α

n
k � αk for k ¤ n, and τnk � T � 1 for all k ¡ n. We set

Yn :� Yφn ,Znv :� Zφn , and so on.
By (2.20) applied to the strategy φn, we get, recalling that Ant � 0,

Anτn^T �Ynt � Ynτn^T �
» τn^T
t

fa
n
s ps,Yns ,Zns qds�

» τn^T
t

Zns dWs

�
» τn^T
t

dMn
s �

» τn^T
t

dAns �
» τn^T
t

dKns . (2.21)

We obtain, for a constant Λ ¡ 0,

E
�|Anτn^T |2� ¤Λ

�
E
�
|Ynt |2 � |Ynτn^T |2 �

» τn^T
t

|fans ps,Yns ,Zns q|2ds (2.22)

�
» τn^T
t

|Zns |2ds�
» τn^T
t

drMnss � pAφT �Aφt q2 � pKnT q2
�


.
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We have

E
�|Ynr |2� ¤ ḑ

j�1

E
�|Y j

r |2
� � E

�|Yr|2� ¤ E
�

sup
t¤r¤T

|Yr|2
�
� }Y }2S2dpF0q,

E
�» τn^T

t
|Zns |2ds

�
¤ }Z}H2

d�κpF0q,

E
�» τn^T

t
|fans ps,Yns ,Zns q|2ds

�
¤ 4L2T }Y }2S2dpF0q � 4L2}Z}H2

dpF0q � 2}fp�, 0, 0q}2H2
dpF0q

and

E
�pKnT q2� ¤ E

�|KT |2
�
.

Thus, by these estimates and the fact that AφT �Aφt P L2pF8T q as φ is admissible, there
exists a constant Λ1 ¡ 0 such that

E
�|Anτn^T |2� ¤ Λ1 � ΛE

�» τn^T
t

drMnss
�
. (2.23)

Using (2.20) applied to φn and Itô's formula between t and τn ^ T , since Mn is a
square integrable martingale orthogonal to W and An,An,Kn are nondecreasing and
nonnegative, we get

E
�
|Ynt |2 �

» τn^T
t

|Zns |2ds�
» τn^T
t

drMnss
�

� E
�
|Ynτn^T |2 � 2

» τn^T
t

Yns fa
n
s ps,Yns ,Zns qds� 2

» τn^T
t

Yns dAns

�2

» τn^T
t

Yns dAns � 2

» τn^T
t

Yns dKns
�

¤ E
�|Ynτn^T |2�� 2E

�» τn^T
t

|Yns fa
n
s ps,Yns ,Zns q|ds

�
� 2E

�» τn^T
t

|Yns |dAns
�

� 2E
�» τn^T

t
|Yns |dAns

�
� 2E

�» τn^T
t

|Yns |dKns
�
. (2.24)

We have, using Young's inequality, for some ε ¡ 0, and (2.23),

E
�» τn^T

t
|Yns fa

n
s ps,Yns ,Zns q|ds

�
¤ 1

2
E
�» τn^T

t
|Yns |2ds

�
� 1

2
E
�» τn^T

t
|fans ps,Yns ,Zns q|2ds

�
¤ T p1

2
� 2L2q}Y }2S2dpF0q � 2L2}Z}H2

dpF0q � }fp�, 0, 0q}2H2
dpF0q,

E
�» τn^T

t
|Yns |dAns

�
¤ 1

2
}Y }2S2dpF0q �

1

2
E
�
pAφT �Aφt q2

�
,

E
�» τn^T

t
|Yns |dKns

�
¤ 1

2
}Y }2S2dpF0q �

1

2
E
�|KT |2

�
,
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and

E
�» τn^T

t
|Yns |dAns

�
¤ 1

2ε
}Y }2S2dpF0q �

ε

2
E
�pAnτn^T q2�

¤ 1

2ε
}Y }2S2dpF0q �

ε

2

�
Λ1 � ΛE

�» τn^T
t

drMnss
�


.

Using these estimates together with (2.24) gives, for a constant Cε ¡ 0 independent of
n,

p1� εΛqE
�» τn^T

t
drMnss

�
¤ Cε

�
}Y }2S2dpF0q � }Z}H2

d�κpF0q � }fp�, 0, 0q}2H2
dpF0q � E

�|KT |2
�	
,

(2.25)

and chosing ε � 1
2Λ gives that E

�³τn^T
t drMnss

�
is upper bounded independently of n.

We also get an upper bound independent of n for E
�pAnτn^T q2� by (2.23).

Since
³τn^T
t drMnss (resp. |Anτn^T |2) is nondecreasing to

³T
t drMφss (resp. to |AφT |2),

we obtain by monotone convergence the �rst part of Lemma (2.2). It is also clear that
Mφ is a martingale satisfyingMφ

t � 0.

We now prove (2.16). Using that E
�
pNφ

t q2
���F0

t

�
is almost-surely �nite as φ is admissible

and ĉ ¡ 0, we compute,

E

���¸
k¥0

�
Y
ζk�1
τk�1 � E

�
Y
ζk�1
τk�1

���Fkτk�1

�	
1tτk�1¤tu

�2
������F0

t

��
¤ E

���¸
k¥0

�����Y ζk�1
τk�1 �

ḑ

j�1

p
αk�1

ζk,j
Y j
t

����� 1tτk�1¤tu

�2
������F0

t

��
¤ 4|Yt|2E

�
pNφ

t q2
���F0

t

�
  �8 a.s. (2.26)

l

2.3.2 An optimal strategy

We now introduce a strategy, which turns out to be optimal for the control problem.
This strategy is the natural extension to our setting of the optimal one for classical
switching problem, see e.g. [17]. The �rst key step is to prove that this strategy is
admissible, which is more involved than in the classical case due to the randomisation.

Let φ� � pζ�0 , pτ�nqn¥0, pα�nqn¥1q de�ned by τ�0 � t and ζ�0 � i and inductively by:

τ�k�1 � inf

#
τ�k ¤ s ¤ T : Y

ζ�k
s � maxuPC

#
ḑ

j�1

P uζk,jY
j
s � c̄uζ�k

++
^ pT � 1q, (2.27)

α�k�1 � min

#
α P arg max

uPC

#
ḑ

j�1

P uζk,jY
j
τ�k�1

� c̄uζk

++
, (2.28)
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recall that C is ordered.
In the following lemma, we show that, since D has non-empty interior, the number of
switch (hence the cost) required to leave any point on the boundary of D is square
integrable, following the strategy φ�. This result will be used to prove that the cost

associated to φ� satis�es E
��
Aφ

�

t

	2
����F0

t

�
is almost surely �nite.

Lemma 2.3. Let Assumption 2.2-ii) hold. For y P D, we de�ne

Spyq �
#

1 ¤ i ¤ d : yi � max
uPC

#
ḑ

j�1

P ui,jyj � c̄ui

++
, (2.29)

and puiqiPSpyq the family of elements of C given by

ui � min arg max
uPC

#
ḑ

j�1

P ui,jyj � c̄ui

+
.

Consider the homogeneous Markov Chain X on Spyq Y t0u de�ned by, for k ¥ 0 and
i, j P Spyq2,

PpXk�1 � j|Xk � iq � P uii,j ,

PpXk�1 � 0|Xk � iq � 1�
¸

jPSpyq
P uii,j ,

PpXk�1 � 0|Xk � 0q � 1,

PpXk�1 � i|Xk � 0q � 0.

Then 0 is accessible from every i P Spyq, meaning that X is an absorbing Markov Chain.
Moreover, let Npyq � inftn ¥ 0 : Xn � 0u. Then Npyq P L2pPiq for all i P Spyq, where
Pi is the probability satisfying PipX0 � iq � 1.

Proof. Assume that there exists i P Spyq from which 0 is not accessible. Then every
communicating class accessible from i is included in Spyq. In particular, there exists a
recurrent class S1 � Spyq. For all i P S1, we have P uii,j � 0 if j R S1 since S1 is recurrent.
Moreover, since S1 � Spyq, we obtain, for all i P S1, by de�nition of Spyq,

yi �
¸
jPS1

P uii,jyj � c̄uii . (2.30)

Since S1 is a recurrent class, the matrix P̃ � pP uii,j qi,jPS1 is stochastic and irreducible.
By de�nition of D, we have

D � Rd�|S
1| �

$&%z P R|S1||zi ¥
¸
jPS1

P uii,jzj � c̄uii , i P S1
,.- � Rd�|S

1| �D1.
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With a slight abuse of notation, we do not renumber coordinates of vectors in D1.
Let i0 P S1 and let us restrict ourself to the domain D1. According to Lemma 3.1, D1 is
invariant by translation along the vector p1, ..., 1q of R|S1|. Moreover, Assumption 3.1 is
ful�lled since P̃ is irreducible and controls puiqiPSpyq are set. So, Proposition 3.1 gives

us that D1 X tz P R|S1||zi0 � 0u is a compact convexe polytope. Recalling (2.30), we see
that pyi� yi0qiPS1 is a point of D1Xtz P R|S1||zi0 � 0u that saturates all the inequalities.
So, pyi � yi0qiPS1 is an extreme points of D1 X tz P R|S1||zi0 � 0u and all extreme points
are given by

E :�
$&%z P R|S1||zi �

¸
jPS1

P uii,jzj � c̄uii , i P S1, zi0 � 0

,.- .

Recalling that D1 is compact, E is a nonempty bounded a�ne subspace of R|S1|, so it is
a singleton. Since D1 X tzi0 � 0u is a compact convex polytope, it is the convex hull of
E and so it is also a singleton. Hence D1 is a line in R|S1|. Moreover, |S1| ¥ 2 as P ui,i � 1

for all u P C and i P t1, . . . , du. Thus D � Rd�|S1| � D1 gives a contradiction with the
fact that D has non-empty interior and the �rst part of the lemma is proved.
Finally, we have Npyq P L2pPiq for all i P Spyq thanks to Theorem 3.3.5 in [18]. l

Lemma 2.4. Assume that assumption (2.2) is satis�ed. The strategy φ� is admissible.

Proof. For n ¥ 1, we consider the admissible strategy φn � pζ0, pτnk qk¥0, pαnkqk¥1q
de�ned by ζn0 � i � ζ�0 , τ

n
k � τ�k , α

n
k � α�k for k ¤ n, and τnk � T � 1 for all k ¡ n. We

set Yns :� Yφns ,Zns :� Zφns and so on, for all s P rt, T s.
By de�nition of τ�, α�, recall (2.27)-(2.28), it is clear thatAns^τ�n � 0 and that

³τ�k�1^s
τ�k^s dK

ζ�k
u �

0 for all k   n and s P rt, T s. The identity (2.20) for the admissible strategy φn gives

Ynt � Ynτ�n^T �
» τ�n^T
t

fa
n
s ps,Yns ,Zns qds�

» τ�n^T
t

Zns dWs �
» τ�n^T
t

dMn
s �

» τ�n^T
t

dAns .

Using similar arguments and estimates as in the precedent proof, we get

E
�
|Anτ�n^T �Ant |2

�
¤ Λ1 � ΛE

�» τ�n^T
t

drMuss
�
, (2.31)

and, for ε ¡ 0,

p1� εΛqE
�» τ�n^T

t
drMnss

�
¤ Cε

�
}Y }2S2dpF0q � }Z}H2

d�κpF0q � }fp�, 0, 0q}2H2
dpF0q

	
. (2.32)

Choosing ε � 1
2Λ gives that E

�³τ�n^T
t drMnss

�
and E

�
|Anτ�n^T �Ant |2

�
are upper bounded

uniformly in n, hence by monotone convergence, we get that Aφ
�

T �Aφ
�

t P L2pF8T q.
It remains to prove that Aφ

�

t P L2pF0
t q. We have Aφ

�

t ¤ čNφ�

t , and E
�
pNφ�

t q2
���F0

t

�
 

�8 a.s. is immediate from Lemma 2.3, since E
�
pNφ�

t q2
���F0

t

�
� ΨpYtq with Ψpyq �

Ei
�pNpyqq2� , y P D, where Ei is the expectation under the probability Pi de�ned in

Lemma 2.3. l
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2.3.3 Proof of Theorem 2.1

We now have all the key ingredients to conclude the proof of Theorem 2.1.
1. Let φ P A i

t , and consider the identity (2.20). Since Mφ is a square integrable
martingale, orthogonal to W , and since AφT � KφT P L2pF8T q and the process Aφ � Kφ
is nonnegative and nondecreasing, the comparison Theorem A.6 gives Yφt ¥ Uφt , recall
(2.4).
Now, we have

Yφt � Y i
t �

¸
k¥0

�
Y
ζk�1

t � Y ζk
t

	
1tτk�1¤tu

� Y i
t �

¸
k¥0

�
Y
ζk�1

t � E
�
Y
ζk�1

t

���Fkτk�1

�	
1tτk�1¤tu

�
¸
k¥0

�
Y ζk
t �

ḑ

j�1

P
αk�1

ζk,j
Y j
τk�1

� c̄
αk�1

ζk

�
1tτk�1¤tu �Aφt . (2.33)

Since Uφt ¤ Yφt and
°
k¥0

�
Y ζk
t �°d

j�1 P
αk�1

ζk,j
Y j
τk�1 � c̄

αk�1

ζk

	
1tτk�1¤tu ¥ 0, we get

Uφt �Aφt ¤ Y i
t �

¸
k¥0

�
Y
ζk�1

t � E
�
Y
ζk�1

t

���Fkτk�1

�	
1tτk�1¤tu

�
¸
k¥0

�
Y ζk
t �

ḑ

j�1

P
αk�1

ζk,j
Y j
τk�1

� c̄
αk�1

ζk

�
1tτk�1¤tu

¤ Y i
t �

¸
k¥0

�
Y
ζk�1

t � E
�
Y
ζk�1

t

���Fkτk�1

�	
1tτk�1¤tu. (2.34)

Using (2.16), we can take conditional expectation on both side with respect to F0
t to

obtain the result.
2. Lemma 2.4 shows that the strategy φ� is admissible. Using (2.20), since Aφ� � 0 and³τ�k�1^T
τ�k^T dK

ζ�k
u � 0 for all k ¥ 0, we obtain

Yφ�s � ξa
�
T �

» T
s
fa

�
upu,Yφ�u ,Zφ�u qdu�

» T
s
Zφ�u dWu �

» T
s

dMφ�

u �
» T
s

dAφ
�

u . (2.35)

By uniqueness Theorem A.4, we get that Yφ
�

t � Uφ
�

t , recall (2.4).
We also have

Yφ
�

t � Y i
t �

¸
k¥0

�
Y
ζ�k�1

t � Y
ζ�k
t

	
1tτ�k�1¤tu

� Y i
t �Mφ�

t �Aφ
�

t ,

thus Uφ
�

t �Aφ�t � Yφ�t �Aφ�t � Y i
t �Mφ�

t , and taking conditional expectation gives the
result. l
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3 Obliquely Re�ected BSDEs associated to randomised switch-

ing problems

In this section, we study the Obliquely Re�ected BSDE (2.6)-(2.7)-(2.8) associated to
the switching problem with controlled randomisation. We address the question of exis-
tence of such BSDEs. Indeed, as observed in the previous section, under appropriate
assumptions, uniqueness follows directly from the control problem representation, see
Corollary 2.1 and Proposition 2.1. We �rst give some general properties of the domain
D and identify necessary and su�cient conditions linked to the non-emptiness of its
interior. The non-empty interior property is key for our existence result and is not
trivially obtained in the setting of signed costs. This is mainly the purpose of Section
3.1. Then, we prove existence results for the associated BSDE in the Markovian frame-
work, in Section 3.2, and in the non-Markovian framework, in Section 3.3, relying on
the approach in [7]. Existence results in [7] are obtained for general obliquely re�ected
BSDEs where the oblique re�ection is speci�ed through an operator H that transforms,
on the boundary of the domain, the normal cone into the oblique direction of re�ection.
Thus, the main di�culty is to construct this operator H with some speci�c properties
needed to apply the existence theorems of [7]. This task is carried out successfully for
the randomised switching problem in the Markovian framework. We also consider an
example of switching problem with controlled randomisation in this framework. In the
non-Markovian framework, which is more challenging as more properties are required on
H, we prove the well-posedness of the BSDE for some examples of randomised switching
problem.

3.1 Properties of the domain of re�ection

In this section, we study the domain where the solution of the re�ected BSDEs is
constrained to take its values. The �rst result shows that the domain D de�ned in (2.9)
is invariant by translation along the vector p1, . . . , 1q and deduces some property for its
normal cone. Most of the time, we will thus be able to limit our study to

D� � D X ty P Rd | yd � 0u . (3.1)

Lemma 3.1. For all x P D, we have

1. x� h
°d
i�1 ei P D, for all h P R,

2. there is a unique decomposition x � yx � zx with yx P D� and zx P R
�°d

i�1 ei

	
,

3. if x P D, we have Cpxq � tv P Rd :
°d
i�1 vi � 0u,

4. Cpxq � Cpyxq, where yx is from the above decomposition.

Proof. 1. If i P t1, . . . , du, we have

xi � h � ¥ max
uPC

�
ḑ

j�1

P ui,jxj � cui

�
� h � max

uPC

�
ḑ

j�1

P ui,jpxj � hq � cui

�
,
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and thus x� h
°d
i�1 ei P D.

2. We set yx � x� zx with zx � xd
°d
i�1 ei. It is clear that y

x
d � 0, and yx P D thanks

to the �rst point. The uniqueness is clear since we have necessarily zx � xd
°d
i�1 ei.

3. Point 1. shows that x�°d
i�1 ei P D. Let v P Cpxq. Then we have, by de�nition,

0 ¥ vJpx�
ḑ

i�1

ei � xq � �vJ
ḑ

i�1

ei � �
ḑ

i�1

vi,

and thus,
°d
i�1 vi � 0.

4. Let x P D. Since x � yx � xd
°d
i�1 ei, it is enough to show that for all w P D and all

a P R, Cpwq � Cpw � a
°d
i�1 eiq.

Let v P Cpwq. We have, for all z P D, since °d
i�1 vi � 0 and vJpz � wq ¤ 0,

vJpz � pw � a
ḑ

i�1

eiqq � vJpz � wq � avJ
ḑ

i�1

ei � vJpz � wq ¤ 0,

and thus v P Cpw � a
°d
i�1 eiq. l

Before studying the domain of re�ection, we introduce three examples in dimension 3
of switching problems. On Figure 1, we draw the domain D� for these three di�erent
switching problems to illustrate the impact of the various controlled randomisations on
the shape of the re�ecting domain.

Example 1: Classical switching problem with a constant cost 1, i.e. C � t1, 2u,

P 1 �
�� 0 1 0

0 0 1
1 0 0

� , P 2 �
�� 0 0 1

1 0 0
0 1 0

� , c̄1 �
�� 1

1
1

� and c̄2 �
�� 1

1
1

�.
Example 2: Randomised switching problem with C � t0u,

P 0 �
�� 0 1{2 1{2

1{2 0 1{2
1{2 1{2 0

� and c̄0 �
�� 1

1
1

�.
Example 3: Switching problem with controlled randomisation where C � r0, 1s,

P u �
�� 0 u 1� u

1� u 0 u
u 1� u 0

� and c̄0 �
�� 1� up1� uq

1� up1� uq
1� up1� uq

� @u P r0, 1s.

(3.2)
In this example, the transitions matrix are given by convex combinations of tran-
sitions matrix of Example 1.
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Figure 1: Domaine D� for three examples of switching problems with or without con-
trolled randomisation.

Remark 3.1. For the randomised switching problem, in any dimension, we can replace

pPi,jq1¤j¤d by
�

Pi,j
1�Pi,i1i�j

	
1¤j¤d

and c̄i by
c̄i

1�Pi,i as soon as Pi,i   1, without changing

D. The factor p1� Pi,iq�1 in the cost has to be seen as the expectation of the geometric
law of the number of trials needed to exit state i. So assuming that diagonal terms are
zero is equivalent to assume that Pi,i   1, for all 1 ¤ i ¤ d.

3.1.1 The uncontrolled case

In this part, we study the domain D for a �xed control, which is �xed to be 0, without
loss of generality. The properties of the domain are closely linked in this case to the
homogeneous Markov chain, denoted X, associated to the stochastic matrix P . For this
part, we thus work with the following assumption.

Assumption 3.1. The set of control is reduced to C � t0u. The Markov chain X with
stochastic matrix P � pPi,jq1¤i,j¤d :� pP 0

i,jq1¤i,j¤d is irreducible.
Our main goal is to �nd necessary and su�cient conditions to characterize the non-
emptiness of the domain D. To this end, we will introduce some quantities related to
the Markov Chain X and the costs vector c̄ :� c̄0.

For 1 ¤ i, j ¤ d, we consider the expected cost along an �excursion� from state i to j:

C̄i,j :� E

�
τj�1¸
n�0

c̄Xn

���X0 � i

�
� E

�
τj�1¸
n�0

cXn,Xn�1

���X0 � i

�
(3.3)
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where

τj :� inftt ¥ 1 |Xt � ju .
We also de�ne

Cj,j :� 0 and Ci,j � C̄i,j for 1 ¤ i � j ¤ d . (3.4)

We observe that, introducing τ̃j :� inftt ¥ 0 |Xt � ju, the cost C rewrites as C̄:

Ci,j :� E

�� τ̃j̧

n�0

c̄Xn1tXn�ju
���X0 � i

�� , for 1 ¤ i, j ¤ d .

Let us remark that Erτ � τ̃ s   �8 and so C̄ and C are �nite since the Markov chain is
irreducible recurrent.
Setting Q � Id � P , the domain D, de�ned in (2.9), rewrites:

D � tx P Rd : Qx� c ¥ 0u. (3.5)

Since P is irreducible, it is well known (see for example [3], Section 2.5) that for all
1 ¤ i, j ¤ d, the matrix Qpi,jq is invertible, and that we have

µ̃i :� detQpi,iq � p�1qi�j detQpi,jq ¡ 0. (3.6)

Moreover, µ̃Q � 0 with µ̃ � pµ̃iqdi�1, i.e. µ :� µ̃
°d
i�1 µ̃i

is the unique invariant probability

measure for the Markov chain with transition matrix P .
We now obtain some necessary conditions for the domain to be non-empty. Let us �rst
observe that

Lemma 3.2. The mean costs C are given for 1 ¤ i � j ¤ d by

Ci,j �
�
pQpj,jqq�1c̄pjq

	
i�1ti¡ju

. (3.7)

Proof. 1. We �rst show that for 1 ¤ i, j ¤ d:

C̄i,j � c̄i �
¸
`�j

C̄`,jPi,` . (3.8)

From (3.3), we have

C̄i,j � E

��8̧
n�0

c̄Xn1tn τju
���X0 � i

�
� c̄i � E

��8̧
n�1

c̄Xn1tn τju
���X0 � i

�
.

Then, since for all n ¥ 1, tX1 � ju X tn   τju � H, we get

C̄i,j � c̄i � E

���8̧

n�1

¸
`�j

c̄Xn1tX1�`u1tn τju
���X0 � i

�� .
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We compute that, for ` � j,

E

��8̧
n�1

c̄Xn1tX1�`u1tn τju
���X0 � i

�
� E

��8̧
n�1

c̄Xn1tn τju
���X1 � `

�
Pi,`.

The proof of (3.8) is then concluded observing that from the Markov property,

E

��8̧
n�1

c̄Xn1tn τju
���X1 � `

�
� C̄`,j .

2. From (3.8), we deduce, recall De�nition (3.4), that, for i � j,

Ci,j � c̄i �
¸
`�j

C`,jPi,` . (3.9)

This equality simply rewrites Qpj,jqC�,j � c̄pjq, which concludes the proof. l

Proposition 3.1. Assume D is non-empty. Then,

1. the mean cost with respect to the invariant measure is non-negative, namely:

µc̄ ¥ 0. (3.10)

2. For all 1 ¤ i, j ¤ d,

min
1¤i,j¤d

pCi,j � Cj,iq ¥ 0. (3.11)

3. The set D� is compact in ty P Rd|yd � 0u.
Moreover, if D has non-empty interior, then

µc̄ ¡ 0 and min
1¤i�j¤d

pCi,j � Cj,iq ¡ 0 . (3.12)

Proof. 1.a We �rst show the key relation:

�Ci,j ¤ xi � xj ¤ Cj,i , for 1 ¤ i, j ¤ d. (3.13)

For j P t1, . . . , du and x P Rd, we introduce πjpxq P Rd�1, given by,

πjpxqk � xk�1tk¥ju � xj , k P t1, . . . , d� 1u.

Let x P D and j P t1, . . . , du. For all i P t1, . . . , du, i � j, we have, by de�nition of D
and since

°d
k�1 Pi,k � 1,

xi � xj ¥
ḑ

k�1

Pi,k pxk � xjq � c̄i.

21



Thus πjpxq satis�es to

Qpj,jqπjpxq ¥ �c̄pjq.

Since
�
Qpj,jq��1 � °

k¥0

�
P pj,jq�k ¥ 0, we obtain, using inequality (3.7)

πjpxq ¥ �
�
Qpj,jq

	�1
c̄pjq � �Cpjq

�,j , (3.14)

which means xi � xj ¥ �Ci,j for all i � j.
Let 1 ¤ i � j ¤ d. The precedent reasoning gives xi � xj ¥ �Ci,j and xj � xi ¥ �Cj,i,
thus (3.13) is proved.
From (3.13), we straightforwardly obtain (3.11) and the fact that D� is compact in
ty P Rd : yd � 0u.
1.b Since D is non empty, the following holds for some x P Rd, recalling (3.5),

Qx� c̄ ¥ 0

Multiplying by µ the previous inequality, we obtain (3.10), since µQ � 0.

2. Assume now that D has non-empty interior and consider x P
�
D. Then, for all

1 ¤ i ¤ d, we have that x� εei belongs to D for ε ¡ 0 small enough. Thus, we get

xi � ε ¥
ḑ

`�1

Pi,`x` � εPi,i � c̄i

and then

Qx� c̄ ¥ ε min
1¤i¤d

p1� Pi,iq
ḑ

`�1

e`.

Since P is irreducible, min1¤i¤dp1 � Pi,iq ¡ 0, and multiplying by µ both sides of the
previous inequality we obtain µc̄ ¡ 0.
For any j � i, since x � εei P D, we deduce from (3.13), �Ci,j � ε ¤ xi � xj . Using
again (3.13), we get �Ci,j � ε ¤ Cj,i. This proves the right hand side of (3.12). l

The next lemma, whose proof is postponed to Appendix A.1, links the condition (3.10)
to costly round-trip.

Lemma 3.3. The followings hold, for 1 ¤ j ¤ d,

C̄jj � µc̄

µj
, (3.15)

and, for 1 ¤ i � j ¤ d,

Ci,j � Cj,i � µc̄

µi

��
Qpj,jq

��1


ipjq,ipjq

. (3.16)
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We are now going to show that previous necessary conditions are also su�cient. The
main result of this section is thus the following.

Theorem 3.1. The following conditions are equivalent:

i) The domain D is non-empty (resp. has non-empty interior).

ii) There exists 1 ¤ i � j ¤ d such that Ci,j � Cj,i ¥ 0 (resp. Ci,j � Cj,i ¡ 0).

iii) The inequality µc̄ ¥ 0 (resp. µc̄ ¡ 0) is satis�ed.

iv) For all 1 ¤ i � j ¤ d, Ci,j � Cj,i ¥ 0 (resp. Ci,j � Cj,i ¡ 0).

Proof. 1 We �rst note that in Proposition 3.1 we have proved iq ùñ ivq. We also
remark that ivq ùñ iiq trivially, and iiq ùñ iiiq in a straightforward way from

equality (3.16), recalling that
�
Qpj,jq��1 � °

k¥0

�
P pj,jq�k ¥ 0.

2. We now study iiiq ùñ iq.
2.a Assume that µc̄ ¥ 0. For 1 ¤ j ¤ d, we denote zj :� �C�,j . Then from (3.9), we
straightforwardly observe that, for all i � j,

zji �
ḑ

`�1

zj`Pi,` � c̄i . (3.17)

We now take care of the case i � j by computing, recall zjj � 0,

zjj �
ḑ

`�1

zj`Pj,` � c̄j �
ḑ

`�1

C`,jPj,` � c̄j � C̄j,j (3.18)

where we used (3.8) with i � j. Then, combining (3.15) and the assumption µc̄ ¥ 0 for
this step, we obtain that zj P D and so D is non empty.
2.b We assume that µc̄ ¡ 0 which implies that C̄jj � µc̄

µj
¡ 0 for all 1 ¤ j ¤ d recalling

(3.15). Set any j P t1, . . . , du and consider zj :� �C�,j introduced in the previous step.
We then set

x :� zj � 1

2pd� 1q
¸
k�j

pzk � zjq. (3.19)

Next, we compute, for i � j, recalling (3.17) and (3.18),

pQx� c̄qi �
�
Qzj � c̄

�
i
� 1

2pd� 1q
¸
k�j

pQzk �Qzjqi

� 0� 1

2d
pQzi �Qzjqi � 1

2pd� 1qppQz
iqi � c̄iq � C̄i,i ¡ 0.
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For i � j, we compute, recalling (3.17) and (3.18),

pQx� c̄qj �
�
Qzj � c̄

�
j
� 1

2pd� 1q
¸
k�j

pQzk �Qzjqj

� C̄j,j � 1

2pd� 1q
¸
k�j

p�c̄j � c̄j � C̄j,jq � C̄j,j
2

¡ 0.

Combining the two previous inequalities, we obtain that

Qx� c̄ ¥
δ

2
1 with δ � mintC̄i,i|1 ¤ i ¤ du.

From this, we easily deduce that x�Bp0, δ
4 supi ||Qi,�||2 q � D, which proves that D has a

non-empty interior.
l

We now give some extra conditions that are linked to the non-emptiness of the domain
D

Proposition 3.2. The following assertions are equivalent:

i) D is non-empty,

ii) For all 1 ¤ i, j, k ¤ d, the following holds

Cjk ¤ Cji � Cik, (3.20)

iii) For any round trip of length less than d, i.e. 1 ¤ n ¤ d, 1 ¤ i1 � ... � in ¤ d, we
have

n�1̧

k�1

Cik,ik�1
� Cin,i1 ¥ 0. (3.21)

Proof. 1. iq ùñ iiq. From Theorem 3.1, we know that �C�,k P D for all k P t1, . . . , du.
Using then (3.13), we have

�Ci,k � Cj,k ¤ Cj,i , for all1 ¤ i, j ¤ d ,

which concludes the proof for this step.
2. iiq ùñ iiiq directly since Ci,i � 0 for all 1 ¤ i ¤ d. Finally iiiq ùñ iq is already
proved in Theorem 3.1 for 2-state round trip. l

Proposition 3.3. Let us assume that D has a non empty interior. De�ne θ�,j � C�,j �
Cd,j1, for all 1 ¤ j ¤ d. Then p�θ�,jq1¤j¤d are a�nely independent and D� is the convex
hull of these points.

24



Proof. We know from Step 2.a in the proof of Theorem 3.1 that �C�,j P D for all
1 ¤ j ¤ d. The invariance by translation along 1 of the domain proves that �θ�,j are in
D�. More precisely, we obtain from (3.9) that,

θi,j �
ḑ

`�1

θ`,jPi,` � c̄i , for 1 ¤ i � j ¤ d . (3.22)

1. We now prove that pθ�,jq1¤j¤d are a�nely independent. We consider thus α P Rd
such that

ḑ

j�1

αj � 0 and z :�
ḑ

j�1

αjθ�,j � 0 . (3.23)

and we aim to prove that αj � 0, for j P t1, . . . , du. To this end, we compute, for
i P t1, . . . , du,

zi :�
ḑ

j�1

αjθi,j �
¸
j�i

αjθi,j � αiθii �
¸
j�i

αj c̄i �
ḑ

`�1

¸
j�i

αjθ`,jPi,` � αiCd,i

�
¸
j�i

αj c̄j �
ḑ

`�1

z`Pi,` � αi

ḑ

`�1

θ`,iPi,` � αiCd,i

� �αipc̄i �
ḑ

`�1

θ`,iPi,` � Cd,iq � �αipc̄i �
ḑ

`�1

C`,iPi,`q � �αiC̄i,i.

We thus deduce that αi � 0 since C̄i,i � µc̄
µi
¡ 0, which concludes the proof for this step.

2. We now show that D� is the convex hull of points p�θ�,jq1¤j¤d, which are a�nely
independent from the previous step. For y P Rd X tyd � 0u, there exists thus a unique
pλ1, . . . , λd�1q P Rd�1 such that y � °d

j�1�λjθ�,j , with λd � 1 �°d�1
j�1 λj . Assuming

that y P D, we have that

v :� Qy � c̄ �
ḑ

j�1

�λjQθ�,j � c̄ �
ḑ

j�1

λjrQp�θ.,jq � c̄s ¥ 0 .

Since rQp�θ.,jq � c̄si � 0 for all i � j, we get, for all 1 ¤ i ¤ d,

vi � λiprQp�θ.,iqsi � c̄iq ¥ 0.

Recalling that rQp�θ.,iqsi � c̄i ¥ 0 we obtain λi ¥ 0 which concludes the proof. l

3.1.2 The setting of controlled randomisation

In this part we adapt Assumption 3.1 in the following natural way.

Assumption 3.2. For all u P C, the Markov chain with stochastic matrix P u :�
pP ui,jq1¤i,j¤d is irreducible.
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We then consider the matrix pC de�ned by, for all pi, jq P t1, . . . , du
pCi,j :� min

uPC
Cui,j (3.24)

recall the De�nition of C̄ui,j for a �xed control in (3.3). Let us note that pCi,j is well
de�ned in R under Assumption 3.2 since C is compact.
The following result is similar as Proposition 3.1 but in the context of switching with
controlled randomisation.

Proposition 3.4. Assume D is non-empty (resp. has non-empty interior). Then,

min
u
µuc̄u ¥ 0 presp. ¡ 0q and min

1¤i�j¤d

� pCi,j � pCj,i	 ¥ 0 presp. ¡ 0q . (3.25)

Moreover, the set D� is compact in ty P Rd : yd � 0u.
Proof. 1. Let x P D. From (3.13), we have for each u P C, �Cui,j ¤ xi � xj ¤ Cuj,i .
Minimizing on u P C, we then obtain

� pCi,j ¤ xi � xj ¤ pCj,i . (3.26)

From this, we deduce that D� is compact in ty P Rd : yd � 0u and we get the right
handside of (3.25).
We also have that, for all u P C,

Qux� c̄u ¥ 0 ,

then multiplying by µu we obtain µuc̄u ¥ 0. This leads to minu µ
uc̄u ¥ 0.

2. Then, results concerning the non-empty interior framework can be obtained as in the
proof of Proposition 3.1.

The case of controlled costs only. Let us �rst start by introducing the minimal
controlled mean cost:

ĉi :� min
uPC

c̄ui , for 1 ¤ i ¤ d .

In this setting, we have that

D :�tx P Rd : pQxqi � c̄ui ¥ 0 , for all u P C, 1 ¤ i ¤ du
�tx P Rd : pQxqi � ĉi ¥ 0 , for all 1 ¤ i ¤ du.

Using the result of Proposition 3.1 with the new costs ĉ, we know that a necessary and
su�cient condition is µĉ ¥ 0. Moreover, the matrix C is de�ned here by

Ci,j �
�
pQpj,jqq�1ĉpjq

	
i�1ti¡ju

, 1 ¤ i � j ¤ d , (3.27)
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and Ci,i � 0, for 1 ¤ i ¤ d. Comparing the above expression with the de�nition of pC in
(3.24), we observe that Ci,j ¤ pCi,j , 1 ¤ i, j ¤ d. The following example con�rms that

min
1¤i�j¤d

� pCi,j � pCj,i	 ¥ 0 ,

recall Proposition 3.4, is not a su�cient condition in this context for non-emptiness of
the domain.

Example 3.1. Set C � t0, 1u,

P �
�� 0 0.5 0.5

0.5 0 0.5
0.5 0.5 0

� , c̄0 �
�� �0.5

1.2
0.7

� and c̄1 �
�� 1.5

0.2
0.2

�
Observe that µ � p1

3 ,
1
3 ,

1
3q and ĉ � p�0.5, 0.2, 0.2qJ. Then, one computes that

min
1¤i�j¤d

� pCi,j � pCj,i	 ¡ 0 but µĉ   0 .

3.2 The Markovian framework

We now introduce a Markovian framework, and prove that a solution to (2.6)-(2.7)-
(2.8) exists for the randomised switching problem under Assumption 3.1 and a technical
copositivity hypothesis, see Assumption 3.4 below. We also investigate an example of
switching problem with controlled randomisation, see (3.2).
To this e�ect, we rely on the existence theorem obtained in [7], which we recall next.
For all pt, xq P r0, T s � Rq, let Xt,x be the solution to the following SDE:

dXs � bps,Xsqds� σps,XsqdWs, s P rt, T s, (3.28)

Xt � x. (3.29)

We are interested in the solutions pY t,x, Zt,x,Kt,xq P S2
dpF0q�H2

d�κpF0q�A2
dpF0q of (2.6)-

(2.7)-(2.8), where the terminal condition satis�es ξ � gpXt,x
T q, and the driver satis�es

fpω, s, y, zq � ψps,Xt,x
s pωq, y, zq for some deterministic measurable functions g, ψ. We

next give the precise set of assumptions we need to obtain our results.
For sake of completeness, we recall here the existence result proved in [7], see also [9].

Assumption 3.3. There exist p ¥ 0 and L ¥ 0 such that

i)

|ψpt, x, y, zq| ¤ Lp1� |x|p � |y| � |z|q.

Moreover, ψpt, x, �, �q is continuous on Rd � Rd�κ for all pt, xq P r0, T s � Rq.
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ii) pb, σq : r0, T s�Rq Ñ Rq�Rq�κ is a measurable function satisfying, for all pt, x, yq P
r0, T s � Rq � Rq,

|bpt, xq| � |σpt, xq| ¤ Lp1� |x|q,
|bpt, xq � bpt, yq| � |σpt, xq � σpt, yq| ¤ L|x� y|.

iii) g : Rq Ñ Rd is measurable and for all pt, xq P r0, T s � Rq, we have

|gpt, xq| ¤ Lp1� |x|pq.

iv) Let X � tµpt, x; s, dyq, x P Rq and 0 ¤ t ¤ s ¤ T u be the family of laws of Xt,x on
Rq, i.e., the measures such that @A P BpRqq, µpt, x; s,Aq � PpXt,x

s P Aq. For any
t P r0, T q, for any µp0, a; t, dyq-almost every x P Rq, and any δ Ps0, T � ts, there
exists an application φt,x : rt, T s � Rd Ñ R� such that:

(a) @k ¥ 1, φt,x P L2prt� δ, T s � r�k, ksq;µp0, a; s, dyqdsq,
(b) µpt, x; s, dyqds � φt,xps, yqµp0, a; s, dyqds on rt� δ, T s � Rq.

v) H : Rd Ñ Rd�d is a measurable function, and there exists η ¡ 0 such that, for all
py, y1q P D � Rd and v P npPpyqq, where P is the projection on D, we have

vJHpyqv ¥ η,

|Hpy1q| ¤ L.

Moreover, H is continuous on D.

Remark 3.2. Assumption iv) is true as soon as σ is uniformly elliptic, see [15].

The existence result in the Markovian setting reads as follows.

Theorem 3.2 ([7], Theorem 4.1). Under Assumption 3.3, there exists a solution pY t,x, Zt,x,Ψt,xq P
S2
dpF0q �H2

d�κpF0q �H2
dpF0q of the following system

Ys � gpXt,x
T q �

» T
s
ψpu,Xt,x

u , Yu, Zuqdu�
» T
s
ZudWu �

» T
s
HpYuqΨudu, s P rt, T s, (3.30)

Ys P D, Ψs P CpYsq, t ¤ s ¤ T, (3.31)» T
t

1tYsRBDu|Ψs|ds � 0. (3.32)

The main point to invoke Theorem 3.2 is then to construct a functionH : Rd Ñ Rd�d
which satis�es Assumption 3.3 v) and such that

Hpyqv P Copyq, (3.33)
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for all y P D and v P Cpyq, where Copyq is the cone of directions of re�ection, given here
by

Copyq :� �
ḑ

i�1

R�ei1tyi�maxuPCt°dj�1 P
u
i,jyj�c̄ui uu.

If Assumption 3.3 i), ii), iii), iv) are also satis�ed, we obtain the existence of a solution
to (3.30)-(3.31)-(3.32). Setting Kt,x

s :� � ³s
t HpY t,x

u qΨt,x
u du for t ¤ s ¤ T shows that

pY t,x, Zt,x,Kt,xq is a solution to (2.6)-(2.7)-(2.8).

3.2.1 Well-posedness result in the uncontrolled case

We assume here Assumption 3.1. In addition, we need to introduce the following tech-
nical assumption in order to construct H satisfying Assumption 3.3 v) and (3.33).

Assumption 3.4. For all 1 ¤ i ¤ d, the matrix Qpi,iq is strictly copositive, meaning
that for all 0 ¤ x P Rd�1, x � 0, we have

xJQpi,iqx ¡ 0. (3.34)

Our main result for this section is the following theorem.

Theorem 3.3. Suppose that Assumption 3.3 i), ii), iii), iv), Assumption 3.1 and As-
sumption 3.4 are satis�ed and that D has non-empty interior.
Then, there exists H : Rd Ñ Rd�d satisfying 3.3 v). Consequently, there exists a solution
to (2.6)-(2.7)-(2.8) with ξ � gpXT q and fpω, s, y, zq � ψps,Xt,x

s pωq, y, zq. Moreover this
solution is unique if we assume also Assumption 2.1-ii).

Proof. We �rst observe that uniqueness follows from Proposition 2.1. We now focus on
proving existence of solution which amounts to exhibit a convenient H function. The
general idea is to start by constructing H on the points pyiq1¤i¤d, given by

yi :� pCd,i � Cj,iq1¤j¤d, (3.35)

then, using Proposition 3.3, we can extend it on the whole D� by linear combination,
and �nally we extend H on all Rd by using the geometry of D.
The proof is then divided into several steps.

1. We start by computing the outward normal cone Cpyq for all y P D�. Let us set
y P D�. Thanks to Proposition 3.3, there exists a unique pλiq1¤i¤d P r0, 1sd such that

y �
ḑ

i�1

λiy
i,

ḑ

i�1

λi � 1.

Let us denote Ey � t1 ¤ i ¤ d|λi ¡ 0u. We will show that

Cpyq �
¸
jREy

R�nj . (3.36)
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where ni :� p�Qi,jq1¤j¤d,and with the convention Cpyq � H when Ey � t1, ..., du. Let
us remark that the result is obvious when Cpyq � H, since, in this case, y is in the
interior of D. So we will assume in the following that Cpyq � H.
1.a. First, let us show that for any 1 ¤ i ¤ d, pnjqj�i is a basis of ty P Rd|°d

k�1 vk � 0u.
Let 1 ¤ i � j ¤ d. It is clear that nj P tv P Rd :

°d
k�1 vk � 0u. Since it is a hyperplan of

Rd and that the family pnjqj�i has d� 1 elements, it is enough to show that the vectors

are linearly independent. We observe that the matrix whose lines are the npiqj , j � i, is

�Qpi,iq. Since P is irreducible, Qpi,iq is invertible. The vectors npiqj , j � i form a basis

of Rd�1, hence the vectors pnjqj�i form a basis of tv P Rd|°d
k�1 vk � 0u.

1.b. We set now j R Ey and we will show that nj P Cpyq. For any z P D, by de�nition of
D, we have

c̄j ¥
ḑ

k�1

Pj,kzk � zj � nJj z,

and for all i P Ey, by de�nition of yi, we have

c̄j �
ḑ

k�1

Pj,ky
i
k � yij � nJj y

i.

This gives nJj pz � yq � nJj z �
°
iPEy λin

J
j y

i ¤ 0, hence nj P Cpyq.
1.c. We now set i � min Ey. Conversely, since pnjqj�i is a basis of tv P Rd :

°d
i�1 vi �

0u Q Cpyq, see Lemma 3.1, for v P Cpyq there exists a unique α � pαjqj�i P Rd�1 such
that v � °

j�i αjnj � pnjqj�iα. We will show here that α` � 0 for all ` P Eyztiu and
α` ¥ 0 for all ` R Ey.
For all z P D, previous calculations give us:

0 ¥ αJ rpnjqj�isJ pz � yq � �αJQpi,�qpz �
¸
`PEy

λ`y
`q � �αJ

��Qpi,�qz �
¸
`PEy

λ`Q
pi,�qy`

�� .
Let us recall that for any j � i, by de�nition of yj , one gets Qpi,�qyj � c̄piq � µc̄

µj
ej , and

Qpi,�qyi � c̄piq � 0. Thus, previous inequality becomes

0 ¤ αJ

��Qpi,�qz �
¸

`PEyztiu
λ`

�
µc̄

µ`
e` � c̄piq



� λic̄

piq

��
� αJ

��Qpi,�qz � c̄piq �
¸

`PEyztiu
λ`
µc̄

µ`
e`

�� . (3.37)

By taking z � yj in (3.37), with j P Eyztiu, we get

0 ¤ αJ

��µc̄
µj
ej �

¸
`PEyztiu

λ`
µc̄

µ`
e`

�� (3.38)
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and so, we can sum, over j, previous inequality with positive weights αj , to obtain

0 ¤
��1�

¸
jPEyztiu

λj

�αJ
�� ¸
`PEyztiu

λ`
µc̄

µ`
e`

�� .
Then 0 ¤ αJ

�°
`PEyztiu λ`

µc̄
µ`
e`

�
since λi ¡ 0. Moreover, we have also 0 ¥ αJ

�°
`PEyztiu λ`

µc̄
µ`
e`

�
by taking z � yi in (3.37), which gives us that

αJ

�� ¸
`PEyztiu

λ`
µc̄

µ`
e`

�� � 0. (3.39)

We recall that µc̄ ¡ 0 since D has non-empty interior (see Theorem 3.1). Pluging (3.39)
in (3.38) gives us that αj ¥ 0 for all j P Eyztiu, which, combined with (3.39) allows to
conclude to αj � 0 for all j P Eyztiu.
Now we apply (3.37) with z � yj for j R Ey: hence 0 ¤ αj

µc̄
µj

for all j R Ey, which
concludes the proof of (3.36).
2. Then, we construct Hpyq. Let us start by Hpyiq for any 1 ¤ i ¤ d. Fix 1 ¤ i ¤ d,

and let Bi P Rpd�1q�pd�1q be the base change matrix from p�npiqj qj�i to the canonical

basis of Rd�1. We set Hpyiq :� IiBiP i, with Ii : Rd�1 Ñ Rd and P i : Rd Ñ Rd�1 the
linear maps de�ned by

Iipx1, . . . , xd�1q � px1, . . . , xi�1, 0, xi, . . . , xd�1q, (3.40)

P ipx1, . . . , xdq � px1, . . . , xi�1, xi�1, . . . , xdq. (3.41)

Now we set Hpyq :� °
iPEy λiHpyiq. Let us take v P Cpyq. Thanks to (3.36), we know

that v � °d
j�1 αjnj for some pαjq1¤j¤d P pR�qd and such that αj � 0 when j P Ey.

Since nk � �QJ
k , for all 1 ¤ k ¤ d, we have v � �QJα. By construction, we get that

Hpyqv � �
¸
jREy

αjej � �α P Copyq.

It remains to check that Assumption 3.3-v) is ful�lled. If v � 0, which is equivalent to
α � 0, we have, for i P Ey,

vJHpyqv � αJQα � pαpiqqJQpi,iqαpiq ¡ 0,

due to Assumption 3.4 and the fact that αi � 0.
3. We have constructed H on D� with needed properties. Finally, we set Hpxq �
Hpx � xd

°d
i�1 eiq for all x P D and Hpxq � HpPpxqq for x P Rd and the proof is

�nished. l

Remark 3.3. i) Assumption 3.4 is satis�ed as soon as P is symmetric and irreducible.
Indeed, Qpi,iq is then nonsingular, symmetric and diagonally dominant, hence positive

31



de�nite, for all i P t1, . . . , du.
ii) In dimension 3, if P is irreducible, then Assumption 3.4 is automatically satis�ed.
Indeed, we have

P �
�� 0 p 1� p

q 0 1� q
r 1� r 0

� (3.42)

for some p, q, r P r0, 1s satisfying to 0 ¤ p� q, 1� r� p, 2� pq� rq   2 by irreducibility.
Thus, for i � 1 for example,

Qp1,1q �
�
Qp1,1q

	J
�

�
2 �pp� qq

�pp� qq 2



(3.43)

is nonsingular, symmetric and diagonally dominant, hence positive de�nite. Thus xJQp1,1qx �
1
2x

J
�
Qp1,1q � �

Qp1,1q�J	x ¡ 0 for all x � 0.

iii) However, in dimension greater than 3, it is not always possible to construct a func-
tion H satisfying to Assumption 3.3. For example in dimension 4, consider the following
matrix:

P �

�����
0

?
3

2 0 1�
?

3
2

1�
?

3
2 0

?
3� 1 1�

?
3

2
0 1 0 0
1
3

1
3

1
3 0

����, (3.44)

together with positive costs c to ensure that the domain has non-empty interior.
It is an irreducible stochastic matrix, and let's consider the extremal point y4 such that

y4
4 � 0, (3.45)

y4
1 �

?
3

2
y4

2 � c1, (3.46)

y4
2 � p1�

?
3

2
qy4

1 � p
?

3� 1qy4
3 � c2, (3.47)

y4
3 � y4

2 � c3. (3.48)

We have Cpy4q � R�p�1,
?

3
2 , 0, 1�

?
3

2 qJ�R�p1�
?

3
2 ,�1,

?
3�1, 1�

?
3

2 qJ�R�p0, 1,�1, 0qJ �:°3
i�1 R�ni.

If Hpy4q satis�es Hpy4qn1 � p�1, 0, 0, 0q, Hpy4qn2 � p0,�1, 0, 0q and Hpy4qn3 � p0, 0,�1, 0q,
consider v � 1

2n1 � n2 �
?

3
2 n3 P Cpy4q. Then it is easy to compute vJHv � 0, hence it

is not possible to construct Hpy4q at this point satisfying Assumption 3.3.

3.2.2 An example of switching problem with controlled randomization

We assume here that C � r0, 1s and we consider the example of switching problem with
controlled randomisation given by (3.2). Since the cost functions are positive, D has a
non-empty interior.
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Theorem 3.4. There exists a function H : R3 Ñ R3�3 that satis�es Assumption 3.3-v)
and such that

Hpyqv P Copyq, @y P D, v P Cpyq.

Consequently, if we assume that Assumption 3.3(i)-(iv) is ful�lled, there exists a solution
to (2.6)-(2.7)-(2.8) with ξ � gpXT q and fpω, s, y, zq � ψps,Xt,x

s pωq, y, zq. Moreover this
solution is unique if we assume also Assumption 2.1-ii).

Proof. We �rst observe that uniqueness follows once again from Proposition 2.1.
1. We start by constructing H on the boundary of D. Recalling Lemma 3.1, it is enough
to construct it on its intersection with D� which is made up of 3 vertices

y1 � p1, 0, 0q, y2 � p0, 1, 0q, y3 � p0,�1,�1q

and three edges that are smooth curves. We denote E1 (respectively E2 and E3) the
curve between y1 and y2 (respectively between y2 and y3 and between y3 and y1). Let
us construct Hpy1q and Hpy2q: we must have

Hpy1q
�� 1 1

0 �1
�1 0

��
�� 0 0

0 �b
�a 0

�, Hpy2q
�� �1 0

1 1
0 �1

��
�� �c 0

0 0
0 �d

�,
with a, b, c, d ¡ 0. Let us set a � b � c � d � 1. Then we can take

Hpy1q �
�� 1 1 1

1 2 1
1 1 2

�, Hpy2q �
�� 2 1 1

1 1 1
1 1 2

�.
We de�ne now H on E1. We denote pxsqsPr0,1s a continuous parametrization of E1 such
that x0 � y1 and x1 � y2. For all s P r0, 1s, we also denote Rs the matrix that send the
standard basis on a local basis at point xs with the standard orientation and such that:
the two �rst vectors are in the plane tz � 0u, the �rst one is orthogonal to E1 while the
second one is tangent to E1 and the third one is e3. We have in particular, Q0 � Id.
Then we just have to set

Hpxsq � RsrsHpy1q � p1� sqR�1
1 Hpy2qR1sR�1

s .

We can check that, by construction, Assumption 3.3-v) and (3.33) are ful�lled for points
on E1. Moreover, we are able to construct by the same method H on y3, and then on
E2 and E3, satisfying Assumption 3.3-v) and (3.33).
2. By using Lemma 3.1 we can extend H on all the boundary of D. Finally, we can
extend H by continuity on the whole space R3 by following Remark 2.1 in [7]. l
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3.3 The non-Markovian framework

We now switch to the non-Markovian case, which is more challenging. We prove the
well-posedness of the RBSDE in the uncontrolled setting for two cases: Problems in
dimension 3 and the example of a symmetric transition matrix P , in any dimension.
We �rst recall Proposition 3.1 in [7] that gives an existence result for non-Markovian
obliquely re�ected BSDEs and the corresponding assumptions, see Assumption 3.5 be-
low. Let us remark that the non-Markovian case is more challenging for our approach
as it requires more structure condition on H, which must be symmetric and smooth in
this case.

Assumption 3.5. There exists L ¡ 0 such that

i) ξ :� gppXtqtPr0,T sq with g : Cpr0, T s,Rqq Ñ D̄ a bounded uniformly continuous
function and X solution of the SDE (3.28) where pb, σq : r0, T s � Rq Ñ Rq � Rq�κ
is a measurable function satisfying, for all pt, x, yq P r0, T s � Rq � Rq,

|σpt, xq| ¤ L,

|bpt, xq � bpt, yq| � |σpt, xq � σpt, yq| ¤ L|x� y|.

ii) f : Ω� r0, T s � Rd � Rd�κ Ñ Rd is a P b BpRd � Rd�κq-measurable function such
that, for all pt, y, y1, z, z1q P r0, T s � Rd � Rd � Rd�κ � Rd�κ,

|fpt, y, zq � fpt, y1, z1q| ¤ L
�|y � y1| � |z � z1|� .

Moreover we have

ess sup
ωPΩ,tPr0,T s

E
�» T

t
|fps, 0, 0q|2ds

���Ft� ¤ L.

iii) H : Rd Ñ Rd�d is valued in the set of symmetric matrices Q satisfying

|Q| ¤ L , L|υ|2 ¥ υJQυ ¥ 1

L
|υ|2 , @υ P Rd. (3.49)

H is a C1-function and H�1 is a C2 function satisfying

|ByH| � |H�1| � |ByH�1| � |B2
yyH

�1| ¤ L.

From this assumption, follows the following general existence result in the non-Markovian
setting.

Theorem 3.5 ([7], Proposition 3.1). We assume that D has non-empty interior. Under
Assumption 3.5, there exists a solution pY,Z,Ψq P S2

dpF0q � H2
d�κpF0q � H2

dpF0q of the
following system

Ys � ξ �
» T
s
fpu, Yu, Zuqdu�

» T
s
ZudWu �

» T
s
HpYuqΨudu, s P r0, T s, (3.50)

Ys P D, Ψs P CpYsq, 0 ¤ s ¤ T, (3.51)» T
0

1tYsRBDu|Ψs|ds � 0. (3.52)
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Remark 3.4. i) The assumption on the terminal condition is slightly less general
than the one needed in [7] (see Assumption SB(i) and Corollary 2.2 in [7]). One
could get a more general result by assuming that Erξ|F.s is a BMO martingale such
that its bracket has su�ciently large exponential moment.

ii) We do not use Theorem 3.1 in [7] since the domain D is not smooth enough to
apply it (see Assumption SB(iv) in [7]). Consequently, we have to assume the
extra assumption that ξ is bounded.

iii) The uniqueness result for this part is obtain also by invoking Corollary 2.1.

3.3.1 Existence of solutions in dimension 3

We focus in this part on the uncontrolled case C � t0u, in dimension d � 3. Thus,
there is a unique transition matrix given by

P :� P 0 �
�� 0 p 1� p

q 0 1� q
r 1� r 0

�, (3.53)

for some p, q, r P r0, 1s.
Theorem 3.6. Let us assume that 0   p, q, r   1 and that D has non-empty interior.
Then there exists a function H : R3 Ñ R3�3 that satis�es Assumption 3.5(iii) and such
that

Hpyqv P Copyq, @y P D, v P Cpyq. (3.54)

Consequently, if we assume that Assumption 3.5(i)-(ii) is ful�lled, then there exists a
solution to the Obliquely Re�ected BSDE (2.6)-(2.7)-(2.8). Moreover this solution is
unique if we assume also Assumption 2.1-ii).

Proof. Once again we exhibit a convenient H. Thanks to Lemma 3.1, it is enough to
construct H only on R3 X tpx, y, zq P R3|z � 0u. we start by D� which isa triangle with
three vertices vi � pxi, yi, ziq, i � 1, 2, 3 given by:

x1 � py1 � p1� pqz1 � c1, x2 � py2 � p1� pqz2 � c1, y3 � qx3 � p1� qqz3 � c2, (3.55)

y1 � qx1 � p1� qqz1 � c2, z2 � rx2 � p1� rqy2 � c3, z3 � rx3 � p1� rqy3 � c3, (3.56)

z1 � 0, z2 � 0, z3 � 0. (3.57)

We �rst observe that uniqueness follows once again from Proposition 2.1. Let us now
construct H on each vertex. We consider �rst the point v1. It is easy to compute its
outward normal cone, which is given by

Cpv1q � R�p�1, p, 1� pqJ � R�pq,�1, 1� qqJ. (3.58)
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The matrix Hpv1q must satisfy

Hpv1q
�� �1 q

p �1
1� p 1� q

��
�� �a 0

0 �b
0 0

� (3.59)

for some a, b ¡ 0. Taking a � 1
q , b � 1

p , we consider, for any α ¡ 0,

Hpv1q � �
�� 1 0

0 1
0 0

�� �q pq
pq �p


�1
�� 1 0 0

0 1 0
0 0 0

��
�� α α α

α α α
α α α

� (3.60)

� 1

pqp1� pqq

�� α� p α� pq α
α� pq α� q α
α α α

�. (3.61)

It is easy to check that this matrix Hpv1q is symmetric and positive de�nite for any
α ¡ 0, so we can set α � 1 in the following. Similarly, we construct H on vertices v2, v3,

Hpv2q � 1

rp1� pqp1� rp1� pqq

�� 1� p1� pq 1 1� rp1� pq
1 1 1

1� rp1� pq 1 1� r

�, (3.62)

Hpv3q � 1

p1� qqp1� rqp1� p1� qqp1� rqq

�� 1 1 1
1 1� p1� qq 1� p1� qqp1� rq
1 1� p1� qqp1� rq 1� p1� rq

�.
We can extend H on all D� by convex combination, i.e. linear interpolation. By this way,
H stays valued in the set of positive de�nite symmetric matrices and is smooth enough.
We could also de�ne H outside DXtpx, y, zq P R3|z � 0u by linear interpolation but we
will lose the boundedness and the positivity of H. Nevertheless we can �nd a bounded
and convex, C2 open neighborhood V of D, small enough, such that H (still de�ned
by linear interpolation) stays valued in the set of positive de�nite symmetric matrices
on V. Then we de�ne Hpyq for y R V by HpPpyqq where P stands for the projection
onto V. By this way, H is a bounded function with values in the set of positive de�nite
symmetric matrices, that satis�es (3.49), (3.54) and that is C0pR2qXC2pR2zBVq smooth,
with BV the boundary of V. Finally, we just have to mollify H in a neighborhood of BV,
small enough to stay outside D X tz � 0u. l

Remark 3.5. When pqrp1�pqp1�qqp1�rq � 0 then we can show that it is not possible
to construct a function H that satis�es Assumption 3.5(iii) and (3.54).

3.3.2 Existence of solutions for a symmetric multidimensional example

We focus in this part on the uncontrolled case C � t0u, in dimension d ¥ 3 with a
unique transition matrix P given by

Pi,j � 1

d� 1
1i�j .
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Theorem 3.7. Assume that D has non-empty interior. There exists a function H :
Rd Ñ Rd�d that satis�es Assumption 3.5(iii) and such that

Hpyqv P Copyq, @y P D, v P Cpyq.

Consequently, if we assume that Assumption 3.5(i)-(ii) is ful�lled, then there exists a
solution to the Obliquely Re�ected BSDE (2.6)-(2.7)-(2.8). Moreover this solution is
unique if we assume also Assumption 2.1-ii).

Proof. The proof follows exactly the same lines as the proof of Theorem 3.6. D� is a
convex polytope with d vertices pyiq1¤i¤d satisfying: for all 1 ¤ i ¤ d,

yi` �
¸
j�i

1

d� 1
yj` � c̄i, @i � `, and yid � 0.

Let us construct H on vertex yd. It is easy to compute its outward normal cone, which
is positively generated by vectors f1, ..., fd�1 where

fki � �1i�k � 1

d� 1
1i�k.

For any 1 ¤ k ¤ d � 1, we impose Hpydqfk � �αkek with αk ¡ 0. We can check that
it is true with αk � 1 for all 1 ¤ k ¤ d� 1, if we set, for any a ¡ 0,

Hpydq �

������
a a� d�1

d a� 2d�1
d

. . .
...

a� d�1
d a

...
a� 2d�1

d . . . . . . a� 2d�1
d

�����.

Since d�1
d is an eigenvalue ofHpydq with multiplicity d�2, DetpHpydqq � �

a� 2d�1
d

� pd�
1q �d�1

d

�d�2
and TrpHpydqq � da� 2d�1

d , Hpydq is a positive de�nite symmetric matrix
as soon as a ¡ 2d�1

d . Thus we can set a � 2. By simple permutations of rows and
columns in Hpydq we can construct easily Hpykq for any 1 ¤ k ¤ d. Then we just have
to follow the proof of Theorem 3.6 to extend H from vertices of D� to the whole space.

l

A Appendix

A.1 Proof of Lemma 3.3

For all I,J � t1, . . . , du2, let adrQpI,J qs be the adjunct matrix of QpI,J q.
For 1 ¤ j ¤ d, we denote, for ease of presentation, Qj :� adrQpj,jqs, and we have

Qj

ipjq,`pjq
� p�1qipjq�`pjq detQptj,`u,tj,iuq. (A.1)
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for all p`, iq P t1, . . . , duztju. For all 1 ¤ i � j ¤ d, we de�ne

Ci,j :�
�
pQpj,jqq�1c̄pjq

	
i�1ti¡ju

and Cj,j � 0.

Using Qj the adjunct matrix of Qpj,jq, we observe then, for latter use,

Ci,j � 1

µj

¸
`�j

Qj

ipjq,`pjq
c̄` , for i � j . (A.2)

Proof. 1. We �rst show that (3.3) holds true. From (3.3), we observe that

C̄j,j � E

�
τj�1¸
n�0

c̄Xn | X0 � j

�

� E

�
τj�1¸
n�0

ḑ

`�1

c̄`1tXn�`u| X0 � j

�
.

Thus,

C̄j,j �
ḑ

`�1

c̄`γ
j
` with γj` � E

�
τj�1¸
n�0

1tXn�`u|X0 � j

�

From [20, Theorem 1.7.5], we know that γj` � µ`
µj
.

2. We prove (3.16) assuming the following for the moment: for all distinct 1 ¤
i, j, k ¤ d,

µiQ
j

ipjq,kpjq
� µjQ

i
jpiq,kpiq � Qi

jpiq,jpiqµk � Qj

ipjq,ipjq
µk. (A.3)

Let 1 ¤ i � j ¤ d. We have, using (A.2),

Ci,j � Cj,i � 1

µj

�
Qj c̄pjq

	
ipjq

� 1

µi

�
Qic̄piq

	
jpiq

� 1

µj

¸
k�j

Qj

ipjq,kpjq
c̄k � 1

µi

¸
k�i

Qi
jpiq,kpiq c̄k

� 1

µj
Qj

ipjq,ipjq
c̄i � 1

µi
Qi
jpiq,jpiq c̄j �

¸
k�i,j

µiQ
j

ipjq,kpjq
� µjQ

i
jpiq,kpiq

µiµj
c̄k.

Using the previous point and the fact that Qj

ipjq,ipjq
� Qi

jpiq,jpiq
, we get

Ci,j � Cj,i � Qj

ipjq,ipjq

��µic̄i � µj c̄j
µiµj

�
¸
k�i,j

µk c̄k
µiµj

��
Qj

ipjq,ipjq

µiµj
µc̄

38



which is the result we wanted to prove.
3. We now prove (A.3).
Let i, j P t1, . . . , du and i � j. We observe �rst, using (A.1), that

Qj

ipjq,ipjq
� detQptj,iu,tj,iuq � Qi

jpiq,jpiq

For k P t1, . . . , duzti, ju, we denote by kij P t1, . . . , d� 2u (resp. ijk, jik) the index such
that:

Qk,� � Q
ptj,iu,tj,iuq
kij ,� presp. Qi,� � Q

ptj,ku,tj,iuq
ijk,� , Qj,� � Q

ptk,iu,tj,iuq
jik,� q , (A.4)

namely

kij � k � 1tk¡iu � 1tk¡ju, ijk � i� 1ti¡ku � 1ti¡ju and jik � j � 1tj¡ku � 1tj¡iu.

Let σk be the permutation of t1, . . . , d� 2u given by�
2 . . . kij 1 kij � 1 . . . d� 2
1 . . . kij � 1 kij kij � 1 . . . d� 2



which is the composition of kij�1 transpositions. Applying σ�1

k to the row ofQptj,iu,tj,iuq,
we obtain a matrix denoted simply Qptj,iu,tj,iuq

σkp�q,� whose �rst row is Qptj,iu,tj,iuq
k,� , and we have

detQptj,iu,tj,iuq � p�1qkij�1 detQ
ptj,iu,tj,iuq
σkp�q,�

Since µQ � 0, we have Qk,� � �°
`�k

µ`
µk
Q`,� and then,

detQ
ptj,iu,tj,iuq
σkp�q,� � �

¸
`�k

µ`
µk

����������

Q`,�
Q
ptj,iu,tj,iuq
σkp2q,�

...

Q
ptj,iu,tj,iuq
σkpd�2q,�

����������
� � µi

µk

����������

Qi,�
Q
ptj,iu,tj,iuq
σkp2q,�

...

Q
ptj,iu,tj,iuq
σkpd�2q,�

����������
� µj
µk

����������

Qj,�
Q
ptj,iu,tj,iuq
σkp2q,�

...

Q
ptj,iu,tj,iuq
σkpd�2q,�

����������
.

Let σi (resp. σj)be constructed as σk but with ijk (resp. jik) instead of kji then one
observes

detQ
ptj,iu,tj,iuq
σkp�q,� � � µi

µk
detQ

ptj,ku,tj,iuq
σip�q,� � µj

µk
detQ

pti,ku,tj,iuq
σjp�q,�

� � µi
µk
p�1qijk�1 detQptj,ku,tj,iuq � µj

µk
p�1qjik�1 detQpti,ku,tj,iuq

We compute that

p�1qijk�1�kij�1�ipjq�kpjq � �1 and p�1qjik�1�kij�1�jpiq�kpiq � �1,

leading to

µkQ
j

ipjq,ipjq
� µiQ

j

ipjq,kpjq
� µjQ

i
jpiq,kpiq .

l
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A.2 Enlargement of a �ltration along a sequence of increasing stop-

ping times

We �x a strategy φ P Φ and we study �ltrations Fi, i ¥ 0 and F8 which are constructed
in subsection (2.1).
For each n ¥ 0, we de�ne a new �ltration Gn � pGnt qt¥0 by the relations G0

t � F0
t and

for n ¥ 1, Gnt � F0
t _ σpXi, i ¤ nq � Gn�1

t _ σpXnq.

A.2.1 Representation Theorems

The goal of this section is to derive Integral Representation Theorems for �ltrations
Fi, i ¥ 0 and F.
We �rst recall, see [1]:

Theorem A.1 (Lévy). Let pΩ,F ,F,Pq a �ltered probability space with F non necessarily
right-continuous. Let ξ P F and X a F�supermartingale.

1. We have Erξ|Fts Ñ Erξ|F8s a.s. and in L1, as tÑ8.

2. If tn decreases to t, we have Xtn Ñ Xt� a.s. and in L1 as nÑ8.

In particular, if Xt � Erξ|Fts, we get that Erξ|Ftns Ñ Erξ|Ft�s a.s. and in L1 as
nÑ8, for tn decreasing to t.

We now recall an important notion of coincidence of �ltrations between two stopping
times, introduced in [1]. This will be useful for our purpose in the sequel.
Let S, T two random times, which are stopping times for two �ltrations H1 � pH1

t qt¥0

and H2 � pH2
t qt¥0. We set

JS, T J :� tpω, sq P Ω� R� : Spωq ¤ s   T pωqu .

We say that H1 and H2 coincide on JS, T J if

1. for each t ¥ 0 and each H1
t -measurable variable ξ, there exists a H2

t -measurable
variable χ such that ξ1S¤t T � χ1S¤t T ,

2. for each t ¥ 0 and each H2
t -measurable variable χ, there exists a H1

t -measurable
variable ξ such that χ1S¤t T � ξ1S¤t T .

We now study the right-continuity of the �ltration Gn for some n ¥ 0. Using its
speci�c structure, it is easy to compute conditional expectations. Lévy's theorem then
allows to obtain the right-continuity.

Lemma A.1. Let n ¥ 0.

1. If ξ P L1pF08q and ξ1 P L1pσpXi, 1 ¤ i ¤ nqq, then for t ¥ 0, we have Erξξ1|Gnt s �
E
�
ξ|F0

t

�
ξ1.

2. Gn is right-continuous.
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Proof.

1. If F P F0
t and F 1 P σpXi, 1 ¤ i ¤ nq, we have, by independence,

E
�
ξξ11FXF 1

� � Erξ1F sE
�
ξ11F 1

�
� E

�
E
�
ξ|F0

t

�
1F

�
E
�
ξ11F 1

�
� E

�
ξ1E

�
ξ|F0

t

�
1FXF 1

�
.

Since tF X F 1|F P F0
t , F

1 P σpXi, 1 ¤ i ¤ nqu is a π-system generating Gnt , the
result follows by a monotone class argument.

2. Let t ¥ 0 and tm decreasing to t. We have, using Lévy's Theorem, the previous
point and the right-continuity of F0,

E
�
ξξ1

��Gnt�� � lim
m

E
�
ξξ1

��Gntm� � lim
m
ξ1E

�
ξ|F0

tm

�
� ξ1E

�
ξ|F0

t

� � E
�
ξξ1

��Gnt � .
By a monotone class argument, we have E

�
ξ|Gnt�

� � Erξ|Gnt s for all bounded
Gn8-measurable ξ, hence it follows the right-continuity of Gn.

l

Using the previous Lemma, we show how to compute conditional expectations in F
and Fn for all n ¥ 0, and show that these �ltrations are right-continuous.

Proposition A.1. 1. For all m ¥ n ¥ 0, Fn, Fm and F8 coincide on J0, τn�1J.
For all n ¥ 0, Fn and Gn coincide on Jτn,�8J.

2. For all n ¥ 0 and t ¥ 0, we have, for ξ P L1pFn�18 q:

E
�
ξ|Fn�1

t

� � Erξ|Fnt s 1t τn�1 � E
�
ξ|Gn�1

t

�
1τn�1¤t. (A.5)

Let t ¥ 0 such that
°�8
n�0 Ppτn ¤ t   τn�1q � 1. Then, for ξ P L1pF88 q,

Erξ|F8t s �
�8̧

n�0

Erξ|Fnt s 1τn¤t τn�1 .

3. For all n ¥ 0, Gn is right-continuous.

4. The �ltration G is right-continuous on r0, T s.
Proof.

1. Let t ¥ 0 be �xed. If ξ is Fnt -measurable, since Fnt � Fmt � F8t for m ¥ n, taking
χ � ξ gives a Fmt -measurable (resp. F8t -measurable) random variable such that

41



ξ1t τn�1 � χ1t τn�1 .
Conversely, if χ is a Fmt -measurable random variable, then

χ � fpχ̃,X11τ1¤t, . . . , Xm1τm¤tq,

for a measurable f and a F0
t -measurable variable χ̃. Since Xk1τk¤t � 0 on tt  

τn�1u when k ¥ n, one gets:

χ1t τn�1 � fpχ̃,X11τ1¤t, . . . , Xn1τn¤t, 0, . . . , 0q1t τn�1

�: ξ1t τn�1 ,

where ξ is Fnt -measurable.
Last, let χ be a F8t -measurable variable. Then χ � fpχ̃,Xi11τi1¤t, . . . , XiN 1τiN¤tq
for some random N ¥ 0 and 1 ¤ i1 ¤ � � � ¤ iN , and the same arguments applies.

The proof of the second claim is straightforward as one remarks that for t ¥ 0
and n ¥ 1, the equality fpξ,X1, . . . , Xnq1τn¤t � fpξ,X11τ1¤t, . . . , Xn1τn¤tq1τn¤t
holds, since the random times τi, i ¥ 0 are nondecreasing.

2. Let n ¥ 0 and ξ P L1pFn�18 q.
Since Fn and Fn�1 coincide on J0, τn�1J, we have E

�
ξ|Fn�1

t

�
1t τn�1 � ξ̃1t τn�1 for

a Fnt -measurable variable ξ̃. In particular, the left hand side is also Fnt -measurable.
Hence E

�
ξ|Fn�1

t

�
1t τn�1 � E

�
E
�
ξ|Fn�1

t

�
1t τn�1

��Fnt � � Erξ|Fnt s 1t τn�1 .
Similarly, since Fn�1 andGn�1 coincide on Jτn�1,�8J, we have E

�
ξ|Gn�1

t

�
1τn�1¤t �

ξ̂1τn�1¤t for a Fn�1
t -measurable variable ξ̂. In particular, the left hand side

is Fn�1
t -measurable. Hence E

�
ξ|Gn�1

t

�
1τn�1¤t � E

�
E
�
ξ|Gn�1

t

�
1τn�1¤t

��Fn�1
t

� �
E
�
ξ|Fn�1

t

�
1τn�1¤t.

Let t ¥ 0 such that
°
n Ppτn ¤ t   τn�1q � 1. We have, since G and Gn coincide

on J0, τn�1J, using the same arguments as before,

Erξ|Gts �
¸
n

Erξ|Gts 1τn¤t τn�1 �
¸
n

Erξ|Gnt s 1τn¤t τn�1 .

3. We prove by induction that Fn is right-continuous. Since F0 is the augmented
Brownian �ltration, the result is true for n � 0.
Assume now that Fn�1, n ¥ 1, is right-continuous. Let t ¥ 0, ξ P L1pFn8q and
ptmqm¥0 such that tm ¥ tm�1 and limm tm � t. We have, using the previous point
and the right-continuity of Fn�1 and Gn:

E
�
ξ|Fnt�

� � lim
m

E
�
ξ|Fntm

�
� lim

m
E
�
ξ|Fntm

�
1tm τn � E

�
ξ|Fntm

�
1τn¤tm

� lim
m

E
�
ξ|Fn�1

tm

�
1tm τn � E

�
ξ|Gntm

�
1τn¤tm

� E
�
ξ|Fn�1

t

�
1t τn � Erξ|Gtms 1τn¤t

� Erξ|Fnt s .

42



4. Let t   T, ξ P L1pF88 q, ptmqm¥0 such that T ¡ tm ¡ tm�1 and limm tm � t. We
have, by Lévy's Theorem and the �rst point,

E
�
ξ|F8t�

� � lim
m

E
�
ξ|F8tm

� � lim
m

�8̧

n�0

E
�
ξ|F8tm

�
1τn¤tm τn�1

� lim
m

�8̧

n�0

E
�
ξ|Fntm

�
1τn¤tm τn�1 .

Fix ω P Ω. We have that tm   T̂   τN�1pωq, hence

E
�
ξ|F8t�

�pωq � lim
m

�8̧

n�0

E
�
ξ|Fntm

�pωq1τnpωq¤tm τn�1pωq

� lim
m

Npωq�1¸
n�0

E
�
ξ|Fntm

�pωq1τnpωq¤tm τn�1pωq

�
Npωq�1¸
n�0

lim
m

E
�
ξ|Fntm

�pωq1τnpωq¤tm τn�1pωq

�
�8̧

n�0

lim
m

E
�
ξ|Fntm

�pωq1τnpωq¤tm τn�1pωq.

Finally using the right-continuity of each Fn, we get

E
�
ξ|F8t�

� � �8̧

n�0

lim
m

E
�
ξ|Fntm

�
1τn¤tm τn�1 �

�8̧

n�0

Erξ|Fnt s 1τn¤t τn�1 � Erξ|F8t s ,

which proves that F8 is right-continuous on r0, T s.

l

Lemma A.2. Let n ¥ 0 and ξ P L1pFn8q. Let σ be a Fn�stopping time. We have:

E
�
ξ|Fn�1

σ

� � Erξ|Fnσ s . (A.6)

Proof. Assume �rst that σ � s is deterministic.
Let ξ̃ � ψpχ,Xn�11τn�1¤sq be a Fn�1

s -measurable bounded variable, where χ is Fns -
measurable. We need to show

E
�
ξξ̃
�
� E

�
Erξ|Fns s ξ̃

�
.

We have, with ψ̂pyq :� ³
ψpy, xqPXn�1pdxq,

E
�
Erξ|Gns sψpχ,Xn�11τn�1¤sq

� � E
�
Erξ|Gns sψpχ, 0q1s τn�1

�� E
�
Erξ|Gns sψpχ,Xn�1q1τn�1¤s

�
� E

�
ξψpχ, 0q1s τn�1

�� E
�
ξψ̂pχq1τn�1¤s

�
,
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and the same computation with ξ instead of Erξ|Gns s gives the same result.
Let σ be a Fn-stopping time, and let ξs � Erξ|Fns s � E

�
ξ|Fn�1

s

�
. Since Fn (or Fn�1)

is right-continuous, there exists a right-continuous modi�cation of pξsqs¥0. Applying
Doob's Theorem twice gives ξσ � Erξ|Fnσ s and ξσ � E

�
ξ|Fn�1

σ

�
, hence we get the

result. l

We are now in position to prove an Integral Representation Theorem in the �ltrations
Fn, for all n ¥ 0.

Proposition A.2. Let n ¥ 0 and ξ P L2pFnT q. Then there exists a Gn�predictable
process ψ such that

ξ � E
�
ξ|FnT^τn

�� » T
T^τn

ψsdWs.

Proof. We prove the theorem by induction on n ¥ 0, following ideas from [2]. The
case n � 0 is the usual Martingale Representation Theorem in the augmented Brownian
�ltration F0.
Assume now that the statement is true for all ξ P L2pFn�1

T q pn ¥ 1q. Let ξ P L2pFnT q.
Since FnT � Fn�1

T _ σpXn1τn¤T q, we get that ξ � limmÑ8 ξm in L2pFnT q, with ξm �°lm
i�1 χ

i
mζ

i
m and pχim, ζimq P L8pFn�1

T q�L8pσpXn1τn¤T qq for all m ¥ 0 and 1 ¤ i ¤ lm.

By induction, there exist Fn�1-predictable processes ψi,m such that χim � E
�
χim

��Fn�1
T^τn�1

�
�³T

T^τn�1
ψi,ms dWs. Since τn is a Fn�1-stopping time with τn ¥ τn�1, we get:

χim � E
�
χim

��Fn�1
T^τn

�� » T
T^τn

ψi,ms dWs.

Since ζim P L8pσpXn1τn¤T qq � L2pFnT^τnq, we get

ζim

» T
T^τn

ψi,ms dWs �
» T
T^τn

ζimψ
i,m
s dWs.

In addition, since χim is Fn�1
T -measurable and ζim P L2pFnT^τnq, we get, by the previous

lemma,

ζimE
�
χim

��Fn�1
T^τn

� � ζimE
�
χim

��FnT^τn� � E
�
χimζ

i
m

��FnT^τn� .
Summing over 1 ¤ i ¤ lm gives:

ξm �
lm̧

i�1

χimζ
i
m

�
lm̧

i�1

E
�
χimζ

i
m

��FnT^τn�� lm̧

i�1

» T
T^τn

ζimψ
i,m
s dWs

� E
�
ξm|FnT^τn

�� » T
T^τn

ψms dWs,
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where ψm :� °lm
i�1 ψ

i,m
s ζim.

Finally, since ξm Ñ ξ in L2pFnT q, we get that E
�
ξm|FnT^τn

� Ñ E
�
ξ|FnT^τn

�
in L2pFnT q,

hence
³T
T^τn ψ

m
s dWs converges to a limit

³T
T^τn ψsdWs for a Fn-predictable process ψ.

l

Theorem A.2. Let 0 ¤ T ¤ �8 and ξ P L2pGnT q. For all 0 ¤ k ¤ n, there exists
Fk-predictable processes ψk such that:

ξ � Erξs �
n�1̧

k�0

» T^τk�1

T^τk
ψksdWs �

» T
T^τn

ψns dWs

�
n�1̧

k�0

�
E
�
ξ|Fk�1

T^τk�1

�
� E

�
ξ|FkT^τk�1

�	
� Erξs �

» T
0

Ψn
sdWs �

n�1̧

k�0

�
E
�
ξ|Fk�1

T^τk�1

�
� E

�
ξ|FkT^τk�1

�	
,

with Ψn
t :� °n�1

k�0 ψ
k
t 1T^τk t¤T^τk�1

� ψnt 1T^τn t¤T .

Proof. This is an immediate consequence of the previous theorem. l

Last, we extend this theorem to obtain an Integral Representation Theorem in F8.
We now �x ξ P L2pF8T q and consider the �ltration A � pAnqnPN de�ned by An :� FnT .
We have A8 ��

nAn � F8T . By Lévy's Theorem, we get

Erξ|FnT s � Erξ|Ans Ñ Erξ|A8s � ξ, a.s. (A.7)

For all n ¥ 0, since FnT � FT , we can write:

Erξ|FnT s �Erξs �
n�1̧

k�0

» T^τk�1

T^τk
ψn,ks dWs �

» T
T^τn

ψn,ns dWs

�
n�1̧

k�0

�
E
�
ξ|Fk�1

T^τk�1

�
� E

�
ξ|FkT^τk�1

�	
.

Lemma A.3. We have ψn,k � ψk,k on rT ^ τk, T ^ τk�1q, for all n ¥ k.

Proof. It follows easily by induction, comparing E
�
ξ|FkT

�
and E

�
Erξ|FnT s|FkT

�
and

using Itô's isometry.
l

For all n ¥ 0, we de�ne ψn :� ψn,n. Thus we have, for all n ¥ 0,

Erξ|GnT s �Erξs �
n�1̧

k�0

» T^τk�1

T^τk
ψksdWs �

» T
T^τn

ψns dWs

�
n�1̧

k�0

�
E
�
ξ|Fk�1

T^τk�1

�
� E

�
ξ|FkT^τk�1

�	
.

45



We set, for 0 ¤ s ¤ T ,

Ψs �
�8̧

k�0

ψks1T^τk¤s T^τk�1
,

Ψn
s � Ψs1s¤T^τn�1 � ψns 1T^τn�1 s, and

∆k
s :� E

�
ξ|Fk�1

s^τk�1

�
� E

�
ξ|Fks^τk�1

�
,

so that

Erξ|FnT s � Erξs �
» T

0
Ψn
sdWs �

n�1̧

k�0

∆k
T .

Theorem A.3 (Integral Representation Theorem for F8). For ξ P L2pF8T q, we have

ξ � Erξs �
» T

0
ΨsdWs �

�8̧

k�0

∆k
T .

Proof. By de�nition of N � Nφ
T , we have T   τn�1 on tn ¥ Nu, see Section 2. Thus,

1N¤n
» T

0
Ψn
sdWs �

�» T^τn�1

0
ΨsdWs �

» T
T^τn�1

ψns dWs

�
1N¤n � 1N¤n

» T
0

ΨsdWs.

Moreover, if k ¥ n, we have, since T ^ τk�1 � T ,

∆k
T 1N¤n �

�
E
�
ξ|Fk�1

T^τk�1

�
� E

�
ξ|FkT^τk�1

�	
1N¤n

�
�
E
�
ξ|Fk�1

T

�
� E

�
ξ|FkT

�	
1N¤n.

Applying (A.5) to χ � E
�
ξ|Fk�1

T

�
, we get

χ � E
�
χ|Fk�1

T

�
� E

�
χ|FkT

�
1T τk�1

� E
�
χ|Gk�1

T

�
1τk�1¤T .

Since T   τn�1 ¤ τk�1 on tN ¤ nu, we �nally obtain

E
�
ξ|Fk�1

T

�
1N¤n � χ1N¤n � E

�
χ|FkT

�
1N¤n � E

�
ξ|FkT

�
1N¤n,

which gives ∆k
T 1N¤n � 0. Thus:

Erξ|FnT s 1N¤n �
�
Erξs �

» T
0

Ψn
sdWs �

n�1̧

k�0

∆k
T

�
1N¤n

�
�
Erξs �

» T
0

ΨsdWs �
�8̧

k�0

∆k
T

�
1N¤n.
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Since 1N¤n Ñ 1 a.s. when n Ñ 8 as N � Nφ
T and φ is an admissible strategy, see

Section 2, we get, sending n to �8, recall (A.7),

ξ � Erξs �
» T

0
ΨsdWs �

�8̧

k�0

∆k
T .

l

Remark A.1. We have: �» �

0
ΨsdWs,

�8̧

k�0

∆k

�
t

� 0, (A.8)�» �

0
ΨsdWs

�
t

�
» t

0
Ψ2
sds, (A.9)��8̧

k�0

∆k

�
t

�
¸

τk�1¤t
|∆k

t |2. (A.10)

In particular, martingales
³�
0 ΨsdWs and

°
k ∆k are orthogonal.

A.2.2 Backward Stochastic Di�erential Equations

We now consider Backward Stochastic Di�erential Equations. Let F be one of the
�ltrations Fi, i ¥ 0 or F8. Let ξ be a FT -measurable variable and f : Ω� r0, T s �Rd �
Rd�κ Ñ Rd. We assume here that ξ and f are standard parameters [12]:

• ξ P L2pFT q,
• fp�, 0, 0q P H2

dpFq,
• There exists C ¡ 0 such that

|fpt, y1, z1q � fpt, y2, z2q| ¤ C p|y1 � y2| � |z1 � z2|q .

Under these hypothesis, since F is right-continuous, one can prove ([12], Theorem 5.1):

Theorem A.4. There exists a unique solution pY,Z,Mq P S2
dpFq � H2

d�κpFq � H2
dpFq

such that M is a martingale with M0 � 0, orthogonal to the Brownian motion, and
satisfying

Yt � ξ �
» T
t
fps, Ys, Zsqds�

» T
t
ZsdWs �

» T
t

dMs.

When d � 1, one can easily deal with linear BSDEs in F, and the speci�c form
of its solutions allows to prove a Comparison Theorem. The proofs follow closely [12],
Theorem 2.2.
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Theorem A.5. Let pb, cq be a bounded pR� Rκq-valued predictable process and let a P
H2pFq. Let ξ P L2pFT q and let pY, Z,Mq P S2pFq � H2

1�κpFq � H2pFq be the unique
solution to

Yt � ξ �
» T
t
pasYs � bsZs � csq ds�

» T
t
ZsdWs �

» T
t

dMs.

Let Γ P H2pFq the solution to

Γt � 1�
» t

0
Γsasds�

» t
0

ΓsbsdWs.

Then, for all t P r0, T s, one has almost surely,

Yt � Γ�1
t E

�
ΓT ξ �

» T
t

Γscsds

����Ft� .
Proof. We �x t P r0, T s and we apply Itô's formula to the process YtΓt:

d pYtΓtq � Yt�dΓt � Γt�dYt � d rY,Γst .
Since Γ is continuous, we get rY,Γst � 〈Y c,Γc〉t �

°
s¤t p∆Ysq p∆Γsq � 〈Y c,Γ〉t, thus,

d pYtΓtq � Γt pbtYt � Ztq dWt � ΓtdMt � Γtctdt.

We de�ne a martingale by Nt �
³t
0 ΓspbsYs � ZsqdWs �

³t
0 ΓsdMs, and the previous

equality gives

YTΓT � YtΓt �
» T
t

Γscsds�NT �Nt.

Taking conditional expectation with respect to Ft on both sides gives the result.
l

Theorem A.6. Let pξ, fq and pξ1, f 1q two standard parameters. Let pY,Z,Mq P S2pFq�
H2

1�κpFq �H2pFq (resp. pY 1, Z 1,M 1q) the solution associated with pξ, fq (resp. pξ1, f 1q).
Assume that

• ξ ¥ ξ1 a.s.,

• fpY 1, Z 1,M 1q ¥ f 1pY 1, Z 1,M 1q a.s.
Then Yt ¥ Y 1

t almost surely for all t P r0, T s.
Proof. Since f is Lipschitz, we consider the bounded processes a, b and c de�ned by:

at � fpt, Yt, Ztq � fpt, Y 1
t , Ztq

pYt � Y 1
t q

1Yt�Y 1
t
, (A.11)

bit �
pfpt, Y 1

t , Ztq � fpt, Y 1
t , Z

1
tqq pZt � Z 1

tq
|Zt � Z 1

t|2
1Zt�Z1t , (A.12)

ct � fpY 1, Z 1,M 1q � f 1pY 1, Z 1,M 1q, (A.13)
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Setting δYt � Yt�Y 1
t , δZt � Zt�Z 1

t and δMt �Mt�M 1
t , we observe that pδY, δZ, δMq

is the solution to the following linear BSDE:

δYt � δYT �
» T
t
pasδYs � bsδZs � csq ds�

» T
t
δZsdWs �

» T
t

dδMs. (A.14)

Using the previous Theorem, we get Yt � Γ�1
t E

�
δYTΓT �

³T
t Γscsds

���Ft�. By de�nition,

Γ is a strictly positive process, and δYt and c are positive by hypothesis, hence Yt ¥ 0.
l
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