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Abstract—The present paper introduces a novel methodol-
ogy for Unscented Kalman Filtering (UKF) on manifolds that
extends our previous work about UKF on Lie groups. Beyond
filtering performances, the main interests of the approach
are its versatility, as the method applies to numerous state
estimation problems, and its simplicity of implementation for
practitioners not being necessarily familiar with manifolds and
Lie groups. We have developed the method on two independent
open-source Python and Matlab frameworks we call UKF-M,
for quickly implementing and testing the approach. The online
repositories contain tutorials, documentations, and various
relevant robotics examples that the user can readily reproduce
and then adapt, for fast prototyping and benchmarking. The
code is available at https://github.com/CAOR-MINES-
ParisTech/ukfm.

I. INTRODUCTION

Over the past fifty years, the Kalman filter has been
a pervasive tool in aerospace engineering and beyond, to
estimate the state of a system subject to dynamical evolu-
tion, see e.g. [1]. When system’s dynamics are governed
by nonlinear equations, one generally resorts to a variant
called the Extended Kalman Filter (EKF), or to the more
recent Unscented Kalman Filter (UKF) [2,3]. There has been
various attempts to adapt the EKF and (respectively) UKF
to the case where the system’s state lives in a manifold M,
see respectively [4] and [5]–[8].

In this paper we introduce UKF-M, a novel and general
method for UKF on manifolds whose versatility allows direct
application to all manifolds encountered in practice. The
theory is supported with independent Python and Matlab
open sourced implementations. The framework is well doc-
umented, and contains a number of examples that can be
readily run and then adapted, where our methodology spares
the analytic computation of Jacobians (contrary in EKF) and
is thus well suited to fast prototyping and benchmarking.

Filtering on manifolds is historically motivated by
aerospace applications where one seeks to estimate (besides
other quantities) the orientation of a body in space, much
work was devoted to making the EKF work with orienta-
tions, namely quaternions. The idea is then to make the EKF
estimate an error instead of the state directly, leading to error
state EKFs, see [4,9]–[11] and their UKF counterparts [12]–
[14]. The set of orientations of a body in space forms a Lie
group, namely SO(3) and efforts devoted to estimation on
SO(3) has paved the way to extended Kalman filtering on
Lie groups, see [1,15]–[19] and unscented Kalman filtering
on Lie groups, see [7,8,13,20]–[23].

Lie groups play a prominent role in robotics [24]. In the
context of state estimation and localization, viewing poses as

elements of the Lie group SE(3) has proved relevant [25]–
[31]. The use of the novel Lie group SE2(3) introduced in
[19] has also led to drastic improvement of Kalman filters
for robot state estimation [1,19,32]–[37]. Similarly, using
the group SEk(n) introduced for Simultaneous Localiza-
tion And Mapping (SLAM) in [38,39] makes EKF-SLAM
consistent, see [39]–[43]. Finally, there has been attempts to
devise UKFs that respect natural symmetries of the systems’
dynamics, namely the invariant UKF, see [44,45].

Besides providing a comprehensive code, our main con-
tribution in terms of methodology is to introduce a novel and
general framework for UKF on manifolds that is simpler
than existing methods, and whose versatility allows direct
application to all manifolds encountered in practice. Indeed,
[7,8] proposes UKF implementations based on the Levi-
Civita connexion but mastering connections is difficult.
[7,13,20,21] are reserved for SO(3) and SE(3), while [23]
is reserved for Lie groups and requires more knowledge of
Lie theory than the present paper.

In Section II, we introduce a user-friendly approach to
UKF on parallelizable manifolds. Section III applies the
approach in the particular case where the manifold is a
Lie group and recovers [22], but without requiring much
knowledge of Lie groups. Section IV describes the open
sourced framework. We then show in Section V the method
may actually be extended to all manifolds encountered
in robotics. To this respect, some theoretical issues and
clarifications related to Kalman filtering on manifolds are
provided at the end of the article.

II. UNSCENTED KALMAN FILTERING ON
PARALLELIZABLE MANIFOLDS

In this section we describe our simple methodology for
UKF on parallelizable manifolds. Owing to space limits, we
assume the reader to have approximate prior knowledge and
intuition about manifolds and tangent spaces.

A. Parallelizable Manifolds

In order to “write” the equations of the extended or
the unscented Kalman filter on a manifold, it may be
advantageous to have a global coordinate system.

Definition 1: A smooth manifold M of dimension d is
said parallelizable if there exists a set of smooth vector fields
{V1, V2, · · · , Vd} on the manifold such that for any point
χ ∈ M the tangent vectors {V1(χ), V2(χ), · · · , Vd(χ)}
form a basis of the tangent space at χ.

The cylinder {(x, y, z) ∈ R3 | x2 + y2 = 1} is a basic
example with d = 2 and V1(x, y, z) = (y,−x, z), V2 =
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Fig. 1: The cylinder is a parallelizable manifold. We can
define vector fields V1, V2 that form a basis of the tangent
space at any point.

(0, 0, 1) are two tangent vectors that form a local basis at
(x, y, z), see Figure 1. The cylinder has null curvature but
the notion of parallelizable manifolds is much broader. In
particular, all Lie groups are parallelizable manifolds.

Example 1: For the rotation matrices C ∈ SO(3) let us
first define the matrix

ω∧ =

(
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

)
, (1)

where ω = (ω1, ω2, ω3)T , and choose as vector fields:

V1(C) = Ce∧1 , V2(C) = Ce∧2 , V3(C) = Ce∧3 , (2)

where e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , and e3 = (0, 0, 1)T .

It should be noted, though, that not all manifolds fall in
this category. However, we will see in Section V using an
embedding into a parallelizable manifold, our methodology
applies to virtually all manifolds encountered in robotics.

B. Uncertainty Representation on Parallelizable Manifolds

Our goal is to estimate the state χ ∈ M given all the
sensor measurements. As sensors are flawed, it is impossible
to exactly reconstruct χ. Instead a filter maintains a “belief”
about the state, that is, its statistical distribution given sensor
information. The Kalman filter maintains a Gaussian belief
such that χ ∼ N

(
χ̂,P

)
, which may be re-written in the

form:
χ = χ̂+ ξ, ξ ∼ N (0,P) . (3)

We see that the belief is encoded using only a “noise-free” or
“mean” estimate χ̂, and a covariance matrix P that encodes
the extent of dispersion of the belief around the estimate.

Consider a parallelizable manifold M, and let
{V1, V2, · · · , Vd} denote the associated vector fields.
To devise a similar belief on M, one needs of course
local coordinates to write the mean χ̂ ∈ M. This poses no
problem, though. The harder part is to find a way to encode
dispersion around the estimate χ̂. It is now commonly
admitted, see references above, that the tangent space at
χ̂ should encode such dispersion, and that covariance P
should hence reflect dispersion in the tangent space. As
additive noise (3) makes no sense for χ ∈ M, we define
a probability distribution χ ∼ Nϕ(χ̂,P), for the random
variable χ ∈M as

χ = ϕ
(
χ̂, ξ

)
, ξ ∼ N (0,P) , (4)

where ϕ :M×Rd →M is a smooth function freely chosen
by the user and satisfying ϕ

(
χ̂,0

)
= χ̂, and ξ ∈ Rd

a random Gaussian vector that encodes directions of the
tangent space, N (., .) is the classical Gaussian distribu-
tion in Euclidean space, and P ∈ Rd×d the associated
covariance matrix. Using the parallelizable manifold prop-
erty, we implicity use coordinates in the tangent space, as
ξ = (ξ(1), ξ(2), · · · , ξ(d))T ∈ Rd encodes in fact the tangent
vector ξ(1)V1(χ̂) + · · · + ξ(d)Vd(χ̂). Hence ϕ is called a
“retraction”, see, e.g., [46]. In (4), the noise-free quantity χ̂
is viewed as the mean, and the dispersion arises through ϕ.
We stress that the distribution defined at (4) is not Gaussian.
It is only Gaussian in coordinates related to map ϕ.

Example 2: Consider Example 1. Recall tangent vectors
at C indicate small motions around C ∈ SO(3). Tangent
vector Cω∧ indeed writes ω1V1(C)+ω2V2(C)+ω3V3(C),
see (2). We can then choose for ϕ the following ϕ(C,ω) =
C exp (ω∧), which is the exponential map on SO(3).

Finding an appropriate map ϕ is not always straightfor-
ward. However there exists (in theory) some “canonical” ϕ.

Proposition 1: One may define define ϕ(χ̂, ξ) as the
point of M obtained by starting from χ̂ and integrating
the vector field

∑d
i=1 ξ

(i)Vi during one unit of time. In that
case we call ϕ an “exponential map”.

However, we generally have no closed form for the expo-
nential map and one resorts to simpler retractions ϕ.

C. Bayesian Estimation Using the Unscented Transform

Consider a random variable χ ∈ M with prior proba-
bility distribution p (χ). Suppose we obtain some additional
information about χ through a measurement y. The goal is
to compute the posterior distribution p(χ|y). Let

y = h (χ) + v, (5)

be a measurement, where h(.) : M → Rp represents the
observation function and v ∼ N (0,R) is a white Gaussian
noise in Rp with known characteristics. The problem of
Bayesian estimation we consider is as follows:

1) assume the prior distribution to follow (4) with
known parameters χ̂ and P;

2) assume one measurement y of (5) is available;
3) approximate the posterior distribution as

p(χ|y) ≈ ϕ(χ̂
+
, ξ+), (6)

where ξ+ ∼ N (0,P+), and find parameters χ̂
+

and P+.

By letting χ = ϕ
(
χ̂, ξ

)
in (5), we see y provides an

information about ξ ∼ N (0,P) and we may use the
unscented transform of [2,3] to approximate the posterior
p(ξ|y) for ξ as follows, see Algorithm 1: we compute a
finite number of samples ξj , j = 1, . . . , 2d (where λ is a
scale parameter, see [3,22]), and pass each of these so-called
sigma points through the measurement function

yj = h
(
ϕ(χ̂, (ξj)

)
, j = 1, . . . , 2d. (7)



Algorithm 1: Bayesian updating on parallelizable
manifolds with prior (4) and observation (5)

Input: χ̂,P,y,R;
// set sigma points

1 ξj = col(
√

(λ+ d)P)j , j = 1, . . . , d,
ξj = − col(

√
(λ+ d)P)j−d, j = d+ 1, . . . , 2d;

// compute measurement sigma points
2 y0 = h(ϕ(χ̂,0));
3 yj = h(ϕ(χ̂, ξj)), j = 1, . . . , 2d;
// infer covariance matrices

4 ȳ = wmy0 +
∑2d

j=1 wjyj ;
5 Pyy =

∑2d
j=0 wj(yj − ȳ)(yj − ȳ)T + R;

6 Pξy =
∑2d

j=1 wjξj (yj − ȳ)T ;
// update state and covariance

7 K = PξyP−1
yy ; // gain matrix

8 χ̂
+

= ϕ(χ̂,K(y − ȳ));
9 P+ = P−KPyyKT ;

Output: χ̂
+
,P+;

By noting y0 = h(ϕ(χ̂,0)) we then compute successively
the measurement mean ȳ = wmy0 +

∑2d
j=1 wjyj , the mea-

surement covariance Pyy =
∑2d

j=0 wj(yj−ȳ)(yj−ȳ)T +R

and the cross-covariance Pξy =
∑2d

j=1 wjξj (yj − ȳ)
T ,

where wm and wj are weights defined in [3,22]. We then
derive the conditional distribution of ξ ∈ Rd as

p(ξ|y) ∼ N
(
ξ̄,P+

)
, where (8)

K = PξyPyy, ξ̄ = K (y − ȳ) ,P+ = P−KPyyKT .
(9)

This may be viewed as a Kalman update on the error ξ,
in the vein of error state Kalman filtering, see e.g. [11].
The problem is then to convert this into a distribution on
the manifold in the form (4). We first write p(ξ|y) as ξ̄ +
ξ+ with ξ+ ∼ N (0,P+), to show that the posterior may
write ϕ

(
χ̂, ξ̄ + ξ+

)
with ξ considered as a fixed noise free

parameter. We suggest to define the posterior p(χ|y) as

χ ≈ ϕ(χ̂
+
, ξ+), ξ+ ∼ N

(
0,P+

)
, (10)

where we have let

χ̂+
= ϕ

(
χ̂, ξ̄

)
. (11)

Note the approximation done in (10)-(11) actually con-
sists in writing ϕ

(
χ̂, ξ̄ + ξ+

)
≈ ϕ

(
ϕ
(
χ̂, ξ̄

)
, ξ+

)
.

When M = Rd the latter equality holds up to the first
order in the dispersions ξ̄, ξ+, both assumed small. In the
case whereM is not a vector space, it may be geometrically
interpreted as saying that moving from χ̂ along the direction
ξ̄ + ξ+ approximately consists in moving from χ̂ along ξ̄
and then from the obtained point on M along ξ+.

D. Unscented Kalman Filtering on Parallelizable Manifolds

Consider the dynamics

χ
n = f (χn−1,ωn,wn) , (12)

where the state χn lives in a parallelizable manifoldM, ωn

is a known input variable and wn ∼ N (0,Qn) is a white
Gaussian noise in Rq . We consider observations of the form

yn = h (χn) + vn, (13)

where vn ∼ N (0,Rn) is a white Gaussian noise with
known covariance. For system (12)-(13), we model the
state posterior conditional on past measurements using the
uncertainty representation (4), that is, χn = ϕ(χ̂n, ξn) with
ξn ∼ N (0,Pn). To propagate the state, we need to be able
to locally invert χ 7→ ϕ(χ̂, ξ), i.e., to find a map we denote
by ϕ−1χ̂ (·) :M→ Rd such that

ϕ−1χ̂
(
ϕ(χ̂, ξ)

)
= ξ +O(||ξ||2), (14)

that is, a map that allows one to assess the discrepancy
between χ̂ and ϕ(χ̂, ξ) is ξ indeed. Starting from the
prior distribution p (χn−1) ∼ ϕ(χ̂n−1, ξn−1) with ξn−1 ∼
N (0,Pn−1) and χ̂n−1 and Pn−1 known, we seek to
compute the state propagated distribution in the form

p (χn|χn−1) ∼ ϕ(χ̂n, ξn) with ξn ∼ N (0,Pn). (15)

Once sigma points have been defined through (4) and
then (12), to find χ̂

n one is faced with an optimization
problem of computing a weighted mean on the manifold
M. This route has already been advocated in [12]–[14,23].
However, to keep the implementation simple and analog to
the EKF, we suggest to propagate the mean using the unnoisy
state model, leading to

χ̂
n = f(χ̂n−1,ωn,0). (16)

To compute the covariance Pn from covariance Pn−1
of ξn−1 we use the fact wn and ξn−1 are uncorrelated and
proceed in two steps. We first generate sigma points in Rd

corresponding to Pn−1 and pass them through the unnoisy
model (16) for nonlinear propagation of Pn−1 through f .
We obtain points χj

n on the manifoldM, and as distribution
of propagated state χ̂n is described as ϕ

(
χ̂

n, ξn
)
, and χ̂n

is known from (16), we may invert the latter using ϕ−1χ̂
n

to

obtain sigma points back in Rd and compute their empirical
covariance Σn. Then, we generate sigma points for process
noise wn similarly and obtain another covariance matrix
encoding dispersion in Rd owed to noise, that adds up to
Σn and thus clearly distinguish the contribution of the state
error ξn from the noise wn. When a new measurement
arrives, belief is updated via Algorithm 1. Algorithm 2
summarizes both steps, where the weights defined through
set weights(d, α) depend on a scale parameter α (gener-
ally set between 10−3 and 1), and sigma point dimension,
see [3,22] and documentation in source code.

Using (16) to propagate the mean while using sigma
points to compute covariance is also made in the method of
[30], in the particular case of pose compounding on SE(3),
with ϕ the SE(3) exponential map.

III. APPLICATION TO UKF ON LIE GROUPS

To apply the preceding methodology to any d-
dimensional group G =M, one first defines a basis of the
Lie algebra. Then, to any vector ξ ∈ Rd, one may associate



Algorithm 2: UKF on parallelizable manifolds

Input: χ̂n−1,Pn−1,ωn,Qn,yn,Rn, α;
Propagation

// propagate mean state
1 χ̂

n = f(χ̂n−1,ωn,0);
// propagate state error covariance

2 λ,{wj}j=0,...,2d = set weights(d, α);
3 ξj = col(

√
(λ+ d)Pn−1)j , j = 1, . . . , d,

ξj = − col(
√

(λ+ d)Pn−1)j−d, j = d+ 1, . . . , 2d;
// use retraction onto manifold

4 χj
n = f(ϕ(χ̂n−1, ξj),ωn,0), j = 1, . . . , 2d;

// inverse retract to go back in Rd

5 Σn =
∑2d

j=1 wjϕ
−1

χ̂
n

(χj
n);

// proceed similarly for noise
6 λ, {wj}j=0,...,2q = set weights(q, α);
7 wj = col(

√
(λ+ q)Qn)j , j = 1, . . . , q,

wj = − col(
√

(λ+ q)Qn)j−d, j = q + 1, . . . , 2q;
8 χj

n = f(χ̂n−1,ωn,w
j), j = 1, . . . , 2q;

9 Pn = Σn +
∑2q

j=1 wjϕ
−1

χ̂
n

(χj
n);

Update (when measurement yn arrives)
Compute χ̂

+
n ,P

+
n from Algorithm 1 with χ̂n,Pn;

Output: χ̂
+
n ,P

+
n ;

an element denoted ξ∧ of the Lie algebra g. Let denote
the vee operator ∨ its inverse, as in e.g., [30]. The Lie
exponential map “exp” maps elements of the Lie algebra
to the group. After a basis of the Lie algebra has been
defined, in (4) we may choose ϕ(χ̂, ξ) := χ̂ exp(ξ∧), which
corresponds to left concentrated Gaussians on Lie groups
[18]. Note that, in the Lie group case, choosing left invariant
vector fields for the Vi’s and following Proposition 1 we
exactly recover the latter expression.

We may invert ϕ using the logarithm map exp−1 of G,
and we get ϕ−1χ̂ (χ) := exp−1

(
(χ̂
−1χ)∨

)
= log

(
χ̂−1χ

)
.

This may be summarized as

ϕ(χ̂, ξ) := χ̂ exp(ξ∧), ϕ−1χ̂ (χ) := log
(
χ̂−1χ

)
. (17)

If we alternatively privilegiate right multiplications we have

ϕ(χ̂, ξ) := exp(ξ∧)χ̂, ϕ−1χ̂ (χ) := log
(
χχ̂−1

)
. (18)

A. Applications in Mobile Robotics: the Group SEk(d)

It is well known that orientations of body in spaces are
described by elements of SO(3). It is also well known
that the use of SE(3) is advantageous to describe the
position and the orientation of a robot (pose), especially
for estimation, see [25]–[31]. In [19,47] the group of dou-
ble direct isometries SE2(3) was introduced to address
estimation problems for robot navigation when the motion
equations are based on an Inertial Measurement Unit (IMU).
In [38,39] the group of multiple spatial isometries SEk(d)
was introduced in the context of SLAM. The group SEk(d),
that allows recovering SE(3) with k = 1, d = 3, SE(2)
with k = 1, d = 2 and SO(3) with k = 0, d = 3,
seems to cover virtually all robotics applications where
the Lie group methodology has been so far useful (along

with trivial extensions to be mentioned in Section III-B).
Since it was introduced for navigation and SLAM, this
group has been successfully used in various contexts, see
[1,19,32]–[37,39]–[43,48,49]. For more information, see the
code documentation associated with the present paper.

B. The Mixed Case

We call mixed the case where M = G × RN . This
typically arises when one wants to estimate some additional
parameters besides the state assumed to live in the group
G, such as sensor biases. By decomposing the state as
χ̂ = (χ̂1, χ̂2) = G × RN and letting ξ = (ξ1, ξ2), we
typically define ϕ as

ϕ
(
χ̂, ξ

)
= (exp (ξ1) χ̂1, χ̂2 + ξ2) (19)

or if left multiplications are privilegiated ϕ
(
χ̂, ξ

)
=

(χ̂1 exp (ξ1) , χ̂2 +ξ2). This way, as many additional quan-
tities as desired may be estimated along the same lines.

Remark 1: When G = SE(3) for example, it is tempt-
ing to let G′ = SO(3) and to treat SE(3) as SO(3) × R3

along the lines of mixed systems. However, in robotics
contexts, it has been largely argued the Lie group structure
of SE(3) to treat poses is more relevant than SO(3)×R3, as
accounting for the coupling between orientation and position
leads to important properties, see [25]–[31]. In the same
way, SEk(3) resembles SO(3) × R3k but has a special
noncommutative group structure having recently led to many
successes in robotics, see [1,19,32]–[37,39]–[43,48,49].

Example 3: The state χ for fusing IMU with GNSS is
generally divided into the vehicle state χ1 ∈ G (orientation,
velocity and position of the vehicle) along with IMU biases
χ

2 = b ∈ R6, see e.g. our example on the KITTI dataset
[50]. Independently from the vehicle state error representa-
tion the function ϕ always has the form of (19) for left
multiplication: augmenting χ

2 with new parameters, e.g.
time synchronization and force variables [51] is immediate.

IV. UKF-M IMPLEMENTATION

We have released both open source Python pack-
age and Matlab toolbox UKF-M implementations of
our method at https://github.com/CAOR-MINES-
ParisTech/ukfm. Both implementations are wholly in-
dependent, and their design guidelines pursue simplicity,
intuitiveness and easy adaptation rather than optimization.
We adapt the code to the user preferences as follow: the
Python code follows class-object paradigm and is heavily
documented through the Sphinx documentation generator
[52], whereas the Matlab toolbox contains equivalent func-
tions without class as we believe choosing well function
names is best suited for the Matlab use as compared to
class definition. The following code snippets are based on
the Python package that we recommend using.

A. Recipe for Designing an UKF on Manifolds

To devise an UKF for any fusion problem on a parral-
lelizable manifold (or Lie group)M the ingredients required
in terms of implementation are as follows, see Snippet 1.

https://github.com/CAOR-MINES-ParisTech/ukfm
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Snippet 1: how to devise an UKF on manifolds
ukf = ukfm.UKF(
f=model.f, # propagation model
h=model.h, # observation model
phi=user.phi, # retraction
phi_inv=user.phi_inv, # inverse retraction
Q=model.Q, # process cov.
R=model.R, # observation cov.
alpha=user.alpha # sigma point param.
state0=state0, # initial state
P0=P0) # initial covariance

Snippet 2: setting ϕ, ϕ−1 for χ := (Rot ∈ SO(3), v, p)

def phi(state, xi):
return STATE(
Rot=state.Rot.dot(SO3.exp(xi[0:3])),
v=state.v + xi[3:6]
p=state.p + xi[6:9])

def phi_inv(state, hat_state):
return np.hstack([ # concatenate errors
SO3.log(state.Rot.dot(hat_state.Rot.T)),
state.v - hat_state.v,
state.p - hat_state.p])

1) A model that specifies the functions f and h used
in the filter;

2) An uncertainty representation (4). This implies an
expression for the function ϕ and its inverse ϕ−1
are defined by the user;

3) Filter parameters, that define noise covariance ma-
trices Qn, Rn and weights (λ, wm, and wj)
through α. Noise covariance values are commonly
guided by the model and tuned by the practitioner,
whereas α is generally set between 10−3 and 1 [3].

4) Initial state estimates χ̂0 and P0.

Example 4: Consider a 3D model whose state contains
a rotation matrix Rot ∈ SO(3), the velocity v ∈ R3 and
position p ∈ R3 of a moving vehicle. Defining ϕ and ϕ−1

allows computing (respectively) a new state and a state error.
One possibility is given in Snippet 2, where χ ∈ SO(3) ×
R6, ϕ(χ, ξ) =

(
Rot exp(ξ(0:3)), v + ξ(3:6), p + ξ(6:9)

)
and

ϕ−1(χ, χ̂) = (log(Rot ^Rot
T

), v− v̂, p− p̂).

To devise an UKF for any Bayesian fusion problem on
a Lie group we follow the rules given in Section IV-A
and simplify step 2) as follows: we pick an uncertainty
representation, either (17) or (18). This directly implies an
expression for the functions ∧ and its inverse ∨, as well as
for the exponential exp and its (local) inverse log. Applying
the present general methodology for the particular case of
Lie groups, we thus recover algorithms of [22].

Example 5: we modify the representation of the state in
Example 4 for viewing the state as a element χ ∈ SE2(3),
defining thus two alternative retractions, see e.g. their ϕ−1
implementation in Snippet 3. Results are clear, see Figure 2,
the SE2(3)-UKF with right multiplications (18) outperforms
the other filters.

Snippet 3: defining ϕ−1 via (17) or (18) for χ ∈ SE2(3)

def phi_inv(state, hat_state):
chi = state2chi(state)
hat_chi = state2chi(hat_state)
# if left multiplication (17)
return SEK3.log(SEK3.inv(hat_hat).dot(chi))
# if right multiplication (18)
return SEK3.log(chi.dot(SEK3.inv(hat_hat)))

B. Implemented Examples

We implement the frameworks on relevant vanilla
robotics examples which are listed as follows:

• 2D vanilla robot localization tutorial based on
odometry and GNSS measurements;

• 3D attitude estimation from an IMU equipped with
gyro, accelerometer and magnetometer;

• 3D inertial navigation on flat Earth where the vehi-
cle obtains observations of known landmarks;

• 2D SLAM where the UKFs follows [53] to limit
computational complexity and adding new observed
landmarks in the state;

• IMU-GNSS fusion on the KITTI dataset [50];

• an example where the state lives on the 2-sphere
manifold, modeling e.g. a spherical pendulum [54].

We finally enhance code framework, documentation and
examples with filter performance comparisons: for each
example we simulate Monte-Carlo data and benchmark
UKFs and EKFs based on different choices of uncertainty
representation (4) through accuracy and consistency metrics.

Example 6: Figure 2 displays two EKFs and two UKFs
for inertial navigation in the setting of [19], where initial
heading and position errors are large, respectively 45 degrees
and 1 m. The second UKF, whose uncertainty representation
(4) is based on SE2(3) exponential, see Section III-A,
clearly outperforms the EKF, the first UKF, and improves
the EKF of [19] during the first 10 seconds of the trajectory.

V. EXTENSION TO GENERAL MANIFOLDS

The main problem when M is not parallelizable is that
one cannot define a global uncertainty representation through
a map ϕ as in (4), since ξ = (ξ(1), · · · , ξ(d)) shall be
interpreted as the coordinates in the tangent space, which
means that one needs a basis (V1(χ), · · · , Vd(χ)) of the tan-
gent space TχM at any χ. On general manifolds, one may
use a local parallelization. Indeed, it is always possible to
cover the manifold with patchesM1, · · · ,MK , such that on
each patch i we have a set of vector fields (V

(i)
1 , · · · , V (i)

d )
allowing one to apply the methodology. For instance on the
2-sphere one could choose a North-East frame in between
the polar circles, and then some other smooth set of frames
beyond polar circles. However two main issues arise. First,
we feel such a procedure induces discontinuities at the polar
circles that will inevitably degrade the filter perfomances.
Indeed by moving χ̂ slightly at the polar circle, one may
obtain a jump in the distribution Nϕ(χ̂,P) with fixed
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Fig. 2: Inertial navigation with heavy initial errors in the
setting of [19]. SE2(3)-UKF obtains the best results.

covariance P, see Figure 3. Then, we see the obtained filter
wholly depends on the way patches are chosen, which is
undesirable: e.g., the use of stereographic coordinates, or
Euler angles, may wholly change the behavior.

A. The Lifting “Trick”

It turns out a number of manifolds of interest called
homogeneous spaces may be “lifted” to a Lie group. By
simplicity1 we consider the 2-sphere M = S2 = {x ∈ R3 |
||x|| = 1} with state xn ∈ S2. As xn+1 and xn necessarily
lie on the sphere, they are related by a rotation, that is,

xn+1 = Ωnxn (20)

with Ωn ∈ SO(3) that may be written as exp(ω∧n ) exp(w∧n)
where ωn is known input, and wn ∼ N (0,Qn) represents a
noise, see (1) for the definition of wedge operator, and exp
is the usual matrix exponential. We assume xn is measured
through a linear observation, that is,

yn = Hxn + vn ∈ Rp. (21)

Example 7: We provide a (novel) script which simulates
a point of a pendulum with stiff wire living on a sphere,
where two components are measured through e.g. a monoc-
ular camera, i.e. H = [e1, e2]T .

The dynamics can be lifted into SO(3) by writing xn

via a rotation matrix Rn, that is, we posit xn = RnL
with L ∈ R3. In terms of Rn, dynamics (20) may be
lifted letting Rn+1 = ΩnRn as then RnL satisfies (20)
indeed. Similarly, the output in terms of Rn writes yn =
HRnL+vn = h̃(Rn)+vn. Having transposed the problem
into estimation on the parallelizable manifold SO(3), we can
then apply the two UKFs by setting ϕ to either (17) or (18).

B. Covariance Retrieval

The practitioner may wonder how to retrieve the covari-
ance in the original variables. Assume we have a Gaussian
vector x ∼ (µ,Σ), and we want to approximate g(x)
as a Gaussian. Of course this can be addressed resorting
the unscented transform. However, a more basic and direct
approach is as follows. Consider A a matrix and b a

1Generalizations to the Stiefel manifold St(p, n), that is, a set of p
orthonormal vectors of Rn, and hence to the set of p-dimensional subspaces
of Rn called the Grassmann manifold are then straightforward.

Fig. 3: We see covering the 2-sphere with 3 parallelizable
patches (in between polar circles, and beyond each) in-
evitably induces discontinuities that may degrade filtering
performances. Alluding to the “hairy ball theorem”, this may
be viewed as a punition for trying to comb a hairy ball.

vector. Then it is known from probability theory that linear
transformation preserve gaussianity and we have (exactly)

Ax + b ∼ (Aµ+ b,AΣAT ). (22)

Then, we can write x = µ + e with e ∼ N (0,Σ) and
linearizing we find g(x) ≈ g(µ) + ∂g

∂x (µ)e and applying
linear Gaussian vectors transform yields approximately (i.e.
as a first order approximation in the magnitude of the uncer-
tainty) g(x) ∼ (g(µ),AΣAT ), where we let A := ∂g

∂x (µ).

In the 2-sphere example of the present section, our un-
certainty representation may be taken as Rn = R̂n exp(ξ∧)
with ξ ∼ N (0,P), see (17) and Example 2. As a result it
is rather easy to compute the covariance matrix of RnL as
follows. We may use linearizations to write that exp(ξ∧) ≈
I+ξ∧ and thus RnL = R̂n exp(ξ∧)L ≈ R̂nL+R̂nξ

∧L =
R̂nL − R̂nL∧ξ = R̂nL + Aξ with A = −R̂nL∧. As a
result, the probability distribution of RnL is under a linear
approximation N (R̂nL,APAT ).

VI. THEORETICAL CONCLUDING REMARKS

In fact using patches as described above, or augmenting
the state to embed it in a parallelizable manifold, both
serve the same purpose as using any parametrization of
the state space: the user is provided with coordinates to
write down the filter equations. But, similarly to a change
of parameterization, each choice results in a different filter.

Once a parallelization and retraction are chosen the filter
becomes independent from the coordinates, but is still de-
pendent on choice of parallelization and retraction. The only
role of parallelization, that is, retraction, is in fact to define
how confidence ellipsoids are transported at the update step,
and all the rest is unchanged. The fact UKF on manifolds
necessarily implies transporting ellipsoids was noticed in
[7,8] that advocates using the Levi-Civita connection for
transportation. Again, the obtained method is independent
from the coordinate system but still dependent on the chosen
metric. That said, in the framework of invariant Kalman
filtering devoted to EKF design, we have long advocated
that one should start from the system’s dynamics to choose
the parallelization (or connection), hence retraction, see [1].
Torsion free geometry as Levi-Civita connection does not
necessarily lead to best performance. To this respect note
that our online code lends itself to quick benchmarking of
choices of retraction, as done in Figure 2.
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