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Abstract: It has been observed in several recent works that, for some classes of linear time-
delay systems, spectral values of maximal multiplicity are dominant, a property known as
multiplicity-induced-dominancy (MID). This paper starts the investigation of whether MID
holds for delay differential-algebraic systems by considering a single-delay system composed of
two scalar equations. After motivating this problem and recalling some recent results for retarded
delay differential equations, we prove that the MID property holds for the delay differential-
algebraic system of interest and present some applications.
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1. INTRODUCTION

Time delays are useful modeling tools in a wide range
of scientific and technological domains such as biology,
chemistry, economics, physics, or engineering. They may
represent, for instance, the reaction time of an engineer-
ing system, the transfer time of material, energy, or in-
formation between parts of a system, the duration of a
chemical reaction, or the duration of maturation processes
in biology. Due to these applications and the challenging
mathematical problems arising in their analysis, systems
with time delays have been the subject of much atten-
tion by researchers in several fields, in particular since
the 1950s and 1960s, such as, for instance, in Bellman
and Cooke (1963); Halanay (1966); Pinney (1958). We
refer to Diekmann et al. (1995); Gu et al. (2003); Hale
and Verduyn Lunel (1993); Insperger and Stépán (2011);
Michiels and Niculescu (2007); Stépán (1989) for details
on time-delay systems and their applications.

This paper is interested in the analysis of stability and
asymptotic behavior of systems with delays of the general
form 

x′(t) = Ax(t) +

N∑
k=1

Bky(t− τk),

y(t) = Cx(t) +

N∑
k=1

Dky(t− τk),

(1)
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where x(t) ∈ Rdx , y(t) ∈ Rdy , N , dx, and dy are positive
integers, τ1, . . . , τN are positive delays, and, for k ∈
{1, . . . , N}, A, Bk, C, and Dk are matrices of appropriate
dimensions. Systems such as (1) are delay differential-
algebraic systems since they are written as a system
of delay differential equations coupled with a system of
algebraic equations with delays. They correspond to a
particular class of delay differential-algebraic systems in
which delays appear only in the y variable, which is
the case in particular in models of lossless propagation
phenomena (see Section 2 for an example).

Differential-algebraic systems have been extensively stud-
ied in the delay-free setting (see, e.g., Brenan et al. (1989);
Coleman (1998); Griepentrog and März (1986); Kumar
and Daoutidis (1999); Kunkel and Mehrmann (2006)).
This kind of system arises naturally in several situations,
such as in some electronic circuit models, in some control
problems with constraints, or in the limiting behavior of
singularly perturbed systems. Delay differential-algebraic
systems have also been considered in the literature, arising
in general from systems of transport partial differential
equations representing some propagation phenomenon and
coupled with static and dynamic boundary conditions (see,
e.g., Niculescu (2001); Halanay and Rasvan (1997); Hale
and Verduyn Lunel (1993); Brayton (1968)). More specific
motivating examples are described in Section 2.

The stability analysis of time-delay systems has attracted
much research effort and is an active field (see, e.g., Cooke
and van den Driessche (1986); Gu et al. (2003); Michiels
and Niculescu (2007); Olgac and Sipahi (2002); Sipahi
et al. (2011)). Similarly to the delay-free situation, one
may address the asymptotic behavior of a linear time-



invariant time-delay system through spectral methods
by considering the corresponding characteristic function,
whose complex roots determine the asymptotic behavior of
solutions of the system (see, e.g., Hale and Verduyn Lunel
(1993); Michiels and Niculescu (2007); Mori et al. (1982)).
The characteristic function of (1) is the function ∆ : C→
C defined for s ∈ C by

∆(s) = det

(
sE − Â−

N∑
k=1

e−sτkB̂k

)
, (2)

where E, Â, B̂1, . . . , B̂N are (dx + dy)× (dx + dy) matrices
defined by blocks as

E =

(
Iddx 0

0 0

)
, Â =

(
A 0
C − Iddy

)
, B̂k =

(
0 Bk
0 Dk

)
,

for k ∈ {1, . . . , N}. Notice that (1) can be rewritten in
terms of these matrices as

Ez′(t) = Âz(t) +

N∑
k=1

B̂kz(t− τk),

where z(t) = (x(t)T, y(t)T)T. Similarly to the delay-free
case, the exponential behavior of (1) is determined by
the spectral abscissa γ of ∆, defined by γ = sup{Re s |
s ∈ C and ∆(s) = 0}, and all solutions of (1) converge
exponentially to 0 if and only if γ < 0.

The spectral abscissa of ∆ is related to the notion of
dominant root, defined as follows.

Definition 1. Let Q : C → C and s0 ∈ C be such that
Q(s0) = 0. We say that s0 is a dominant (respectively,
strictly dominant) root of Q if, for every s ∈ C \ {s0}
such that Q(s) = 0, one has Re s ≤ Re s0 (respectively,
Re s < Re s0).

It follows immediately from the above definition that, if Q
admits a dominant root s0, then γ = Re s0, but dominant
roots may not exist in general.

Functions of the form (2) are particular instances of
quasipolynomials, whose definition is the following.

Definition 2. A quasipolynomial is an entire function Q
which can be written under the form

Q(s) =
∑̀
k=0

Pk(s)eλks,

where ` is a positive integer, λ0, . . . , λ` are pairwise distinct
real numbers, and, for k ∈ {0, . . . , `}, Pk is a non-zero

polynomial of degree dk. The integer D = ` +
∑`
k=0 dk is

called the degree of Q.

The above definition of the degree of a quasipolynomial is
motivated by a classical property, provided in (Pólya and
Szegő, 1998, Problem 206.2) and known as the Pólya–Szegő
bound, which implies that, given a quasipolynomial Q of
degree D ≥ 0, the multiplicity of any root of Q does not
exceed D. Recent works such as Boussaada and Niculescu
(2016a,b) have provided characterizations of multiple roots
of quasipolynomials using approaches based on Birkhoff
and Vandermonde matrices.

It has been recently remarked (see, e.g., Boussaada and
Niculescu (2016b); Boussaada et al. (2018, 2020); Mazanti
et al. (2020a,b)) that, for quasipolynomials coming from
some systems with time-delays, real roots of maximal mul-

tiplicity are often dominant, a property usually referred to
as multiplicity-induced-dominancy (MID for short). This
property has been shown to hold, in particular, for scalar
single-delay differential equations of retarded type (see
Mazanti et al. (2020a)), a result we present and explain
below in Section 3, and also extended for some systems
to the case of complex roots of maximal multiplicity in
Mazanti et al. (2020b).

One of the applications of the MID property is in the de-
sign of stabilizing feedback controllers for control systems
with time delays, as in Boussaada et al. (2020). A major
difficulty when addressing this question is that, except
in degenerate situations, quasipolynomials have infinitely
many roots, and one usually disposes only of finitely many
parameters that can be chosen in the controller design. If,
however, the MID property holds and these parameters are
chosen in such a way as to guarantee the existence of a root
of maximal multiplicity, then this root is dominant, and
hence determines the asymptotic behavior of the system,
allowing for stabilization if one chooses this root with
negative real part.

The aim of this paper is to start the investigation of
whether the MID property holds for delay differential-
algebraic systems of the form (1). For this purpose, we
restrict our attention to the first non-trivial situation,
corresponding to the case dx = dy = N = 1 in which both
equations in (1) are scalar and the system contains a single
delay. This simple-looking, low-dimensional case illustrates
many of the subtleties in the analysis of the MID property
for delay differential-algebraic systems. Our main result
for this system, Theorem 4, shows that the MID property
does hold in this setting, providing necessary and sufficient
conditions on the system parameters for having a real
root of maximal multiplicity and characterizing further
the other roots of the characteristic quasipolynomial when
these conditions are satisfied.

The paper is organized as follows. Section 2 presents
some examples of systems which can be put under the
form (1). We then present, in Section 3, a previous result
from Mazanti et al. (2020a) on the MID property for
retarded delay differential equations, which can be seen
as a particular case of (1) in which N = 1 and D1 = 0.
We briefly recall the strategy of its proof, which serves
as inspiration for the analysis of the MID property for a
delay differential-algebraic system with scalar unknowns
and a single delay in Section 4. An application to one of
the examples from Section 2 is provided in Section 5.

Notation. For a given complex number s, we denote by
s, Re s, and Im s its complex conjugate, real part, and
imaginary part, respectively. Given nonnegative integers
n, k with 0 ≤ k ≤ n, the notation

(
n
k

)
represents the usual

binomial coefficient n!
k!(n−k)! .

2. MOTIVATING EXAMPLES

In this section, we briefly describe two systems that can
be modeled by delay differential-algebraic equations.
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Fig. 1. Electrical circuit with a transmission line

2.1 Electrical circuit with a transmission line

Consider the electrical circuit from Figure 1, in which a
voltage source E(t) with internal resistance R0 is con-
nected, through a lossless transmission line of normalized
length 1 and normalized characteristic impedance L and
capacitance C, to a parallel association between a capaci-
tor of capacitance C1 and a resistor of resistance R1. This
electrical circuit can be described by the system

∂xv(t, x) + L∂ti(t, x) = 0, t ≥ 0, x ∈ (0, 1),

∂xi(t, x) + C∂tv(t, x) = 0, t ≥ 0, x ∈ (0, 1),

v(t, 0) = E(t)−R0i(t, 0), t ≥ 0,

i(t, 1) = C1∂tv(t, 1) +
1

R1
v(t, 1), t ≥ 0,

(3)
with suitable initial conditions. Performing the classical
change of variables into Riemann invariants

u1(t, x) =
1

2

[
v(t, x) +

√
L

C
i(t, x)

]
,

u2(t, x) =
1

2

[
v(t, x)−

√
L

C
i(t, x)

]
,

and setting y1(t) = v(t, 1) and y2(t) = u2(t, 1), one verifies
that (3) is rewritten as

y′1(t) = − 1

C1

(
1

R1
+

√
C

L

)
y1(t)

− 2

C1

√
C

L
ρy2(t− τ) +

2

C1

√
C

L

E(t− τ/2)

1 +R0

√
L
C

,

y2(t) = y1(t) + ρy2(t− τ)− E(t− τ/2)

1 +R0

√
L
C

,

(4)

where ρ =
1−R0

√
L
C

1+R0

√
L
C

is the reflection coefficient at the

voltage source and τ = 2
√
LC represents the round-

trip travel time along the transmission line. If one is
interested in the stability analysis of (4) under no input,
i.e., when E(t) = 0 for every t, then (4) reduces to a
delay differential-algebraic system of the form (1) with
dx = dy = 1 and N = 1. We refer the interested reader
to Brayton (1968); Halanay and Rasvan (1997); Niculescu
(2001) and references therein for more details on these kind
of circuits and their applications, as well as for further
examples of engineering systems which can be put under
the form of a delay differential-algebraic system (1).

2.2 Delayed output feedback for proper control systems

Consider the linear control system

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(5)

where x(t) ∈ Rdx is the state, u(t) ∈ Rdu is the control,
y(t) ∈ Rdy is the output, dx, du, and dy are positive
integers, and A, B, C, and D are matrices of appropriate
dimensions. We consider the problem of stabilizing (5) by
a delayed output feedback of the form u(t) = Ky(t − τ),
where τ > 0 is the delay and K is a matrix of appropriate
dimension. The closed-loop system is then{

ẋ(t) = Ax(t) +BKy(t− τ),

y(t) = Cx(t) +DKy(t− τ),
(6)

which is under the form (1) with N = 1 delay.

3. PRELIMINARY RESULTS ON RETARDED DELAY
DIFFERENTIAL EQUATIONS

Consider the delay differential-algebraic system (1) in the
particular case N = 1 and D1 = 0. Letting τ = τ1 and
B = B1C, this system can be written under the form

x′(t) = Ax(t) +Bx(t− τ). (7)

System (7) is a system of delay differential equations said
to be of retarded type since the derivative of highest order
only appears in the non-delayed term x′(t).

An important particular case which can be put into the
form (7) is that of a scalar retarded delay differential
equation of order n,

x(n)(t) +

n−1∑
k=0

akx
(k)(t) +

n−1∑
k=0

αkx
(k)(t− τ) = 0, (8)

where n is a positive integer and the coefficients ak and αk
are real numbers for k ∈ {0, . . . , n−1}. The corresponding
characteristic quasipolynomial is the function ∆ : C → C
given by

∆(s) = sn +

n−1∑
k=0

aks
k + e−sτ

n−1∑
k=0

αks
k. (9)

Notice that, according to Definition 2, ∆ is of degree 2n,
and hence any root of ∆ has multiplicity at most 2n.

The MID property has been extensively studied for some
retarded differential equations under the form (8), such as
in Boussaada et al. (2018, 2020); Boussaada and Niculescu
(2016b); Mazanti et al. (2020a,b). In particular, Mazanti
et al. (2020a) presents the following result.

Theorem 3. Consider the quasipolynomial ∆ from (9) and
let s0 ∈ R.

(a) The number s0 is a root of multiplicity 2n of ∆ if and
only if, for every k ∈ {0, . . . , n− 1},

ak =

(
n

k

)
(−s0)n−k

+ (−1)n−kn!

n−1∑
j=k

(
j

k

)(
2n− j − 1

n− 1

)
sj−k0

j!τn−j
,

αk = (−1)n−1es0τ
n−1∑
j=k

(−1)j−k(2n− j − 1)!

k!(j − k)!(n− j − 1)!

sj−k0

τn−j
.

(10)
(b) If (10) is satisfied, then s0 is a strictly dominant root

of ∆.



The proof of this result is detailed in the case n = 2
in Mazanti et al. (2020a), the full proof being provided
in the extended version of that reference. A first step
of the proof is to remark that it suffices to consider the
case s0 = 0 and τ = 1, since the general case can
be reduced to this setting by performing the translation
and scaling of the spectrum represented by the change of
variables z = τ(s−s0). Part (a) of Theorem 3 can then be
obtained by straightforward computations, imposing that
∆(k)(0) = 0 for every k ∈ {0, . . . , 2n− 1}. The dominance
proof for establishing (b) is then carried by providing first a
priori bounds on the imaginary part of non-roots with non-
negative real part and then using a suitable factorization
of ∆ to show, using this bound, that such roots cannot
exist.

4. MID FOR A DELAY DIFFERENTIAL-ALGEBRAIC
EQUATION

We consider in this section the delay differential-algebraic
equation {

x′(t) = ax(t) + by(t− τ),

y(t) = cx(t) + dy(t− τ),
(11)

where x(t) ∈ R, y(t) ∈ R, and a, b, c, d are real coefficients.
System (11) corresponds to (1) with dx = dy = N = 1 and
the explicit computation of its characteristic quasipolyno-
mial ∆ from (2) yields

∆(s) = s− a− e−sτ (sd− ad+ bc) . (12)

Note that ∆ is a quasipolynomial of degree 3. The main
result we prove in this paper is the following counterpart
of Theorem 3.

Theorem 4. Consider the quasipolynomial ∆ from (12)
and let s0 ∈ R.

(a) The number s0 is a root of multiplicity 3 of ∆ if and
only if the coefficients a, b, c, d, the root s0, and the
delay τ satisfy the relations

a = s0 +
2

τ
, d = −es0τ , bc = −4

τ
es0τ . (13)

(b) If (13) is satisfied, then s0 is a dominant root of ∆.
Moreover, for every other complex root s of ∆, one
has Re s = s0.

(c) Let Ξ = {ξ ∈ R | tan ξ = ξ}. If (13) is satisfied, then
the set of roots of ∆ is {s0 + i 2τ ξ | ξ ∈ Ξ}.

Remark 5. With respect to Theorem 3, Theorem 4 pro-
vides, in its part (c), additional information on the location
of the other roots of ∆. On the other hand, s0 is not strictly
dominant in this case.

Remark 6. In the particular case s0 = 0 and τ = 1, (13)
yield a = 2, d = −1, and bc = −4. The corresponding
quasipolynomial (12) is then given by

∆̂(z) = z − 2 + e−z(z + 2). (14)

For general s0 ∈ R and τ > 0, one may reduce to the
above setting by performing the translation and scaling
of the spectrum represented by the change of variables
z = τ(s− s0).

The proof of Theorem 4 follows the same general line of
that of Theorem 3, but extra properties should be proved
in order to obtain the additional conclusions of Theorem 4.
The main properties we need for the proof are provided in
Appendix A.

Proof of Theorem 4. Let ∆̃ be the quasipolynomial
obtained from ∆ by setting

∆̃(z) = τ∆
( z
τ

+ s0

)
(15)

for z ∈ C. Then

∆̃(z) = z + b0 + e−z(β1z + β0)

with
b0 = τ(s0 − a), β1 = −de−s0τ ,
β0 = τe−s0τ (ad− bc− ds0).

(16)

It follows immediately from relation (15) that s0 is a
root of multiplicity 3 of ∆ if and only if 0 is a root

of multiplicity 3 of ∆̃. Since ∆̃ is a quasipolynomial of

degree 3, 0 is a root of multiplicity 3 of ∆̃ if and only if

∆̃(0) = ∆̃′(0) = ∆̃′′(0) = 0. We compute

∆̃′(z) = 1 + e−z(−β1z − β0 + β1),

∆̃′′(z) = e−z(β1z + β0 − 2β1),

and thus 0 is a root of multiplicity 3 of ∆̃ if and only if

b0 + β0 = 0, 1− β0 + β1 = 0, β0 − 2β1 = 0.

One immediately verifies that the above linear system of
equations on (b0, β1, β0) admits a unique solution, given
by (b0, β1, β0) = (−2, 1, 2). Using (16), one concludes that
s0 is a root of multiplicity 3 of ∆ if and only if (13) holds,
concluding the proof of (a). Notice moreover that, under

(13), one has ∆̃ = ∆̂, where ∆̂ is the quasipolynomial
defined in (14).

To prove (b), it suffices to show that every root of ∆̂ lies
on the imaginary axis. Note first that

∆̂(z) = z3
∫ 1

0

t(1− t)e−zt dt, (17)

as one immediately verifies by integrating by parts. As-
sume, to obtain a contradiction, that there exists a root

z0 ∈ C of ∆̂ such that Re z0 6= 0. Writing z0 = σ + iω
for σ, ω ∈ R with σ 6= 0, one may assume, with no loss
of generality thanks to Corollary 10 in Appendix A, that
σ > 0 and ω > 0. By Lemma 11 in Appendix A, one has
0 < ω < 2.

Using the fact that z0 is a non-zero root of ∆̂, one obtains
from (17) and taking the imaginary part that∫ 1

0

t(1− t)e−σt sin(ωt) dt = 0.

Since 0 < ω < 2, the function t 7→ t(1 − t)e−σt sin(ωt)
is strictly positive in (0, 1), which contradicts the above
equality. Hence (b) is proved.

Finally, (c) follows immediately from the relation between

∆̂ and ∆ under (13), the fact that all roots of ∆̂ lie on the
imaginary axis, and Lemma 12 in Appendix A.

Remark 7. With respect to other results on multiplicity-
induced-dominancy for delay differential equations such
as Theorem 3, Theorem 4 provides, in its part (c), the
additional information of the location of all roots of ∆.
The set Ξ of the real roots of the equation tan ξ = ξ is
infinite, discrete, and can be written as Ξ = {ξk | k ∈ Z},
where (ξk)k∈Z is the increasing sequence of the roots of
tan ξ = ξ with the convention that ξ0 = 0. In particular,
for every k ∈ Z, one has ξk ∈

(
−π2 + kπ, π2 + kπ

)
and



ξ−k = −ξk. We also recall that ξk = kπ + π
2 + o(1) as

k → +∞.

5. APPLICATION TO THE DELAYED OUTPUT
FEEDBACK FOR PROPER CONTROL SYSTEMS

Consider system (6) with dx = 1, dy = 2, du = 1, which
we write as

ẋ(t) = ax(t) + bk1y1(t− τ) + bk2y2(t− τ),

y1(t) = c1x(t) + d1k1y1(t− τ) + d1k2y2(t− τ),

y2(t) = c2x(t) + d2k1y1(t− τ) + d2k2y2(t− τ).

(18)

From (2), we compute its characteristic quasipolynomial

∆(s) = s− a− e−sτ
(
(d1k1 + d2k2)s

− k1(ad1 − bc1)− k2(ad2 − bc2)
)
. (19)

Even though (18) is not under the form (11), its charac-
teristic quasipolynomial (19) is of the same form of that of
(12), and thus Theorem 4 can be applied to (19). We wish
to design the parameters k1 and k2 and obtain conditions
on the delay τ in order to achieve maximal multiplicity
of some root s0 < 0. Then Theorem 4 will ensure the
dominance of this root, implying the exponential stability
of the system.

Conditions (13) can be rewritten in the context of (19) as

a = s0 +
2

τ
,

d1k1 + d2k2 = −es0τ ,

(ad1 − bc1)k1 + (ad2 − bc2)k2 =

(
2

τ
− s0

)
es0τ .

(20)

Note that the first equation in (20) can be rewritten as
s0 = a− 2

τ , hence one may stabilize the system by a root

of maximal multiplicity only if a ≤ 0 or τ < 2
a .

Let us denote δi = adi− bci for i ∈ {1, 2}. The second and
third equations of (20) can be rewritten as(

d1 d2
δ1 δ2

)(
k1
k2

)
=

(
−1

4
τ − a

)
eaτ−2. (21)

This system admits at least one solution if and only if
d1δ2 6= d2δ1 or δi =

(
a− 4

τ

)
di for i ∈ {1, 2}, with exactly

one solution in the first case and infinitely many solutions
in the second case. This discussion can be concentrated in
the following result.

Proposition 8. Consider system (18) for given real param-
eters a, b, c1, c2, d1, and d2 and a positive delay τ , and
assume that either a ≤ 0 or τ < 2

a . Let δi = adi − bci for
i ∈ {1, 2} and assume moreover that either d1δ2 6= d2δ1
or δi =

(
a− 4

τ

)
di for i ∈ {1, 2}. Then there exist real

parameters k1, k2 such that (18) is exponentially stable,
with exponential decay rate a − 2

τ . Moreover, k1 and k2
are solutions of the linear system (21).

Consider, as an example, the case a = 1, b = 1, c1 = 2,
c2 = 1, d1 = 1, d2 = 2, and τ = 3

2 . Since a = 1, the
corresponding open-loop system is unstable. Note that the
inequality τ < 2

a is indeed satisfied and the exponential
decay rate one may obtain with Proposition 8 is a −
2
τ = − 1

3 . One computes, using Proposition 8, the feedback
parameters k1 ≈ −0.87610 and k2 ≈ 0.13478. Figure 2
presents a numerical simulation of the solutions of (20)
with these parameters and with initial conditions x(0) = 1

and y1(t) = y2(t) = 0 for t < 0. One observes, as expected,
that solutions converge to 0 exponentially.
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Fig. 2. Trajectories of (18) with the designed delayed
output feedback.
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Appendix A. SOME TECHNICAL RESULTS

We present in this appendix technical results used in the
proof of Theorem 4. We start by providing some properties

of the quasipolynomial ∆̂ from (14). The first one is the
following identity, whose proof is straightforward.

Lemma 9. Let ∆̂ be given by (14). Then, for every z ∈ C,
one has

∆̂(−z) = −ez∆̂(z).

As a consequence of the previous identity, one immediately

obtains the following symmetry property of the roots of ∆̂.

Corollary 10. Let ∆̂ be given by (14) and assume that

z0 ∈ C is such that ∆̂(z0) = 0. Then ∆̂(z0) = ∆̂(z0) =

∆̂(−z0) = ∆̂(−z0) = 0.

We also need the following a priori bound on the imaginary

part of the roots of ∆̂ outside of the imaginary axis.

Lemma 11. Let ∆̂ be given by (14) and assume that

z0 ∈ C is such that Re z0 6= 0 and ∆̂(z0) = 0. Then
|Im z0| < 2.

Proof. Let z0 ∈ C be as in the statement. We write
z0 = σ + iω with σ, ω ∈ R and σ 6= 0. Thanks to
Corollary 10, we assume, with no loss of generality, that

σ > 0. Since z0 is a root of ∆̂, one has e−z0(z0+2) = 2−z0
and thus, in particular, |z0+2|2 = e2σ|2−z0|2, which yields
(σ + 2)2 + ω2 = e2σ

(
(2− σ)2 + ω2

)
.

Let f : R → R be the function defined by f(x) =
e2x
(
(2− x)2 + ω2

)
−(x+2)2−ω2. Note that f(0) = f(σ) =

0. Since f is differentiable and σ > 0, the mean value theo-
rem yields the existence of x∗ ∈ (0, σ) such that f ′(x∗) = 0.
We compute f ′(x) = 2e2x

(
(2− x)(1− x) + ω2

)
−2(x+2),

and thus

e2x∗
(
(2− x∗)(1− x∗) + ω2

)
= x∗ + 2.

Notice that, in particular, since x∗ > 0, one has (2−x∗)(1−
x∗) +ω2. Since one has further that e2x∗ > 1, one deduces
that

(2− x∗)(1− x∗) + ω2 < x∗ + 2,



which is equivalent to

x2∗ − 4x∗ + ω2 < 0.

Letting g : R→ R be the polynomial g(x) = x2− 4x+ω2,
since limx→±∞ g(x) = +∞, the above inequality implies
that g must admit two distinct real roots, and thus its
discriminant is positive, i.e., 16 − 4ω2 > 0, which is
equivalent to ω2 < 4. Thus |ω| < 2, as required.

As a final technical result, we provide the following char-

acterization of the roots of ∆̂ on the imaginary axis.

Lemma 12. Let ∆̂ be given by (14), Ξ be as in the
statement of Theorem 4(c), and ζ ∈ R. Then iζ is a root

of ∆̂ if and only if ζ
2 ∈ Ξ.

Proof. Note that iζ is a root of ∆̂ if and only if

iζ − 2 + e−iζ(iζ + 2) = 0,

which is the case if and only if{
−2 + 2 cos ζ + ζ sin ζ = 0,

ζ + ζ cos ζ − 2 sin ζ = 0.

The above system is equivalent to

R−ζ

(
2
ζ

)
=

(
2
−ζ

)
, (A.1)

where, for θ ∈ R, Rθ is the rotation matrix in R2, defined
by

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Recalling that R−1θ = R−θ and Rθ1Rθ2 = Rθ1+θ2 for every
(θ, θ1, θ2) ∈ R3, one deduces that (A.1) is equivalent to

R− ζ2

(
1
ζ

2

)
= R ζ

2

(
1

−ζ
2

)
.

One then immediately verifies that the above system is
equivalent to

− sin

(
ζ

2

)
+
ζ

2
cos

(
ζ

2

)
= sin

(
ζ

2

)
− ζ

2
cos

(
ζ

2

)
,

which holds if and only if

tan

(
ζ

2

)
=
ζ

2
,

i.e., if and only if ζ
2 ∈ Ξ, as required.


