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ON A NONLINEAR SCHRÖDINGER EQUATION FOR NUCLEONS IN

ONE SPACE DIMENSION

CHRISTIAN KLEIN AND SIMONA ROTA NODARI

Abstract. We study a 1D nonlinear Schrödinger equation appearing in the

description of a particle inside an atomic nucleus. For various nonlinearities,
the ground states are discussed and given in explicit form. Their stability is

studied numerically via the time evolution of perturbed ground states. In the

time evolution of general localized initial data, they are shown to appear in
the long time behaviour of certain cases.

1. Introduction

This paper is concerned with the study of solutions to a nonlinear Schrödinger
(NLS) type equation which, in a specific non-relativistic limit proper to nuclear
physics, describes the behavior of a particle inside the atomic nucleus. This equation
is, at least formally (see Appendix A), deduced from a relativistic model involving
a Dirac operator and, in space dimension d = 1, is given by

(1) i∂tφ = −∂x
(

∂xφ

1− |φ|2α

)
+ α|φ|2α−2 |∂xφ|2

(1− |φ|2α)2
φ− a|φ|2αφ

where φ ∈ L2(R,C) is a function that describes the quantum state of a nucleon (a
proton or a neutron), α ∈ N∗ is a strictly positive integer and a > 0 is a parameter
of the model. Note that equation (1) is Hamiltonian and has a conserved energy

(2) E[φ] =

∫
R

|∂xφ|2

1− |φ|2α
− a

α+ 1
|φ|2α+2.

Solitary wave solutions for this equation can be constructed by taking φ(t, x) =
eibtϕ(x) with ϕ a real positive square integrable solution to the stationary equation

(3) −
(

ϕ′

1− ϕ2α

)′
+ α

(ϕ′)2

(1− ϕ2α)2
ϕ2α−1 − aϕ2α+1 + bϕ = 0.

The reasoning that the solution can be chosen to be real is the same as for the
standard NLS equation.

Positive square integrable solutions of (3) can be seen as ground state solutions
of (1) since they are minimizers of (2) among all the functions belonging to

(4) X =

{
ϕ ∈ L2(R),

∫
R

|ϕ′|2

(1− |ϕ|2α)+
< +∞,

∫
R
|ϕ|2 = 1

}
⊂ H1(R)

where f+ denotes the positive part of any function f . As shown in [4], this is the
appropriate way to define ground states for this energy. Indeed, on the one hand, by
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adapting the arguments of [4], it can been shown that the energy E is not bounded
from below in the set

{
ϕ ∈ H1(R),

∫
R |ϕ|

2 = 1
}

. On the other hand, if ϕ ∈ X, one

can show (see [4]) that |ϕ|2 ≤ 1 a.e. in R. As a consequence, for any ϕ ∈ X,
E[ϕ] ≥ − a

α+1 .

In this paper we will prove the existence of solitary wave solutions to (1) for any
value of α ∈ N∗, give them in explicit form, and study numerically their stability
as well as the time evolution of more general initial data with |φ| < 1.

In the physical literature, the most relevant case is given by α = 1 which leads
to the cubic nonlinear Schrödinger type equation

(5) i∂tφ = −∂x
(

∂xφ

1− |φ|2

)
+

|∂xφ|2

(1− |φ|2)2
φ− a|φ|2φ.

Nevertheless, it could be mathematically interesting to investigate also the be-
havior of solutions for other power nonlinearities as for example the quintic nonlin-
earity (α = 2) which corresponds to the L2 critical case for the usual NLS equation.
For the latter equation, it is known that initial data with a mass larger than the
ground state can blow up in finite time, see for instance [8] and references therein.

To our knowledge, the above model was mathematically studied for the first time
in [3], where M.J. Esteban and S. Rota Nodari consider the equation

(6) −∇ ·
(
∇ϕ

1− ϕ2

)
+
|∇ϕ|2

(1− ϕ2)2
ϕ− aϕ3 + bϕ = 0,

which is the generalization of (3) for any spatial dimension d ≥ 1 and for α = 1. In
particular, the existence of real positive radial square integrable solutions has been
shown whenever a > 2b. Note that solutions to (6) do not have a simple scaling
property in the parameter b as ground states for the standard NLS equation. This
makes it necessary to study several values of b in this context.

This result has then been generalized in [10], where the existence of infinitely
many square-integrable excited states (solutions with an arbitrary but finite number
of sign changes) of (6) was shown in dimension d ≥ 2.

In [4] (see also [7]), using a variational approach the existence of solutions to (6)
is proved without considering any particular ansatz for the wave function of the
nucleon and for a large range of values for the parameter a. Finally, in [7], M. Lewin
and S. Rota Nodari proved the uniqueness, modulo translations and multiplication
by a phase factor, and the non-degeneracy of the positive solution to (6). The proof
of this result is based on the remark that equation (6) can be written in terms of
u = arcsin(ϕ) as simpler nonlinear Schrödinger equation.

The same can be done for (3). Indeed, by taking u := arcsin(ϕα), one obtains

(7) −u′′ − aα sin(u)3 cos(u) + bα sin(u) cos(u)−
(

1

α
− 1

)
(∂xu)2 cotu = 0.

In Appendix B, we generalize the results of [7] for any α ∈ N∗ in spatial dimension
1 by proving the following theorem.

Theorem 1. Let α ∈ N∗. The nonlinear equation (3) has no non-trivial solution
0 ≤ ϕ < 1 such that limx→±∞ ϕ(x) = 0 when 0 < a ≤ (α+1)b. For a > (α+1)b > 0,
the nonlinear equation (3) has a unique solution 0 < ϕ < 1 that tends to 0 at ±∞,
modulo translations. This solution is given by

(8) ϕ(x) =

(
1

2

(
a

(α+ 1)b
+ 1

)
+

1

2

(
a

(α+ 1)b
− 1

)
cosh(2α

√
bx)

)− 1
2α

.

In particular, the following holds

i. ϕ ∈ C1(R);
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ii. ϕ(x) = ϕ(−x);
iii. ϕ′(x) < 0 for all x > 0;

iv. ϕ(x) ∼x→+∞ Ce−
√
bx;

v. ϕ is non-degenerate.

The paper is organized as follows: In Section 2 we derive the explicit form
of solutions to (3) for any α ∈ N∗ whenever a > (α + 1)b > 0, and we show
their behavior for various values of the parameters. The computation presented in
Section 2 is justified in the Appendix B where the proof of Theorem 1 is done. In
Section 3, we outline the numerical approach for the time evolution of initial data
according to (1). This code is applied to perturbations of the ground states for
various values of the nonlinearity parameter α and for initial data from the Schwartz
class of rapidly decreasing functions. In Section 4, we discuss the generalization of
the model in higher space dimension. Finally, a formal derivation of the equation (1)
is presented in Appendix A.

2. Ground states

In this section we construct ground state solutions to the equation (1) and show
some examples for different values of the parameters.

First of all, equation (3) can be integrated once to give

(9) − (ϕ′)2

1− ϕ2α
− a

α+ 1
ϕ2α+2 + bϕ2 = 0,

where we have used the asymptotic behavior of ϕ for x→∞. Putting ψ := ϕ−2α,
we get from (9),

(10) (ψ′)2 = 4α2b

(
ψ − a

(α+ 1)b

)
(ψ − 1),

which has for a 6= (α+ 1)b the solution

(11) ψ(x) =
1

2

(
1 +

a

(α+ 1)b

)
+

1

2

∣∣∣∣1− a

(α+ 1)b

∣∣∣∣ cosh(2α
√
b(x− x0)).

Here x0 is an integration constant reflecting the translation invariance in x of the
ground state and ψ(x0) is chosen in order to have a C1 solution to (10) defined for
any x ∈ R. Using the translation invariance, we will assume in the following that
the maximum of the solution is at x = 0, and then we put x0 = 0.

The solution to equation (10) for a = (α+ 1)b leading to the wanted asymptotic
behavior of ϕ will not be globally differentiable.

For a < (α + 1)b, one has ψ(0) = 1 and thus ϕ(0) = 1. This would lead to a
vanishing denominator in (9). As a consequence, ϕ′(0) has to be equal to 0. This
contradicts equation (9) since a < (α+ 1)b.

Summing up, with (11) we get the ground states for 0 < (α+1)b < a in the form

(12) ϕ(x) =

[
1

2

(
1 +

a

(α+ 1)b

)
+

1

2

(
a

(α+ 1)b
− 1

)
cosh(2α

√
bx)

]− 1
2α

.

Let us point out that this construction will be further justified in Appendix B
where Theorem 1 is proven.

As a concrete example we show the solutions (12) for a = 9 and various values
of b < a/(α + 1). The solutions for α = 1 can be seen in Fig. 1. With b → a/2,
the solutions become broader and broader and have a larger maximum. The peak
near 1 becomes also flatter. For b = 4.499, the maximum is roughly at 0.9999 and
almost touches on some interval the line 1.

For α = 2, 3 we get in the same way the figures in Fig. 2. It can be seen that
the higher nonlinearity has a tendency to lead to more compressed peaks as in [1].
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Figure 1. Ground state solution to equation (3) for α = 1, a = 9
and b = 4.0, 4.2, 4.4, 4.49 and 4.499 (from bottom to top).

But due to the missing scaling invariance of the ground states here, it is difficult to
compare them.

-5 0 5
x

0

0.2

0.4

0.6

0.8

1

-5 0 5
x

0

0.2

0.4

0.6

0.8

1

Figure 2. Ground state solution to equation (3) for a = 9 and
α = 2 on the left (b = 2.0, 2.5, 2.8, 2.9 and 2.99 from bottom to
top), and for α = 3 on the right (b = 2.0, 2.1, 2.2, 2.22 and 2.24
from bottom to top).

3. Numerical study of the time evolution

In this section we study the time evolution of initial data for the equation (1). We
study the stability of the ground state and the time evolution of general initial data
in the Schwartz class of smooth rapidly decreasing functions for various parameters.

The results of this section can be summarized in the following

Conjecture 2. The ground states of equation (1) are asymptotically stable if the
perturbed initial data satisfy |φ(x, 0)| < 1. The long time behavior of solutions for
general localized initial data is characterized by ground states and radiation.
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Note that the separation of radiation from the bulk is much faster for the cubic
case. For higher nonlinearity, this takes considerably longer, and on the used com-
puters, we can reach an agreement of the final state and a ground state of the order
of a few percents.

3.1. Time evolution approach. The exponential decay of the stationary solutions
makes the use of Fourier spectral methods attractive. Thus we define the standard
Fourier transform of a function u,

(13) û = Fu :=
1

2π

∫
R
e−ikxu dx, k ∈ R,

and consider the x-dependence in equation (1) in Fourier space.
The numerical solution is constructed on the interval x ∈ L[−π, π] where L > 0

is chosen such that the solution and relevant derivatives vanish with numerical
precision (we work here with double precision which corresponds to an accuracy
of the order of 10−16). The solution φ is approximated via a truncated Fourier

series where the coefficients φ̂ are computed efficiently via a fast Fourier transform
(FFT). This means we treat the equation,

(14) i∂tφ̂ = −ikF
(

∂xφ

1− |φ|2α

)
+ F

(
α|φ|2α−2 |∂xφ|2

(1− |φ|2α)2
φ− a|φ|2αφ

)
,

and approximate the Fourier transform in (14) by a discrete Fourier transform.
The study of the solutions to (14) is challenging for several reasons: first it is an

NLS equation which leads to a stiff system of ODEs if FFT techniques are used.
Since a possible definition of stiffness is that explicit time integration schemes are
not efficient, the use of special integrators is recommended in this case. But most
of the explicit stiff integrators for NLS equations, see for instance [5] and references
therein, assume a stiffness in the linear part of the equations. However, here the
second derivatives with respect to x appear in nonlinear terms. Note that the NLS
equation is not stiff if perturbations of the ground states are considered, but mainly
when zones of rapid modulated oscillations appear, so called dispersive shock waves,
see the discussion in [5].

Since we are interested in the former, the main problem of equation (1) is not
the stiffness, but the singular term for |φ| → 1. Since the equation is focusing, it is
to be expected that for initial data with modulus close to 1 it will be numerically
challenging since the focusing nature of the equation might lead for some time to
even higher values of |φ|. Obviously the regime φ ∼ 1 is the most interesting from
a mathematical point of view since here the strongest deviation from the standard
NLS equation is to be expected. To achieve the needed high accuracy for this, a
fourth order method is necessary, and even there with small time steps. It turns
out that in the studied examples the requirement for accuracy is of similar order as
stability conditions for an explicit approach. We apply here the standard explicit
fourth order Runge-Kutta method for which the stability condition is ∆t ∼ 1/N2,
see for instance [9]. We have compared this approach to the unconditionally stable
second order Crank-Nicolson method, but had trouble to reach the needed accuracy
in an efficient way. The explicit approach is also more efficient than an implicit 4th
order Runge-Kutta scheme as applied in [5] where a nonlinear equation has to be
solved iteratively at each time step.

The accuracy of the solution is controlled as in [5]: the decrease of the Fourier
coefficients indicates the spatial resolution since the numerical error of a truncated
Fourier series is of the order of the first neglected Fourier coefficients. The error in
the time integration is controlled via conserved quantities. We use the energy (2)
which is a conserved quantity of (1), but which will numerically depend on time
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due to unavoidable numerical errors. In the examples below, the relative energy is
always conserved to better than 10−6.

We test the numerical approach at the example of the ground state. Concretely
we consider the ground state solution for α = 1, a = 9, b = 4.4 as initial data.
We use N = 210 Fourier modes in x for x ∈ 5[−π, π] and Nt = 105 time steps
for t ∈ [0, 1]. Note that though the ground state solution is stationary, it is not
time independent. We compare the numerical and the exact solution, i.e., the
solution to (12) times eibt at the final time t = 1. This difference is of the order of
10−14 as shown in Fig. 3. The relative conservation of the energy (2) is during the
whole computation of the order of 10−14. This shows that the ground state can be
numerically evolved with an accuracy of the order 10−14, and that the conservation
of the numerically computed energy indicates the accuracy of the time integration.

-20 -10 0 10 20
x

0

1

2

3

4

5

6

7

|
-

ex
|

10-14

Figure 3. Difference of the numerical solution to the equation
(5) for initial data being the ground state solution for a = 9 and
b = 4.4, and the exact solution for t = 1.

3.2. Perturbations of ground states. In this subsection we consider the stability of
the ground states (12). To this end we perturb it first in the form φ(x, 0) = λϕ(x),
where λ ∼ 1.

Remark 3. Numerically one cannot consider arbitrary small perturbations as in
analytical work since one would have to wait for very large times in order to get
meaningful results. But using long times would imply that numerical errors of
even high order schemes pile up. Thus in practice one always considers perturba-
tions of the order of 1% (some equations like the Korteweg-de Vries equation allow
perturbations of the order of 10% such that the solution stays close to a soliton,
and the present equation is similar in this respect). This implies, however, that
the final state of a perturbed ground state is not the exact ground state even for
asymptotically stable ground states, but a nearby one.

The cubic case. We use N = 211 Fourier modes and Nt = 5 ∗ 105 time steps for
t ∈ [0, 0.25], i.e., more than a whole period of the perturbed ground state. In Fig. 4
we show the solution for the perturbed ground state with λ = 0.99. It can be seen
that after a short phase of focusing a ground state with slightly larger maximum
than the initial data is reached. In addition there is some radiation towards infinity.
The Fourier coefficients of the solution at the final time on the right of Fig. 4 indicate
that the solution is fully resolved in x.

The reaching of a ground state is also suggested by the L∞ norm of the solution
shown on the left of Fig. 5. As stated in remark 3, we expect a ground state of
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Figure 4. Solution to the equation (5) for the initial data
φ(x, 0) = 0.99ϕ(x, a = 9, b = 4.4) and α = 1 on the left, and
the Fourier coefficients of the solution at the final time on the right.

slightly different b as the final state since we have a perturbation of the order of 1%.
To determine this ground state, we use some optimal fitting of the ground state
(12) by varying b in order to approximate the solution at the final time. To this
end we minimize the residual of the modulus of φ and ϕ for |x| < x0 (we consider
x0 = 5) via the optimization algorithm [6] implemented in Matlab as the function
fminsearch. On the right of Fig. 5, we show the solution of Fig. 4 at the final time
in blue together with a fitted ground state in green. The good agreement (the green
curve covers the blue one in the plot where it is identical up to plotting accuracy)
shows that the final state is indeed a very nearby ground state, b = 4.388, which
can be already indentified (the difference is of the order of 10−3) at an early time.
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Figure 5. On the left the L∞ norm of the solution of Fig. 4, on
the right the solution at the final time in blue and a fitted ground
state in green.

If we perturb the same ground state as in Fig. 4 with a factor λ > 1 (such that
||λϕ||∞ < 1), we observe a similar behavior as can be seen in Fig. 6. The decrease
of the modulus of the Fourier coefficients on the right of Fig. 6 indicates that the
numerical error in the spatial resolution is of the order of 10−8. This shows that
there are stronger gradients to resolve in this case than in Fig. 4.

As is more obvious from the L∞ norm in Fig. 7 on the left, a ground state with
slightly lower maximum than the initial data is quickly reached. On the right of
the same figure we show the solution at the final time in blue together with a fitted
ground state (b = 4.4011) in green. The agreement is so good that the blue line
can hardly be seen (the difference is of the order of 10−3).
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Figure 6. Solution to the equation (5) for the initial data
φ(x, 0) = 1.001ϕ(x, a = 9, b = 4.4) on the left and the Fourier
coefficients of the solution at the final time on the right.
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Figure 7. On the left the L∞ norm of the solution of Fig. 4, on
the right the solution at the final time in blue and a fitted ground
state in green.

The same initial data as above are perturbed with a localized perturbation of the
form φ(x, 0) = ϕ(x)± 0.001 exp(−x2). The resulting L∞ norms of the solutions to
(5) for these initial data are shown in Fig. 8. In both cases the L∞ norm appears to
approach a slightly smaller ground state than the unperturbed one (for the − sign
in the initial data) respectively slightly larger ground state (for the + sign). Note
that in the former case, the L∞ norm grows monotonically from its initial value to
a value slightly below 0.9888, whereas it decreases in the latter case monotonically
from its initial value to a value slightly above 0.9888.

In Fig. 9 we show the solutions for both cases at the final time in blue together
with fitted ground states. In both cases the agreement is so good that a difference
(again of the order of 10−3) can hardly be recognized. Thus the ground states
appear to be asymptotically stable also in this case. The fitting yields b = 4.3992
for the − sign and b = 4.4008 for the + sign, i.e., the expected values close to 4.4.
Higher nonlinearities. We repeat the experiments of Fig. 4 and Fig. 6 for α = 2,
i.e., a higher nonlinearity. As can be seen below, the ground states still appear to be
stable, but take a considerably longer time to settle to a final state. This means we
will need much higher numerical resolution in order to avoid too much interaction
between the radiation and the bulk on a torus (we simply choose a larger period),
and have to solve for longer times. We use N = 213 Fourier modes for x ∈ 20[−π, π]
and Nt = 2 ∗ 106 time steps for t ∈ [0, 2].
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Figure 8. L∞ norms of the solution of (5) for the initial data
φ(x, 0) = ϕ(x)± 0.001 exp(−x2), on the left for the minus sign, on
the right for the plus sign in the initial data.
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Figure 9. Solutions of (5) for the initial data φ(x, 0) = ϕ(x) ±
0.001 exp(−x2), on the left for the minus sign, on the right for the
plus sign in the initial data in blue together with a fitted ground
state in green.

The L∞ norms for the perturbed ground state can be seen in Fig. 10 on the left.
Again a ground state with slightly smaller maximum than the perturbed gound
state appears to be reached for λ = 0.99. But this time the L∞ norm performs
some damped oscillations around what seems to be an asymptotic value. Since
there is no dissipation in the system, this settling into a final state can take quite
long compared to a period of the initial ground state, and interestingly takes much
longer than in the case α = 1 above1. Note that the quintic nonlinearity is L2

critical in the standard NLS equation, i.e., solutions to initial data of sufficient
mass blow up in finite time. Here no blow-up is observed, ||φ||∞ < 1 for all times.
The oscillations around some finite value for the L∞ norm can also be seen on
the right of Fig. 10, where the solution at the final time is shown together with a
ground state of the fitted asymptotic maximum (b ∼ 2.9221). It can be seen that
the fitting is not as good as in the case α = 1 shown above, and that the found
value for b is slightly larger than the original one. This means that the solution at
the final time is not yet sufficiently close to the asymptotic solution.

1The very small oscillations which appear for larger times on the L∞ norm are due to us studying
the perturbations in a periodic setting and not on R. Thus radiation emitted to infinity appears
on the other side of the computational domain and interacts after some time with the bulk which
leads to small periodic excitations of the latter. This effect can be fully suppressed by considering
larger periods.



10 CHRISTIAN KLEIN AND SIMONA ROTA NODARI

-10 -5 0 5 10
x

0

0.2

0.4

0.6

0.8

1

|
|

Figure 10. L∞ norm of the solution of (1) for the initial data
φ(x, 0) = λϕ(x) and a = 9, b = 2.9 and α = 2 for λ = 0.99 on
the left, on the right the solution at the final time in blue together
with an estimated ground state in green.

The situation is very similar for a perturbation with λ = 1.001 shown in Fig. 11.
The L∞ on the left of Fig. 11 again appears to oscillate around some asymptotic
value which is not fully reached during our computation. A fitted value (b ∼ 2.9315
for this final state leads to the green curve on the right of the same figure. It shows
that the final state is not yet reached, but close to the green curve. Note that
the ground state appears to be stable also for the Gaussian perturbations of Fig. 8
which are not shown here.
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Figure 11. L∞ norm of the solution of (1) for the initial data
φ(x, 0) = λϕ(x) and a = 9, b = 2.9 and α = 2 for λ = 1.001 on
the left, on the right the solution at the final time in blue together
with an estimated ground state in green.

The same experiments as above are shown for an even higher nonlinearity α = 3
and b = 2.1 in Fig. 12 for λ = 0.99. The L∞ norm on the left of the figure appears
to oscillate around some some asymptotic value. On the right of the same figure
we show the solution at the final time in blue plus a fitted (b ∼ 2.1492) ground
state in green. Once more the ground states appear to be stable (also for Gaussian
perturbations not shown here), but the final state will be only fully reached at
longer times (the fitted value of b is even larger than the original here).

The situation is similar for λ = 1.001 shown in Fig. 13. On the left the L∞

norm appears to oscillate around some asymptotic value. On the right we show the
solution at the final time together with a fitted (b ∼ 2.164) ground state solution in
green. Note that for the standard NLS a septic nonlinearity would be L2 supercrit-
ical which again would lead to a blow-up of initial data of sufficiently large mass.
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Figure 12. L∞ norm of the solution of (1) for the initial data
φ(x, 0) = 0.99ϕ(x) and a = 9, b = 2.1 and α = 3 on the left, on
the right the solution at the final time in blue together with an
estimated ground state in green.
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Figure 13. L∞ norm of the solution of (1) for the initial data
φ(x, 0) = 1.001ϕ(x) and a = 9, b = 2.1 and α = 3 on the left, on
the right the solution at the final time in blue together with an
estimated ground state in green.

3.3. Schwartz class initial data. An interesting question in this context is whether
these stable ground states appear in the long time behavior of solutions to generic
localized initial data. To address this question we consider initial data of the form
φ(x, 0) = µ exp(−x2) with 0 < µ < 1, again for a = 9. We use N = 212 Fourier
modes for x ∈ 40[−π, π] and Nt = 5∗105 time steps for the indicated time intervals.
In Fig. 14 it can be seen that the L∞ norm of the solution appears to oscillate around
some asymptotic values, and that some radiation is emitted towards infinity.

The former effect is more visible on the left of Fig. 15 where the L∞ norm of
the solution is shown. Since there is no dissipation in the system, the final ground
state will be only reached asymptotically. On the right of the same figure we show
the solution at the final time of the computation in blue together with an estimated
ground state (b ∼ 2.7188) in green.

The situation is similar for higher nonlinearity. In Fig. 16 we show the case
α = 2. On the left for µ = 0.9, the L∞ norm of the solution appears again to show
damped oscillations around some asymptotic value, presumably a ground state.
The solution at the final computed time is shown on the right of the same figure
together with a fitted (b = 1.4399) ground state in green. Though the final state
is not yet reached, it appears that the soliton resolution conjecture also applies to
this case.
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Figure 14. Solution to the equation (5) with a = 9 for the initial
data φ(x, 0) = 0.9 exp(−x2).
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Figure 15. On the left the L∞ norm of the solution of Fig. 14,
on the right the solution at the final time in blue together with a
fitted ground state in green.
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Figure 16. On the left the L∞ norm of the solution of equation
(1) for α = 2 and the initial data φ(x, 0) = 0.9 exp(−x2), and the
solution for t = 10 on the right in blue together with some fitted
ground state in green.

For the even higher nonlinearity α = 3, we consider in Fig. 17 the case µ = 0.9
and show on the left the L∞ norm of the solution which once more shows damped
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oscillations around some final state. On the right of the same figure we give the
solution at the final computed time together with a fitted ground state (b = 1.2549).
Once more the fitting is not perfect since the final state of the solution is not yet
reached, but it appears plausible that this final state is indeed a ground state.
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Figure 17. On the left the L∞ norm of the solution of equation
(1) for α = 3 and the initial data φ(x, 0) = 0.9 exp(−x2), on the
right the solution for t = 10 in blue together with some fitted
ground state.

4. Outlook: analysis of the model in higher space dimension

It seems interesting to investigate the model described in this paper in higher
space dimension, d = 3 being the most relevant case from a physical point of view.

On the one hand, to generalize the model for any dimension d > 1, one can
simply replace ∂x in equation (1) by the operator ∇. This leads to a quasilinear
Schrödinger equation of the form

i∂tφ = −∇ ·
(

∇φ
1− |φ|2α

)
+ α|φ|2α−2 |∇φ|2

(1− |φ|2α)2
φ− a|φ|2αφ

with φ ∈ L2(Rd,C). On the other hand, at least in dimension d = 2 and d = 3,
another possibility is to formally derive the equation of the model by following
the arguments presented in Appendix A and by taking as starting point the Dirac
equation in dimension 1 < d ≤ 3. This will lead to a slightly more complicated
quasilinear Schrödinger equation.

In both cases, solitary wave solutions for any α ∈ N∗ are expected to exist, and
one can investigate their behavior analytically and numerically. However, the study
of the time-dependent equation from an analytical point of view seems much more
involved.

From a numerical point of view, a stiff time integrator would be recommended
for higher dimensions in order to overcome stability constraints, in particular if
dispersive shock waves are studied instead of perturbations of ground states as in the
present paper. A straightforward, but computationally expensive approach would
be an implicit scheme, which probably will have to be combined with some Newton-
Krylov scheme since a standard fixed point iteration might not converge except for
very small time steps. More interesting would be Rosenbrock-type integrators based
on a linearization of the equation after the spatial discretisation, and an exponential
integrator for the Jacobian of the resulting system. This can be done efficiently by
using so-called Leja points, see for instance [2] and references therein.

We leave this generalization to future work.
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Appendix A. Formal derivation of the non-relativistic model

Consider the following nonlinear Dirac equation in one space dimension

(15) i∂tΨ = (−iσ1∂x + σ3m)Ψ− κ1(〈σ3Ψ,Ψ〉)ασ3Ψ + κ2|Ψ|2αΨ

with κ1 and κ2 positive constants and α ∈ N∗. Here Ψ = (ψ, ζ) is a 2-spinor
that describes the quantum state of a nucleon of mass m, and σ1 and σ3 are the
Pauli matrices given by

σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
.

In nuclear physics, the interesting regime is when the parameters κ1 and κ2
behave like m, whereas κ1 − κ2 stays bounded. More precisely, let κ1 = θm and
κ1−κ2 = λ with θ and λ positive constants. As a consequence, the nonlinear Dirac
equation (15) can be written as

(16)

{
i∂tψ = −i∂xζ +mψ − θm(|ψ|2 − |ζ|2)αψ + (θm− λ)(|ψ|2 + |ζ|2)αψ,

i∂tζ = −i∂xψ −mζ + θm(|ψ|2 − |ζ|2)αζ + (θm− λ)(|ψ|2 + |ζ|2)αζ.

Hence, by writing

φ̃(t, x) = eimtψ(t, x) and χ̃(t, x) = eimtζ(t, x),

we obtain
i∂tφ̃ = −i∂xχ̃+ θm

(
α∑
k=0

(
α

k

)
(|φ̃|2)α−k|χ̃|2k((−1)k+1 + 1)

)
φ̃− λ

(
α∑
k=0

(
α

k

)
(|φ̃|2)α−k|χ̃|2k

)
φ̃,

i∂tχ̃ = −i∂xφ̃− 2mχ̃+ θm

(
α∑
k=0

(
α

k

)
(|φ̃|2)α−k|χ̃|2k((−1)k + 1)

)
χ̃− λ

(
α∑
k=0

(
α

k

)
(|φ̃|2)α−k|χ̃|2k

)
χ̃.

As usual, in the non-relativistic regime, the lower spinor χ̃ is of order 1/
√
m. Hence,

we have to perform the following change of scale

φ̃(t, x) =

(
1

θ

) 1
2α

φ

(
t

2
,
√
mx

)
and χ̃(t, x) =

(
1

θ

) 1
2α 1

2
√
m
χ

(
t

2
,
√
mx

)
which leads to

i∂tφ = −i∂xχ+ α(|φ|2)α−1|χ|2φ− a|φ|2αφ+
1

m
F (1/m, φ, χ)φ

1

m

1

4
i∂tχ = −i∂xφ− χ+ |φ|2αχ− 1

m
G(1/m, φ, χ)χ

with a = 2λ
θ , and F,G defined by

F (1/m, φ, χ) = 2

α∑
k=2

(
α

k

)
(|φ|2)α−k

|χ|2k

22kmk−2 ((−1)k+1 + 1)− a
α∑
k=1

(
α

k

)
(|φ|2)α−k

|χ|2k

22kmk−1 ,

G(1/m, φ, χ) =
1

2

α∑
k=1

(
α

k

)
(|φ|2)α−k

|χ|2k

22kmk−1 ((−1)k + 1)− a

4

α∑
k=0

(
α

k

)
(|φ|2)α−k

|χ|2k

22kmk
.

Finally, denoting ε = 1
m the perturbative parameter, we obtain

(17)


i∂tφ = −i∂xχ+ α(|φ|2)α−1|χ|2φ− a|φ|2αφ+ εF (ε, φ, χ)φ,

i∂xφ+ (1− |φ|2α)χ+ ε
1

4
i∂tχ+ εG(ε, φ, χ)χ = 0.
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In particular, when ε = 0, we have

(18)

{
i∂tφ = −i∂xχ+ α(|φ|2)α−1|χ|2φ− a|φ|2αφ,
i∂xφ+ (1− |φ|2α)χ = 0,

which leads at least formally to the time-dependent quasilinear Schrödinger equa-
tion

i∂tφ = −∂x
(

∂xφ

1− |φ|2α

)
+ α(|φ|2)α−1

|∂xφ|2

(1− |φ|2α)2
φ− a|φ|2αφ.

Appendix B. Existence of positive solutions to the stationary
equation (3)

In this appendix, we prove Theorem 1 and we make rigorous the construction of
ground states presented in Section 2.

As in [3], we write the stationary equation (3) as a system of first order ODEs

(19)

{
χ′ = αχ2ϕ2α−1 − aϕ2α+1 + bϕ

ϕ′ = χ(1− ϕ2α)

for any strictly positive integer α.
The existence of solutions to (19) is an immediate consequence of the Cauchy-

Lipschitz theorem. More precisely, we have the following lemma.

Lemma 4. Let α ∈ N∗ and (x0, χ0, ϕ0) ∈ R×R2. For any a, b > 0, there exist γ > 0
and (χ, ϕ) ∈ C1([x0 − γ, x0 + γ],R2) unique solution of (19) satisfying χ(x0) = χ0,
ϕ(x0) = ϕ0. Moreover, (χ, ϕ) can be extended on a maximal interval ]X−, X+[ for
which the following holds

i. either X+ = +∞ or X+ < +∞ and limx→X+
|χ|+ |ϕ| = +∞,

ii. either X− = −∞ or X− > −∞ and limx→X− |χ|+ |ϕ| = +∞.

Our goal is then to find an initial condition (χ0, ϕ0) ∈ R2 such that the unique so-
lution of (19) satisfying χ(x0) = χ0, ϕ(x0) = ϕ0 is defined on R and limx→±∞(χ(x), ϕ(x)) =
(0, 0).

A key ingredient of the proof is to remark that system (19) is the Hamiltonian
system associated with the energy

(20) H(χ, ϕ) =
1

2
χ2(1− ϕ2α) +

a

2(α+ 1)
ϕ2α+2 − b

2
ϕ2.

As a consequence, to have a complete description of the dynamical system, it is
enough to analyze the energy levels of (20), i.e. the curves in the (χ, ϕ)-plane
defined by Γc = {(χ, ϕ)|H(χ, ϕ) = c}.

Lemma 5. [3, for α = 1] Let α ∈ N∗. For any a, b > 0, H has the following
properties:

i. if a− b > 0,

(a) ∇H(χ, ϕ) = 0 if and only if (χ, ϕ) = (0, 0), (χ, ϕ) = (0,±
(
b
a

)1/2α
),

(χ, ϕ) = (±
√

a−b
α , 1) or if (χ, ϕ) = (±

√
a−b
α ,−1);

(b) (χ, ϕ) = (0,±
(
b
a

)1/2α
) are local minima, and (χ, ϕ) = (0, 0), (χ, ϕ) =

(±
√

a−b
α , 1) and (χ, ϕ) = (±

√
a−b
α ,−1) are saddle points of the energy

H.
ii. if a− b = 0, ∇H(χ, ϕ) = 0 if and only if (χ, ϕ) = (0, 0) or (χ, ϕ) = (0,±1).

iii. if a− b < 0,

(a) ∇H(χ, ϕ) = 0 if and only if (χ, ϕ) = (0, 0) or (χ, ϕ) = (0,±
(
b
a

)1/2α
);



16 CHRISTIAN KLEIN AND SIMONA ROTA NODARI

(b) (χ, ϕ) = (0, 0) and (χ, ϕ) = (0,±
(
b
a

)1/2α
) are saddle points of the

energy H.

Remark 6. Let α ∈ N∗, a, b > 0 and (χ, ϕ) a continuous solution of (19), if there
exists x0 ∈ R such that (χ(x0), ϕ(x0)) = (0, 0) then (χ(x), ϕ(x)) ≡ (0, 0).

Remark 7. Let α ∈ N∗, a, b > 0 and x0, χ0 ∈ R. If (χ, ϕ) is the unique continuous
solution of (19) satisfying χ(x0) = χ0, ϕ(x0) = 1 (resp. ϕ(x0) = −1) then ϕ(x) ≡ 1
(resp. ϕ(x) ≡ −1).

As a consequence of Remark 7, we have the following lemma.

Lemma 8. Let α ∈ N∗, a, b > 0 and (χ, ϕ) a continuous solution of (19) defined on
R such that limx→±∞(χ(x), ϕ(x)) = (0, 0). Then ϕ2(x) < 1 for all x ∈ R.

Proof. Let (χ, ϕ) a continuous solution of (19) converging to (0, 0) as x → ±∞.
Then ∀ε > 0, ∃δε > 0 such that |ϕ(x)| < ε for all x > δε.

Suppose, by contradiction, that there exists x0 ∈ R such that ϕ(x0) = 1 (resp.
ϕ(x0) = −1). Then Remark 7 implies ϕ(x) ≡ 1 (resp. ϕ(x) ≡ −1), a contradiction.

�

Next, since we are interested in solutions of (19) converging to (0, 0) as x→ ±∞,
we consider the zero level set of H defined by (20). The curve Γ0 = {(χ, ϕ)|H(χ, ϕ) =
0} is an algebraic curve of degree 2α+ 2 defined by

(21) χ2(1− ϕ2α) +
a

α+ 1
ϕ2α+2 − bϕ2 = 0

and its behavior depends on the parameters a, b and α. Moreover in the region
{(χ, ϕ) ∈ R2, ϕ2 < 1}, the equation of Γ0 can be written as

(22) χ2 = ϕ2
b− a

α+1ϕ
2α

1− ϕ2α
.

The following two lemmas show the nonexistence of positive solutions of (3) that
vanishes at ±∞ whenever 0 < a ≤ (α+ 1)b.

Lemma 9. Let α ∈ N∗ and a, b > 0 such that a < (α+1)b. Let (χ, ϕ) be the solution
of (19) satisfying χ(x0) = χ0, ϕ(x0) = ϕ0. If (χ0, ϕ0) 6= (0, 0) there is no solution
that satisfies limx→±∞(χ(x), ϕ(x)) = (0, 0).

Proof. Since ϕ is a C1 function such that limx→±∞ ϕ(x) = 0, there exits x̃ ∈ R
such that ϕ′(x̃) = 0. Moreover, thanks to Lemma 8, ϕ2(x̃) < 1. Hence, since ϕ is
a solution to (19), we deduce χ(x̃) = 0 that leads to

ϕ2(x̃)
b− a

α+1ϕ
2α(x̃)

1− ϕ2α(x̃)
= 0

using (22).

Now, ϕ2α(x̃) < 1 < (α+1)b
a . Then ϕ(x̃) = 0 and it follows from Remark (6), that

(χ(x), ϕ(x)) ≡ (0, 0). This contradicts (χ0, ϕ0) 6= (0, 0).
�

Lemma 10. Let α ∈ N∗ and a, b > 0 such that a = (α + 1)b. Let (χ, ϕ) be the
solution of (19) satisfying χ(x0) = χ0, ϕ(x0) = ϕ0. If (χ0, ϕ0) 6= (0, 0) there is no
solution that satisfies limx→±∞(χ(x), ϕ(x)) = (0, 0).

Proof. If a = (α+ 1)b, the curve Γ0 is defined as

(23) (1− ϕ2α)(χ2 − bϕ2) = 0

and zero contour line is represented in Fig. 18. Recall that (χ(x), ϕ(x)) ≡ (0, 0),
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Figure 18. Γ0 when a = (α+ 1)b

(χ(x), ϕ(x)) ≡ (±
√
b, 1) and (χ(x), ϕ(x)) ≡ (±

√
b,−1) are solutions to (19) such

that H(χ, ϕ) = 0.
Since we are interested in solutions of (19) converging to (0, 0) as x → ±∞,

we can restrict our study to the region {(χ, ϕ)|ϕ2 < 1}. Moreover, because of the
symmetries of the problem, it is enough to look for ϕ ≥ 0. Then, equation (23)

implies that χ(x) =
√
bϕ(x) or χ(x) = −

√
bϕ(x). In both cases, the solution (χ, ϕ)

is defined for all x ∈ R since |ϕ|+ |χ| < +∞. Finally, since (χ, ϕ) has to converge
to one of the critical points of H as x goes to ±∞, we can conclude that either

lim
x→−∞

(χ(x), ϕ(x)) = (0, 0) and lim
x→+∞

(χ(x), ϕ(x)) = (
√
b, 1)

or
lim

x→−∞
(χ(x), ϕ(x)) = (−

√
b, 1) and lim

x→−∞
(χ(x), ϕ(x)) = (0, 0).

As a consequence, the unique solution of (19) that satisfies limx→±∞(χ(x), ϕ(x)) =
(0, 0) is (χ(x), ϕ(x)) ≡ (0, 0).

�

Hence, let a > (α + 1)b. In this case we are able to prove the existence
and uniqueness (modulo translations) of a positive solution ϕ to of (3) such that
limx→±∞ ϕ(x) = 0.

Lemma 11. Let α ∈ N∗ and a, b > 0 such that a > (α+ 1)b. Then there is a unique
(modulo translations) solution (χ, ϕ) of (19) that satisfies 0 < ϕ(x) < 1 for all
x ∈ R and limx→±∞(χ(x), ϕ(x)) = (0, 0). Moreover, there exists x0 ∈ R such that
ϕ is symmetric with respect to {x = x0} and strictly decreasing for all x > x0.

Proof. If (χ, ϕ) is a solution of (19) that satisfies ϕ(x) > 0 for all x ∈ R and
limx→±∞(χ(x), ϕ(x)) = (0, 0), then there exists x0 ∈ R such that ϕ′(x0) = 0 and

0 < ϕ2(x0) < 1. Hence, χ(x0) = 0 and, thanks to (22), ϕ(x0) =
(

(α+1)b
a

) 1
2α

< 1.

Let (χ0, ϕ0) = (0,
(

(α+1)b
a

) 1
2α

) and (χ, ϕ) the unique solution of (19) satisfying

χ(x0) = χ0 and ϕ(x0) = ϕ0. Our goal is to show ϕ(x) > 0 for all x ∈ R and
limx→±∞(χ(x), ϕ(x)) = (0, 0).

First of all, we show that (χ, ϕ) is defined for all x ∈ R. Indeed, let ]X−, X+[
the maximal interval on which the solution (χ, ϕ) is defined. Thanks to Remark 7,
we have ϕ2(x) < 1 for all x ∈]X−, X+[. This, together with (22) and the fact that
b < a

α+1 , implies χ2(x) < a
α+1 for all x ∈]X−, X+[. As a consequence, ]X−, X+[= R.
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Next, we remark that for any x > x0, χ(x) < 0. Indeed, equation (19) implies
that χ′(x0) = −αbϕ(x0) < 0. Hence, χ(x) < 0 for all x > x0 sufficiently close to
x0. Assume, by contradiction, that there is x̃ ∈]x0,+∞[ such that χ(x) < 0 for all
x ∈]x0, x̃[ and χ(x̃) = 0. As a consequence, ϕ′(x) < 0 for all x ∈]x0, x̃[ and

ϕ2(x̃)
b− a

α+1ϕ
2α(x̃)

1− ϕ2α(x̃)
= 0.

This implies ϕ(x̃) = 0, a contradiction.
With the same argument, we show χ(x) > 0 for any x < x0 and we conclude that

ϕ(x) > 0 for all x ∈ R. Moreover, ϕ is strictly decreasing for all x > x0 and strictly

increasing for all x < x0. As a consequence maxx∈R ϕ(x) = ϕ(x0) =
(

(α+1)b
a

) 1
2α

.

Finally, we know that (χ, ϕ) has to converge to one of the critical points of H

as x goes to±∞. On the one hand, the points (±
√

a−b
α , 1) and (±

√
a−b
α ,−1) are ex-

cluded since 0 ≤ limx→±∞ ϕ(x) ≤ ϕ(x0) < 1. On the other hand, H(0,±
(
b
a

)1/2α
) <

0 = H(χ0, ϕ0). Hence (χ, ϕ) has to converge to (0, 0) as x goes to ±∞.
Next, we have to prove that ϕ is symmetric with respect to {x = x0}, i.e ϕ(2x0−

x) = ϕ(x) for all x ∈ R. For this, it is enough to remark that (χx0
(x), ϕx0

(x)) :=
(−χ(2x0 − x), ϕ(2x0 − x)) is a solution to (19) that satisfies χx0(x0) = 0 and
ϕx0(x0) = ϕ0. As a consequence (χx0(x), ϕx0(x)) = (χ(x), ϕ(x)) for all x ∈ R.

�

Remark 12. As shown in Section 2, a straightforward computation leads to the
explicit formula for ϕ. In particular, for any fixed x0 ∈ R,

(24) ϕ(x) =

(
1

2

(
a

(α+ 1)b
+ 1

)
+

1

2

(
a

(α+ 1)b
− 1

)
cosh(2α

√
b(x− x0))

)− 1
2α

for x ≥ x0 and ϕ(x) = ϕ(2x0 − x) for x < x0.

Finally, we conclude by proving the non-degeneracy of the solution ϕ. The
linearized operator at our solution ϕ is defined by

Lv =−
(

v′

1− ϕ2α
+

(
ϕ′

1− ϕ2α

)
2αϕ2α−1v

1− ϕ2α

)′
+ 2α

(
ϕ′

1− ϕ2α

)
ϕ2α−1

(
v′

1− ϕ2α
+

(
ϕ′

1− ϕ2α

)
2αϕ2α−1v

1− ϕ2α

)
+ α(2α− 1)

(
ϕ′

1− ϕ2α

)2

ϕ2α−2v − a(2α+ 1)ϕ2αv + bv.(25)

Our goal is to prove that in L2, kerL = span{ϕ′}.

Lemma 13. Let α ∈ N∗ and a, b > 0 such that a > (α + 1)b and ϕ the unique
solution of (3) that satisfies 0 < ϕ(x) < 1 for all x ∈ R and limx→±∞ ϕ(x) = 0.
Then ϕ is non-degenerate, i.e. kerL = span{ϕ′}.

Proof. First of all, by deriving the equation (3) with respect to x, we can easily
remark that ϕ′ is a solution to Lv = 0. As a consequence span{ϕ′} ⊂ kerL.

Let v ∈ kerLrspan{ϕ′}. As a consequence, by writing u = v′

1−ϕ2α +
(

ϕ′

1−ϕ2α

)
2αϕ2α−1v
1−ϕ2α ,

we deduce that v is a solution to

(26)

{
u′ = 2αχϕ2α−1u+ α(2α− 1)χ2ϕ2α−2v − a(2α+ 1)ϕ2αv + bv

v′ = (1− ϕ2α)u− 2αχϕ2α−1v
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with χ = ϕ′

1−ϕ2α . Note that (26) is simply the linearization of (19) at the solution

(χ, ϕ), (χ′, ϕ′) is a solution to (26) and the non-degeneracy property will follow
from the fact (0, 0) is a non-degenerate minimum of H. More precisely, a direct
computation, using the fact that (u, v) and (χ′, ϕ′) are solutions to (26), gives
(uϕ′ − vχ′)′ = 0. Hence, the function uϕ′ − vχ′ is constant and in particular
u(x)ϕ′(x)−v(x)χ′(x) = u(x0)ϕ′(x0)−v(x0)χ′(x0) = −v(x0)χ′(x0) with x0 defined
as in the proof of Lemma 11 so that χ′(x0) = −αbϕ(x0) < 0. If v(x0) = 0,
then uϕ′ − vχ′ ≡ 0 and using the definition of u we can conclude v ≡ 0. If
v(x0) > 0 (resp. v(x0) < 0), then u(x)ϕ′(x)− v(x)χ′(x) = αbϕ(x0)v(x0) > 0 (resp.
u(x)ϕ′(x)− v(x)χ′(x) = αbϕ(x0)v(x0) < 0) and (u, v) cannot converge to (0, 0) as
x goes to ±∞. Hence, v /∈ kerL.

�

References

[1] J. Arbunich, C. Klein and C. Sparber, On a class of derivative Nonlinear Schrödinger-type

equations in two spatial dimensions, M2AN, 53 (5), 1477–1505, (2019).

[2] M. Caliari, P. Kandolf, A. Ostermann and S. Rainer, The Leja method revisited:
backward error analysis for the matrix exponential, SIAM J. SCI. COMPUT., 38 (3), pp.

A1639–A1661
[3] M. J. Esteban and S. Rota Nodari, Symmetric ground states for a stationary relativis-

tic mean-field model for nucleons in the nonrelativistic limit, Rev. Math. Phys., 24 (2012),

pp. 1250025–1250055.
[4] M. J. Esteban and S. Rota Nodari, Ground states for a stationary mean-field model for

a nucleon, Ann. Henri Poincaré, 14 (2013), pp. 1287–1303.
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