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Abstract While validating the numerical modeling of the primary parti-

cle size distribution (PPSD) in sooting flames, a common practice is to com-

pare the numerical results to the corresponding experimental data obtained

with the Time-Resolved Laser-Induced Incandescence (TiRe-LII) technique.

Since the PPSD is not directly measured by TiRe-LII, but derived with a

post-processing procedure, various uncertainties and errors can potentially

affect the consistency of such comparison requiring the estimation of many

input parameters. On the contrary, nowadays detailed numerical simula-

tions provide access to a more complete set of data, which can be used
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to reconstruct the incandescence signal. In this work, a forward approach

for the generic validation of numerical models for the PPSD is performed.

It is based on the numerical reconstruction of the temporal evolution of

the incandescence from the numerical results and its comparison with the

measured signal. First, two indexes are proposed to quantify the agreement

between the numerically synthesized and the measured signals. Then, the

effectiveness of the proposed approach is demonstrated a priori by quantify-

ing the potential errors that can be avoided with this new strategy compared

to the classical approach. Finally, the feasibility of the proposed procedure is

proven by comparing synthesized signals to the experimental ones available

in literature for a laminar premixed flame. It is shown that the proposed

approach can be used to strengthening the analysis on numerical model

performances, additionally to the classical approach.

1 Introduction

Among the different pollutants produced by combustion, soot is getting

more and more attention from researchers, societal actors and industry.

From environmental and health perspectives, it is important to characterize

the emitted particulate matter, not only in terms of the total mass of the

particles, but also of their surface [1, 2].

Unfortunately, the numerical prediction of soot particles' morphology

represents a difficult challenge since it has been shown that the biggest

particles, namely aggregates, have fractal-like nature [3]. In specific, soot
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aggregates are constituted of small quasi-spherical particles, called primary

particles. The aggregates surface is then classically retrieved once the num-

ber and the size of the primary particles are known. For this reason, it is

essential to dispose of experimental [4–10] and numerical [11–13] tools allow-

ing the characterization of the primary particle size distribution (PPSD).

Concerning the experimental determination of the primary particle size,

the Transmission Electron Microscope (TEM) analysis of thermophoreti-

cally sampled soot has been extensively applied to determine the mean pri-

mary particle diameter dpp and the primary particle size distribution [5–9].

When using the TEM technique, the dpp is directly measured from pictures

taken by microscope. Such technique brings information about the shape of

the particles, such as the transition from spherical particles to aggregates.

The TEM is one of the best techniques to visualize soot particles down to the

size of ∼10 nm [8]. In addition to this technique, the Helium-Ion Microscopy

(HIM) was developed for microscopy investigations at the nanoscales [14].

The retrieved information is similar to TEM, but HIM is classically used to

characterize soot particles as small as 2 nm [15, 16]. Despite their relevant

advantages, these techniques present some similar drawbacks. The measure-

ments are performed intrusively and point-wise, limiting the analysis to few

points in the flame. In addition, results depend on the algorithm and/or on

the researcher criteria used to visually determine the number and the size

of the primary particles in an aggregate.

Another option is the use of the Scanning Mobility Particle Sizer (SMPS),
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which provides information about the particle mobility diameter [17,18]. In

case of spherical particles, the primary particle size and the particle size

coincide so that this technique can be considered for the determination of

the size of the primary particles. On the contrary, the extraction of dpp from

SMPS distributions remains very challenging for large aggregates.

Alternatively to these aforementioned intrusive techniques, optical diag-

nostics represent a very accurate experimental approach suitable to perform

investigations even in the harsh conditions of combustion. Among them, the

Time-Resolved Laser-Induced Incandescence (TiRe-LII) is an in-situ min-

imally invasive diagnostic technique that is more and more often used to

retrieve information on dpp and PPSD [10, 19–21]. In addition, the Planar

Laser-Induced Incandescence can be used to obtain information on the spa-

tial distribution of the PPSD in the whole laser plane.

Due to their advantageous properties, the TiRe-LII technique and laser

diagnostics in general are powerful tools to investigate soot formation. How-

ever, when using laser diagnostics, the fundamental quantities of interest are

usually not directly measured, but they are the results of a post-processing

procedure applied to the detected signal (inverse method). Most of the time,

such post-processing requires the quantification of various quantities simul-

taneously, leading to additional measurements, post-processing and/or as-

sumptions. Unfortunately, each of them may be considered as a new source

of uncertainty. Concerning the TiRe-LII approach, a long list of quantities

are required to obtain the dpp and the PPSD from the measured incan-
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descence signal. Beside the LII signal decay, information on the gas phase,

such as its temperature or pressure, and on the soot population, such as the

number of particles per aggregate, are needed to correctly post-process the

signal. Disposing of all these quantities simultaneously is more than chal-

lenging, since most of them are not even directly measured. This greatly

complexifies the validation of the numerical models for the PPSD, which

usually relies on comparing numerical results to experimental data.

On the contrary, recent numerical simulations can provide access to a

wide range of information. For example, Salenbauch et al. [22] proposed to

directly compare the numerical spatial evolution of the mass concentration

of small and large particles to the spatial evolution of the Laser induced

Fluorescence and LII signals, respectively. Unfortunately, such comparison

is not quantitative since it is not based on the same quantities (numerical

particles concentration on the one side, experimental signals on the other

size).

Alternatively, the numerical data can be utilized to reconstruct the experi-

mental signal. A direct comparison between the numerically synthesized and

the experimental signals can then be performed (forward method). Exam-

ples of a forward method for the validation of numerical simulations can be

found in literature [23–25]. However, to the author's knowledge, no previous

effort on comparison of synthesized and experimental TiRe-LII signals has

been done in literature for the validation of the numerical models in terms

of PPSD.
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The objective of this work is therefore to investigate the potential of a

forward method for the validation of the numerically modeled PPSD, by

comparing numerically synthetised signals to TiRe-LII experimental data.

In this context, it is worth to be mentioned that the reconstruction of the

PPSD from the experimental TiRe-LII signal is strongly affected by the

post-processing and the experimental uncertainties. The aim of this paper

is not to improve the quality of such reconstruction but to propose a new

post-processing technique allowing for a consistent comparison of experi-

mental and numerical results to strengthen the validation of the numerical

modeling.

The structure of the paper is as follows. The uncertainties that are po-

tentially introduced by the post-processing of the TiRe-LII signal to obtain

the PPSD are quantified in Section 2 by reviewing results from the liter-

ature. Two indexes are suggested to characterize the LII signal in Section

3. An uncertainty evaluation on these quantities is carried out to a priori

identify the possible advantages of the validation through synthesized TiRe-

LII signals. Then, both the inverse and the forward validation methods are

applied to a premixed ethylene flame in Section 4. The input numerical re-

sults are obtained from detailed simulations already validated in [26] and

the experimental LII signals are extracted from [10]. Differences between

measured and synthesized signals are highlighted and conclusions on the

potential of the proposed approach for validating numerical models for the

PPSD prediction are finally reported.
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2 Literature overview on the current accuracy of dpp

determination by TiRe-LII

The TiRe-LII technique relies on the heating up of soot particles via a

nanosecond laser pulse and the recording of the subsequent induced incan-

descence signal [27]. As large particles cool more slowly than small ones, the

temporal evolution of the incandescence signal can be used to determine the

primary particle size.

In order to obtain the PPSD from the signal decay, a post-processing

inverse procedure is needed. The LII signal is reconstructed by solving the

mass and the energy balance equations for theoretical PPSDs. Usually, the

problem is recasted as a minimization problem, which allows to identify the

distribution parameters minimizing the deviation between the measured

signal and the theoretical one [10, 20, 28–32]. Such post-processing can be

affected by two main sources of uncertainties. First, the reconstruction of

the LII signal is known to be strongly dependent on the model and the

parameters (such as soot density) selected for the mass and the energy bal-

ance equations as exhaustively discussed by Schulz et al. [33] and Michelsen

et al. [34]. Second, most of the models rely on various input quantities,

summarized in Table 1, which are not necessarily known. The role of each

parameter in the signal modeling is not described here in details, but can be

found in [33,34]. Many of these variables are properties of the experimental

equipments (”Equipment”), some of them are properties of the gaseous field

around the investigated soot particles (”Ambient”) and numerous of them
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are characteristics of the soot particles themselves (”Soot”). The errors in-

troduced by the parameters of the equipment are supposed to be limited by

accurately designing the experimental setup and are not discussed here.1

Some of the remaining variables can be measured (”M”), but this may

possibly introduce additional errors and requires additional devices and/or

post-processing. Some other parameters are generally assumed (”As”).

With the forward approach proposed in Section 3, uncertainties related

to the LII model cannot still be avoided but some errors due to the input

parameters can be reduced by using the values available in the numerical

simulations. The concerned parameters are marked by ”N”.

Equipment
Laser wavelength (λ)
Beam profile or FWHM
Laser fluence (J)
Bandpass wavelengths (λ1, λ2)

Ambient
Pressure (p) As, N
Temperature (T ) As, M, N
Molecular weight (Mg) As, N
Mass accommodation coefficient (β) As

Soot
Soot absorption function (E(m)) As, M
PPSD shape As, M, N
Number of primary particles in the aggregate (np) As, M, N
Thermal accommodation coefficient (αT ) As, M

Table 1 Main input parameters needed for the modeling of the temporal evolu-
tion of the TiRe-LII signal according to [35].

1 As an example, a non-homogenous profile of the laser beam can potentially
affect the post-processing results [20]. In the proposed forward technique, it is
possible to account for it, reducing the uncertainties on the comparison between
experimental and numerical results.
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Additionally to the five variables that are known from the numerical

simulations (pressure p, temperature T , molecular weight of gas phase Mg,

PPSD shape and number of primary particles in the aggregate np), the ther-

mal accommodation coefficient and the soot absorption function are today

not well known but they are expected to depend on soot properties. There-

fore, these two last quantities may be potentially recovered from numerical

simulations once the relations with other particles characteristics are iden-

tified. In the following, the effect of the uncertainties introduced by these

parameters on dpp are recalled from earlier studies.

2.1 Assumed or measured parameters

2.1.1 Soot absorption coefficient Various values of the soot absorption func-

tion E(m), constant or wavelength-dependent, can be found in literature

[34,36–38]. In particular, it has been found that E(m) varies between ∼0.2

to ∼0.4 even for a fixed laser wavelength of 1064 nm [10]. However, such

high uncertainty does not greatly affect PPSD results since many of the LII

models [30, 39] are insensitive to E(m) [28]. More specifically, it has been

shown in [28] that a variation of ±0.1 from the reference value (E(m) = 0.3)

did not lead to significant modifications of the PPSD, except when using

the model of Lehre et al. [40].

2.1.2 Mass accommodation coefficient The mass accommodation coeffi-

cient is a key parameter for the description of particle sublimation. In the

literature, this quantity is characterized by a high uncertainty: its value
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varies between 0.5 and 1 [34]. To avoid the possible errors due to an inaccu-

rate estimation of the mass accommodation coefficient, recent experimental

studies suggest to work with a low laser fluence so that the sublimation phe-

nomenon is negligible compared to the other processes occurring after the

interaction of the laser with the particles [10,20,27,34,39,41]. Uncertainties

on β can then be neglected.

2.1.3 Thermal accommodation coefficient In the literature the thermal ac-

commodation coefficient αT is characterized by a large variability [42]. Val-

ues from 0.23 to 0.9 are classically used [34]. The wrong assumption can

lead to significant inaccuracies in the estimation of dpp, since a variation

of just ±0.05 can result in significantly different PPSDs [28]. As long as

the connection between αT and other soot properties is not established the

uncertainty related to this parameter is not avoidable. However, once the

relation between αT and other particles characteristics will be known, the

LII signal reconstruction from numerical results can potentially overcome

this issue.

2.2 Numerically available parameters

2.2.1 Gas temperature Several researches concern the impact of the un-

certainty of the gas phase temperature Tg on the experimental estimation

of dpp from the Tire-LII signal. The exact deviation depends on the used

models and only some examples are reported in the following.

Concerning a monodisperse distribution, Sun et al. [43] demonstrated that
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a variation of ±200 K from 1700 K (±12%) leads to errors in ±3 nm for

dpp = 15 nm (±20%) and ±5 nm for dpp = 40 nm (±13%). The significant

impact of the flame temperature on the derived primary particle size was

presented also by Will et al. [44]. For a variation of ±180 K from 1800 K

(±10%) the relative error of the diameter was about ±6 nm (±30%) and ±8

nm (±20%) for a particle of 20 and 40 nm, respectively. Cenker et al. [45]

observed a deviation up to ±20% in the primary particle diameter for a

temperature variation of ±15%.

Concerning lognormal distributions, Daun et al. [28] quantified the dif-

ferences between two PPSDs derived from the same LII signal when per-

turbing the temperature around its exact value. The measure of difference

was the Cramér-von Mises (CVM) goodness-of-fit parameter, which was

defined as the area contained between the recovered and the exact particle

size cumulative distribution functions, i.e. a zero CVM value means that the

two PPSDs are identical. The CVM parameter for a temperature pertur-

bation of ±30 K from the nominal 1700 K varied between ∼0.1 to ∼0.432,

depending on the model used for the LII signal calculation [28].

Experimental uncertainties on temperature depend both on the used

experimental technique as well as the investigated configuration with an

error that can reach ±200 K [20, 31, 46–52]. Even worse, the temperature

value is often assumed when extracting PPSD information from TiRe-LII

2 As an example, the CVT parameter is 0.658 when comparing a lognormal
distribution characterized by a geometrical mean dg and a standard deviation σg

{dg,σg} = {30 nm, 1.25 nm} and a lognormal distribution with {dg,σg} = {26
nm, 1.23 nm} [28].
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signal [31, 53, 54] greatly increasing the error bars on dpp. On the contrary,

the numerical simulations provide the gas phase temperature in the whole

domain, so that the uncertainty on this quantity can be reduced by numer-

ically reconstructing the LII signal and comparing it to the experimental

one (supposing that the numerical model has been previously validated for

the gaseous phase description).

2.2.2 PPSD shape The presumed PPSD shape is one of the most relevant

uncertainties. In many cases a monodisperse distribution is assumed for the

sake of simplicity [10, 19, 20]. However, the primary particle distribution

is often observed to be a lognormal function [5, 20, 40], characterized by a

geometric mean diameter dg and standard deviation σg:

f(d) =
1√

2πd lnσg
exp

[
− (ln d− ln dg)

2

2(lnσg)2

]
. (1)

When assuming a monodisperse distribution, all particles have the same

diameter dmono. In case of a lognormal distribution, the relation between a

monodisperse equivalent mean particle diameter deqmono (obtained by pre-

serving the total volume and primary particle number but assuming a

monodisperse distribution) and dg is related to σg, as depicted in Figure

1. Depending on σg, the ratio of the two characteristic diameters can vary

significantly.

An exhaustive analysis was performed by Cenker et al. [45] on the pos-

sible dmono values retrieved from LII signals constructed from a lognormal



A forward approach for the validation of soot size models using LII 13

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(d
g‐d

m
on

o)
/d

g[%
]

σg [‐]

Fig. 1 The relation between the monodisperse equivalent mean particle diameter
deqmono and the geometric mean diameter dg for lognormal PPSD distribution as
function of the standard deviation σg.

distribution with a wide range of {dg,σg} pairs (at 1750 K, 1 bar and np=1).

In this work, the significant difference between dmono and dg extracted from

the same signal was presented. As an example, for {dg,σg}={30 nm,1.4 nm}

the resultant dmono was 40 nm. A similar study was carried out by Chen et

al. [21] with similar results. Sun et al. [43] also reevaluated a typical TiRe-

LII signal with both monodisperse and lognormal distribution assumptions

(at 1700 K, 1 bar and np=100). The retrieved characteristic diameters were

dmono = 19 nm and dg = 15 nm with σg = 1.25 nm. However, it is im-

portant to mention that in both investigations [43, 45] the diameter dmono

derived by assuming monodispersity from the LII signal does not coincide

with the monodisperse equivalent mean particle diameter, deqmono of the log-

normal distribution. Franzelli et al. [31] evaluated the measured LII signals

of a series of co-flow laminar flames with both monodisperse and lognormal

PPSD assumption. In this work, beside dmono, the arithmetic mean primary

particle diameter defined as damean = exp ( ln(dg) + ( ln(σg)
2) / 2 ) was
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presented. While damean varied in the range of 10 to 65 nm, dmono reached

up to ∼ 90 nm, meaning a difference as high as 30% for the heavily sooting

flame.

On the one side, all these works enlighten the fact that accounting for poly-

dispersity may drastically change the reconstructed mean dpp value and that

a consistent definition between the experimental and the numerical mean

dpp diameter is necessary. On the other side, Daun et al. [28] showed that

when the lognormal PPSD shape is valid entirely different {dg,σg} pairs

minimize the objective function of the iterative process. This means that

various PPSDs can be considered as a good match to the experimental sig-

nal taking into account the experimental uncertainties, greatly weakening

the validation of the numerical prediction in terms of the PPSD.

Finally, it has been shown that a lognormal PPSD shape cannot be con-

sidered as a generality [4,5,10,45,55,56], so that no shape could be presumed

with confidence even if it is necessary when post-processing TiRe-LII data.

By reconstructing the synthesized signal from the numerical results, uncer-

tainties on the PPSD shape can be strongly limited improving the compar-

ison accuracy.

2.2.3 Number of primary particles in the aggregate In most of the cases,

single spherical particles are assumed for the TiRe-LII signal evaluation

[10,19,20,31,43], even if the cooling process strongly depends on the number

of primary particles per aggregate (np) [21, 39, 42, 57]. Liu et al. [39, 41]
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studied the relation between np and the signal decay, providing a method

to account for the shielding effect.3

Accounting for np may have a strong impact on the results [58, 59]. As

an example, the reevaluation of the measured TiRe-LII signal with np=100

instead of np=1 by Bladh et al. [10] led to the drop of the derived mean

dpp by 30%. The same exercise was performed by Sun et al. [43], where the

difference between the two derived diameters is more than 30% (29 nm for

np = 1 and 19 nm for np = 100).

Unfortunately, as long as the LII experiment is not accompanied by

TEM measurements, the aggregate structure is unknown, leading to un-

certainties on np and consequently on dpp. On the contrary, the numerical

prediction provides information about the number of primary particles in

the aggregate, so that the LII signal reconstruction can account for the phe-

nomenon, allowing for a pertinent comparison of experiments and numerical

predictions. The novel validation approach is then expected to reduce the

np related experimental uncertainties.

2.2.4 Smallest detectable particle Once the mean dpp is obtained by post-

processing the TiRe-LII signal, the comparison with the numerical results

may be affected by an additional parameter: the smallest particle ddet,min

that can emit a detectable LII signal. While earlier studies indicated that

the smallest soot particles detected by TiRe-LII are in the range of 6-10

nm [60–62], a recent study of Betrancourt et al. [29] pointed out that soot

3 In an aggregate, the inner particles are thermally shielded by the outer parti-
cles from the cold ambient gas molecules so that they cool down more slowly.
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particles as small as 2 nm can absorb laser energy and emit an LII signal.

However, the lower detection limit may depend on the sensitivity of the

system, as it was pointed out by Sirignano et al. [63]. Even if the value of

ddet,min only slightly affects the soot volume fraction determination since

the contribution of small particles is negligible [33], it can generally affect

the value of dpp calculated from the numerical PPSD [26]. Unfortunately,

ddet,min is not available for all experiments, potentially affecting the accu-

racy of the inverse validation method. On the contrary, small particles do

not influence significantly the LII signal so that the comparison of synthe-

sized LII signals to experimental ones is expected to be less affected by

ddet,min.

3 The forward method and its potential improvement

In the forward method, the temporal evolution of the LII signal is first calcu-

lated for the numerically predicted PPSD extracting the quantities needed

by the LII modeling from the numerical simulations. Then, the synthesized

signal is compared with the experimental data. For this, different moments

Mk of the LII signal ILII(t) may be considered:

Mk =

∫
tkILII(t)dt (2)

with t denoting the time starting from the peak of LII signal (t = 0 ns

when ILII is maximum). In the following, two indexes have been kept: the
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expected value

E =
M1

M0
(3)

and the non-dimensional standard deviation

σ? =
σ

E
(4)

with the standard deviation σ =
√
M2/M0 − (M1/M0)2. The skewness and

the kurtosis indexes have also been considered but they did not provide

a better description of the LII signal compared to E and σ?, so that they

have not been used in the following analysis. The LII signal is reconstructed

by an in-house code utilizing the signal modeling description provided by

Hofmann et al. [35] and the conduction model developed by Liu et al. [39,41].

3.1 Effect of exponential fitting of the signal

Cenker et al. [45] investigated the error introduced by approximating the

LII signal by a single exponential fit. They found that it can be considered

as a good approximation in case of a monodisperse distribution, so that the

characteristic decay time provides sufficient information to determine the

diameter. However, as already said, the PPSD is rarely monodisperse and

from the theoretical point of view the decay rate is not a single exponential

function. For polydisperse distributions, the problem becomes more complex

as the signal is the superposition of several quasi-single exponential signals

with various decay times. To overcome this issue, Dankers and Leipertz [30]
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suggested to derive two characteristic LII signal decay times, τ1(∆t1) and

τ2(∆t2) for two subsequent measurement time intervals (∆t1 and ∆t2), re-

sulting in a double exponential function. They demonstrated that for a

lognormal distribution the correlation between {τ1,τ2} and {dg, σg} is un-

ambiguous when the signal noise is not considered. This approach has then

been used in recent studies [21,31,45,53].

However, both fits are approximations of the original signal and may

lead to the loss of information. In the following, the effect of the approxi-

mation is discussed by comparing the E and σ? indexes calculated from the

original signal (subscript LII ), the single- (subscript SExp) and the double-

(subscript DExp) exponential fitted signals for both monodisperse and log-

normal distributions. This discussion will also clarify how to interpret the

E and σ? indexes and will quantify the errors introduced by the fitting

procedure.

3.1.1 Monodisperse distribution Results for ELII , ESExp and EDExp for

a monodisperse distribution are presented for different values of dmono in

Fig. 2. It can be observed that ELII depends almost linearly on dmono, as

shown by the dotted line in Fig. 2. Therefore, a single index is sufficient to

characterize the signal in case of a monodisperse distribution. Supposing a

perfectly exponential decay, ELII is expected to be equal to the decay time

τSExp of the single exponential fit, which is also shown in Fig. 2. It can

be observed that the decay time τSExp and the expected value ESExp of

the curve constructed from the single-exponential fit overlap, as expected.
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However, even for the monodisperse case, the single-exponentially fitted

curve does not capture the expected value of the original curve ELII for

large diameters, showing the inaccuracy of the single-fit procedure. On the

contrary, the expected value of the double-exponential fit EDExp shows a

good agreement with ELII at least for a monodisperse distribution. For a

monodisperse variation, a quasi-linear relation between ELII and dmono is

observed meaning that an error observed on ELII directly implies the same

error on dmono. This provides a first indication to interpret the agreement

between experimental and numerically synthetized signals. For example,

assuming a monodispersed population a disagreement of 20% on ELII be-

tween the experimental and numerical signals implies an error of 20% on

the predicted dmono. For a polydisperse population, this interpretation is

more complex requiring the analysis at least of 2 indexes as discussed in the

following.

3.1.2 Polydisperse distribution In Figure 3, ELII , ESExp, and EDExp are

presented for a lognormal PPSD with different {dg, σg} pairs. A similar

behaviour of E is observed for the three cases. First, it can be observed that

a given value of E corresponds to multiple {dg, σg} couples so that a second

index is needed to discriminate the PPSD, as expected. The recovered curves

both from single and double-exponential fits show a similar behavior. The

double-exponential fit provides a good agreement for σg < 1.6, the error

remains below 5%. The error for the single-exponential fit varies between
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Fig. 2 Expected value E of the signal (LII) and the curves obtained by the single-
exponential (SExp) and double-exponential (DExp) fit. The decay time τ of the
exponential fit is also provided.

10 to 30%, which confirms that for non-monodisperse distributions the single

exponential fit cannot properly reproduce the LII signal.

In Figure 3(a-c), the time interval was chosen to avoid the effect of a

limited detection time (18000 ns). However, in practical applications, the

detection time is finite. To characterize the potential error, the evaluation

was also performed by considering the signal only up to 800 ns, correspond-

ing to the detection time of the experimental results [10] that will be used

in Sec. 4. The resultant ELII is presented in Figure 3(d). It can be observed

that for large diameters the values are significantly lower than at the full

length of the signal, indicating that the choice of the detection time can

affect the results. However, the numerical simulation can imitate the detec-

tion length and its temporal resolution, so that the validation is not affected

by this deviation when using the forward approach.
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Fig. 3 Expected value E as function of {dg, σg} pairs. Results for (a) the orig-
inal signal ELII , (b) the single-exponential fitted curve ESExp, (c) the double-
exponential fitted curve EDExp and (d) the original signal considering only up to
800 ns.

As the same ELII may originate from various {dg, σg} pairs, a second

index should be considered. In Figure 4, σ? is provided for the original

signal and for the double-exponentially fitted curve σ?DExp. For a single-

exponentially fitted curve, the value is σ?SExp = 1 for all {dg, σg}. Results for

the original signal show that σ?LII is almost insensitive to dg for dg > 10 nm,

whereas it strongly varies with σg. Therefore, the σ?LII value may be used in

the inverse approach to identify the σg and, subsequently, detecting dg from

ELII . However, it should be reminded that such procedure is not valid for

small dg values (below 10 nm) since the σ?LII is also strongly dg-dependent

(Figure 4(c)). Such behavior is not affecting the accuracy of the forward

validation procedure since σ?LII and ELII from the synthesized and exper-
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Fig. 4 Non-dimensional standard deviation as function of {dg, σg} pairs. Results
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LII , (b) the double-exponential fitted curve σ?
DExp, (c)

the original signal zoomed on small dg values and (d) the original signal consid-
ering only up to 800 ns.

imental signals can be directly compared without any need to retrieve dg

and σg. In addition, it is important to point out that a limited detection

time provides a significantly different σ?LII profile for large diameters, as

observed in 4(d). In particular, the dependence on σg is inverted since for

increasing σg the σ?LII decreases. It is therefore clear that in most pratical

situations, where a limited detection time is used for the experiments, it

would not be possible to recover dg and σg from ELII and σ?LII , proving

once again the limits of the inverse approach. Alternatevely, a longer de-

tection time could be considered by using multiple detectors as suggested

by [64]. On the contrary, using the forward approach, it would be possible

to compare the experimental and numerical synthetized signals to quantify
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the inaccuracy of the soot model. The double-exponential fit shows a similar

behaviour, but does not recover the same values of the original signal. In

particular, for high σg, it significantly under-predicts the index highlighting

that the double-exponential fitting is not adequate for highly polydisperse

distributions. Therefore, the dg and σg values obtained in the inverse strat-

egy may be affected by the double-exponential fitting procedure.

In conclusion, the use of a forward comparison of synthesized and ex-

perimental signals, characterized by their ELII and σ?LII , is expected to

reduce the uncertainties on the validation procedure. Such post-processing

approach can be applied to any PPSD shape and the signals can be recon-

structed to meet the experimental resolution and detection time. In addi-

tion, it controls the errors related to the experimental fitting of the signals,

even if additional indexes may be needed to improve the characterization of

the signals. In this sense, the skewness and kurtosis indexes have also been

tested but it was found that they were not of interest for the considered

signals. In the following, the evolution of ELII and σ?LII with variations

of the numerically retrievable input parameters will be discussed to quan-

tify a priori the additional potential improvements of the forward approach

compared to an inverse comparison.

3.2 Sensitivity study

In order to quantify the potential errors avoided when using a forward

procedure, the impact of the variations of the input parameters on the
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reconstruction of the LII signal is quantified here. For this, a reference signal

is produced with a set of base parameters Φ̄0:

Φ̄0 = (np,0, T0,Mg,0, p0) (5)

for four different dpp values (5, 15, 25 and 35 nm) with a monodisperse

distribution (where not stated differently). The reference parameters are:

np,0 = 1, T0 = 1700 K, Mg,0 = 28 kg/kmol, and p0 = 1 bar. Then, the

parameters of Φ̄ = (np, T,Mg, p) are perturbed one-by-one4 and the change

in the indexes is evaluated as:

∆ELII
ELII,0

=
ELII(Φ̄)− ELII(Φ̄0)

ELII(Φ̄0)
(6)

The signals are calculated based on the physical model described by Hof-

mann et al. [35] and the conduction model by Liu et al. [39,41]. The param-

eters not recoverable from the numerical simulation (αT and E(m)) were

kept constant, with αT = 0.37 and E(m) = 0.32.

3.2.1 Temperature The variation of ELII , introduced by a temperature

perturbation, is shown in Figure 5 along with the relative errors. The im-

pact of the temperature modification is large. The relative error of ELII is in

the range of ±20% for the large particle diameters, and it is even larger for

4 The sensitivity studies of the following parameters were carried out by varying
simultaneously the parameter in focus and the temperature to examine if they
affect each other. The results showed that the error was always the superposition
of the two individual errors. Therefore, for the clarity of the plots, only the single
parameter perturbation results are presented.
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Fig. 5 ELII (triangles) and its relative error (circles) as a function of the tem-
perature for four dpp=5, 15, 25 and 35 nm (red, green, blue and yellow).

the 5 nm diameter particle (almost 40%, when the temperature is modified

by 10%). From results in Fig. 5, it can be observed that by underestimat-

ing/overestimating the gas temperature, significantly higher/lower diameter

are derived. The use of a proper temperature is therefore essential to min-

imize errors on ELII . As discussed before, the inverse approach requires

the experimental measurements of temperature. Alternatevely, the forward

approach allows the use of the numerical temperature to perform the vali-

dation of the numerical results. Of course, the accuracy of the numerically

synthetized ELII depends on the quality of the numerical prediction for

both the gaseous and the solid phases. In this sense, the forward approach

could be used to quantify the inaccuracy of the whole numerical strategy

and not of the single soot phase modeling.

3.2.2 Pressure A sensitivity analysis is performed by applying a perturba-

tion of ±2.5% and ±5% with respect to 1 bar. In Figure 6, ELII and its

relative error are shown for the pressure perturbation.
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for four dpp=5, 15, 25 and 35 nm (red, green, blue and yellow).

It can be observed in Figure 6 that ELII does not vary significantly

with the pressure for small dpp. On the contrary, for higher values of dpp,

the ELII becomes more sensitive to the pressure and the deviation is not

negligible anymore. However, when looking at the relative error it can be

deduced that the perturbation effect on ELII is almost dpp independent

and reaches up to 5% for a pressure variation of 5%. Supposing that the

dependence between ELII and dmono is linear, similarly to the results of

Fig. 2, this means an error in the diameter up to 5%. Such error can be

avoided with the novel forward approach, since information on pressure is

classically available in the numerical simulations.

3.2.3 Molecular weight To experimentally evaluate the gas phase molec-

ular weight Mg, information on the local composition is required. Many

species can be measured with high accuracy. However, extra experimental

equipment and post-processing are needed to access these quantities. Even

when using ethylene as fuel (whose molecular weight is similar to nitrogen),
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the gas phase molecular weight can differ significantly from the one of air

in the sooty region since soot is accompanied by several high molecular

weight gas phase species, like heavy PAHs, but also lighter species as hy-

drogen, water vapor or acetylene. Therefore, the generally used approach,

i.e. assuming air properties when retrieving the PPSD from the measured

LII signal [10, 20, 31], is inaccurate. As an example, the Mg value has been

extracted from the numerical simulations of different sooting flames at at-

mospheric pressure [26]. For a premixed ethylene laminar flame with an

equivalence ratio of 2.1 and co-flow ethylene laminar flames with various

ethylene content in the fuel stream (32%, 40%, 60% and 80 % volumetric

ratio), the Mg value can vary between 25kg/mol to 30 kg/kmol in the sooty

region, whereas the general assumption is Mg = 28 kg/kmol.
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Fig. 7 ELII (triangles) and its relative error (circles) as a function of the molec-
ular weight for four dpp=5, 15, 25 and 35 nm (red, green, blue and yellow).

The sensitivity study presented in Figure 7 reveals that, though other

parameters (like np or temperature) cause higher variations in ELII , the

error introduced by an inaccurate Mg estimation is not negligible. The error
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of ELII for the variation of Mg with ±10% can reach up to ±5%. The

relative error due to Mg perturbation does not show strong dependency on

the dpp in this range. Since the gas phase molecular weight is one of the base

variables of numerical simulations, the novel forward approach can remove

the uncertainty related to Mg without any additional cost compared to the

classical validation strategy.

3.2.4 Number of primary particles in the aggregate As already discussed

in Sec. 2.2, accounting for the morphology of the soot particles, i.e. the

number of primary particles, drastically affects the dpp value obtained from

the experimental LII signal. To additionally quantify the sensitivity of ELII

to the number of primary particles in the aggregate, np was varied from 1

to 100 (1, 5, 30, 60 and 100). In Figure 8, the ELII and its relative error

from the case with np = 1 is presented.

For all the considered diameters, ELII drastically changes moving from

a single particle assumption to an aggregate structure, even when it is char-
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acterized by a small number of primary particles. The relative error reaches

25% already at np = 10. The difference in ELII between np = 60 and

np = 100 is not so relevant as the difference between np = 1 and np =

10. When the aggregate nature of the particle is not considered, a smaller

ELII is assigned to the same dpp, in agreement with the lower decay time

observed for the similar tests performed by Liu et al. [41]. This implies an

over-prediction of the dpp value since for ELII (for example ELII = 160 ns)

a larger diameter (dpp=35 nm) is estimated for a spherical particle (np =

1) compared to big aggregates (for np = 100, dpp = 25 nm).

This large source of errors can be avoided by reconstructing the LII signal

from a numerical simulation that provides information about the aggregate

nature of the particle, strengthening the validation of numerical modeling

compared to the traditional inverse method.

3.2.5 PPSD shape As mentioned before, the PPSD is not always lognor-

mal. In order to see the effect on the indexes of a different PPSD shape,

several tests are carried out. The first test corresponds to a ’bimodal’ dis-

tribution similar to the one experimentally observed by Abid et al. [7, 60].

It is imitated by a superposition of a first mode f1 with a large number of

very small particles below 5 nm and a second ”moving mode” f2 with a

lognormal shape, characterized by a varying d2g=3 - 20 nm and a constant
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Fig. 9 First mode f1 and examples of ”moving mode” f2 with various d2g (indi-
cated in the label)

σ2
g = 1.25 nm. The first mode follows a Pareto distribution:

f1(d) =


0 : d < dm

dαmd
−α−1 : d ≥ dm

(7)

with α = 3 and dm = 2.1mm. The first mode and a few examples of the

second mode are presented in Figure 9. The distribution is split up to 0.5

nm wide sections.

As discussed previously, two indexes are used to characterize the LII

signal emitted by a polydisperse distribution. In Figure 10, the ELII and

σ?LII are presented for the resultant bimodal distribution f1 +f2 and for the

sole lognormal distribution f2. By comparing the two cases, the contribution

of the first mode compared to a classical lognormal assumption can be

evidenced. In both cases, the ELII increases with d2g, as expected from

Fig. 3. The values related to the bimodal and the single lognormal PPSD

are very similar, the deviance between the two values being below 1%. This
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Fig. 10 ELII and σ?
LII of the LII signal originating from the bimodal distribu-

tions f1 + f2 (black circle) and from the moving lognormal mode f2 only (white
square). The moving mode has varying d2g and constant σ2

g .

means that the presence of a first mode in the PPSD only slightly affects

the ELII results compared to a classical lognormal assumption as observed

in [45]. Concerning σ?LII , it can be observed that it decreases for increasing

d2g values in analogy with results from Figure 4. The difference between the

two signals remains small, being below 1% for this second index, despite

the very different PPSDs, indicating an almost negligible effect of the first

mode on the LII signal, meaning that very similar LII signals are obtained

with the two distributions f2 and f1 + f2. In Fig. 11, results of the mean

dpp for the bimodal and the lognormal distributions are presented. Since the

LII signals are similar, it can be deduced that when investigating a bimodal

distribution by assuming a log-normal shape, the dpp value extracted from

the LII signal overstimates the real dpp. On the contrary, when comparing

the synthetized and the experimental signal, conclusions are not biased by

the assumption of the PPSD shape.

To investigate additionally the effect of the PPSD shape on the LII

signal, a second test is performed. This time, the PPSD is obtained by
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superimposing two standard lognormal distributions: one (f1) with fixed

characteristics {d1g, σ1
g} = {25 nm, 1.2 nm} and another (f2) with a fixed

σ2
g = 1.2 and a d2g varying from 10 to 60 nm (’moving mode’). Some examples

of the distributions are presented in Figure 12. Results on ELII and σ?LII

for the combined PPSD f1 + f2 and for the ’moving mode’ f2 are plotted

in Figure 13.

Concerning ELII , a quasi-linear behaviour is observed with d2g when con-

sidering only the ’moving mode’ f2. When looking for the combined PPSD,

it can be noticed that ELII is initially constant until d2g < 25 nm. Therefore,

the obtained value is equal to the ELII value for a single lognormal func-

tion dg=25 nm. This is because the fixed lognormal mode f1 has a constant

d1g=25 nm and its contribution to the combined LII signal f1 + f2 is higher

compared to the second moving mode f2 when d2g < d1g.

Once d2g > d1g, it can be observed that ELII for f1 + f2 is increasing

with d2g and almost collapsing with the results for f2. Concerning σ?LII , the

variations in Figure 13 are so small that they can be considered as negligible.

20

15

10

5

 P
rim

ar
y 

pa
rti

cl
e 

di
am

et
er

 [n
m

]

2015105
 dg  of second mode [nm]

 f2
 f1+f2

Fig. 11 Primary particle diameter dpp for the bimodal distributions f1 + f2 (cir-
cle) and for the moving lognormal mode f2 only (line) as function of d2g.



A forward approach for the validation of soot size models using LII 33

0

0.01

0.02

0.03

0.04

0.05

0.06

1
5.
5 10

14
.5 19

23
.5 28

32
.5 37

41
.5 46

50
.5 55

59
.5 64

68
.5 73

77
.5 82

86
.5 91

95
.5

10
0

Pr
ob

ab
ili
ty
 [‐
]

Primary particle diameter [nm]

10 16 25 38 50 60

Fig. 12 Examples of the PPSDs from two superimposed standard lognormal
distributions f1 + f2 with various d2g (indicated in the label) of the moving mode
f2.

1.092

1.096

1.1

1.104

1.108

1.112

1.116

10 20 30 40 50 60

σ*
LI
I[
‐]

dg of second mode [nm]

0

50

100

150

200

250

300

350

10 20 30 40 50 60

E L
II
[n
s]

dg of second mode [nm]

Fig. 13 ELII and σ?
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line). The moving mode has varying d2g and constant σ2

g .

This is consistent with the fact that both σ1
g and σ2

g are kept constant in

this test case. From ELII and σ?LII , it can be deduced that the LII signal is

governed by the lognormal distribution with the higher dg values and that

the presence of a second mode with a smaller dg cannot be easily identified

from the LII signal.

Finally, a PPSD is obtained by superimposing two standard lognormal

distributions: one (f1) with fixed characteristics ({d1g, σ1
g} = {40 nm, 1.2
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nm}) and another (f2) with a fixed d2g = 25 nm and σ2
g varying from 1.05

to 1.6 nm (’moving mode’). Results are presented in Fig. 14. It can be ob-

served that ELII for f1 + f2 is almost constant for σ2 < 1.45 and higher

than the result obtained when considering only f2. This proves that ELII

for a combined PPSD is mainly governed by the mode with the highest dg

(here f1) for small σ2
g . Once σ2

g >> σ1
g , the ELII is also affected by the

presence of the first mode. Similarly, σ? for f1 + f2 is mainly governed by

the mode with the highest dg, i.e. f1, except for σ2
g >> σ1

g .

In conclusion, the mode with the highest dg mainly governs the LII signal

at least as long as the other modes are not characterized by largely greater

standard deviations, meaning by a large amount of big particles.

On the one side, this implies that it is extremely hard to correctly obtain

the dpp from the experimental LII signal unless the PPSD is known. There-

fore, the accuracy of the validation of the numerical modeling based on dpp,

i.e. the inverse method, is strongly affected by the assumption of the shape

of the PPSD. With the forward method, information on the PPSD are ex-

tracted from the simulation. On the other side, it means that by applying

Fig. 14 ELII and σ?
LII of the LII signal originating from two superimposed log-

normal distributions f1+f2 (solid line) and from the moving mode f1 only (dashed
line). The moving mode has constant d1g and varying σ1

g .
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the forward method it is not possible to assess with certainty that the pre-

dicted PPSD agrees with the experimental ones, even if the synthesized and

the experimental signals are in good agreement, since similar LII signals can

be generated from different PPSDs. However, a disagreement on ELII and

σ?LII indicates that the predicted PPSD is not correct.

3.3 Discussion

All the above discussed uncertainties decrease the quality of the traditional

validation method of the numerical PPSD by TiRe-LII. Recent numerical

simulations provide access to most of the needed parameters. Therefore, the

LII signal can be synthetized with a reduced number of assumptions. While

temperature, pressure and molecular weight are basic output quantities of

CFD simulations, depending on the soot model, the ”Soot” quantities in

Table 1 are available on a different level. For detailed modeling, information

on PPSD and np are classically available. Furthermore, once the relation of

αT to other soot properties is known, this parameter can be also determined

from the numerical calculation and related uncertainties can be avoided by

the new approach. Utilizing these numerically derived quantities and the

synthesized signal comparison approach, a more consistent validation of the

whole modeling strategy can be performed. However, it has to be mentioned

that as several PPSDs can lead to the same LII signal, the forward approach

can not definitely confirm the validity of the PPSD, but it can be used to

detect incorrect PPSDs and avoid the exclusion of a correct PPSD. Such
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issue is however intrinsic to TiRe-LII signal and affects the inverse method

as well. In addition, general relations of αT and E(m) with other particles

characteristics are today not available. Finally, it has to be reminded that

the numerical synthesized reconstruction of the LII signal also depends of

the quality of the gaseous phase description. However, also with the inverse

technique, a correct prediction of the gas phase is a necessary step before

validating the solid phase. In the following, the new validation approach

is applied to the study of a premixed laminar sooting flame to prove the

feasibility of the technique in the context of a real flame investigation.

4 Application to a premixed flame

In the following, both the traditional and the synthesized LII signal com-

parisons are performed for a target flame of the soot research community.

The objective here is not the validation of the numerical model used for

the simulation since it has been already discussed in [26] but to prove the

feasibility of the forward approach. First, the mean diameters are calculated

from the numerical PPSD obtained in [26] and compared to measurement

results [10, 19, 20]. Then, the forward validation procedure is applied by

reconstructing the synthesized LII signals from the numerical results at 4

different height above burners (HABs) and by comparing the ELII and σ?LII

indexes to the experimental data.



A forward approach for the validation of soot size models using LII 37

4.1 Flame configuration

The third laminar premixed ethylene target flame from the 4th International

Sooting Flame (ISF) Workshop [65] has been used here due to the avail-

ability of experimental LII signals in literature [10,19,20]. In these works, a

so-called McKenna burner is used to produce a premixed flat ethylene/air

flame with an equivalence ratio of Φ = 2.1. The total flow rate is 10 l/min

(at 0 ◦C and 1 atm) equivalent to 6.44 cm/s cold flow inlet velocity.

The LII measurements carried out by Bladh [10] were performed with a

1064 nm beam produced by a Q-switched Nd:YAG laser. The detection sys-

tem was equipped with a bandpass filter at 575 nm with a 32 nm full width

at half maximum (FWHM). The laser fluence was set to 0.13 J/cm2 and

the temporal profile of the laser pulse had a FWHM of ∼11 ns. This infor-

mation, needed for the synthetization of the LII signal, has been extracted

from [10].

4.2 Numerical setup and chemical mechanism

The associated numerical simulations have already been performed and

validated in [26]. They were performed with the OpenSMOKE++ frame-

work [66]. The kinetic mechanism includes 189 gaseous species and a chem-

ical discrete sectional soot model (CDSM) with 20 sections (BINs), which

are divided into subsections based on the H/C ratio. While heavy polycyclic

aromatic hydrocarbons (PAHs) (from BIN1 to BIN4) and small soot par-

ticles (from BIN5 to BIN10) have 3 H/C subsections, large soot particles
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(BIN11 and BIN12) and soot aggregates (from BIN13 to BIN20) are divided

into 2 H/C subsections. Information on the PPSD is obtained by transport-

ing the equations for the primary particle number density of the sections

with the method described in [26]. Due to the simplicity of the flame, the

errors introduced by an improper modeling of the flow field of the flow-flame

interaction are expected to be negligible.

The inlet velocity and the species mass fractions were prescribed ac-

cording to the experimental setup. The temperature profile was imposed as

suggested by the ISF Workshop [65] in the reference calculation. This tem-

perature profile differs from the one experimentally obtained by Bladh et

al. [10] so that a numerical simulation was also performed using the exper-

imental gas temperature in the [0.7,1.8] cm region. No relevant difference

in terms of PPSD has been evidenced between the two calculations (not

shown) so that in the following the validation is performed only with the

results from the ISF temperature profile.

4.3 Classical inverse strategy: comparison of the mean primary particle

diameter

The classical inverse validation of the model was performed by Bodor et

al. [26]. Only the main results from [26] are summarised here to facili-

tate the reading. The LII measurements reported in Fig. 15 are based on

an assumption of monodisperse population. Therefore, the monodisperse
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equivalent size recovered by Bladh et al. [10] is considered from the TEM

measurements. For the same reason, the numerical PPSD results have been

post-processed to obtain an equivalent mean diameter deqmono [26]. The sig-

nificant mismatch between the experimental results can be related to the

different porous plug materials [67] used in the studies (a stainless steel

porous plug was used [19,54], a bronze plug was used in [10]).

In Figure 15, the comparison of the numerical and the experimental

results [10,19,54] is presented. Concerning the numerical results, deqmono has

been calculated with ddet,min = 2 nm and ddet,min = 5 nm (bottom and

top blue dashed lines respectively) providing a range of possible solutions

(brown area) since the diameter of the smallest experimentally captured

particle ddet,min is not indicated for all databases.

At low heights above burners (HABs), the numerical simulation tends to

overpredict the dmono and a slower diameter increase is obtained compared

to all experimental data.

It can be noticed that depending on the used experimental database, it

is possible to conclude that the numerical model overpredicts the mean dpp

in the early nucleating region or in the later surface growth region, leading

then to different modifications of the model. The reevaluation with np =

100 indicates that the difference may be also caused by the fact that the

shielding effect was neglected when post-processing the experimental data.

Depending on the smallest particle ddet,min considered when calculating the

mean diameter from the numerical PPSD, the conclusions change again.
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Fig. 15 Experimentally [10, 19, 54] and numerically obtained primary particle
diameter with monodisperse assumption. ”np = 100” marks the reevaluation per-
formed at HAB = 1.7 cm by Bladh et al. [10] with aggregate structure assumption

Whereas with ddet,min = 2 nm the model seems to be correct, the use of

ddet,min = 5 nm would mean that a slower growth of particles or a more

intense nucleation is required.

In conclusion, the large error bars related to the uncertainty in the re-

trieved dpp prevents to determine the strategy for the numerical model de-

velopment. In order to draw further conclusions on the validation and/or

to identify potential paths of improvements, a more reliable evaluation is

needed. In particular, to identify the reactions that may need an update, it

is crucial to accurately locate the region of the dpp mismatch. Therefore, in

the following section, the forward approach is tested on this configuration in

order to understand if additional indications on the accuracy of the model

can be obtained.
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4.4 Novel forward strategy: comparison of TiRe-LII signals

In this section, the measured and the synthesized LII signals are compared

in terms of ELII and σ?LII to reduce the uncertainties of the post-processing

technique and potentially strengthen the validation procedure. By doing so,

some potential weaknesses of the numerical model can be investigated ad-

ditionally to the classical inverse strategy. Four HABs (7, 9, 13 and 17 mm)

were selected for the LII signal reconstruction and to perform a comparison

with the experimental data [10].

The LII signal was reconstructed by an in-house code using the model

equations reported in [35, 39, 41]. The differential equation was solved with

4th order Runge-Kutta method using the characteristics of the laser in the

measurements of Bladh et al. [20]: laser wavelength = 1064 nm, fluence =

0.13 J/cm2, shot duration = 11 ns, bandpass filter = 575±16 nm. Vapor-

ization is neglected since a low fluence has been considered.

While in the first study of Bladh et al. [20] a varying αT (within the

range of 0.5-0.61) has been used, the second study [10] was performed with

a constant value of αT (0.37). Most of the works on TiRe-LII signal evalu-

ations are based on a constant value of αT [27, 33], though αT was shown

to depend on the soot particle characteristics [20, 68]. In the following, the

constant value indicated by Bladh et al. [10] is used here since no reliable

estimation of αT evolution along the flame was possible.

The indexes of the synthesized and experimental LII signals are com-

pared in Figure 16. The signal was reconstructed from the numerical PPSD
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considering ddet,min = 2 nm and ddet,min = 5 nm. The difference between

the two cases is marginal, so that only ddet,min = 5 nm is plotted. This

confirms that the smallest particles only slightly contribute to the LII sig-

nal compared to the biggest ones. On the contrary, as deduced from Fig.

15, accounting (or not) for the smallest particles when calculating dpp from

a numerical PPSD can affect the results. Therefore, since the size of the
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experimental database, comparing synthesized and experimental LII signals

is a more consistent approach to validate the numerical models.

For the interpretation of the results, it should be reminded that only the

first 800 ns have been considered to calculate the indexes. Therefore, the

tendencies should be interpreted by looking at Figs. 3(d) and 4(d). Results

on dmono are also summarized in Table 2. The tendencies of the indexes

are qualitatively similar between the experimental and the numerical re-

sults. The index ELII increases up to 13 mm. This increase slows down for

HAB>13 mm. Concerning σ?LII , it decreases with the HAB almost reaching

a plateau for HAB ≥ 13mm. This behaviour indicates that dg and/or σg in-

crease with the height above the burner. When compared to the experimen-

tal data, the numerical simulation over-predicts ELII (and underestimates

σ?LII) for HAB=7 mm, whereas it under-predicts ELII (and overestimates

σ?LII) for HAB=13 mm, with a quite good agreement for HAB=9 mm. This

indicates that dg and/or σg are initially overestimated by the simulation,

whereas they are under-predicted downstream the flame. These results ob-

tained with the forward approach confirm the results on dmono obtained

with the inverse technique in Table 2. Therefore, the forward analysis can

be used to confirm the conclusions obtained with the inverse approach for

ddet,min = 2nm.

However, an additional indication can be deduced by looking at the re-

sults with the forward approach. In Table 2, it can be observed that the error
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HAB [mm] Bladh et al. [10] Numerical data Error [-]
7 5.8 8.23 +30%
9 12.6 11.4 -10%
13 23 15.1 -34%
17 28 17.1 -39%

Table 2 dmono [nm] at different HABs derived from TiRe-LII by Bladh et al. [10]
and from a numerical simulation with dpp,min = 2 nm. The corresponding errors
are indicated in the last columns.

on dmono is around ±30% for the different available points. On the contrary,

when looking to σ?LII a significant disagreement between the experimental

and the numerical data is observed at HAB=7 mm. This indicates that the

error on the PPSD prediction, presented in Fig. 17, is probably more signif-

icant at this height compared to the other positions. One possible scenario

to explain the fact that the σ?LII value is strongly underestimated is that σg

is highly overestimated by the numerical results. This can possibly indicate

that in the numerical PPSD of Fig. 17 the appearance of the second mode

(composed of big particles largely contributing to the LII signal) is predicted

too quickly. The forward procedure seems to indicate that the transition be-

tween unimodal to bimodal PPSD, often obtained as a results of collisional

processes, is predicted too quickly. Therefore, a possible path of improve-

ments of the model may consist in an accurate reduction of the collisional

processes intensity, leading to a slower transition from a uni-modal to bi-

modal PPSD, i.e. to higher σg values, and the verification of its effect on

the synthesized LII signal. Additionally, it can be concluded that a longer

detection time for experimental LII signals should be used to identify more
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easily if the discrepancies are related to dg or σg misprediction using results

from Figs. 3(a) and 4(a).

5 Conclusions

In this work, a novel forward approach has been proposed to validate the

numerical models for the primary particle size distribution prediction with

experimental results obtained with the TiRe-LII technique. It is based on

the numerical reconstruction of the temporal evolution of the LII signals

from the simulation information. The difficulties of the traditional inverse

strategy of validation were pointed out. They are mainly related to the

uncertainties of the parameters governing the LII signal such as the gas

temperature, the pressure, the molecular weight, the PPSD shape and the

number of particles in the aggregate.

On the contrary, comparing directly the numerically synthesized and the

experimental LII signals is very attractive since many of these quantities are

generally available from detailed numerical simulations. In order to compare

the experimental and the synthesized LII signals, two characteristic indexes

have been suggested, the expected value ELII and the non-dimensional stan-

dard deviation σ?LII . Thanks to these indexes, the error possibly introduced

by the exponential fitting procedure frequently used for the TiRe-LII signal

evaluations can be avoided.

The feasibility of the forward method was tested on a premixed ethylene

ISF target flame [19] together with the inverse approach. The traditional
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inverse comparison is characterized by a significant experimental error bars

and a strong effect of the definitions of the numerical mean dpp and the ex-

perimental ddet,min so that no conclusion can be definitely assessed. On the

contrary, the forward method showed that larger primary particles and/or

a larger standard deviation of the PPSD should be predicted in the upper

flame region. These conclusions are consistent with the results on dmono ob-

tained with the inverse method but they are less affected by the discussed

uncertainties. Therefore, the novel forward approach can be considered as a

consistent validation strategy complementary to the inverse method. Even

if the forward strategy allows to reduce the uncertainties, it should be re-

minded that similar LII signal decay corresponds to various possible PPSDs,

so that the agreement between synthesized and measured signal does not

ensure the validity of the PPSD. This issue is not due to the post-processing

validation strategy but it is intrinsic to TiRe-LII measurements. However,

when a mismatch is observed in such a comparison, it can be used to state

that the predicted PPSD is incorrect and add further indications for the

modeling development. In addition, it has to be reminded that the numeri-

cal synthesized signal depends on the model’s accuracy for both the gas and

the solid phases, allowing to investigate the quality of the whole numerical

strategy and not only of the solid phase simulation.

The potential improvement of the new approach is related to the ther-

mal accommodation coefficient, which is one of the sources of uncertainty

even in the novel approach. The dependency of αT on other soot properties
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is not clearly established yet. However, once the relation will be found, the

reconstruction of the thermal accommodation coefficient could be done pro-

viding accurate predictions even in the presence of a nascent and mature

soot particle mixture.
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