
HAL Id: hal-02463382
https://hal.science/hal-02463382v1

Submitted on 31 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient aperiodic task server for energy harvesting
embedded systems

Rola El Osta, Maryline Chetto, Hussein El Ghor

To cite this version:
Rola El Osta, Maryline Chetto, Hussein El Ghor. An efficient aperiodic task server for energy harvest-
ing embedded systems. The 2019 IEEE International Conference on Internet of Things and Intelligence
Systems, Nov 2019, Kuta, Indonesia. �10.1109/iotais47347.2019.8980386�. �hal-02463382�

https://hal.science/hal-02463382v1
https://hal.archives-ouvertes.fr

An efficient aperiodic task server for energy
harvesting embedded systems

Rola El Osta
LS2N Laboratory - UMR CNRS 6004

University of Nantes
Nantes, France

rolaosta@hotmail.com

Maryline Chetto
LS2N Laboratory - UMR CNRS 6004

University of Nantes
Nantes, France

maryline.chetto@univ-nantes.fr

Hussein El Ghor
LENS Laboratory

Lebanese University
Saida, Lebanon

hussain@ul.edu.lb

Abstract—The energy existing in our environment can be con-
verted into electricity to supply a wireless device such as sensor
node. In this paper, we will address a problem of scheduling for
a device that executes a mixed set of real-time tasks, composed of
aperiodic and hard deadline periodic tasks. High responsiveness
of the aperiodic tasks and timeliness of the periodic tasks can
be performed through an aperiodic task server that takes into
account both time and energy limitations. This paper describes an
extension of the well known TBS (Total Bandwidth Server) which
is energy harvesting aware. The performance of the new aperiodic
server, called TB-H, is evaluated and compared to background
approaches through simulation experiments.

Index Terms—Earliest Deadline First, energy harvesting, ape-
riodic servicing, preemptive scheduling, energy management.

I. INTRODUCTION

Energy Harvesting(EH), or energy scavenging, is a process
that captures small amounts of energy that would otherwise
be lost as heat, light, sound, vibration or movement. EH
permits to replace batteries for small, low power electronic
devices. This technology has several benefits: devices are
maintenance free since there is no need to replace batteries.
Devices are environmentally friendly since batteries contain
chemicals and metals that are harmful to the environment and
hazardous to human health. In addition, EH opens up new
applications where EH sensors can be deployed in remote
or underwater locations [1]. Consequently EH enables us to
design autonomous embedded systems which are supplied
perpetually. In comparison to energy stored in classical storage
units as batteries, the environment represents an infinite source
of available energy. A lot of sources in the environment can be
exploited to supply autonomous small devices, including solar
energy, electromagnetic waves, thermal energy, mechanical,
etc. The energy source is selected based on the application
characteristics. In this paper, we consider an EH system which
is composed of three parts (Figure 1): the processing unit
with unique voltage and frequency, the energy harvester and
a rechargeable energy storage such as super-capacitor.

Most of wireless sensors implement software which have
hard real time constraints. They use a specific operating
system called RTOS (Real Time Operating System). The
difference between a RTOS and a conventional OS is the
response time to external events. OS’s typically provide
non-deterministic responses. There are no guarantees as to

E
n

er
g
y

S
to

ra
g
e

Pp(t)

Scheduled tasks

{Ƭ1,Ƭ2,…,Ƭn}

Uniprocessor

Computing

System

Task Ƭ1

Task Ƭn

Fig. 1. Framework of an embedded energy harvesting device

when each task will complete. An RTOS typically provides a
hard real time response, providing a fast, highly deterministic
reaction to events including the periodic ones from the
real-time clock. When switching between tasks the scheduler
of the RTOS has to choose the most appropriate task to
execute next. There are many possible scheduling algorithms
available, including Round Robin, SPT (Shortest Processing
Time first), etc. However, to provide a bounded responsive
system, most RTOS’s use a preemptive priority driven
scheduling algorithm.
In a fixed priority system, each task is given an individual
priority value which is constant along time. Under the Rate
Monotonic (RM) scheduler, the shorter the task period, the
higher the priority level assigned. RM may achieve a 88%
processor utilization [2]. In a dynamic priority system, the
jobs of a given periodic task have distinct priorities. Earliest
Deadline First (EDF) scheduling executes first the job with the
closest deadline [3]. EDF is the optimal scheduler and may
achieve up to 100% processor utilization while guaranteeing
no deadline violation.
Every RTOS which is commercialized now-days uses a
non-idling (also said work-conserving) scheduling strategy.
If there is at least one task which is pending for execution,
the scheduler cannot let the processor in the sleep mode.
It systematically executes the highest priority task which
is waiting for execution. The most important consideration

when designing a real-time application is what types of
timing constraints for the tasks should be considered. Most
of tasks are hard real-time ones i.e. they should be executed
completely before specified deadlines. If the deadline is
not met, this will cause the system to fail. In contrast, any
application has soft aperiodic tasks that should be executed
with minimal response time. They have no strict deadline to
guarantee. Here, we consider a real-time software composed
of a mixed set of tasks: hard deadline periodic tasks in one
hand and soft aperiodic tasks in the other hand.

This paper tackles a central scheduling problem for a
hard real-time system which is supplied through energy
harvesting from an environmental source. The question is:
how to guarantee deadlines of periodic tasks while providing
a minimal response time for any occurring aperiodic task
with unpredictable arrival time. This scheduling problem has
been extensively studied from about the last three decades
under the hypothesis of no energy limitation. A survey can
be found in [4] [5].

The well known EDF scheduler is preemptive and non
idling. It behaves very poorly under energy harvesting
considerations because optimal scheduling requires
clairvoyance and idling capabilities of the scheduler as
proved in [6]. This has motivated additional research works
to propose novel efficient schedulers that adapt to energy
harvesting settings. In 2014, an idling variant of the EDF
scheduler, named ED-H was proved to be the optimal one [7].
Optimality of ED-H signifies that any set of hard real-time
tasks which is feasible on a given platform, will be feasibly
scheduled according to ED-H. The platform is here precisely
characterized by given single computing unit, energy harvester
with given power production and energy storage unit with
given energy capacity as shown in Figure 1.

The contribution of this paper is a new scheduling algorithm
that permits to jointly schedule soft aperiodic tasks and hard
periodic tasks under energy harvesting constraints. The so-
called TB-H (Total Bandwidth with energy Harvesting) server
consists of an extended version of the Total Bandwidth server
proposed by Spuri and Butazzo [8]. TBS (Total Bandwidth
Server) provides optimal responsiveness with very little over-
head. However, TBS does not consider energy constraints.
According to this approach, a virtual deadline is suitably
assigned to every occurring aperiodic task so as to process it
as soon as possible. It guarantees no deadline missing for the
periodic tasks. All the tasks, periodic and aperiodic ones are
jointly scheduled according to the preemptive EDF scheduler.
We show here how to modify the TBS scheduler so as to
adapt to the energy harvesting context. Each running task is
now assumed to consume both processor time and energy.
All the tasks, periodic and aperiodic ones, are now scheduled
according to ED-H which is the optimal scheduler. We will
demonstrate the efficiency of the new aperiodic task server
TB-H through a set of experiments.

The plan of the paper is the following. The model under
study is described in section II. Section III gives background
materials. Principles of the TB-H aperiodic task server are
described in Section IV. Section V reports the main results of
experiments so as to illustrate efficiency of the TB-H server.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider a platform composed of energy storage unit,
energy harvester and uniprocessing unit as described above.
The processor sustains one operating frequency. A four-tuple
(Ci, Ei, Ti) is associated with a periodic task τi and gives
its Worst Case Execution Time (WCET), Worst Case Energy
Consumption (WCEC) and period respectively. We assume
that Ei may not be proportional to Ci [9]. A job represents a
request made by a task. The first job of τi is released at time
0 and the subsequent ones at times kTi, k = 1, 2, ... called
release times. H is the least common multiple of the request
periods Ti, called the hyper-period. The processor utilization
of the set of periodic tasks τ is Upp =

∑
τiετ

Ci
Ti

which is
lower than 1.
In addition, we consider Ap the stream of m soft
aperiodic requests, defined as Ap = {Api|1 ≤ i ≤ m}
and Api = (ri, ci, ei). ri is the arrival time of the soft
aperiodic task Api. ci and ei are respectively the worst case
execution time and the worst case energy requirement of
Api. The energy source is characterized by an instantaneous
charging rate Pp(t) that incorporates all losses. We define
Ep(t) as the energy produced by such a power source
from time 0 to time t. We assume that energy production
and energy consumption can occur at the same time. The
instantaneous power consumed by any task is not less than
the instantaneous power drawn from the source. The energy
produced on the time interval [t1, t2) is denoted Ep(t1, t2)
while the energy consumed by tasks on the same interval
is denoted Ec(t1, t2). In our work, we deal with solar
energy which is harvested by solar panels and we consider
that the energy produced by the source is scavenged from
small time slot of the energy harvesting profile in a day i.e.
constant energy production power equal to Pp is assumed.
Consequently, we may define the energy utilization of τ as

Uep =
∑
τiετ

Ei
Ti

Pp
. We assume that Uep is less than or equal

to 1. In other terms, the average power consumed by the
periodic tasks does not exceed the power of the environmental
source. We assume that the application is feasible regarding
the set of periodic tasks. Consequently, if no aperiodic task
occurs, every task τi cannot miss its deadline either due to
time insufficiency or energy insufficiency.

The energy storage unit of the system has a nominal
capacity, E. E(t) gives the energy level of the storage at
the time instant t. The energy in the storage may be used
at any time later. We assume an ideal storage unit with no
leakage. Energy is wasted whenever the storage unit become
fully charged (i.e. E(t) = E at time t). We cannot execute

any task whenever the storage unit becomes fully discharged
(i.e. E(t) = 0 at time t). The level of the energy storage unit
never increases when any task executes.

III. BACKGROUND MATERIALS

A. ED-H: a variant of Earliest Deadline First
ED-H has been stated as the optimal scheduler to support

energy harvesting settings [7]. As EDF, ED-H is a dynamic
priority scheduler which selects the next task to execute
with the closest deadline. However, ED-H may deliberately
postpone the execution of such task in order to avoid energy
starvation for future occurring jobs. Consequently, ED-H
uses a Dynamic Power Management technique so as to put
the processor in the busy mode v.s. the idle mode whenever
necessary. At every time instant, the decision depends on
two dynamic variables respectively called slack time and
preemption slack energy. The slack time represents the
maximum length of the time interval where the processor
could be let idle while guaranteeing no deadline violation.
The preemption slack energy represents the maximum energy
which could be consumed by the active task while no periodic
task can incur energy starvation.

We are now prepared to present the ED-H scheduler. Let us
use the following notations:

• t: current time
• Lr(t): list of periodic jobs ready to be processed
• Ar(t): list of aperiodic jobs ready to be processed
• E(t): residual capacity of the energy reservoir
• ST (t): slack time of the periodic task set
• SE(t): slack energy of the periodic task set
• PSE(t): preemption slack energy of the periodic task set

The ED-H scheduler behaves as follows.
• The future executing job in Lr(t) is selected using the

EDF priority.
• The processor is put in the idle mode in [t, t+ 1) if
Lr(t) = ∅.

• The processor is put in the idle mode in [t, t+ 1) if
Lr(t) 6= ∅ and either E(t) = 0 or PSE(t) = 0.

• The processor is put in the busy mode in [t, t+ 1) if
Lr(t) 6= ∅ and either E(t) = C or ST (t) = 0

• The processor can be in the idle mode or in the busy
mode (we use a tie breaking rule) if Lr(t) 6= ∅,
0 < E(t) < C, ST (t) > 0 and PSE(t) > 0.

Optimality of the ED-H scheduler has been established
in [7]. If a hard real-time task set is schedulable by any
algorithm on a platform composed of given processor, energy
harvester and energy reservoir, then it is schedulable using
the ED-H algorithm on the same platform.

B. Aperiodic task servers
Let us consider a real-time application which implements

aperiodic tasks together with periodic tasks. Scheduling algo-
rithms for aperiodic tasks have to guarantee the deadlines for

the periodic tasks and provide good average response times
for the aperiodic tasks even though the aperiodic tasks occur
in a non deterministic manner.

The simplest approach for servicing soft aperiodic tasks
is background processing. Background servicing of aperiodic
tasks occurs whenever the processor is not executing any
periodic task and no periodic tasks are pending for execution.
If the processor utilization of the periodic task set is high, then
the processing times left for background service is low and
the responses times of the aperiodic tasks will be prohibitive.
An aperiodic server is used for reducing the response time of
the aperiodic tasks. The aperiodic server aims to execute the
aperiodic tasks through an additional periodic task. Thus, the
server has a period and a fixed execution time called server
capacity. The server is jointly scheduled with the applicative
periodic tasks. It serves the aperiodic tasks respecting the
range of its capacity. A lot of efficient aperiodic task server
algorithms have been developed such as Priority Exchange
(PE) and Deferrable Server (DS) algorithms, introduced in
[10] to improve aperiodic responsiveness over traditional
background and polling approaches. Another aperiodic task
servicing approach for dynamic priority systems was proposed
in [11]. The so-called EDL (Earliest Deadline Late) algorithm
is based on Slack Stealing. It consists in postponing as much
as possible the execution of the periodic tasks so as to execute
the aperiodic ones as soon as possible.

The Total Bandwith Server (TBS) is a mechanism for
executing the aperiodic tasks in the presence of periodic
tasks under a dynamic priority assignment based on EDF
[8] [12]. Under TBS, every time an aperiodic task occurs,
a virtual deadline is assigned to it. Then, the new aperiodic
task is scheduled with the periodic tasks and the aperiodic
tasks present in the system. The virtual deadline depends
on processor utilization available for the aperiodic tasks. An
improved version of TBS called TB∗ was proved to be optimal
[13]. Each aperiodic task gets a shorter virtual deadline than
that computed by TBS. Thus, whenever an aperiodic task
arrives, the server TB∗ first assigns to it a virtual deadline
according to TBS. This deadline is shortened to the maximum
so that the response time is improved and the periodic tasks
still respect their deadlines. Shortening the deadline uses an
iterative process applied as long as an improvement is possible.

C. Illustration of the Total Bandwidth server

The following example shows the sequence which results
from the EDF scheduling algorithm and the TBS aperiodic
servicing algorithm (see Figure 2). Let us consider two
periodic tasks and two aperiodic tasks with parameters given
in Tables I and II respectively. The scheduling algorithm is
EDF. We note that the utilization of the periodic task set is
Upp = 0.7. The first aperiodic task Ap1 enters the system at
time 9. Ap1 receives a virtual deadline, d1 = 13. Ap1 has
the highest priority and starts execution immediately. The
second aperiodic task Ap2 occurs at 18. The virtual deadline,
d2 = 28 is assigned to Ap2which runs from time 22. Figure
2 shows that the response time of Ap1 is 1 unit of time and

the response time of Ap2 is 7 units of time.

TABLE I
PARAMETERS OF PERIODIC TASKS

Task Ci Di Ti
τ1 4 9 9
τ2 3 12 12

TABLE II
PARAMETERS OF APERIODIC TASKS

Task ai ci
Ap1 9 1
Ap2 18 3

 9 18 27

12

τ1

τ2

24

36

36

9 36

T
B

S
 s

er
ve

r

13 28
18

Fig. 2. Illustration of TBS

IV. THE TB-H APERIODIC SERVER

Looking at the characteristics of the Background Server,
we observe the following: for a periodic task set with high
processor utilization, the execution of the aperiodic jobs can
be delayed significantly. It is natural to ask whether a variant
of the TBS algorithm could improve responsiveness over
background solutions in energy harvesting applications. The
assignment of the virtual deadline for any occurring aperiodic
task should take into account energy limitation so as to prevent
energy starvation for all the periodic tasks.

A. Definition of TB-H

In this section, we present an extension of TBS for energy
harvesting settings. The so-called TB-H (Total Bandwidth for
energy harvesting settings) assigns a virtual deadline based
on both energy and processing time considerations. Once the
aperiodic task has received the virtual deadline, it is scheduled
by ED-H with periodic tasks, jointly. We assume that the
aperiodic tasks are served in FCFS order. Thus no aperiodic
task can be preempted by another one. A first virtual deadline
dk is computed according to the processing bandwidth as in
TBS (Ups = 1 − Upp). Then, a second virtual deadline d̃k is
computed according to the energy bandwidth (Ues = 1−Uep).

Under TBS, the virtual deadline assigned to each aperiodic
job guarantees that the fraction of processor demanded by
aperiodic tasks never exceeds the processor utilization of the
server, Ups. In the same idea, we have demonstrated that the

deadline should be assigned so that the fraction of energy
consumed by the aperiodic tasks should never exceed the
energy utilization of the server, Ues.

Let us assume that Uep + Ues ≤ 1. For the k-th aperiodic
task that arrives at time t = rk a virtual deadline is computed
as follows:

d̃k = max(rk, dk−1) + d
Ek
Ues
− E(rk)

Pp
e (1)

Finally, the deadline assignment process under energy
harvesting settings is given in theorem 4.1.

Theorem 4.1: [14] Let a periodic taskset and a stream of
aperiodic tasks. Under TB-H, the virtual deadline of the k-th
aperiodic task Apk is given by:

dfk = max(dk, d̃k) (2)

We proved in [14] that no periodic task can miss a deadline
using the TB-H aperiodic task server. The scheduling frame-
work of the TB-H server can be described by the following
pseudo-code:

Overheads of the TB-H server are clearly the cost for
computing the virtual deadline whenever one aperiodic task
occurs. As with ED-H, the RTOS keeps a ready queue,
ordered by absolute deadline of all the uncompleted periodic
or aperiodic tasks pending for execution.

B. Illustration of TB-H

We illustrate the TB-H deadline assignment through the
following example. We consider the set of tasks as described in
the previous section. The processing utilization of the periodic
tasks is Upp = 0.7. The energy utilization is Uep = 0.875,
which leads to available processor utilization, Ups = 0.3 and
available energy utilization Ues = 0.125 for the aperiodic
tasks. We assume that the energy production power equals
Pp = 4.

At time 0, the storage unit is fully replenished. τ1 with the
highest priority, runs and finishes at time 4, consuming 18
energy units. At time 4, the residual capacity i.e. the level of
available energy is given by Emax−E1+Pp ∗C1 and equals
8. As τ2 gets the highest priority, τ2 executes completely up
to the time instant 7 with energy consumption equal to 18
energy units. The residual capacity of the energy storage unit
equals 2. From time 7, the storage unit is recharging as long
the processor is in the idle state. The first aperiodic task Ap1
arrives at 9. The virtual deadlines are d1 = 13 and d̃1 =
17. The final virtual deadline df1 = max(d1, d̃1) = 17 is
assigned to Ap1. Time 17 is the closest deadline. Thus, the
aperiodic task is executed immediately consuming a maximum
of 5 energy units. At time 10, the highest priority task, τ1,
starts execution. Periodic tasks execute up to the time instant
18 where the second aperiodic task Ap2 arrives. Ap2 gets the
virtual deadline df2 = 47. Ap2 has to wait since a periodic
task with shorter deadline equal to 27 is ready for execution.
Tasks are executed according to ED-H until the end of the
hyperperiod. The energy reservoir contains 8 energy units.

Let us remark that the response time of the aperiodic task
Ap1 is 1 (which is the optimal value) and the response time
of the aperiodic task Ap2 is 16 units of time.

 9 18 27

12

τ1

τ2

24

36

36

9 36

T
B

-H
 s

er
ve

r

17 47

18

8

6

4

2

0

E(t)

10

Fig. 3. Tasks scheduled according to TB-H

V. PERFORMANCE EVALUATION

This section presents a set of experiments carried out to
evaluate the performance of the new proposed algorithms TB-
H for different configuration parameters. Our performance
evaluation is also compared with three algorithms with differ-
ent performances and implementation overheads: Background
with Energy Surplus (BES) and Background with Energy
Preserving (BEP). BES serves the aperiodic tasks whenever no
periodic tasks are present in the system and the energy storage
is fully replenished. Under BEP, the enhanced version of BES,
aperiodic task is authorized to execute when its execution
does not involve energy shortage for all future occurring
periodic tasks. It is worth noting that periodic tasks are
scheduled according to the ED-H rules. In all the experiments,
the performance of the various algorithms is evaluated by
measuring the average aperiodic response time normalized
with respect to the computation time. The average value is

computed over 100 runs, in which a total of 15000 aperiodic
jobs are generated. We assume that the storage is initially full
and the environmental power Pp is constant.

A. Task Set Generation

In all simulations, a set of 30 periodic tasks with periods,
execution times and energy consumptions are randomly gen-
erated. Periods and computation times are generated through a
uniform function, based on Up. The energy consumed by any
task is proportional to its period and depends on Ue. Periodic
task sets are assumed to be feasible. The aperiodic load is
made varying across the margin of processor utilization left
unused by periodic tasks. They are generated according to
desired values for Ups and Ues by modelling a poisson aperi-
odic arrival. The aperiodic load is denoted by Ups. Throughout
our simulation results, we assume that a total energy load Ue
includes 50% of the periodic energy utilization Uep and 50%
of the aperiodic energy load Ues. Similarly, a total processing
load Up incorporates 50% of the periodic processor utilization
Upp and 50% of the aperiodic utilization Ups.

B. Relative performance under various time and energy con-
ditions

In this first set of experiments, the servers TB-H, BEP and
BES were simulated in order to assess the average response
times of the soft aperiodic tasks with respect to the total energy
utilization.

Fig. 4. Aperiodic response time with respect to Ue, for Up=0.4.

Simulation results reported in Figure 4 are carried out for
a processing load equal to 0.4 varying the energy load (5%≤
Ue ≤100). From the graphs, the TB-H server clearly offers
better performance compared to the two Background servers.
We note that higher is the energy load Ue more significant is
this advantage.

TABLE III
RELATIVE PERFORMANCE WITH DIFFERENT RESERVOIR SIZES

Capacity Ue BES BEP TB-H

Emin

0.2 2.4 1.7 1.8
0.8 37.4 26.2 29.0

5 ∗ Emin

0.2 2.0 1.4 1.5
0.8 23.0 14.7 14.9

9 ∗ Emin

0.2 1.5 1.1 1.2
0.8 13.4 6.3 7.3

C. Relative performance with various storage sizes

In this set of experiments, we evaluated the performance of
the aperiodic servers by making vary the size of the storage
unit with Emin, 5*Emin, and 9*Emin. Emin represents the
minimum size of the storage that guarantees time and energy
feasibility, for given values of Up, Ue and Pp. Here, we report
the results for lightly time-constrained systems with Up = 0.2.
The 3rd, 4th and 5th columns of Table III give the aperiodic
responsiveness for the BEP, BES, and TB-H servers, respec-
tively, under two profiles in terms of energy constraints. Table
III shows us that the Total bandwidth server permits to achieve
significant reduction of the average aperiodic response time,
in comparison to the Background servers for all parameter
settings.

When the system uses 20% of the available energy with
minimum storage size, the average response time under the
TB-H server is 14% and 25% lower relatively to BEP and
BES. If the energy requirement is set to 80%, all servers have
similar high response times.

For each of the three servers, higher is the size of the
storage, lower is the normalized aperiodic response time for
a fixed energy setting. For example, if the size of the storage
unit equals Emin and the system consumes up to 80% of the
available energy, the aperiodic response time with TB-H is
29.0. When the size is 9 ∗Emin, the response time is reduced
by 75%. Such an improvement in aperiodic responsiveness
comes from the immediate service of the aperiodic tasks which
is made possible by the definition of TB-H and extra energy
available in the storage unit.

VI. DISCUSSION AND CONCLUSIONS

This paper has presented a scheduling technique for re-
ducing the response time of aperiodic tasks which run on
a processor supplied by environmental energy through an
harvester such as solar cell. In the model, each running task
consumes both processor time and energy. We proposed an
algorithm which is an extension of the TB server that initially
did not consider energy limitation. The TB-H server consists in
assigning a virtual deadline to each newly occurring aperiodic
task based on both processing and energy constraints. This
permits to execute any aperiodic task with good response time
while not jeopardizing the schedulability of the periodic tasks.
Compared to basic background approaches, TB-H appears as
an interesting energy aware aperiodic task server looking at
both responsiveness and implementation overheads.

REFERENCES

[1] T. tanaka, T. Suzuki, and K.Kurihara, ”Energy Harvesting Tehnology for
Maintenance-free Sensors,” FUJITSU Sci. Tec.J., vol. 50, no. 1, January
2014.

[2] J.P. Lehoczky, L. Sha, and Y. Ding, ”The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behaviour,” in Proc.
of Real-Time Systems Symposium, pp. 166-171, 1989.

[3] C.-L. Liu and J.-W. Layland, ”Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” Journal of the Association for
Computing Machinery, vol. 20, no. 1, pp. 46-61, 1973.

[4] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, 2nd edn. Springer, Berlin, 2005.

[5] J. Liu, Real-Time Systems, Prentice Hall, 2000.
[6] M. Chetto and A. Queudet, ”A Note on EDF Scheduling for Real-Time

Energy Harvesting Systems,” IEEE Transactions on Computers, vol. 63,
no. 4, pp. 1037-1040, April 2014.

[7] M. Chetto, ”Optimal Scheduling for Real-Time Jobs in Energy Harvesting
Computing Systems,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 2, no. 2, pp. 122-133, 2014.

[8] M. Spuri and G. Buttazzo, ”Scheduling aperiodic tasks in dynamic
priority systems,” Real-Time Systems, vol. 10, no. 2, pp. 179-210, March
1996.

[9] R. Jayaseelan, T. Mitra, and X. Li, ”Estimating the Worst-Case Energy
Consumption of Embedded Software,” in Proc. of 12th IEEE Real-Time
and Embedded Technology and Applications Symposium, pp. 81-90, 2006.

[10] J. P. Lehoczky, L. Sha, and J. K. Strosnider, ”Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments,” in Proc. of the Real-
Time Systems Symposium, IEEE Computer Society, San jose, California,
pp. 110123, 1987.

[11] H. Chetto and M. Chetto, ”Some results of the earliest deadline
scheduling algorithm,” IEEE Transactions on Software Engineering, vol.
15, no. 10, pp. 1261-1269, 1989.

[12] M. Spuri and G. C. Buttazzo, ”Efficient aperiodic service under earliest
deadline scheduling,” in Proc. of Real-Time Systems Symposium, pp. 2-11,
1994.

[13] G.C. Buttazzo and F. Sensini, ”Optimal Deadline Assignment for
Scheduling Soft Aperiodic Tasks in Hard Real-Time Enviroments,” in
Proc. of the 3rd IEEE International Conference on Engineering of Com-
plex Computer Systems (ICECCS’97), Como, Italy, pp. 39-48, September
1997.

[14] R. EL Osta, ”Contribution to real time scheduling for energy autonomous
systems,” PhD thesis, University of Nantes, France, October 26, 2017.

