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The energy existing in our environment can be converted into electricity to supply a wireless device such as sensor node. In this paper, we will address a problem of scheduling for a device that executes a mixed set of real-time tasks, composed of aperiodic and hard deadline periodic tasks. High responsiveness of the aperiodic tasks and timeliness of the periodic tasks can be performed through an aperiodic task server that takes into account both time and energy limitations. This paper describes an extension of the well known TBS (Total Bandwidth Server) which is energy harvesting aware. The performance of the new aperiodic server, called TB-H, is evaluated and compared to background approaches through simulation experiments.

I. INTRODUCTION

Energy Harvesting(EH), or energy scavenging, is a process that captures small amounts of energy that would otherwise be lost as heat, light, sound, vibration or movement. EH permits to replace batteries for small, low power electronic devices. This technology has several benefits: devices are maintenance free since there is no need to replace batteries. Devices are environmentally friendly since batteries contain chemicals and metals that are harmful to the environment and hazardous to human health. In addition, EH opens up new applications where EH sensors can be deployed in remote or underwater locations [START_REF] Tanaka | Energy Harvesting Tehnology for Maintenance-free Sensors[END_REF]. Consequently EH enables us to design autonomous embedded systems which are supplied perpetually. In comparison to energy stored in classical storage units as batteries, the environment represents an infinite source of available energy. A lot of sources in the environment can be exploited to supply autonomous small devices, including solar energy, electromagnetic waves, thermal energy, mechanical, etc. The energy source is selected based on the application characteristics. In this paper, we consider an EH system which is composed of three parts (Figure 1): the processing unit with unique voltage and frequency, the energy harvester and a rechargeable energy storage such as super-capacitor.

Most of wireless sensors implement software which have hard real time constraints. They use a specific operating system called RTOS (Real Time Operating System). The difference between a RTOS and a conventional OS is the response time to external events. OS's typically provide non-deterministic responses. There are no guarantees as to when each task will complete. An RTOS typically provides a hard real time response, providing a fast, highly deterministic reaction to events including the periodic ones from the real-time clock. When switching between tasks the scheduler of the RTOS has to choose the most appropriate task to execute next. There are many possible scheduling algorithms available, including Round Robin, SPT (Shortest Processing Time first), etc. However, to provide a bounded responsive system, most RTOS's use a preemptive priority driven scheduling algorithm.

In a fixed priority system, each task is given an individual priority value which is constant along time. Under the Rate Monotonic (RM) scheduler, the shorter the task period, the higher the priority level assigned. RM may achieve a 88% processor utilization [START_REF] Lehoczky | The Rate Monotonic Scheduling Algorithm: Exact Characterization and Average Case Behaviour[END_REF]. In a dynamic priority system, the jobs of a given periodic task have distinct priorities. Earliest Deadline First (EDF) scheduling executes first the job with the closest deadline [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard real-time environment[END_REF]. EDF is the optimal scheduler and may achieve up to 100% processor utilization while guaranteeing no deadline violation. Every RTOS which is commercialized now-days uses a non-idling (also said work-conserving) scheduling strategy.

If there is at least one task which is pending for execution, the scheduler cannot let the processor in the sleep mode. It systematically executes the highest priority task which is waiting for execution. The most important consideration when designing a real-time application is what types of timing constraints for the tasks should be considered. Most of tasks are hard real-time ones i.e. they should be executed completely before specified deadlines. If the deadline is not met, this will cause the system to fail. In contrast, any application has soft aperiodic tasks that should be executed with minimal response time. They have no strict deadline to guarantee. Here, we consider a real-time software composed of a mixed set of tasks: hard deadline periodic tasks in one hand and soft aperiodic tasks in the other hand.

This paper tackles a central scheduling problem for a hard real-time system which is supplied through energy harvesting from an environmental source. The question is: how to guarantee deadlines of periodic tasks while providing a minimal response time for any occurring aperiodic task with unpredictable arrival time. This scheduling problem has been extensively studied from about the last three decades under the hypothesis of no energy limitation. A survey can be found in [START_REF] Buttazzo | Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications[END_REF] [START_REF] Liu | Real-Time Systems[END_REF].

The well known EDF scheduler is preemptive and non idling. It behaves very poorly under energy harvesting considerations because optimal scheduling requires clairvoyance and idling capabilities of the scheduler as proved in [START_REF] Chetto | A Note on EDF Scheduling for Real-Time Energy Harvesting Systems[END_REF]. This has motivated additional research works to propose novel efficient schedulers that adapt to energy harvesting settings. In 2014, an idling variant of the EDF scheduler, named ED-H was proved to be the optimal one [START_REF] Chetto | Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems[END_REF]. Optimality of ED-H signifies that any set of hard real-time tasks which is feasible on a given platform, will be feasibly scheduled according to ED-H. The platform is here precisely characterized by given single computing unit, energy harvester with given power production and energy storage unit with given energy capacity as shown in Figure 1.

The contribution of this paper is a new scheduling algorithm that permits to jointly schedule soft aperiodic tasks and hard periodic tasks under energy harvesting constraints. The socalled TB-H (Total Bandwidth with energy Harvesting) server consists of an extended version of the Total Bandwidth server proposed by Spuri and Butazzo [START_REF] Spuri | Scheduling aperiodic tasks in dynamic priority systems[END_REF]. TBS (Total Bandwidth Server) provides optimal responsiveness with very little overhead. However, TBS does not consider energy constraints. According to this approach, a virtual deadline is suitably assigned to every occurring aperiodic task so as to process it as soon as possible. It guarantees no deadline missing for the periodic tasks. All the tasks, periodic and aperiodic ones are jointly scheduled according to the preemptive EDF scheduler. We show here how to modify the TBS scheduler so as to adapt to the energy harvesting context. Each running task is now assumed to consume both processor time and energy. All the tasks, periodic and aperiodic ones, are now scheduled according to ED-H which is the optimal scheduler. We will demonstrate the efficiency of the new aperiodic task server TB-H through a set of experiments.

The plan of the paper is the following. The model under study is described in section II. Section III gives background materials. Principles of the TB-H aperiodic task server are described in Section IV. Section V reports the main results of experiments so as to illustrate efficiency of the TB-H server. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider a platform composed of energy storage unit, energy harvester and uniprocessing unit as described above. The processor sustains one operating frequency. A four-tuple (C i , E i , T i ) is associated with a periodic task τ i and gives its Worst Case Execution Time (WCET), Worst Case Energy Consumption (WCEC) and period respectively. We assume that E i may not be proportional to C i [START_REF] Jayaseelan | Estimating the Worst-Case Energy Consumption of Embedded Software[END_REF]. A job represents a request made by a task. The first job of τ i is released at time 0 and the subsequent ones at times kT i , k = 1, 2, ... called release times. H is the least common multiple of the request periods T i , called the hyper-period. The processor utilization of the set of periodic tasks τ is U pp = τi τ Ci Ti which is lower than 1. In addition, we consider Ap the stream of m soft aperiodic requests, defined as Ap = {Ap i |1 ≤ i ≤ m} and Ap i = (r i , c i , e i ). r i is the arrival time of the soft aperiodic task Ap i . c i and e i are respectively the worst case execution time and the worst case energy requirement of Ap i . The energy source is characterized by an instantaneous charging rate P p (t) that incorporates all losses. We define E p (t) as the energy produced by such a power source from time 0 to time t. We assume that energy production and energy consumption can occur at the same time. The instantaneous power consumed by any task is not less than the instantaneous power drawn from the source. The energy produced on the time interval [t 1 , t 2 ) is denoted E p (t 1 , t 2 ) while the energy consumed by tasks on the same interval is denoted E c (t 1 , t 2 ). In our work, we deal with solar energy which is harvested by solar panels and we consider that the energy produced by the source is scavenged from small time slot of the energy harvesting profile in a day i.e. constant energy production power equal to P p is assumed. Consequently, we may define the energy utilization of τ as

U ep = τ i τ E i T i

Pp

. We assume that U ep is less than or equal to 1. In other terms, the average power consumed by the periodic tasks does not exceed the power of the environmental source. We assume that the application is feasible regarding the set of periodic tasks. Consequently, if no aperiodic task occurs, every task τ i cannot miss its deadline either due to time insufficiency or energy insufficiency.

The energy storage unit of the system has a nominal capacity, E. E(t) gives the energy level of the storage at the time instant t. The energy in the storage may be used at any time later. We assume an ideal storage unit with no leakage. Energy is wasted whenever the storage unit become fully charged (i.e. E(t) = E at time t). We cannot execute any task whenever the storage unit becomes fully discharged (i.e. E(t) = 0 at time t). The level of the energy storage unit never increases when any task executes.

III. BACKGROUND MATERIALS A. ED-H: a variant of Earliest Deadline First

ED-H has been stated as the optimal scheduler to support energy harvesting settings [START_REF] Chetto | Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems[END_REF]. As EDF, ED-H is a dynamic priority scheduler which selects the next task to execute with the closest deadline. However, ED-H may deliberately postpone the execution of such task in order to avoid energy starvation for future occurring jobs. Consequently, ED-H uses a Dynamic Power Management technique so as to put the processor in the busy mode v.s. the idle mode whenever necessary. At every time instant, the decision depends on two dynamic variables respectively called slack time and preemption slack energy. The slack time represents the maximum length of the time interval where the processor could be let idle while guaranteeing no deadline violation. The preemption slack energy represents the maximum energy which could be consumed by the active task while no periodic task can incur energy starvation.

We are now prepared to present the ED-H scheduler. Let us use the following notations:

• t: current time • L r (t): list of periodic jobs ready to be processed • The future executing job in L r (t) is selected using the EDF priority. Optimality of the ED-H scheduler has been established in [START_REF] Chetto | Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing Systems[END_REF]. If a hard real-time task set is schedulable by any algorithm on a platform composed of given processor, energy harvester and energy reservoir, then it is schedulable using the ED-H algorithm on the same platform.

B. Aperiodic task servers

Let us consider a real-time application which implements aperiodic tasks together with periodic tasks. Scheduling algorithms for aperiodic tasks have to guarantee the deadlines for the periodic tasks and provide good average response times for the aperiodic tasks even though the aperiodic tasks occur in a non deterministic manner.

The simplest approach for servicing soft aperiodic tasks is background processing. Background servicing of aperiodic tasks occurs whenever the processor is not executing any periodic task and no periodic tasks are pending for execution. If the processor utilization of the periodic task set is high, then the processing times left for background service is low and the responses times of the aperiodic tasks will be prohibitive. An aperiodic server is used for reducing the response time of the aperiodic tasks. The aperiodic server aims to execute the aperiodic tasks through an additional periodic task. Thus, the server has a period and a fixed execution time called server capacity. The server is jointly scheduled with the applicative periodic tasks. It serves the aperiodic tasks respecting the range of its capacity. A lot of efficient aperiodic task server algorithms have been developed such as Priority Exchange (PE) and Deferrable Server (DS) algorithms, introduced in [START_REF] Lehoczky | Enhanced Aperiodic Responsiveness in Hard Real-Time Environments[END_REF] to improve aperiodic responsiveness over traditional background and polling approaches. Another aperiodic task servicing approach for dynamic priority systems was proposed in [START_REF] Chetto | Some results of the earliest deadline scheduling algorithm[END_REF]. The so-called EDL (Earliest Deadline Late) algorithm is based on Slack Stealing. It consists in postponing as much as possible the execution of the periodic tasks so as to execute the aperiodic ones as soon as possible.

The Total Bandwith Server (TBS) is a mechanism for executing the aperiodic tasks in the presence of periodic tasks under a dynamic priority assignment based on EDF [START_REF] Spuri | Scheduling aperiodic tasks in dynamic priority systems[END_REF] [START_REF] Spuri | Efficient aperiodic service under earliest deadline scheduling[END_REF]. Under TBS, every time an aperiodic task occurs, a virtual deadline is assigned to it. Then, the new aperiodic task is scheduled with the periodic tasks and the aperiodic tasks present in the system. The virtual deadline depends on processor utilization available for the aperiodic tasks. An improved version of TBS called T B * was proved to be optimal [START_REF] Buttazzo | Optimal Deadline Assignment for Scheduling Soft Aperiodic Tasks in Hard Real-Time Enviroments[END_REF]. Each aperiodic task gets a shorter virtual deadline than that computed by TBS. Thus, whenever an aperiodic task arrives, the server T B * first assigns to it a virtual deadline according to TBS. This deadline is shortened to the maximum so that the response time is improved and the periodic tasks still respect their deadlines. Shortening the deadline uses an iterative process applied as long as an improvement is possible.

C. Illustration of the Total Bandwidth server

The following example shows the sequence which results from the EDF scheduling algorithm and the TBS aperiodic servicing algorithm (see Figure 2). Let us consider two periodic tasks and two aperiodic tasks with parameters given in Tables I and II respectively. The scheduling algorithm is EDF. We note that the utilization of the periodic task set is U pp = 0.7. The first aperiodic task Ap 1 enters the system at time 9. Ap 1 receives a virtual deadline, d 1 = 13. Ap 1 has the highest priority and starts execution immediately. The second aperiodic task Ap 2 occurs at 18. The virtual deadline, d 2 = 28 is assigned to Ap 2 which runs from time 22. Figure 2 shows that the response time of Ap 1 is 1 unit of time and the response time of Ap 2 is 7 units of time. 

IV. THE TB-H APERIODIC SERVER

Looking at the characteristics of the Background Server, we observe the following: for a periodic task set with high processor utilization, the execution of the aperiodic jobs can be delayed significantly. It is natural to ask whether a variant of the TBS algorithm could improve responsiveness over background solutions in energy harvesting applications. The assignment of the virtual deadline for any occurring aperiodic task should take into account energy limitation so as to prevent energy starvation for all the periodic tasks.

A. Definition of TB-H

In this section, we present an extension of TBS for energy harvesting settings. The so-called TB-H (Total Bandwidth for energy harvesting settings) assigns a virtual deadline based on both energy and processing time considerations. Once the aperiodic task has received the virtual deadline, it is scheduled by ED-H with periodic tasks, jointly. We assume that the aperiodic tasks are served in FCFS order. Thus no aperiodic task can be preempted by another one. A first virtual deadline d k is computed according to the processing bandwidth as in TBS (U ps = 1 -U pp ). Then, a second virtual deadline dk is computed according to the energy bandwidth (U es = 1-U ep ).

Under TBS, the virtual deadline assigned to each aperiodic job guarantees that the fraction of processor demanded by aperiodic tasks never exceeds the processor utilization of the server, U ps . In the same idea, we have demonstrated that the deadline should be assigned so that the fraction of energy consumed by the aperiodic tasks should never exceed the energy utilization of the server, U es .

Let us assume that U ep + U es ≤ 1. For the k-th aperiodic task that arrives at time t = r k a virtual deadline is computed as follows:

dk = max(r k , d k-1 ) + E k Ues -E(r k ) P p (1) 
Finally, the deadline assignment process under energy harvesting settings is given in theorem 4.1.

Theorem 4.1: [START_REF] Osta | Contribution to real time scheduling for energy autonomous systems[END_REF] Let a periodic taskset and a stream of aperiodic tasks. Under TB-H, the virtual deadline of the k-th aperiodic task Ap k is given by:

d f k = max(d k , dk ) (2) 
We proved in [START_REF] Osta | Contribution to real time scheduling for energy autonomous systems[END_REF] that no periodic task can miss a deadline using the TB-H aperiodic task server. The scheduling framework of the TB-H server can be described by the following pseudo-code:

Overheads of the TB-H server are clearly the cost for computing the virtual deadline whenever one aperiodic task occurs. As with ED-H, the RTOS keeps a ready queue, ordered by absolute deadline of all the uncompleted periodic or aperiodic tasks pending for execution.

B. Illustration of TB-H

We illustrate the TB-H deadline assignment through the following example. We consider the set of tasks as described in the previous section. The processing utilization of the periodic tasks is U pp = 0.7. The energy utilization is U ep = 0.875, which leads to available processor utilization, U ps = 0.3 and available energy utilization U es = 0.125 for the aperiodic tasks. We assume that the energy production power equals P p = 4.

At time 0, the storage unit is fully replenished. τ 1 with the highest priority, runs and finishes at time 4, consuming 18 energy units. At time 4, the residual capacity i.e. the level of available energy is given by E max -E 1 + P p * C 1 and equals 8. As τ 2 gets the highest priority, τ 2 executes completely up to the time instant 7 with energy consumption equal to 18 energy units. The residual capacity of the energy storage unit equals 2. From time 7, the storage unit is recharging as long the processor is in the idle state. The first aperiodic task Ap 1 arrives at 9. The virtual deadlines are d 1 = 13 and d1 = 17. The final virtual deadline d f 1 = max(d 1 , d1 ) = 17 is assigned to Ap 1 . Time 17 is the closest deadline. Thus, the aperiodic task is executed immediately consuming a maximum of 5 energy units. At time 10, the highest priority task, τ 1 , starts execution. Periodic tasks execute up to the time instant 18 where the second aperiodic task Ap 2 arrives. Ap 2 gets the virtual deadline d f 2 = 47. Ap 2 has to wait since a periodic task with shorter deadline equal to 27 is ready for execution. Tasks are executed according to ED-H until the end of the hyperperiod. The energy reservoir contains 8 energy units.

Let us remark that the response time of the aperiodic task Ap 1 is 1 (which is the optimal value) and the response time of the aperiodic task Ap 2 is 16 units of time. This section presents a set of experiments carried out to evaluate the performance of the new proposed algorithms TB-H for different configuration parameters. Our performance evaluation is also compared with three algorithms with different performances and implementation overheads: Background with Energy Surplus (BES) and Background with Energy Preserving (BEP). BES serves the aperiodic tasks whenever no periodic tasks are present in the system and the energy storage is fully replenished. Under BEP, the enhanced version of BES, aperiodic task is authorized to execute when its execution does not involve energy shortage for all future occurring periodic tasks. It is worth noting that periodic tasks are scheduled according to the ED-H rules. In all the experiments, the performance of the various algorithms is evaluated by measuring the average aperiodic response time normalized with respect to the computation time. The average value is computed over 100 runs, in which a total of 15000 aperiodic jobs are generated. We assume that the storage is initially full and the environmental power P p is constant.

A. Task Set Generation

In all simulations, a set of 30 periodic tasks with periods, execution times and energy consumptions are randomly generated. Periods and computation times are generated through a uniform function, based on U p . The energy consumed by any task is proportional to its period and depends on U e . Periodic task sets are assumed to be feasible. The aperiodic load is made varying across the margin of processor utilization left unused by periodic tasks. They are generated according to desired values for U ps and U es by modelling a poisson aperiodic arrival. The aperiodic load is denoted by U ps . Throughout our simulation results, we assume that a total energy load U e includes 50% of the periodic energy utilization U ep and 50% of the aperiodic energy load U es . Similarly, a total processing load U p incorporates 50% of the periodic processor utilization U pp and 50% of the aperiodic utilization U ps .

B. Relative performance under various time and energy conditions

In this first set of experiments, the servers TB-H, BEP and BES were simulated in order to assess the average response times of the soft aperiodic tasks with respect to the total energy utilization. Simulation results reported in Figure 4 are carried out for a processing load equal to 0.4 varying the energy load (5%≤ U e ≤100). From the graphs, the TB-H server clearly offers better performance compared to the two Background servers. We note that higher is the energy load U e more significant is this advantage. 

C. Relative performance with various storage sizes

In this set of experiments, we evaluated the performance of the aperiodic servers by making vary the size of the storage unit with E min , 5*E min , and 9*E min . E min represents the minimum size of the storage that guarantees time and energy feasibility, for given values of U p , U e and P p . Here, we report the results for lightly time-constrained systems with U p = 0.2. The 3rd, 4th and 5th columns of Table III give the aperiodic responsiveness for the BEP, BES, and TB-H servers, respectively, under two profiles in terms of energy constraints. Table III shows us that the Total bandwidth server permits to achieve significant reduction of the average aperiodic response time, in comparison to the Background servers for all parameter settings.

When the system uses 20% of the available energy with minimum storage size, the average response time under the TB-H server is 14% and 25% lower relatively to BEP and BES. If the energy requirement is set to 80%, all servers have similar high response times.

For each of the three servers, higher is the size of the storage, lower is the normalized aperiodic response time for a fixed energy setting. For example, if the size of the storage unit equals E min and the system consumes up to 80% of the available energy, the aperiodic response time with TB-H is 29.0. When the size is 9 * E min , the response time is reduced by 75%. Such an improvement in aperiodic responsiveness comes from the immediate service of the aperiodic tasks which is made possible by the definition of TB-H and extra energy available in the storage unit.

VI. DISCUSSION AND CONCLUSIONS

This paper has presented a scheduling technique for reducing the response time of aperiodic tasks which run on a processor supplied by environmental energy through an harvester such as solar cell. In the model, each running task consumes both processor time and energy. We proposed an algorithm which is an extension of the TB server that initially did not consider energy limitation. The TB-H server consists in assigning a virtual deadline to each newly occurring aperiodic task based on both processing and energy constraints. This permits to execute any aperiodic task with good response time while not jeopardizing the schedulability of the periodic tasks. Compared to basic background approaches, TB-H appears as an interesting energy aware aperiodic task server looking at both responsiveness and implementation overheads.
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