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TheHolton-Lindzen-Plumbmodel describes the spontaneous
emergence of mean flow reversals in stratified fluids. It has
played a central role in understanding theQQuasi-biennial
oscillation of equatorial winds in Earth’s stratosphere and
has arguably become a linchpin of wave-mean flow inter-
action theory in geophysical and astrophysical fluid dynam-
ics. The derivation of the model’s equation from primary
equations follows from several assumptions, including quasi-
linear approximations,WKB expansion of thewavefield, sim-
plifications of boundary layer terms, among others. Starting
from the two-dimensional, non-rotating, Boussinesq equa-
tions, we present in this paper a self-consistent derivation
of the Holton-Lindzen-Plumbmodel and show the existence
of a distinguished limit for which all approximations remains
valid. We furthermore discuss the important role of bound-
ary conditions, and the relevance of this model to describe
secondarybifurcations associatedwith aquasi-periodic route
to chaos.
K E YWORD S
wave-mean flow interaction, stratified fluid, Quasi-biennial
oscillation, internal waves, streaming

1



2 A. RENAUD &A. VENAILLE

1 | INTRODUCTION6

Roughly every 14 months, winds in the equatorial stratosphere reverse direction, alternating between westward7

and eastward phases. This phenomenon called Quasi-biennial oscillations (QB0) is arguably the clearest example8

of spontaneously generated low-frequency periodic phenomenon in geophysical flows, i.e. without direct link with9

astronomical forcing such as the seasonal cycle (Baldwin et al., 2001). Lindzen and Holton (1968) elucidated at the10

end of the sixties the basic mechanisms underlying this phenomenon and proposed in the early seventies a simplified11

model for the reversals (Holton and Lindzen, 1972). They explained the interplay betweenwaves, dissipative effects12

and mean flows in the equatorial stratosphere, with an emphasis on the role of planetary Yanai and Kelvin waves13

(Lindzen, 1971). Building on their model, Plumb (1977) isolated a few years later theminimal ingredients required to14

observe the spontaneous generation of mean flow reversals in stratified fluid: a horizontally periodic domain filled15

with a stratified fluid forced at the bottom by a source of waves with a horizontal phase speed of opposite sign. The16

sufficiency of these basic elements has been successfully demonstratedwith a now celebrated laboratory experiment17

(Plumb andMcEwan, 1978). The spontaneous generation of low-frequency oscillations in the Holton-Lindzen-Plumb18

model describes the spontaneous emergence of mean flow reversals in stratified fluids. It has played a central role in19

understanding theQuasi-biennial oscillation of equatorial winds in Earth’s stratosphere and has arguably become a20

linchpin of wave-mean flow interaction theory in geophysical and astrophysical fluid dynamics. The derivation of the21

model’s equation fromprimary equations follows fromseveral assumptions, including quasi-linear approximations,WKB22

expansion of the wavefield, simplifications of boundary layer terms, among others. Starting from the two-dimensional,23

non-rotating, Boussinesq equations, we present in this paper a self-consistent derivation of the Holton-Lindzen-Plumb24

model and show the existence of a distinguished limit for which all approximations remains valid. We furthermore25

discuss the important role of boundary conditions, and the relevance of this model to describe secondary bifurcations26

associated with a quasi-periodic route to chaos. The experiment was interpreted with a partial integrodifferential27

equation for the velocity that is now presented in most geophysical fluid dynamics textbooks, and that we call the28

Holton-Lindzen-Plumb’s equation ormodel. In nondimensional settings, the equation reads29

∂TU − Re−1∂2ZU = −∂Z

(
exp

{
−

∫ Z

0

dZ ′
(1 −U )2

}
− exp

{
−

∫ Z

0

dZ ′
(1 +U )2

})
, (1)

with appropriate boundary conditions. Themodel predicts the evolution of the averaged zonal velocity fieldsU (Z , t )30

controlled solely by the Reynolds number Re. A historical perspective on the development of such low-dimensional31

QBOmodels is provided by Lindzen (1987). We revisit in this paper themodel’s derivation, paying particular attention32

to the underlying hypothesis, all of them being listed in the original paper (Plumb, 1975, 1977); we discuss the relevant33

nondimensional parameters of the problem and show the existence of a distinguished limit for which the model is34

self-consistent. This analysis highlights the important role of boundary conditions.35

Themotivation for this work comes from a revival of interest in QBO-like phenomena over the last few years. First,36

an unexpected periodicity disruption of QBO on Earth was reported in 2016 (Newman et al., 2016; Osprey et al., 2016),37

triggering debates on the origin of this effect (Dunkerton, 2016). Second, QBO like phenomena have been reported in38

other planetary atmosphere (Dowling, 2008; Read, 2018), and is suspected to occur in stably stratified layers in stars39

(McIntyre, 1994; Kim andMacGregor, 2001; Rogers and Glatzmaier, 2006; Rogers et al., 2008; Showman et al., 2018).40

Third, fluid dynamicists have shed new light on the interplay betweenwaves, mean flow and sometimes turbulence in41

stratified fluids: the nature of the bifurcation towards an oscillating state in Holton-Lindzen-Plumb’s model when the42

control parameter Re is varied has been elucidated and tested against laboratory experiments (Yoden andHolton, 1988;43

Semin et al., 2018); the possibility for synchronization or phase-locking with a seasonal cycle have been investigated44
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within Holton-Lindzen-Plumb’s framework (Rajendran et al., 2015); emergence of low-frequencymean-flow reversals45

in a stably stratified layer forced by a turbulent layer have been reported in direct numerical simulations (Couston et al.,46

2018); and secondary bifurcations with a quasi-periodic route to chaos in mean flow reversals have been reported both47

in Holton-Lindzen-Plumb’s model (Kim andMacGregor, 2001; Renaud et al., 2019) and direct numerical simulations48

(Renaud et al., 2019). This large number of studies involving Holton-Lindzen-Plumb’s equation in different contexts has49

been a strong incentive to take a closer look at the derivation of this model and its regime of validity which have to our50

knowledge never been discussed in details.51

The paper is organised as follows. In the second section, we list the series of assumptions that leads to Holton-52

Lindzen-Plumb’s model, starting from the non-rotating Boussinesq equations in a simplified two-dimensional geometry,53

paying particular attention to the nondimensional parameters of the problem and to the physical mechanisms that54

govern wave-mean flow interactions in this context. The third section recalls the phenomenology of the mean flow55

evolution in the Holton-Lindzen-Plumb’s model, considering simple limiting cases, namely forcing by either a single56

propagating wave at the bottom or by two-counter propagating waves. In particular, we propose an analytic form for57

stationary states in the case where the flow is forced by a single monochromatic wave at the bottom. This analytic58

form happens to be also a useful guide to interpret the mean flow profiles in the case of forcing with two counter-59

propagating waves. These observations and the scaling derived from the analytic profile are used in Appendix A to60

justify a posteriori the derivation of Holton-Lindzen-Plumb’s model and to show the existence of a distinguished limit61

for which the derivation is self-consistent. This is the main result of this paper. In the fourth section, we review the62

current understanding of theQBObifurcations, the role of symmetries, and the possibilities of additional bifurcations.63

Weemphasise in this section the central role of bottom boundary conditions, that had up to now largely been ignored:64

changing this condition from no slip to free slip invalidates self-consistency of themodel derivation and favours the65

transition to chaos.66

2 | FROM BOUSSINESQ EQUATIONS TO HOLTON-LINDZEN-PLUMB MODEL67

In this section, we propose a derivation of theHolton-Lindzen-Plumb’smodel, starting from the non-rotating Boussinesq68

equations. The first subsection introduces the primary model’s equations and geometry. Starting from this minimal69

bedrock, the second subsection describes the quasilinear approximation, and the third subsection presents the ap-70

proximations leading to a closure for Reynolds stresses. The approximations are carefully listed. They are compared71

to Plumb’s own hypotheses and their self-consistency is checked a posteriori in appendix A. En route, this section also72

highlights the essential physical mechanisms at play.73

2.1 | Primary set of equations74

We consider a two-dimensional vertical slice of fluid, periodic in the zonal direction with period L, and semi-infinite in
the upward direction. The zonal and vertical coordinates are labelled by x and z and are associatedwith the unit vectors
ex and ez respectively. We consider a linear stratification profile with buoyancy frequency N . The energy is dissipated
by two processes: i) the viscous damping with kinematic viscosity ν ii) the linear damping of buoyancy disturbances with
rate γ. The fluidmotion is governed by the 2DNavier-Stokes equations under the Boussinesq approximation


∂tu + (u · +)u = −+Φ + bez + ν+

2u, (2a)
∂t b + u · +b + N 2w = −γb , (2b)
+ · u = 0, (2c)
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where u = uex + wez is the two-dimensional velocity field, + = (∂x , ∂z ) is the gradient operator, Φ is the pressure75

potential and b is the buoyancy anomaly. Respectively, equations (2a), (2b) and (2c) correspond to the momentum,76

buoyancy andmass conservation.77

The fluid is forced by the vertical undulations of a bottom boundary - periodic in timewith periodT . We denote78

h (x , t ) the deviation of the boundary from its mean position z = 0. The boundary conditions are discussed below.79

| Wave-mean flow decomposition80

We split the dynamics into amean andwave part by averaging over the spatial x -wise periodicity of the domain and the81

temporal periodicity of the forcing82

u (x , z , t ) = u (z , t ) + u′ (x , z , t ) with u (z , t ) =
1

L

∫ L

0

1

T

∫ T

0
dxdτ u (x , z , t + τ) . (3)

Here, u is the mean part while u′ is the wave part. Our choice to average over time as well as space will be useful to filter83

out high frequencymean flow oscillations. This average commutes with any derivative. Consequently, averaging Eq. (2c)84

constrains themean vertical velocity to be z -independent: ∂zw = 0. Assuming nomass flux from below then leads to85

w = 0.86

| Mean-flow equation87

Averaging the horizontal projection of themomentum equation (2a) leads to themean-flow equation88

∂tu − ν∂
2
z u = −∂zu

′w ′. (4)

Themean flow u is forced the vertical divergence of the Reynolds stress component ormean upwardmomentum flux89

u′w ′. Wave attenuation generates a mean flow through this forcing term. This phenomenon is often referred to as90

streaming in fluid mechanics. The classical book of Lighthill presents this subject with an emphasis on analogies between91

acoustics and internal waves (Lighthill, 1978). A general introduction to wavemean-flow interactions theories is given92

in (Staquet, 2005; Bühler, 2014). In the following, we will sometimes refer to the momentum flux divergence as the93

streaming force.94

An exact computation of the momentum flux u′w ′ would require solving the primary equations (2) and do the95

averaging afterwards to obtain the mean flow. This task, intractable analytically, requires costly direct numerical96

simulations. Another approach consists in parameterizing themomentum flux u′w ′ to close themean flow equation (4).97

In their pioneering work Holton, Lindzen and Plumb built the first parameterizations reflecting theminimal ingredients98

required to obtain mean-flow reversals and jointly brought to light today’s prevalent physical understanding of the99

Quasi-biennial oscillation of equatorial winds in the Earth stratosphere.100
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| Wave equations101

Subtracting the averaged equations from the dynamical equations (2) yields the nonlinearwave equations


∂tu
′ + u∂xu

′ +w ′∂zuex = −+Φ′ + b′ez + ν+
2u′ − ((u′ · +)u′)′, (5a)

∂t b
′ + u∂x b

′ +
(
N 2 + ∂z b

)
w ′ = −γb′ − (u′ · +b′)′, (5b)

+ · u′ = 0. (5c)

| Boundary conditions102

We consider a no-slip condition at the bottom boundary1 whosemotion is assumed to be purely vertical and a free-slip103

amd impermeability boundary condition at infinity104

u |z=h = ∂t hb ez , ∂zu |z=+∞ = 0 , w |z=+∞ = 0. (6)

Such bottom boundary condition suites well to laboratory experiment contexts where internal waves are generated by105

solid membrane oscillations (Plumb andMcEwan, 1978; Otobe et al., 1998; Semin et al., 2018). In the stratospheric106

context, the oscillating bottom boundary mimics the tropopause height variations forced by the deep convection in107

the equatorial troposphere. In the atmospheric case, it is not obvious that the no-slip condition at the bottom is the108

relevant choice. It is nevertheless themost commonly used boundary condition in the literature (see e.g. Plumb (1977);109

Rajendran et al. (2015) among others). We discuss the case of free-slip boundary condition and its implications in110

appendix D.111

| Characteristic scales and nondimensional parameters112

The parameters of the problem are the buoyancy frequency N , the buoyancy damping rate γ, the viscosity ν and the113

characteristic amplitude h, angular frequency ω (always considered positive) and horizontal wavenumber k of the114

bottom undulation. These 6 parameters involve only time and space units. This corresponds to 4 nondimensional115

independent parameters2:116

hk ,
ω

N
,

γ

ω
and Re ≡ ω2h2

2γν
(7)

where Re is a Reynolds number that will appear naturally in the model derivation. In the following, we consider117

a distinguished limit where hk , ω/N and γ/ω vanish, the Reynolds number Re being the only parameter left in the118

Holton-Lindzen-Plumbmodel.119

2.2 | Quasilinear dynamics120

Wenow consider four important approximations for the wave dynamics. Their regime of validity will be discussed a121

posteriori in details in appendix A.122

1 The horizontal average in (3) is ill-defined close to the curvy bottom boundary. This issue is bypassed by Taylor expanding the bottom boundary condition (6)
with respect to h such that the fields are defined up to the flat boundary z = 0.
2We assume that the domain is semi-infinite in the vertical direction thus preventing non-trivial effects related to wave-reflections, such as the emergence of
internal wave attractors. We also neglect buoyancy diffusivity, which amounts to assume an infinite Prandtl number.
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Quasilinear approximation: we ignore the nonlinear terms+ · (u′u′) and+ · (b′u′) in (5) and keep the leading order123

terms in the Taylor expansion of the bottom boundary condition (6) with respect to the bottom elevation h. This124

yields no-slip condition for themean-flow at a flat boundary125

u |z=0 = 0 (8)

Frozen stratification: we ignore ∂z b in (5b) such that the stratification profile remains linear at all time.126

Hydrostatic approximation: we consider the hydrostatic balance in place of the vertical momentum conservation127

in (5).128

Non-viscous wave: we ignore ν+2u′ in (5a), as in the original work of Plumb (1975), and we reduce the wave129

boundary condition to an impermeability condition130

w ′ |z=0 = ∂t h. (9)

The effect of viscous damping in the domain bulk has been discussed by Plumb (1977), in particular to discuss131

laboratory experiments (Plumb andMcEwan, 1978). However in both papers the boundary layers associated with132

the viscous boundary condition are ignoredwithout further comments, which is not always satisfactory (see Renaud133

and Venaille, 2019).134

Timescale separation: we assume that waves evolve on amuch faster timescale than themean flow such that they135

adjust instantaneously to any change in themean-flow profile. Therefore, we compute the stationary wavefield136

assuming a frozen-in-timemean flow.137

To compute the stationary wavefield under these hypotheses, it is convenient to introduce the streamfunction138

ψ′ such that (u′,w ′) = (−∂zψ′, ∂xψ′) and to decompose the boundary undulation and this streamfunction on Fourier139

modes140

(
hb (x , t ) ,ψ

′ (x , z , t )
)
=
1

2

∑
n

(hn ,ψn (z )) ei (ωn t−kn x ) + c.c. (10)

where ωn , kn and hn denote the angular frequency, the horizontal wave number and the complex amplitude of each141

modes and "c.c." stands for "complex conjugate". Then, eachmodeψn (z ) obeys the Taylor-Goldstein equation142 {
∂2z +

(
k 2nN

2

(ωn − knu(z ))2 + γ2

(
1 + i

γn
ωn − knu(z )

)
+

kn
ωn − knu(z )

∂2z u(z )

)}
ψn (z ) = 0, (11)

with bottom boundary condition143

ψn (0) = −
ωnhn
kn
. (12)

The upward flux of horizontal momentum (momentum flux hereafter) is constituted of the sum each individual mode144

contribution145

u′w ′(z ) =
∑
n

u′nw
′
n (z ), with u′nw

′
n (z ) =

kn
4

(
ψ∗n ∂zψn − c.c.) . (13)
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where the averaging operator is defined3 in (3).146

In (4), the mean-flow is forced by minus the divergence of the momentum flux (13). In the next subsection, we147

derive a closed-form for themomentum flux using additional approximations also discussed in appendix A.148

2.3 | Momentumflux closure149

Since themomentum flux u′w ′ is a sum over contributions from independent wavemodes (see Eq. (13)), let us start by150

considering a single modewith amplitude h, wavenumber k and angular frequencyω. Indices will be added back later on151

when consideringmultiple modes.152

| Homogeneous case153

Important physical insights can be gained considering first the case without mean flow (u = 0). In this case, the154

Taylor-Goldstein equation (11) is homogeneous and its solution takes the form of a damped vertical oscillation155

ψ (z ) = ψ(0) exp
{
−imz −

z

2Λ

}
(14)

wherem ∈ Ò is the real part of the vertical wavenumber characterising the oscillation, Λ > 0 is a damping length and156

ψ(0) is given by (12). We nowmake aweak damping approximation, by assuming γ � ω. Then, injecting ansatz (14) in157

(11), we find at leading order in γ/ω158

m = −
|k |N

ω
and Λ =

ω2

γN |k |
. (15)

Using Eqs. (12) and (13), themomentum flux reads at leading order159

u′w ′(z ) = F e−z/Λ, with F ≡ sign(k )Nω |h |2
2

. (16)

Figure 1a shows a snapshot of the damped wave vertical velocity field w ′ and the corresponding momentum flux160

divergence −∂zu′w ′. The latter decays exponentially with height over a scale corresponding to the damping length Λ.161

The damping length Λ has an interpretation in terms of the inviscid upward group velocity (Vallis, 2017):162

Λ =
wg

γ
and wg =

∂ω

∂m
=

ω2

|k |N
. (17)

In the presence of a mean flow, theω2 dependence in Λwill impact dramatically the vertical momentum flux profile, as163

we now discuss.164

3Without the time filtering in this definition, there would be additional cross terms corresponding to high frequency oscillations.
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(a) Homogeneous streaming (b) Shear streaming

F IGURE 1 Wave streaming. Snapshot of the vertical velocity field associated with a dampedmonochromatic
progressive plane wave propagating within a resting flow (a) or within a shear flow (b) sketchedwith grey arrows
accompanied with a plot of their associatedmomentum flux divergence vertical profiles.

| Inhomogeneous case165

Let us now consider an arbitrary frozenmean flow profile u(z ). With clear scale separation between the wave and the166

mean flow, we expect the wave to behave locally as in the homogeneous case, but doppler shifted:167

ω̂(z ) = ω

(
1 −

u(z )

c

)
(18)

where c = ω/k the horizontal phase speed. Considering a global weak damping limitwith γ � ω̂ at all Z , the local168

damping length also varies by a factor ω̂2. The wave is therefore dampedmore rapidly at heights where themean flow169

approaches the horizontal phase speed c . Consequently, we expect enhanced streaming in that case. Formally, this170

behaviour is captured by the leading order terms of aWKB expansion of thewave. Before performing this expansion, let171

us introduce dimensionless variables172

Z =
z

Λ
and m(Z ) = −

ω

ω̂(Z )
, (19)

whereΛ is the damping length introduced in (17), andm is a rescaled local verticalwavenumber. Itwill also be convenient173

to introduce a Richardson number174

Ri ≡
(
N

c/Λ

)2
=

(
ω

γ

)2
. (20)

With these notations, the Taylor-Goldstein equation (11) reads175

1

Ri ∂2Zψ +
( Rim2
Ri +m2

(
1 − i

m

Ri1/2
)
−
m

Ri ∂2Z
1

m

)
ψ = 0, (21)

Theweak damping limit (γ � ω) leads to a large Richardson limit (Ri � 1), guaranteeing the stability of themean-flow176

with respect to Kelvin-Helmholtz instability. TheWKB parameter will be given by Ri−1/2; self-consistency of theWKB177
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approach can thus be considered as a consequence of the weak damping limit.178

To simplify the Taylor-Goldstein equation, we assume a lengths scale separation179 ���� 1

mRi ∂2Z
1

m

���� � | mRi1/2 | � 1 (22)

at all Z . Note that the relevant Richardson number to be scrutinised for shear instability is actually Ri/m2, such that180

(22) ensures the absence of shear instability. At order one inm/Ri1/2, the Taylor Goldstein equation reads181

1

Ri ∂2Zψ +m2
(
1 − i

m

Ri1/2
)
ψ = 0. (23)

We approximate the solution of this equation by the leading order terms of theWKB expansion182

ψ(Z ) = exp
i Ri1/2

∞∑
j=0

gj (Z )

Rij /2
 , (24)

where the gj are complex functions of Z . Injecting (24) in (21) and collecting the zeroth order terms yields g0(Z ) =183

±
∫ Z
0
m(Z ′)dZ ′. Collecting the first order terms leads to an expression for g1 that depends on g0. Keeping the solution184

that vanishes at infinity, we obtain at this order theWKB expression185

ψ(Z ) = ψ(0)

���� m(0)m(Z )

����1/2 exp {
−i Ri1/2

∫ Z

0
m(Z ′)dZ ′ − 1

2

∫ Z

0
m
2(Z ′)dZ ′

}
, (25)

whereψ(0) is determined by the boundary condition (12). Changing variable back to z and u , the meanmomentum flux186

reads187

u′w ′(z ) = F exp
{
−
1

Λ

∫ z

0

dz ′
(1 − u(z ′)/c)2

}
, (26)

with F defined in Eq. (16). Note that themomentum flux and the horizontal phase speed have the same sign whatever188

themode considered (F c > 0). Figure 1b shows a snapshot of the wave vertical velocity fieldw ′ propagating through189

a background shear flow u representedwith grey arrows and the corresponding streaming force −∂zu′w ′. The shear190

background flow enhances the streaming force close below the critical height where u = c . However, the vertically191

integrated streaming force does not depend on the background shear profile. A positive background shear flow thus192

concentrates the streaming force to lower heights.193

| Closedmean flow equation194

Eq. (26) offers a closed form for the momentum flux due to a single-mode. This expression depends solely on the195

instantaneous mean flow vertical profile u . It is straightforward to generalise this result to multiple modes indexed by n .196

Themean flow evolution equation (4) becomes then a one-dimensional integrodifferential equation197

∂tu − ν∂
2
z u = −∂z

(∑
n

Fn exp
{
−
1

Λn

∫ z

0

dz ′
(1 − u(z ′)/cn )2

})
, (27)
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where Fn , Λn , and cn are the bottommomentum flux, the dissipation length and the horizontal phase speed of the n-th198

mode such that Fncn ≤ 0.199

Equation (27) is themodel derived originally in (Plumb, 1975, 1977), building on the physical insights fromHolton200

and Lindzen theory of Quasi-biennial oscillation (Holton and Lindzen, 1972). We followed most of the steps of the201

original derivation by Plumb (1975), collected and rephrased all the required approximations in a systematic manner.202

Furthermore, we will check a posteriori in Appendix A that the set of approximations made along the way are self-203

consistent. For that purpose, wewill need a deeper characterisation of themean flow evolution through equation (27)204

which we now tackle.205

3 | SOLUTIONS OF THE HOLTON-LINDZEN-MODEL IN SIMPLE CASES206

This section investigates the dynamics of themean-flow generated and steered by the streaming of damped internal207

waves propagating from below, using Holton-Lindzen-Plumbmodel derived in previous section 2. The resulting uni-208

dimensional integrodifferential equation (27) is easily solved numerically over long timescales using a standard finite209

difference approach (see Renaud (2018), appendix A for more details). In a first subsection, we consider the particular210

case of a single wave streaming in thewhich themean-flow ultimately reach a steady state. The addition of a second211

counter-propagating wave, considered in a second subsection, allows for themean-flow stationary state to bifurcate212

from a steady regime to a limit cycle when thewave-streaming force is increased. Both the case of a single wave and two213

counter-propagative waves were discussed in the original work of Plumb (Plumb, 1977). Our contribution is to give an214

analytical solution to the steady-state solution in the single wave case, which allows to interpret the numerical results in215

the two counter-propagating wave case and to obtain a posteriori scaling laws on typical length scales and velocities.216

These scalings are used in appendix A to check the self-consistency of themodel derived in the previous section under a217

number of hypotheses.218

3.1 | Single wave streaming219

Let us consider the mean-flow evolution induced by a single rightward propagating wave with amplitude h. The220

associated closedmean flow evolution equation reads221

∂tu − ν∂
2
z u = −F ∂z

(
exp

{
−
1

Λ

∫ z

0

dz ′
(1 − u(z ′)/c)2

})
, (28)

where the horizontal phase speed c and the bottom upwardmomentum flux F defined in Eq. (16) of the wave are both222

positive. Natural characteristic length and velocity are provided by the damping length Λ and the phase speed c . A223

characteristic timescale for the streaming is defined by224

τ =
cΛ

F
. (29)

This time scale corresponds to the period scaling given in Vallis (2017). Considering the dimensionless variables225

Z =
z

Λ
, T =

t

τ
and U =

u

c
, (30)
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F IGURE 2 Single wave streaming and downwardmean flow propagation. Snapshots of themean flow vertical
profile are shown obtained by direct numerical resolution of Eq. (31) using Re = 25. The stationary solution given by Eq.
(34) is shown in dashed.

themean flow equation now reads226

∂TU −
1

Re ∂2ZU = −∂Z

(
exp

{
−

∫ Z

0

dZ ′
(1 −U )2

})
, (31)

where227

Re = ΛF

νc
, (32)

is theReynolds number introducedpreviously equation7. This is the single control parameter of themodel. Qualitatively,228

it compares the strength of thewave forcing to themean viscous stress. Equation (31) is coupledwith the boundary229

conditionsU |Z=0 = 0 and ∂ZU |Z→∞ = 0. In numerical application, an upper flat boundary is located at z = 1.5Λwith230

a free slip boundary condition, which induces finite size effect but does not change the qualitative behaviour of the231

system.232

| Downward propagation233

We integrate (31) numerically starting from rest for Re = 25. The evolution of themean-flow profile is shown in figure 2.234

The streaming force on the right-hand side of (31) is everywhere positive and is henceforth forcing a rightwardmean235

flow.236

A characteristic dynamical feature arises whenU reaches order 1 values: the streaming force profile get confined237

to lower levels leading to a downward propagation of themean flow (see figure 2 forT > 0.5). ForT > 1, the streaming238

force is locally balanced by the viscous stress. There remains only the slow viscous diffusion of momentum above the239
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critical layer until a steady state is reached atT →∞.240

Downward propagation of the QBO phase through a streamingmechanismwas first noticed by Lindzen and Holton241

(1968) and has been amajor achievement of Holton-Lindzen-Plumb theory. Plumb showed numerical simulations of the242

relaxation towards a steady-state (Plumb, 1977), as in figure 2. Recent laboratory experiments have also described243

this single-wave streaming phenomenon (Sémin et al., 2016), in which case damping is dominated by viscosity. To our244

knowledge, there has been no analytical description of the limiting steady state in these different regimes.245

| Steady state246

The steady stateU∞(Z ) satisfies247

∂2ZU∞ = Re ∂Z
(
exp

{
−

∫ Z

0

dZ ′
(1 −U∞)2

})
. (33)

Using the bottom no-slip boundary condition, and free-slip condition at infinity, this equation admits a unique248

solution found analytically. It reads249

U∞(Z ) =
Re −W (Re eRe−(1+Re)2Z )

1 + Re , (34)

whereW denotes the Lambert-W function (y = wew ⇐⇒ w = W (y ) > −1). A detailed derivation is provided in250

appendix B. Themean flow profile (34) is shown in dashed in figure 2 for Re = 25. Numerical resolutions of (31) suggest251

that any initial condition converges toward this steady state solution. In the low Reynolds number limit, we recover252

steady solution of the homogeneous problemU∞(Z ) = Re (1 − e−z ).253

Expression (34) is useful to estimate how close themean flow approaches the critical valueU = 1with254

Umax = lim
Z→∞

U∞(Z ) =
Re

1 + Re . (35)

Moreover, in the large Reynolds number limit the steadymean flow takes the form255

U∞(Z ) = min{1,Re Z } (36)

with a characteristic scale of Re−1 for the bottom shear. These estimates for the steady flow profile are useful to check256

consistency of the derivation for Holton-Lindzen-Plumbmodel (see appendix A).257

3.2 | Symmetric counterpropagating waves streaming258

As noticed by Plumb (1977), the simplest setting leading to spontaneous mean flow reversals corresponds to the259

mean flow evolution (4) driven by two counterpropagating waves with equal amplitude and frequencies, but opposite260

wavenumbers. Then, using the dimensionless variables introduced Eq. (30), the closedmean flow evolution equation261

reads262

∂TU − Re−1∂2ZU = −∂Z

(
exp

{
−

∫ Z

0

dZ ′
(1 −U )2

}
− exp

{
−

∫ Z

0

dZ ′
(1 +U )2

})
, (37)
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F IGURE 3 Mean flow reversals. a. Time-height section of two periods of themean flow limit cycle obtained by
numerically integrating Eq. (37) with Re = 25. b-1 to b-12. Snapshots of themean flow vertical profile evenly spaced in
timewithin half a period of the limit cycle. The dashed lines represent themean-flow steady-state profiles associated
with the streaming of the two forcing waves taken individually.

complemented by the boundary conditionsU |Z=0 = 0 and ∂ZU |Z→∞ = 0. In this symmetric case, the rest stateU = 0 is263

a natural fix point to the dynamics which is always stable at low Reynolds numbers. Above a critical Reynolds number264

Rec ≈ 4.15, the rest state becomes unstable and the system reaches an oscillating state which presents the salient265

features of the Quasi-biennial oscillation (Plumb, 1977). Numerical computations of these oscillations in the case266

Re = 25 are shown in figure 3 . Snapshot of themean-flow vertical profile evenly spaced within half a period of the cycle267

is shown from 3b-1 to 3b-12, together with the steady states of single-wave streaming: From b-1 to b-9, the rightward268

streaming force is balanced with the viscous stress at the bottom and the leftward streaming force is pushing the269

mean-flow leftward above the critical layer. The bottom part of the flow is close to the steady-state of the single-wave270

configuration. This goes on until a second critical layer is created in the upper part of the flow (see b-10) which then271

propagates downward (see b-10 to b-12). At some point, the viscous stress coming from the shear between the two272

critical layers becomes strong enough that it takes over the rightward forcing: the bottommean-flow reverses (see273

b-12). We then end-up in configuration symmetric to b-1 and the second half of the cycle appends following the same274

scheme.275
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4 | BIFURCATION DIAGRAMS OF THE HOLTON-LINDZEN-PLUMB MODEL276

In this section, we analyse the symmetric Holton-Lindzen-Plumb equation (37) with the lens of dynamical system theory,277

building on (Yoden andHolton, 1988; Semin et al., 2018). We first take a close look at the first bifurcation, namely the278

instability of the rest state. We then describe the quasi-periodic routes to chaos that were found in Kim andMacGregor279

(2001); Renaud et al. (2019). Our contribution is to offer a comparison between no-slip and free-slip boundary condition280

at the bottom. The free-slip analysis detailed in appendix D is new. The comparison brings to light significant differences281

between these two boundary conditions, even if the global structure of the bifurcation diagram is left unchanged.282

4.1 | Instability of a rest state283

When the Reynolds is sufficiently small, the rest state is a stable fixed point of the Holton-Lindzen-Plumb equation284

(37). For sufficiently large Reynolds number it becomes unstable. The basic mechanism underlying this instability285

was qualitatively understood by Holton and Lindzen (1972). Building on their interpretation, and using a linearized286

version of 37, Plumb provided a quantitative analysis of this instability mechanism: close to a rest state withU � 1 and287 ∫ z
Udz ′ � 1. In this limit, the forcing term on the right-hand side can be simplified, leading to288

∂TU − Re−1∂2ZU = 4

(
U −

∫ z

Udz ′
)
e−Z . (38)

Thefirst termsof the r.h.s. corresponds topositive feedbackbetween themeanflowand theenhanced streaming induced289

by the wavewith a phase speed having locally the same sign as themean flow. The second term involves the vertically290

integrated velocity field and can be interpreted as a shielding term. Assuming the velocity field is initially positive, the291

shielding takes over the enhanced streaming at hight altitude, changing the sign of the r.h.s.: the wave propagating in292

the same direction as the mean flow has been efficiently damped so that the streaming becomes dominated by the293

contribution from the counter-propagating wave. Plumb (1977) showed that the rest state is always unstable in the294

limit of infinite Reynolds numbers. Yoden andHolton (1988) studied numerically the details of the instability, including295

a discussion on the effect of asymmetric wave forcing, and a two-layer version of (37) . A semi-analytical computation296

of themarginal instability curve is obtained by Semin et al. (2018) in a case where thewave attenuation is dominated297

by viscosity with a no-slip bottom boundary condition for the mean horizontal flow. They found good agreement298

with experimental data. We reproduce in appendix (C) their computation of the instability threshold, focusing on the299

Holton-Lindzen-Plumbmodel (37) where wave attenuation is dominated byNewtonian cooling. The critical Reynolds300

number and the period of the oscillation at the threshold are found to be the solution of a transcendental equation301

(see eq. (49)). A numerical resolution yields the critical Reynolds number Rec ≈ 4.37 and the critical periodTc ≈ 10.7.302

Figure (4) compares these prediction to direct simulation of the nonlinear Holton-Lindzen-Plumb equation as well as a303

numerical analysis of its linearized counterpart. (37).304

| Nonlinear saturation close to the first bifurcation305

Yoden andHolton found numerically that the Hopf bifurcation associatedwith instability of rest state in (37) is super-306

critical. The nonlinear saturation of the instability close the first bifurcation threshold was addressed by Semin et al.307

(2018) by using multiple-scale analysis using viscous damping and linear friction in the momentum equation. Such308

terms are relevant tomodel the effect of lateral walls in laboratory experiments or to account for radiations of waves309

outside the equatorial region in geophysical flows. They found that the Hopf bifurcation becomes sub-critical when310



A. RENAUD &A. VENAILLE 15

F IGURE 4 Instability of the rest state in the Holton-Lindzen-Plumbmodel. Plot of the amplitude of the limit
cycle at Z = 3 (top left panel, solid lines) and, if applicable, its period (bottom left panel, solid lines) as a function of the
Reynolds number. This result is obtained by solving Eq. (37) numerically using a no-slip (red) or a free-slip (blue)
boundary condition, starting above the threshold and decreasing the Reynolds number slowly. The largest growth rate
and the associated frequency of the linearised problem are shown on the right panels. Note that the abrupt jump in
frequency corresponds to a shift from a dominant purely decayingmode toward a dominant decaying oscillatingmode.
The latter mode loses stability at the threshold. The numerical upper boundary was set at Z = 4 and 500 vertical grid
points were used. The dashed lines show the theoretical critical values computed in appendices (C) and (D).

linear damping parameter exceeds a threshold, in good agreement with laboratory experiments.311

| Effect of breakingmirror symmetry in zonal direction312

So far, we have discussed bifurcation diagrams for boundary conditions admitting amirror symmetry in the x-direction.313

This symmetry can be broken by increasing the amplitude of one of the two counter- propagativewaves at the boundary.314

It is also possible to breakmirror symmetry in problem just by changing properties of wave propagation in the domain315

bulk, for instance by considering the effect of rotation, as in the original work of Holton and Lindzen (1972).316

As noticed by Semin et al. (2018), the phenomenology of supercritical/subcritical Hopf bifurcation does not change317

when this mirror symmetry is broken, as the normal form for the bifurcation just depends on the assumption of318

translational invariance in time for themean vertical wind profile. The only consequence of breakingmirror symmetry is319

that the low Reynolds stable state is no longer a rest state, and the oscillatory solution presents asymmetries between320

eastward andwestward phases (Holton and Lindzen, 1972; Plumb, 1977; Yoden andHolton, 1988).321

4.2 | The case of free-slip boundary conditions322

Up to now, we have only considered the case of no-slip boundary conditions, as in the vast majority of work dealing323

with Holton-Plumb-Lindzenmodel. As far as applications to the atmosphere are concerned, the choice of boundary324

conditions that would mimic the effect of the tropopause to the stratosphere is not obvious. It is thus natural to ask325

whether the results obtainedwith no-slip boundary conditions are robust to other choices. We discuss in appendix D326

the case of free-slip conditions at the bottom.327

Themain results derived in this appendix are threefold. First, in the single wave streaming case, we find that the328

mean flow does not reach a steady-state as it grows past the singular valueU = 1 at a finite time. Second, when forcing329
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F IGURE 5 Quasiperiodic route to chaos in the Holton-Lindzen-Plumbmodel. Bifurcation diagrams are shown,
obtained for each value of Re−1 by considering the value ofU at two different heights Z1 and Z2, and then by plotting
bins occupied by values ofU (Z2)whenU (Z1) = 0. Here Z1 = 0.1 and Z2 = 3. The top panel shows results obtained by
integrating the Holton-Lindzen-Plumbmodel (37) using a no-slip boundary condition at the bottomwhile the botom
panel shows results associated with the free-slip boundary condition (see appendix D).

with two counter-propagating waves of equal amplitude, we find that the system undergoes a Hopf bifurcation as in330

the no-slip case considered in (Semin et al., 2018). While the critical Reynolds number is close to the no-slip value, we331

find reversals that are roughly two times faster (see fig. (4)). Third, we find that the Holton-Lindzen-Plumbmodel with332

free-slip boundary conditions does not admit any self-consistent regime: the contribution from the wave boundary333

layers in the Reynolds-stress tensor can not be dismissed, contrary to the no-slip case.334

4.3 | Secondary bifurcations and quasi-periodic route to chaos335

The full bifurcation diagrams for Holton-Lindzen-Plumbmodel is plotted figure 5, both in the no-slip and in the free-slip336

case, following the procedure of (Renaud et al., 2019). The figure is obtained after many numerical integrations of the337

model for different values of the control parameter Re, assuming that there is a single attractor for each parameter338

(as checked numerically by varying the initial condition). We recover in both case the quasiperiodic route to chaos339

described in Kim andMacGregor (2001) andRenaud andVenaille (2019). Starting from a stable rest state and increasing340

the parameter Re, each bifurcation is associatedwith shallowermean-flow reversals embedded in slower and deeper341

oscillations. With respect to the no-slip case, the free-slip boundary condition facilitates the transition to chaos by342

lowering the successive bifurcations’ thresholds significantly. This is puzzling regarding that the first bifurcations occur343

at comparable Reynolds number. Anothermajor difference between the free-slip and no-slip oscillation comes from344

their frequency of oscillation - the free-slip oscillation being roughly twice faster over a wide range of Reynolds number345

(see fig. 4). At the secondary bifurcation, it seems that the upper part of the signal is failing to keep pacewith the bottom346

oscillation. The free-slip oscillation being faster, this might explain the loss of synchronisation at a lower Reynolds347

number.348
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5 | CONCLUSION349

In thiswork,wehave revisited thederivation ofHolton-Lindzen-Plumbmodel. By keeping track of all the approximations350

made and checking their validity a posteriori, we have been able to show the existence of a distinguished limit for which351

the derivation of the model with two symmetric waves and no-slip bottom boundary condition is self-consistent352

whatever the value of the control parameter Re. This suggests that the quasiperiodic route to chaos reported in Kim and353

MacGregor (2001) and Renaud et al. (2019) is an intrinsic property of the original set of Boussinesq equations rather354

than an artefact of the reducedmodel. At large Reynolds number, the proof relies on a novel analytical expression of355

the steady statemean flow associated with each individual wave. We also took a look at the free-slip problemwhich is356

rarely consider in the literature. The dynamics presents noticeable differences with respect to the no-slip case: the357

oscillation periods are about twice slower, and the secondary bifurcation occurs at much lower Reynolds numbers.358

While the paperwas focused on the derivation of a reducedmodel fromaprimary set of equations arguably relevant359

to the actual atmosphere, we have left aside a number of important physical ingredient such as tropical upwelling360

related to themeridional circulation, or rotational effects that should be included to account for the real Quasi-biennal361

oscilations. Other three-dimensional effects have also been ignored in our primary model. Recent theoretical and362

experimentalwork in the non-rotating case and in the f -plane case have revealed importantmodifications ofwave-mean363

flow interactions in the presence of a transverse (meridional), with for instance the generation of vertical vorticity when364

wave generation varies in themeridional direction (Dauxois et al., 2018). It will be interesting to investigate these 3D365

features in the context ofQBO-like phenomena. Simplifiedmodel aiming at describing themeridional extent of theQBO366

on the equatorial beta plane have been proposed thirty years ago (Plumb and Bell, 1982a,b; Dunkerton, 1985), building367

on Lindzen (1971) and Holton and Lindzen (1972). The existence of self-consistent QBO-likemodels in this beta plane368

case remains to our knowledge an open question, together with a full description of their bifurcation diagram.369

A | SELF-CONSISTENCY OF THE HOLTON-LINDZEN-PLUMB MODEL370

Wediscuss in this appendix the possibility of a self-consistent regime for the Holton-Lindzen-Plumbmodel considering371

the simplest case of two symmetric counterpropagating waves. We recall that the control parameter for the bifurcation372

is the Reynolds number Re = F Λ/νc = ω2h2/(2γν). To explore the possibility of a distinguished limit leading to the373

Holton-Lindzen-Plumb model, we have to translate the different hypothesis made for the derivation of the Holton-374

Lindzen-Plumbmodel into constraints on the dimensionless numbers. We consider two limiting cases: (i) the system is375

close to the bifurcation with Re ∼ Rec such that themean flow oscillations are weak, (ii) the forcing is large with Re � 1376

such that themean flow approaches the critical layers. We look in both cases for a distinguished limit with parameters377

organised as follows378

hk = ε,
ω

N
= O (εα ),

γ

ω
= O (εβ ), and Re = O (ε−δ ) (39)

with ε � 1. In the following we look for triplets of exponents (α , β , δ) consistent with the approximations leading to the379

Holton-Lindzen-Plumbmodel.380
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A.1 | Distinguished limit close to the first bifurcation381

Let us assume that the system is in theQBO-regime, close to the supercritical bifurcation threshold, so that |u | � c382

everywhere. In other words, the amplitude of the limit cycle remains sufficiently small to avoid critical layers, and383

vertical variations of u are characterised by the damping length Λ defined in Eq. (15). We list below the different384

hypotheses leading to the Holton-Lindzen-Plumbmodel close to the threshold:385

1. System close to the first bifurcation. The bifurcation threshold occurs for Re = O (1). Assuming that the system is386

close to this threshold leads therefore to the condition δ = 0.387

2. Inviscid wavefield in the bulk. We ignored the effect of viscosity on the wavefield in the domain bulk, where it is388

primarily damped by radiative cooling. To neglect the contribution of viscosity wemust have ν+2/γ ∼ νm2/γ � 1389

yielding the condition Re (γ/ω)2 � (hk )2(N /ω)2 and thus 2 − δ > 2α + 2β .390

3. Weak dissipation limit andWKB parameter. Throughout this study, we simplified the dispersion relation of internal391

gravity waves assuming γ � ω. This implied that the vertical wavelength 1/m is much smaller than the attenuation392

length scale Λ. The parameter γ/ω also corresponds to theWKB parameter Ri−1/2 used to simplify the computation393

of the wavefield during the derivation of themodel. Thus, the weak dissipation limit guarantees the validity of the394

WKB approximation. The condition γ/ω � 1 corresponds to β > 0.395

4. Hydrostatic balance. The condition for hydrostatic balance is satisfied for small (vertical to horizontal) aspect ratio396

k /m , which guarantees that |∂tw ′ |/ |b′ | � 1. Using the dispersion relation in Eq. (15) we obtain the condition397

ω/N � 1 and hereby α > 0.398

5. No boundary streaming. Even if viscosity can safely be neglected in the bulk to compute the wave field, it induces the399

presence of boundary layers close to thewall. We have neglected streaming induced by these boundary layers. It400

is hard to justify this hypothesis in the general case (Renaud and Venaille, 2019). In the case of a standing wave401

forcing with no-slip boundary condition, streaming induced by each of the two counter-propagative waves cancels402

out if there is nomean flow. Neglecting boundary streaming in the no-slip case can be justified if the wave boundary403

layer thickness√ν/ω is much smaller than typical length scale for mean flow variations along the vertical. Close to404

the bifurcation, this length scale is given by the attenuation length scale Λ. Therefore, wemust have√
ν/ω � Λ,405

which gives Re−1(hk )2(N /ω)2(γ/ω) � 1, and consequently 2 + δ − 2α + β > 0.406

6. Frozen-in-time stratification.We assumed the stratification profile to be dominated at any time by the initial one,407

such that ∂z b � N 2. The order of magnitude for themean buoyancy b is estimated from the the steady averaged408

buoyancy equation (2b), using b ∼ ∂zw ′b′/γ. Taking again the attenuation length scale Λ = ω2/(Nγk ) as a charac-409

teristic vertical scale, and usingw ′b′ ∼ h2ωN 2 we have ∂z b/N 2 ∼ w ′b′/(γΛ2N 2) ∼ (γ/ω)2(N /ω)2(hk )2. Therefore410

the frozen-in-time stratification condition is fulfilled if (γ/ω)2(N /ω)2(hk )2 � 1, corresponding to 2 − 2α + β > 0.411

7. Quasi-linear approximation.We assumed the waves to be linear. This condition is fulfilled if the nonlinear terms are412

small compared the linear ones in all the equations. Assuming that the smallest linear term is the one involving413

radiative cooling (in agreement with the weak damping limit above), the linearity condition is satisfied when414

|u′ · + | � γ. Therefore, wemust have (kh)(N /ω)(ω/γ) � 1 and hereby α + β < 1.415

8. Time scale separation between waves and mean flows. The typical adjustment time for the wavefield around a frozen-416

in-timemean flow can be estimated as the propagation time for a wave packet over the attenuation length scale417

Λ with vertical group velocity cg ∼ ω2/(kN ). We assumed that this adjustment time is much smaller than the418

typical time for mean flow reversals estimated in Eq. (29) as τ ∼ cΛ/u′w ′ |0 ∼ Λ/(h2kN ). This time scale separation419

hypothesis is satisfiedwhen This leads to the condition (hk )2(N /ω)2 � τ , and hence α < 1.420
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Note that the last 7 hypotheses can bematchedwith the hypotheses made by Plumb in his original work Plumb (1977).421

The hypotheses 2 and 5 corresponds to his hypothesis (ii). The hypothesis 3 corresponds to his hypotheses (iv) and422

(v). The hypothesis 4 corresponds to his implicit assumption of hydrostatic balance. Finally, the hypotheses 6, 7 and 8423

corresponds to his hypotheses (vi), (i) and (iii) respectively.424

All together, the scaling conditions reduce to 4with α > 0, β > 0, δ = 0 and 1−α − β > 0. A distinguished limit exists425

for instance with (α , β , δ) = (1/4, 1/4, 0). Note that such a distinguished limit is possible thanks to the introduction of426

radiative damping that dominates wave attenuation. Without this term, thewaves are attenuated by viscosity in the427

domain bulk, and a self-consistent approach is not possible (Renaud and Venaille, 2019). The case with lateral walls,428

including possible 3D effects, remains to be addressed.429

A.2 | Distinguished limit for large Reynolds number430

Wenow assume that the system is far beyond theQBO-bifurcation (Re � 1). In this limit, we observed numerically that431

themean-flow u oscillates between two profiles corresponding to the steady response of single propagating wavemode432

(see fig. 3). Consequently, wemake use of the analytical expression (34) to estimate the quantity |1±u/c |which is found433

to vary between 2 and Re−1 (see Eq. (35)). We also note that themean-flow now presents two spatial scales: the decay434

length scale Λ, as in the previous case close to the bifurcation, and the bottom shear scale Λ/Re (see Eq. (36)). These435

typical length scales will also be good estimates for typical wave attenuation length on the vertical. Vertical derivatives436

will, therefore, be estimated in the worst-case scenario using an attenuation length scale of Λ/Re. It is now possible to437

list the different hypotheses leading to the Holton-Lindzen-Plumbmodel in the large Reynolds number limit, following438

the same procedure as in the previous section.439

1. Large Reynolds number limit. The condition Re � 1 simply yields δ > 0.440

2. Inviscidwavefield in the bulk. Toneglect the contribution of viscosity in thewavefieldwemust have ν+2/γ ∼ νm2/γ �441

1. The vertical wavenumber becomes large close to critical layers, with |m | ∼ Nk /(ω |1 ± u/c |). The worst scenario442

thus corresponds to |1 ± u/c | ∼ 1/Re. Therefore the condition is fulfilled if (γ/ω)2 � Re(hk )2(N /ω)2 and thus443

2 − 2α − 2β − δ > 0.444

3. Weak dissipation limit andWKB parameter. Theweak dissipation limit γ � ω is independent from the presence of445

amean flow, and therefore the constraint β > 0 remains unchanged in the large Reynolds regime. However, the446

WKB approximation requires two additional assumptions that depend on themean flow through the parameter447

m = |1 − u/c |−1 (see Eq. (22)). For these constraints to be valid in the worst case scenario, using Ri ∼ (ω/γ)2 and448

∂Z ∼ Rewemust have Re3 � γ/ω. This corresponds to β − 3δ > 0.449

4. Hydrostatic balance. As in the previous case, the condition |(∂t − u∂x )w ′ |/ |b′ | ∼ |1 ± u/c |2ω2/N 2 � 1 is satisfied450

whenω/N � 1 and hereby α > 0 (bending of the rays close the critical layers only reinforce hydrostaticity).451

5. No boundary streaming. The length scale of themean flow at the bottom being reduced by a factor Re in this regime452

(with respect to the previous case Re ∼ 1), the condition to neglect boundary streaming now reads√ν/ω � Λ/Re.453

Therefore, wemust have Re(hk )2(N /ω)2(γ/ω) � 1 and hereby 2 − δ − 2α + β > 0.454

6. Frozen-in-time stratification. As in the previous scenario, we estimate again themean buoyancy anomaly gradient455

with the relation b ∼ ∂zw ′b′/γ. The attenuation length scale is now given by Λ/Re and it can be shown using (25)456

that themagnitude of b′w ′ does not depend on the Reynolds number. Therefore, the condition ∂z b � N 2 yields457

Re2(γ/ω)2(N /ω)2(hk )2 � 1, corresponding to 2 − 2δ − 2α + β > 0.458

7. Quasi-linear approximation. In large Reynolds limit, the condition |u′ · + | � γ needs to account for the amplitude459

variation (see Eq. (25)). In the worst case scenario, |u′ | is rescaled by a factor Re1/2. Therefore, we must have460
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Re(kh)2(N /ω)2(ω/γ)2 � 1 and hereby 2 − 2α − 2β − δ > 0.461

8. Time scale separation between waves andmean flows. This condition is unaffected by the existence of critical layers.462

Indeed, the characteristic time of mean-flow reversals introduced in (29) is independent of the Reynolds number.463

Moreover, just as in the case without mean-flow, the time scale for wave adjustment is given by γ−1. Therefore the464

condition (hk )2(N /ω)2 � τ remains unchanged, and hereby α < 1.465

All together, the scaling conditions reduce to 4with α > 0, δ > 0, β − 3δ > 0, and 2 − 2α − 2β − δ > 0 . A distinguished466

limit exists for instance with (α , β , δ) = (1/4, 1/2, 1/8).467

B | STEADY RESPONSE TO SINGLE WAVE STREAMING468

In this appendix, we compute the solutionU∞(Z ) of the steady state equation (33) which we rewrite here for readability469

∂2ZU∞ = Re ∂Z
(
exp

{
−

∫ Z

0

dZ ′
(1 −U∞)

2

})
. (40)

Integrating once and using the free-slip condition at infinity, ∂ZU∞ |Z→∞ = 0, yields470

∂ZU∞ = Re exp
{
−

∫ Z

0

dZ ′
(1 −U∞)

2

}
. (41)

Eq. (40) can now be rewritten in the form471

∂2ZU∞ = −
1

(1 −U∞)
2
∂ZU∞ . (42)

Integrating again Eq. (42) once using the no-slip conditionU∞ |Z=0 = 0 and that ∂ZU∞ |Z=0 = Re (obtained from Eq. (41)),472

we get473

∂ZU∞ = Re + 1 − 1

1 −U∞
. (43)

Evaluating Eq. (43) at Z → ∞ readily yields the result (35). Now, separating variable and using the no-slip condition474

U∞ |Z=0 = 0, we have475

Z =

∫ U∞

0
dU 1 −U

Re − (1 + Re)U =
(1 + Re)U∞ + log Re − log (Re − (1 + Re)U∞)

(1 + Re)2 , (44)

which can be rewritten in the form476

Re eRe−(1+Re)2Z = (Re − (1 + Re)U∞) eRe−(1+Re)U∞ . (45)

Using the Lambert’sW function which satisfies x =W (x )eW (x ) withW (x ) > −1, we inverse (45) and finally obtain the477

steadymean flow expression (34).478
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C | LINEAR STABILITY OF THE REST STATE479

In this appendix, we compute the critical Reynolds number associated with the linearised Holton-Lindzen-Plumb480

equation (38). We introduce the ansatzU (Z ,T ) = Φ′(Z )eσT , with an additional boundary condition Φ(0) = 0. The481

no-slip bottom boundary and the free-slip condition at infinity reads Φ′(0) = 0 and Φ′′(∞) = 0. Integrating (38) once482

yields483

Φ′′ + Re
(
4e−Z − σ

)
Φ = Φ′′(0), (46)

Following Semin et al. (2018), we split the solution into a product of two functionsΦ(Z ) = f (Z )g (Z )with g and f being484

solutions of485

f g ′′ + 2f ′g ′ = φ′′(0) and f ′′ + Re
(
4e−Z − σ

)
f = 0. (47)

The solution of Eq. (47) reads

g (Z ) = φ′′(0)

∫ Z

Z1

∫ Z ′
Z0
dZ ′′ f (Z ′′)
f 2(Z ′)

dZ ′ and f (Z ) = (1 − A) Jα
(
4
√Ree−Z /2

)
+ A J−α

(
4
√Ree−Z /2

)
(48)

whereα = 2√Reσ , Ja (b) is theBessel’s function of thefirst kind of order a and argument b and Z0 ,Z1 ,andA are constants486

to be determined using the boundary conditions. AssumingÒe[α] > 0, setting Z0 = ∞, Z1 = 0 andA = 0 ensures that487

the boundary conditionsΦ(0) = 0 andΦ′′(∞) = 0 are satisfied. Finally, the no-slip conditionΦ′(0) = 0 yields488

∫ ∞

0
dZ Jα (4√Re e−Z /2) =

∞∑
n=0

(−1)n (4Re)n+√Reσ
n! (n + √Reσ) Γ(1 + n + 2√Reσ) = 0, (49)

where Γ is the Gamma function. The bifurcation occurs for Òe[σ] = 0. The transcendental roots of (49) are found489

numerically using a truncation of the infinite sum. We obtain the approximate solution490

Rec ≈ 4.37 and Ém [σ] ≈ 0.588. (50)

D | THE CASE OF FREE-SLIP BOTTOM BOUNDARY CONDITION491

This appendix briefly investigates the case of a free-slip boundary condition. In the quasilinear approximations, the492

bottom boundary conditions now reads493

∂zu |z=0 = 0 , w ′ |z=0 = ∂t h + u |z=0∂xh. (51)

Consequently, the bottom boundary condition written in Eq. (12) for the no-slip case now reads494

ψn (0) = −
(ωn − knu (0)) hn

kn
. (52)
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On following the derivation described in section 2, the dependence in u (0) is found to trace up to the mean flow495

integrodifferential equation. Ultimately, we obtain the following Holton-Lindzen-Plumb equation in the case of free-slip496

boundary condition497

∂tu − ν∂
2
z u = −∂z

(∑
n

Fn

(
1 −

u (0, t )

cn

)
exp

{
−
1

Λn

∫ z

0

dz ′
(1 − u(z ′, t )/cn )2

})
. (53)

In non-dimensionalised settings, it reads498

∂TU − Re−1∂2ZU = −∂Z

(
(1 −U |Z=0) exp

{
−

∫ Z

0

dZ ′
(1 −U )2

}
− (1 +U |Z=0) exp

{
−

∫ Z

0

dZ ′
(1 +U )2

})
. (54)

In the case of a single wave streaming, from integrating (54) numerically starting from rest, themean flow at the499

bottomU (0,T ) is found to reach 1 over a finite time. No steady-state solution can be captured by the model as the500

homogeneous solutionU = 1 is singular.501

In the case of symmetric counterpropagating waves streaming, as in the no-slip case, the rest state is a fixed point of502

Eq. (54) which becomes unstable when the Reynolds number is large enough. The amplitude and period of the resulting503

signal are shown in fig. 4. Predictions for the critical Reynolds number and the period at the transition is obtained in the504

next subsection.505

| Linear stability analysis of the rest state in the free-slip case.506

Linearising Eq. (54) yields507

∂TU − Re−1∂2ZU = ∂Z

((
4

∫ Z

0
Udz ′ + 2U (0,T )

)
e−Z

)
. (55)

We look for a solution of the form U (Z ,T ) = Φ′(Z )eσt with Φ(0) = 0. On using the free-slip boundary condition508

φ′′(0) = 0, integrating (55) once yields509

Φ′′ + Re
(
4e−Z − σ

)
Φ = 2ReΦ′(0)

(
1 − e−Z

)
. (56)

with boundary conditionsΦ(0) = 0 andΦ′′(∞) = 0. We split the solution in the formΦ = f g such that510

f g ′′ + 2f ′g ′ = 2Reφ′(0)
(
1 − e−Z

)
and f ′′ + Re

(
4e−Z − σ

)
f = 0. (57)

The solution of Eq. (57) reads

g (Z ) = 2Reφ′(0)
∫ Z

Z1

∫ Z ′
Z0
dZ ′′

(
1 − e−Z ′′

)
f (Z ′′)

f 2(Z ′)
dZ ′ (58)

f (Z ) = (1 − A) Jα
(
4
√Ree−Z /2

)
+ A J−α

(
4
√Ree−Z /2

)
(59)

whereα = 2√Reσ , Ja (b) is theBessel’s function of thefirst kind of order a and argument b and Z0 ,Z1 ,andA are constants511

to be determined. AssumingÒe[α] > 0, setting Z0 = ∞, Z1 = 0 andA = 0 ensures that the boundary conditionsΦ(0) = 0512
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andΦ′′(∞) = 0 are satisfied. Injecting these expressions into Eq. (56), yields the final condition513

Jα (4
√Re) + 2Re

∫ ∞

0
dZ (1 − e−Z ) Jα (4√Re e−Z /2) =

∞∑
n=0

(−1)n (4Re)n+√Reσ
n! Γ(1 + n + 2√Reσ)

(
2Re

(n +
√Reσ) (n + 1 + √Reσ) + 1

)
= 0,

(60)

where Γ is the Gamma function. The bifurcation occurs forÒe[σ] = 0. We compute the roots of (60) numerically using a514

truncation of the infinite sum and obtain515

Rec ≈ 4.43 and Ém [σ] ≈ 1.41. (61)

| Self-consistency of themodel close to the first bifurcation516

Compared to the no-slip case treated in appendix A, almost all hypothesis can be justified in the same in the free-slip517

case except for ignoring the boundary streaming. Indeed, thewave boundary layers can not cancel each other out as518

the mean-flow is non-zero at the bottom. We may, however, neglect the contribution from boundary layers if their519

contribution to the streaming is negligible compared to that of the bulk. Following Renaud and Venaille (2019), we can520

show that the ratio of themomentumflux divergence associatedwith the boundary layerwith respect to that of the bulk521

is of the orderω/γ close to the bifurcation. Neglecting the boundary layer streaming, namelyω � γ, is incompatible522

with the weak damping approximation which states γ � ω. We could also consider a less conservative condition by523

considering the ratio of themomentum flux directly which yields Re(ω/N )2(γ/ω)(hk )−2 � 1. It is also incompatible to524

the quasilinear approximation which states Re−1(ω/N )2(γ/ω)(hk )−2 � 1. Therefore, the Lindzen-Holton-Plumbmodel525

is not self-consistent when considering a free-slip bottom boundary condition.526
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