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ABSTRACT
Many direction finding methods have been developed these
last decades and the performance of some of the latter have
been derived with or without modelling errors, jointly with
some Cramer Rao bounds (CRB) on the estimated Direc-
tion of Arrival (DOAs). However, despite of these works, the
link between the array geometry and these performances, or
CRB, has been scarcely analyzed, which prevents from op-
timizing the array design to obtain a specified level of per-
formance. We consider in this paper the general 2D DOA
estimation problem from 3D, 2D or 1D arrays and we limit
the analysis to the single source case. In this context, the
first purpose of this paper is to show that both the deter-
ministic and the stochastic CRB, jointly with the variance
of DOAs obtained from the MUSIC algorithm, with and
without modelling errors, are proportional to the same term
which depends on the sensors location. This term analysis
allows to develop the second purpose of the paper, i.e. the
first tools for an array design methodology for the perfor-
mance optimization of DOA estimation methods.

1. INTRODUCTION

Direction finding or DOA estimation algorithms finds ap-
plications in many fields such as radar, sonar or spectrum
monitoring. These last decades, many High Resolution (HR)
direction finding methods, such as MUSIC [6], have been de-
veloped to mitigate the limitations of conventional methods
in multiple sources contexts. Performance of some of these
methods have been computed analytically with or without
modelling errors, showing off the weak robustness of these
methods to both finite sample effects [5], [7] and modelling
errors [3], [8], [2]. These performance analyses have been
completed by the computation of both deterministic [1] and
stochastic [7], CRB on the DOAs estimates. However, de-
spite of these works, the link between the array geometry
and these performance criteria, or CRB, has been scarcely
analyzed, which prevents from optimizing the array design
to obtain a specified level of performance. To our knowledge,
one of the very first studies about this link for the general 2D
DOA estimation problem, has been presented very recently
in [4] for planar arrays (2D arrays) and from the stochas-
tic CRB computation in the single source case. However
one may wonder if the same link holds true for other perfor-
mance criteria or in the presence of modelling errors. The
first purpose of this paper is to get more insights into this
link by considering, on one hand, both 3D, 2D and 1D arrays
and, on the other hand, both CRB and MUSIC performance
criteria. More precisely, we show in this paper that both
the deterministic and the stochastic CRB, jointly with the
variance of DOAs estimates obtained from the MUSIC algo-
rithm, with and without modelling errors, are proportional
to the same term which depends on the sensors location.
This result is completely new for 2D DOA estimation prob-
lems. The analysis of this term allows to develop the second

purpose of the paper, i.e. the first tools for an array design
methodology for the performance optimization of direction
finding methods from 3D, 2D or 1D arrays, which will be
presented elsewhere.

2. OBSERVATION MODEL AND PROBLEM
FORMULATION

We consider an array of N narrow-band sensors and we de-
note by x(t) the vector of the complex envelopes of the sig-
nals at the output of sensors. The array is assumed to receive
a single source with additive noise. Under these assumptions,
the vector x(t) can be written as

x(t) = ã (Θ0) s(t) + n(t) (1)

where n(t) is the additive noise vector, which is assumed to

be spatially white, Θ0 = [θ0 ∆0]
T , (.)T denotes transpose,

θ0, ∆0 and s(t) are the azimuth, the elevation and the com-
plex envelope of the source respectively and ã (Θ0) is the
observed steering vector of a signal source in the direction
Θ0. In the presence of modelling errors, ã (Θ0) is linked
to the normalized theoretical steering vector a (Θ0) by the
relation

ã (Θ0) = a (Θ0) + e. (2)

where e is the modelling error vector, a (Θ0)
H a (Θ0) = N

where (.)H denotes transpose and conjugate. This model is
valid for both homogeneous and heterogeneous arrays. Ac-
cording to Figure-1 and for arrays with identical sensors, the
nth component , an (Θ), of the normalized theoretical steer-
ing vector a (Θ) is

an (Θ) = exp

(
j
2π

λ
k (Θ)T pn

)
(3)

where λ is the wavelength, pn = [ xn yn zn ]T is the
sensor coordinates vector and

k (Θ) = [ u v w ]
T

(4)

is the normalized wave vector of DOA Θ such that u =
cos (θ) cos (∆), v = sin (θ) cos (∆) and w = sin (∆) =

±√1− u2 − v2. The array is said to be qD, 1 ≤ q ≤ 3,
if pn ∈ Rq. In particular, for a 2D array, zn = 0, whereas
for a 1D array, yn = zn = 0. Moreover, whatever the kind
of array, the DOA of the source may be characterized, either
by the (2× 1) DOA vector Θ or the (3× 1) normalized wave

vector k (Θ) or the (2 × 1) vector k2D (Θ) = [ u v ]
T
.

To unify the following developments, whatever the choice of
the DOA representation, we denote by Ψ0 the (l× 1) vector
which characterizes the DOA of the source, where l = 2 or
3.

For a given DOA estimation algorithm, we denote by
Ψ̂0 the estimate of Ψ0 , obtained from the K observation
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vectors [ x(t1), · · · ,x(tK) ] and we denote by ∆Ψ0 =

Ψ̂0 −Ψ0 the estimation error. The random vector ∆Ψ0 is
non zero due to both the finite sample effect (K < +∞)
and the presence of modelling error (e 6= 0), which are both
considered in this paper. The accuracy of the DOA estimate
is characterized by the Mean Square Error (MSE) matrix
MSΨ0=E[∆Ψ0(∆Ψ0)

T ] where E[.] denotes the expectation
operation. This matrix is derived in section 4 for the MUSIC
algorithm, with and without modelling errors and is lower
bounded, for an unbiased estimate Ψ̂0 of Ψ0 in absence of
modelling error (e = 0), by the CRB derived in section 3.
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Source

Sensor

Figure 1: Source wave-vector k (Θ) of direction Θ impinging

the n− th sensor located at pn = [ xn yn zn ]
T

.

3. STOCHASTIC AND DETERMINISTIC
CRAMER RAO BOUNDS

We denote by Ω0 = [ΨT
0 βT

0 ]T the vector of the un-
known parameters in the observations, where the vector
β0 depends on the assumptions which are made on both
the source and the noise (see the following sub-sections

for the stochastic and deterministic models). Then, if Ω̂0

is an unbiased estimate of Ω0 obtained from the observa-
tion vectors [ x(t1) · · · x(tK) ], the covariance matrix

CΩ0=E[
(
E[Ω̂0]− Ω̂0

)
(E[Ω̂0] − Ω̂0)

T ] also corresponds to

the MSE matrix MSΩ0 of the vector Ω0. Under these
assumptions, in the absence of modelling errors (e = 0),
CΩ0=MSΩ0 is lower-bounded by the CRB of the vector Ω0,
denoted by CRB(Ω0) as

CΩ0 > CRB(Ω0) = FIM (Ω0)
−1 (5)

where FIM (Ω0) is the so-called Fisher Information Matrix

of the vector Ω0, whose ijth element is

FIM (Ω0) (i, j)=− E
[

∂2JML (Ω0)

∂Ω0 (i) ∂Ω0 (j)

]
(6)

where ∂i denotes the partial ith derivative, Ω0 (i) is the ith

component of Ω0 and JML (Ω0) is the following Maximum-
Likelihood(ML) criterion

JML (Ω) = log (p (x (t1) , ...,x (tK) |Ω0 )) (7)

where p ( x(t1), · · · ,x(tK) |Ω0 ) is the joint probability
density function of [ x(t1), · · · ,x(tK) ] conditionally to
the vector Ω0. We then deduce from the previous results that

CΨ0=MSΨ0 is lower-bounded by the CRB of the vector Ψ0,
denoted by CRB(Ψ0) and obtain

CΨ0 > CRB(Ψ0)

where CRB(Ψ0) is the (l× l) submatrix of CRB(Ω0) asso-
ciated with the sub-vector Ψ0 of Ω0. In particular, denoting
by Ψ̂0 (k), an unbiased estimate of the kth component Ψ0 (k)

of Ψ0, the Root Mean Square (RMS) error of Ψ̂0 (k) is

RMS
(
Ψ̂0 (k)

)
=

√
E

[
∆Ψ0 (k)2

]
> CRB(Ψ0)(k, k) (8)

where ∆Ψ0 (k) = Ψ̂0 (k) −Ψ0 (k) is the kth component of

the error vector ∆Ψ0 and where CRB(Ψ0)(k, k) is the kth

diagonal element of CRB(Ψ0).

3.1 Stochastic Cramer Rao Bound

We talk about Stochastic CRB when the signal s (t) and
the noise vector n(t) are assumed to be Gaussian and zero

mean with second order statistics defined by E[|s (t)|2] = γ

and E[n (t)n (t)H ] = Rnn. Under these assumptions, the
unknown vector Ω0 which has to be estimated is Ω0 = [ΨT

0

γ vec (Rnn)]T with vec
(
[r1...rN ]

)
= [rT

1 ...rT
N ]T . In [7][9] the

Fisher Information matrix for the parameter vector Ω0 is
derived under these assumptions.

Assuming a spatially white noise, i.e Rnn = σ2IN where
IN is the N ×N identity matrix and σ2 a scalar parameter
corresponding of the mean power of the noise per sensor,
the parameter Ω0 is reduced to Ω0 = [ΨT

0 γ σ2]T . In this
context, it can be shown, after tedious derivations, that the
stochastic CRB on Ψ0 denoted by CRBstoc(Ψ0) is

CRBstoc(Ψ0) =
1 + σ2

γN

K
(

γ
σ2

)H (Ψ0)
−1 (9)

H (Ψ0) = 2ȦHΠ(Ψ0) Ȧ (10)

Ȧ =
[

∂a(Ψ0)
∂Ψ0(1)

... ∂a(Ψ0)
∂Ψ0(L)

]
(11)

Π (Ψ0) = IN − a (Ψ0)a (Ψ0)
H

a (Ψ0)
H a (Ψ0)

(12)

Note that for the 2D DOA estimation problem and for Ψ0 =
Θ0, expression (9) has also been obtained in [4] for a 2D array
with identical sensors. Expression (9) is now generalizing
these results for a general array with potentially different
sensors and also for Ψ0 = k (Θ0) or k2D (Θ).

3.2 Deterministic Cramer Rao Bound

We talk about Deterministic CRB when the signal s (t) is
assumed to be deterministic and the noise vector n (t) is
assumed to be zero mean, Gaussian with a covariance matrix
defined by E[n (t)n (t)H ] = σ2IN . Under these assumptions,
the unknown parameter vector which has to be estimated is
Ω0 = [ΨT

0 σ2 s (tk) for (1 ≤ k ≤ K)]T . In this context, it can
be shown, after tedious computations, that the deterministic
CRB on Ψ0, denoted by CRBdet(Ψ0), is

CRBdet(Ψ0) =
1

K
(

r̂ss
σ2

)H (Ψ0)
−1 (13)

where r̂ss = (1/K)
∑K

k=1 |s (tk)|2 and where H (Ψ0) is de-
fined by (10). Note that, to our knowledge, for the 2D DOA
estimation problem, expression (13) is new. Note that for
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the 1D DOA estimation problem the deterministic CRB is
given in [1]. Comparing (9) and (13) we obtain

CRBdet(Ψ0) =

(
γ

r̂ss

)

1 + σ2

γN

CRBstoc(Ψ0)

which shows that both CRBdet(Ψ0) and CRBstoc(Ψ0) are

proportional to H (Ψ0)
−1and that they become approxi-

mately equal if γN/σ2 À 1 provided that K is not too small.

4. MUSIC PERFORMANCE DERIVATION

We assume in this section that the noise is spatially white
(Rnn = σ2IN ) and we consider the presence of modelling
errors (e 6= 0). Under these assumptions, in the presence

of a single source of direction Ψ0, the estimated DOA, Ψ̂0,
obtained by the MUSIC [6] algorithm from the K observation
vectors [ x(t1), · · · ,x(tK) ] corresponds to the vector Ψ
which minimizes the criterion

J(Ψ) = a (Ψ)H Π̂ (K, e) a (Ψ) (14)

where Π̂ (K, e) is the orthogonal projection matrix onto the
noise subspace of the estimated correlation matrix of the
observations, R̂xx = (1/K)

∑K
k=1 x (tk)x (tk)H . The esti-

mated direction is then

Ψ̂0 = min
Ψ

J (Ψ)

In the absence of modelling error (e = 0) and for an infinite

value of K, Π̂ (K, e) tends toward Π (Ψ0) defined by (12)

and ∆Ψ0 = Ψ̂0 − Ψ0 = 0. However, for a finite number
of samples K or in the presence of modelling errors, the
projector error ∆Π (K, e) = Π (Ψ0)− Π̂ (K, e) is not zero.

To our knowledge, the performance analyses of MUSIC
available in the literature assume that Ψ0 is a scalar. For the
2D DOA estimation problem, no result seem to be published.
Assuming that the error vector ∆Ψ0 has a small norm, which
requires that e has a small norm and K is not too small, and
using a first order series expansion of the Gradient of J(Ψ̂0)

around Ψ̂0= Ψ0, the DOA error is

∆Ψ0 = Ψ̂0 −Ψ0 = −H0

(
Π̂ (K, e)

)−1

O0

(
Π̂ (K, e)

)
(15)

where H0

(
Π̂ (K, e)

)
and O0

(
Π̂ (K, e)

)
are the Hessian and

Gradient respectively of the MUSIC criterion (14) such that

H0

(
Π̂ (K, e)

)
(i, j) = 2

[
∂a (Ψ0)

∂Ψ0 (i)

H

Π̂ (K, e)
∂a (Ψ0)

∂Ψ0 (j)

]
(16)

O0

(
Π̂ (K, e)

)
(i) = 2<

(
∂a (Ψ0)

∂Ψ0 (i)

H

Π̂ (K, e)a (Ψ0)

)

To be able to derive the MSE matrix
MSΨ0=E[∆Ψ0(∆Ψ0)

T ], it is necessary to use a first

order series expansion of Π̂ (K, e) around Π (Ψ0) in (15)
and (16), as small errors are assumed. Using such an
expansion and using the fact that H (Ψ0) = H0 (Π (Ψ0)), it
is possible to show, after tedious computations, that ∆Ψ0

is approximated by

∆Ψ0 ≈ −H (Ψ0)
−1 O0 (∆Π (K, e)) (17)

and

MSΨ0 = E[∆Ψ0(∆Ψ0)
T ] ≈ (18)

H (Ψ0)
−1 E[O0

(
Π̂ (K, e)

)
(O0

(
Π̂ (K, e)

)
)T ]H (Ψ0)

−1

4.0.1 Performance with finite number of samples

In this section, the MSE matrix MSΨ0 (18) is derived
for a finite number of samples K and without mod-
elling errors. Under these assumptions, it can be shown
[5] that ∆Π (K, e=0) = ∆Π(K) ≈ Π(Ψ0) ∆RxxR

]
yy +

(R]
yy)H∆RxxΠ(Ψ0) where Ryy = Rxx − σ2IN , ∆Rxx =

Rxx − R̂xx and where (.)] is the Moore-Penrose pseudo in-

verse.The ith component of O0 (∆Π (K, e=0)) is

O0 (∆Π (K)) (i)=2<
(

∂a (Ψ0)

∂Ψ0 (i)

H

Π(Ψ0)∆RxxR
]
yya (Ψ0)

)

(19)
Assuming Gaussian observations, the random variable ∆Rxx

has a Wishart statistic and we obtain E [∆Rxx] = 0 and

E [∆Rxx (i, j)∆Rxx (m, n)] =
Rxx (m, j)Rxx (i, n)

K
(20)

From (18)(19)(20), we deduce that

MSΨ0 = MS (K) =
1

K
(

γ
σ2

)H (Ψ0)
−1 (21)

where γ = E
[|s (t)|2], which is a new result and which is

proportional to H (Ψ0)
−1.

4.0.2 Performance with modelling errors

In this section, the MSE matrix MSΨ0 (18) is de-
rived for an infinite number of samples K but in the
presence of modelling errors. Under these assump-
tions, it can be shown [2] that ∆Π (K −→∞, e) =

∆Π(e) ≈ Π(Ψ0) e a (Ψ0)
# + a (Ψ0)

#H eHΠ(Ψ0) where

a (Ψ0)
# = a (Ψ0)

H /(a (Ψ0)
H a (Ψ0)). The ith component

of O0 (∆Π (e)) is

O0 (∆Π (e)) (i)=2<
(

∂a (Ψ0)

∂Ψ0 (i)

H

Π(Ψ0) e

)
(22)

Assuming that e is a zero-mean, circular and Gaussian ran-
dom vector such that E[eeH ] = σ2

eIN , expression (18) be-
comes

MSΨ0 = MS (σe) = σ2
eH (Ψ0)

−1 (23)

Comparing (21) and (23), we find that

MS (K) =
1

σ2
eK

(
γ

σ2

)MS (σe)

which is a new result and which shows that MS (K) and

MS (σe) are proportional to each other and to H (Ψ0)
−1.

5. FIRST TOOLS FOR AN ANTENNA ARRAY
OPTIMIZATION

In the previous sections, the accuracy of the vector Ψ̂0

has been characterized by the MSE matrix MSΨ0 =
E[∆Ψ0(∆Ψ0)

T ]. Considering the stochastic or the determin-
istic CRB or the MUSIC algorithm, with or without mod-
elling errors, it has been shown that MSΨ0 is, in all cases,

proportional to the matrix H (Ψ0)
−1, which is the only pa-

rameter depending on the sensors location. In this section,
we investigate more precisely the links between H (Ψ0)

−1

and the sensors location in order to generate tools for an
array design optimization.
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In practical situations, we may prefer to characterize
DOA estimation accuracy by a scalar quantity, easier to han-
dle and interpret. In practice, the only important quality cri-
terion is the angle between the wave-vector k (Θ0) and its es-

timate k̂(Θ0). For this reason, for given values of k = k (Θ0)

and k̂ = k̂(Θ0), we propose the following scalar criterion

C (k) = E
[
d

(
k, k̂

)]
where

d
(
k, k̂

)
=

kHΠ
(
k̂
)

k

kH k
= 1−

∣∣∣kH k̂
∣∣∣
2

(kHk)
(
k̂H k̂

)

where Π(k̂) = Id − k̂k̂
]

and 0 ≤ C (k) ≤ 1. Note that k is a

normalized vector but k̂ may not be a unit norm one. It is in
particular the case when k = k (Θ0) , since it is implicitely
assumed in this case that the three components of k (Θ0)
are independent in the search procedure. Assuming small

errors, ∆k = k̂− k and using a second order serial expansion

of Π(k̂) around k̂ = k according to [2], it is possible to show
that D (k) is

C (k) ≈ kH (trace (MSk) Id −MSk)k

where trace (.) is the matrix trace. As it has been shown in

the previous sections that MSk = αH (k)−1 where α is a
scalar quantity which is independent of the sensors location
and where H (k) depends on the sensors location, we obtain

C (k) ≈ α kH (
trace

(
H (k)−1) Id −H (k)−1)k (24)

For a given number of sensors N , the typical problem of an-
tenna array design optimization consists to find the array
geometry, or the sensors’ locations vectors pn(1 ≤ n ≤ N),
which minimizes C (k), over a given space area, under some
possible constraints. One possible constraint may be to limit
to a given level, the rank-1 ambiguity of the array. An other
possible constraint may be to impose an omnidirectional be-
haviour of the array, i.e a constant value of C (k), inside the
selected space area. In the following section, we analyze the
link between H (k)−1 and the vectors pn(1 ≤ n ≤ N) for
3D, 2D and 1D arrays respectively. This links allow to gen-
erate tools for an array design optimization, not presented
in this paper.

5.1 3D array case

For a general 3D array, according to (11), the derivative

matrix Ȧ with Ψ0 = k (Θ0) = [ u v w ]T is

Ȧ (k (Θ0)) =j
2π

λ




a1 (Θ0)p
H
1

...
aN (Θ0)p

H
N


 (25)

and according to (10), it is possible to verify that the inverse
of matrix H (k (Θ0)), which is full rank for a general 3D
array, is

H (k (Θ0))
−1 =

1

2N

(
2π

λ

)−2

(Dpp)−1 (26)

Dpp=
1

N

N∑
n=1

(pn − p̄) (pn − p̄)T with p̄ =
1

N

N∑
n=1

pn (27)

which only depends on matrix P = [ p1 · · · pN ] of
the sensors positions vectors. Expression (26) shows that

H (k (Θ0))
−1 and then MSk(Θ0) is not dependent of k (Θ0)

and only depends, to within a scalar term, to the sensors
locations.

Let us now get some insights into the conditions that
have to be satisfied by the 3D array to become omnidirec-
tional. To this aim, we denote by M(P) the hermitian ma-

trix M(P) = trace
(
H (k (Θ0))

−1) Id −H (k (Θ0))
−1 which

only depends on P according to (26). Introducing the min-
imal, λmin (M(P)), and maximal, λmax (M(P)), eigenvalue
of M(P), it is well known, from (24)(26), that

αλmin (M(P)) = C (kmin) ≤ C (k) ≤ αλmin (M(P)) = C (kmax)
(28)

where kmin, kmax are the eigenvectors of M(P) associated
with the eigenvalue λmin (M(P)) , λmax (M(P)) respectively.
This expression shows that, for a given array geometry P,
the directions associated with the lowest and the highest
estimation quality are orthogonal to each other, result al-
ready found in [4] for a 2D array. We deduce from (28) that
the array is omnidirectional if and only if λmin (M(P)) =
λmax (M(P)) , which means that M(P) is proportional to
the identity matrix. In such a case, Dpp = DxxI3 and

E
[
(u− û)2

]
= E

[
(v − v̂)2

]

= E
[
(w − ŵ)2

]
=


 √

α

π

(
D3,e

λ

)√
N/2




2

where D3,e is the equivalent aperture of the 3D array.
This quantity is defined from the Uniform Spherical Array
(USA) of radius R, which is omnidirectional since Dpp =
((2R)2/16)I3. Then, D3,e is such that (D3,e)

2 = νDxx in
order to have D3,e = 2R for a USA of radius R, and is given
by

D3,e =

√
16

trace (Dpp)

3
(29)

From these results and using the fact that, according to
(4)(11), the link between Ȧ (Θ0) and Ȧ (k (Θ0)) is for a
3D array

Ȧ (Θ0) = Ȧ (k (Θ0)) J3 (Θ0) (30)

J3 (Θ0) =

[ − sin (θ0) cos (∆0) − cos (θ0) sin (∆0)
cos (θ0) cos (∆0) − sin (θ0) sin (∆0)
0 cos (∆0)

]

the Mean Square error matrix of Θ0 is

E
[
∆Θ0 (∆Θ0)

T
]

=
α

2N
(

2π
λ

)2

(
J3 (Θ0)

T Dpp J3 (Θ0)
)−1

(31)
We then deduce from (29)(31) that, for a 3D omnidirectional
array, the Θ0 components mean square error are

E
[(

θ0 − θ̂0

)2
]

=




√
α

π
(

D3,e

λ

)
cos (∆0)

√
N/2




2

(32)

E
[(

∆0 − ∆̂0

)2
]

=




√
α

π
(

D3,e

λ

) √
N/2




2

We note that the mean square error of θ̂0 and ∆̂0 are inde-
pendent of θ0, hence the so-called azimutal omnidirectional-

ity of these estimates. However the mean square error of θ̂0

depends on ∆0 and increases to infinite for ∆0 = π/2, direc-
tion for which the concept of azimuth is no longer defined.
To our knowledge, the results of section 5.1 have never been
explicitely published for 3D arrays.

1976



5.2 2D array case

For a 2D array, the vector pn is reduced to pn =
[ xn yn ]T , the steering vector of a source does no longer
depend on w and the matrix H (k (Θ0)) defined previously
is not full rank. This means that it is no longer possible to
estimate uniquely and independently the three components
of vector k (Θ0) from a 2D array. However, limiting the
estimation to the two first independent components (u, v)
of k (Θ0), the results developed in sections 3, 4 and 5 can
still be applied. Under these assumptions, it is possible to
show that H (k (Θ0))

−1, which is now a square matrix, is
still given by (26) where Dpp , defined by (27), is

Dpp=

[
Dxx Dxy

Dxy Dyy

]
(33)

The omnidirectionality condition is obtained in a similar way
as for the 3D array. Introducing from (33) the coefficients ρ
and η defined by

ρ2 =
(Dxy)2

DxxDyy
and η2 =

Dyy

Dxx
(34)

A 2D array is then omni-directional when ρ = 0 and η =
1. According to (33)(34) and the definition of H (k (Θ0)) ,
assuming Dpp is full rank, the mean square error of the wave-
vector components are, for a 2D omnidirectional array

E
[
(u− û)2

]
= α

N( π
λ )2

1+η2

2(D2,e)
2(1−ρ2)

E
[
(v − v̂)2

]
=

E[(u−û)2]
η2

E [(u− û) (v − v̂)] = −E [
(u− û)2

]
ρ
η

(35)

where D2,e is the equivalent aperture of the 2D array.
This value is defined from the Uniform Circular Array
(UCA) of radius R, which is omnidirectional since Dpp =
((D2,e)

2/8)I2. Then, D2,e is such that (D2,e)
2 = νDxx in

order to have D2,e = 2R for a UCA of radius R, and is given
by

D2
e =

√
8
trace (Dpp)

2
(36)

Expression (35) shows that the mean square errors on the
estimate of (u, v) do not depend on the angle of arrival. From
these results and using the fact that, according to (4)(11),

the link between Ȧ (Θ0) and Ȧ (k (Θ0)) is, for a 2D array

Ȧ (Θ0) = Ȧ (k (Θ0)) J2 (Θ0) (37)

J2 (Θ0) =

[ − sin (θ0) cos (∆0) − cos (θ0) sin (∆0)
cos (θ0) cos (∆0) − sin (θ0) sin (∆0)

]

the mean square error of Θ0 is given, for a 2D omnidirec-
tional array, by

E
[
∆Θ0 (∆Θ0)

T
]

=
α

2N
(

2π
λ

)2

(
J2 (Θ0)

T DppJ2 (Θ0)
)−1

(38)
For a 2D array, the mean square error of the direction Θ0

components are

E
[(

θ0 − θ̂0

)2
]

=

(
RMS

cos (∆0)

)2

f (θ0) (39)

E
[(

∆0 − ∆̂0

)2
]

=

(
RMS

sin (∆0)

)2

f
(
θ0 +

π

2

)

RMS =

√
α

π
(

D2,e

λ

)√
N

√
1 + η2

2 (1− ρ2)

f (θ) = sin (θ)2 +
cos (θ)2

η2
+ sin (2θ)

ρ

η

which shows that the DOA accuracy depends en Θ0 and the
array parameters such as D2,e, ρ and η.

5.3 1D array case

For a 1D array, the vector pn is reduced to pn = xn, the
steering vector of a source does no longer depend on v and
w and we have to limit the estimation to the first components

u of k (Θ0) . In this case, Dpp is a scalar equal to
(
D1,e

)2
/2

where D1,e is the equivalent aperture of the array and ac-
cording to (26), the mean square error of the wave-vector
component is

E
[
(u− û)2

]
=




√
α

2π
(

D1,e

λ

)√
N




2

(40)

5.4 Conclusion

In this paper and for the single source case, it has been shown
that both stochastic and deterministic CRB, jointly with the
MUSIC performance with and without modelling errors, are
proportional to the matrix H (Ψ0)

−1, which is the only pa-
rameter depending on the sensors location. The precise links
between H (Ψ0)

−1, and thus the DOA estimation precision,
and the sensors location has been analyzed in a second time.
This gives rise to analytical conditions on the sensors loca-
tion to generate for example omnidirectional arrays or arrays
with a maximal equivalent aperture. These conditions are
important tools for an array design methodology which will
be presented elsewhere.
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