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Combined second and fourth-order PDEs model and associated variational problems for geometry images inpainting and denoising

Introduction.

Image inpainting is a central problem in image processing. It refers to the problem of recovering damaged/missing parts of a digital image by interpolation from the valuable areas [START_REF] Bertalmio | Inpainting, Encyclopedia of Computer Vision[END_REF][START_REF] Cao | Geometrically guided exemplar-based inpainting[END_REF][START_REF] Chan | Mathematical models for local non-texture inpainting[END_REF][START_REF] Bertalmio | Image inpainting[END_REF] For the geometry inpainting, Partial Differential Equations and energy methods are extensively used and turn out to be very efficient (see [START_REF] Ambrosio | A direct variational approach to a problem arising in image reconstruction[END_REF][START_REF] Bertalmio | Navier-Stokes, fluid dynamics, and image and video inpainting, reconstruction[END_REF]7,8,[START_REF] Chan | Mathematical models for local non-texture inpainting[END_REF][START_REF] Esedoglu | Digital image inpainting by Mumford-Shah-Euler model[END_REF][START_REF] Grossauer | Using the complex Ginzburg-Landau equation for digital inpainting in 2D and 3D, Scale Space Methods in Computer Vision[END_REF][START_REF] Kallel | The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting[END_REF][START_REF] Masnou | Level-lines based disocculusion[END_REF][START_REF] Shen | Euler's elastica and curvature-based inpainting[END_REF] and the references therein). The main difficulty in geometry inpainting is to accurately recover the singularity set components (edges, corners, . . . ) and to preserve the curvy features of the level lines of the image. When there is no missing area, the problem reduces to a segmentation/filtering problem and the same difficulties may persist. Cconceptually, the main difference between this two situations is that available informations come only from one side in the inpainting case.

Second-order PDEs are used in this field since its beginning leading to well established models, such as TV inpainting [START_REF] Chan | Mathematical models for local non-texture inpainting[END_REF], anisotropic diffusion [START_REF] Weickert | Theoretical foundations of anisotropic diffusion in image processing[END_REF] and (weighted) harmonic method [START_REF] Belhachmi | Weighted harmonic and complex Ginzburg-Landau equations for gray value image inpainting[END_REF], that provide good interpolation properties in geometry inpainting. However, as they are low-order methods, they usually disconnect edges over large distances (violating the connectivity principle) and they fail to reproduce some geometric features of higher-order (curvature, some corners, see e.g., [START_REF] Allard | Total variation regularization for image denoising, III. examples[END_REF][START_REF] Shah | A common framework for curve evolution, segmentation and anisotropic diffusion[END_REF]). These shortcomings gave rise to a new class of higher-order diffusion models which perform generally better both in image restoration and in geometry inpainting problems (see [START_REF] Bertalmio | Image inpainting[END_REF][START_REF] Ambrosio | A direct variational approach to a problem arising in image reconstruction[END_REF]8,[START_REF] Esedoglu | Digital image inpainting by Mumford-Shah-Euler model[END_REF][START_REF] Masnou | Level-lines based disocculusion[END_REF][START_REF] Shen | Euler's elastica and curvature-based inpainting[END_REF][START_REF] Shah | A common framework for curve evolution, segmentation and anisotropic diffusion[END_REF][START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF]9,[START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard[END_REF][START_REF] Cherfils | A Cahn-Hilliard system with a fidelity term for color image inpainting[END_REF][START_REF] Chung | A fast algorithm for Euler's elastica model using augmented Lagrangian method[END_REF][START_REF] Scherzer | Denoising with higher order derivatives of bounded variation and an application to parameter estimation[END_REF]). In fact, they damp the oscillations and high frequencies (noise) in the homogeneous areas faster than any secondorder model [START_REF] Lysaker | Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[END_REF], and they preserve more efficiently the curvy features of the edges as well as the corners [START_REF] Shah | A common framework for curve evolution, segmentation and anisotropic diffusion[END_REF][START_REF] Blake | Visual Reconstruction[END_REF]. Several models are proposed in the literature and most of them resort to a strong prior on how to interpolate the solutions with high order operators. One of the very advanced approaches is due to Masnou and Morel who adapted G. Kaniza principle to the interpolation of the level lines of BV-images [START_REF] Masnou | Level-lines based disocculusion[END_REF]. It consists of minimizing an energy which combines a length term and a given power of the curvature (e.g Willmore energy, . . . , [START_REF] Masnou | Level-lines based disocculusion[END_REF][START_REF] Shen | Euler's elastica and curvature-based inpainting[END_REF][START_REF] Brito-Loeza | Fast numerical algorithms for Euler's elastica inpainting model[END_REF][START_REF] Mumford | Elastica and computer vision[END_REF][START_REF] Shah | Elastica with hinges[END_REF]).

Our contribution: In a previous work [START_REF] Theljani | A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery[END_REF], we considered a multiscale fourth-order model based on an adaptive method which uses a weighted bilaplacian operator; the weight being a spatially varying diffusion function. The model is updated dynamically, by choosing the weight to fit the geometry of the computed solution and by allowing a tight location of the singularity set. We have shown that this approach is based on the construction of a family of discrete energies which Γ-converges to a Mumford Shah-H -1 limit. The size of the singularity set is bounded by the Lebesgue measure of the set where the diffusion is minimal. The curvature feature is preserved thanks to an H -1 -filtering. In this article, we improve this approach in two directions: we add a length term to the functional (mimicking the Euler elastica functional [START_REF] Shen | Euler's elastica and curvature-based inpainting[END_REF][START_REF] Brito-Loeza | Fast numerical algorithms for Euler's elastica inpainting model[END_REF][START_REF] Mumford | Elastica and computer vision[END_REF][START_REF] Shah | Elastica with hinges[END_REF]) and we extend the adaptive strategy to two diffusion functions, which allows us to balance more efficiently both shortness and the curvature of the level lines in the inpainted region. Moreover, the family of the discrete energies associated to this approach converges in the Γ-convergence sense to a generalized Mumford-Shah-H -s , (0 < s < 1) functional. We emphasize that the proposed model allows us to capture the singular set of the solution and, as byproduct, the enhancement of the filtering of the data term with respect to a well-suited Sobolev norm. Besides, we obtain two gradient flows associated to the problem leading to PDEs systems of second-order that we solve with mixed formulations finite element methods.

The article is organized as follows: In Section 2, we prove the existence of H 1 -solution of the evolution equation (2.1) and its stationary counterpart. In Section 3, we give a simple and reliable discretization based on mixed finite elements. Then we present the adaptive strategy for the choice of α and β and the limiting behavior of the proposed iterative algorithm. Finally, in Section 4, we present several numerical examples which illustrate the efficiency of our model in both geometry inpainting and restoration problems.

Variational formulation in H

1 (Ω) -H -1 (Ω).
2.1. Model problem. We define the image as a mapping from a bounded open set Ω of R 2 , with piecewise smooth boundary ∂Ω, into R. We consider the following equation:

(2.1)      ∂ t u + a∆ β (∆ α u) -b∆ β u + λ D (u -f ) = 0 in R + × Ω, ∂u ∂n = ∂∆αu ∂n = 0, on R + ×∂Ω, u(0, x) = f, in Ω,
where a, b > 0 are two constants, ∆ β u = div(β(x)∇u). We assume that we are given two constants α 0 , α 1 such that:

0 < α 0 ≤ α(x), β(x) ≤ α 1 , ∀x ∈ Ω.
We denote by D ⊂⊂ Ω the missing area and we set λ D = λ 0 1 in the image restoration problem (the damaged region is then empty), and λ D = λ 0 χ Ω\D where χ Ω\D is the characteristic function of the domain Ω \ D.

We emphasize that the choice of the differential operator in (2.1) may appear somewhat surprising as the operator ∆ β and ∆ α do not commute and the operator, without further assumptions on α and β, is not self-adjoint which might results in "unwished" difficulties for solving the problem. However, the main goal of the proposed approach is to capture the singular set of the solution, with preserving long range curvatures, which means that α and β should coincide (say equal 1) except on a set of zero Lebesgue measure (characterized by either α or β, or both, is equal to 0). We do not make this simplifying assumption because the singular set is unknown a priori and our numerical method gives approximated singular sets which have some non nul Lebesgue measure (even small). In addition, as we use an H 1 -H -1 formulation of the problem we circumvent this apparent difficulty.

Note that the constants a, b could be incorporated in the definition of α and β, however we choose to express them as in (2.1) in order to single out the influence of the second-and the fourth-order terms in the model. Following [START_REF] Theljani | A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery[END_REF], the selection of the functions of α and β is performed locally and adaptively -using residual error indicators and an efficient mesh adaptation -, to decrease, respectively increase, their values close to, respectively far from, the edges and corners. The numerical algorithm which realizes this program is very simple: it consists in solving linear problems (with fixed α and β) and to update the diffusion functions with explicit formulae. This gives a reliable numerical method, ready for the use of highperformance computing techniques of PDEs [START_REF] Belhachmi | A massively parallel multi-level approach to a domain decomposition method for the optical flow estimation with varying illumination[END_REF], low cost (the final meshes are coarsened in the homogeneous areas -usually the largest part of low textured images -) and converging to minimizers of nonlinear functionals (including the Hausdorff measure of the singular set).

The formulation

H 1 -H -1 . Let ∆ -1
β be the inverse of the negative -β-weighted Neumann-Laplacian,∆ β , with homogeneous boundary conditions, i.e., for g ∈ L 2 0 (Ω) = h ∈ L 2 (Ω); Ω h dx = 0 we set u = ∆ -1 β g to be the unique solution in V = L 2 0 (Ω) ∩ H 1 (Ω) of the following Neumann problem:

(2.2) -∆ β u = g, in Ω, ∂u ∂n = 0, on ∂Ω.
In the space L 2 0 (Ω), we define the inner product:

u, v -1,β = β 1 2 ∇∆ -1 β u, β 1 2 ∇∆ -1 β v 2 ,
and associated norm u -1,β = β

1 2 ∇∆ -1 β u 2 .
Throughout the paper, we assume that the domain Ω is partitioned into I disjoint sub-domains (Ω ) such that α and β are given by the piecewise-constant scalar functions:

α = α and β = β , in Ω , = 1, . . . , I.
We denote α m = min

1≤ ≤I α > 0, α M = max 1≤ ≤I α , β m = min 1≤ ≤I β > 0 and β M = max 1≤ ≤I β . Under
the above assumptions, we can prove the existence of the solution for (2.1) which also involves the study of the stationary boundary value problem associated to (2.1). More precisely, we prove the existence of the weak solution for the following stationary equation:

(2.3) a∆ β (∆ α u) -b∆ β u + λ D (u -f ) = 0, in Ω, ∂u ∂n = ∂∆αu ∂n = 0, on ∂Ω.
Up to an additive constant and without loss of generality, we will assume that χ D f ∈ L 2 0 (Ω). Notice that in the inpainting problem the image intensity f is given only in Ω \ D. Let v be a function in L 2 (D) extended by 0 in Ω and such (2.4)

F (v) ∈ L 2 0 (Ω) where F (v) = f in Ω \ D v in D,
and consider the alternative problem

(2.5) -a∆ α u + bu + λ 0 ∆ -1 β (u -F (v)) = 0, in Ω, ∂u ∂n = ∂(∆ -1 β (u-F (v))) ∂n = 0, on ∂Ω.
that we call H 1 -H -1 formulation. Now, consider T : L 2 (Ω) -→ L 2 (Ω) such that, for a given v like in (2.4), T (v) = u the unique solution of (2.5) (we prove below that T is well defined). Thus, if a fixed point u = v of T exists, it will be a solution of the equation (2.3). In fact, such a fixed point verifies:

(2.6)

-∆ α u + bu + ∆ -1 β (λ D (u -f )) = 0, in Ω, ∂u ∂n = ∂(∆ -1 β (λ D (u-f )) ∂n = 0, on ∂Ω.
By applying the operator -∆ β to problem (2.6), we get that the fixed point, equivalently, is a weak solution to the system (2.3), see Remark 2.3. We first prove that for a fixed v, the system (2.5) admits a unique solution u. To do so, we introduce the energy functional:

(2.7) J (u, v) = a Ω α(x) 2 |∇u| 2 dx + b 2 u 2 2 + λ 0 2 u -F (v) 2 -1,β for (u, v) ∈ V × L 2 (Ω)
Notice that a minimizer of u -→ J (u, •) satisfies system (2.5).

Proposition 2.1. There exists R > 0, such that for v ∈ L 2 0 (Ω) ∩ B -1 (0, R), the functional J (•, v) admits a unique minimizer u ∈ V . Moreover, u ∈ B -1 (0, R) Proof. We start by proving the existence of R > 0. Multiplying the first equation of (2.5) by u and integrating over Ω, it follows

a Ω α|∇u| 2 + b Ω u 2 + λ 0 Ω u ∆ -1 β u dx = λ 0 Ω u ∆ -1 β F (v) dx, which means Ω u ∆ -1 β u dx ≤ Ω u ∆ -1 β F (v) dx.
Thus, using the definition of ∆ -1 β • and the boundary conditions on u, we have:

Ω β∇∆ -1 β u • ∇∆ -1 β u dx ≤ Ω β∇∆ -1 β F (v) • ∇∆ -1 β u dx.
Using the Cauchy-Schwarz inequality for the scalar product < ., . > -1,β , we obtain:

(2.8) u 2 -1,β ≤ F (v) -1,β u -1,β .
Thanks to the continuity of ∆ -1 β , we have:

(2.9) < F (v), F (v) > 1 2 -1,β ≤ C F (v) L 2 (Ω) ≤ 2C max( f L 2 (Ω) , v L 2 (Ω) ).
Let R 1 > 0 be a given constant and choose v satisfying (2.4) and such that

v 2 ≤ R 1 . We have by direct computation v -1,β ≤ α 1 R 1 Choosing R ≥ 2C max( f L 2 (Ω) , α 1 R 1 ), we deduce that for v ∈ L 2 0 (Ω) ∩ B(0, R 1 ) (the closed ball of radius R 1 with respect to the L 2 -norm), v belongs to B -1 (0, R) (the closed ball with radius R with respect to the norm • -1,β ). Besides, the inequality (2.8) implies that u ∈ B -1 (0, R), i.e, (2.10) u -1,β ≤ R.
For the existence and uniqueness of the solution, the proof can be handled by standard techniques of calculus of variations. In fact, it is readily checked by direct calculation that the functional J (•, v) is strictly convex, weakly lower semi-continuous (as a sum of norms and thanks to the continuity of ∆ -1 β ), and V -coercive (uniformly with respect to v). Thus, J (•, v) admits a unique minimizer u in the closed convex V ∩ B -1 (0, R). Now, we prove the existence of a fixed-point of T using Schauder fixed-point theorem.

Proposition 2.2. The operator T admits a fixed point u ∈ V ∩ B -1 (0, R). Moreover, u is a weak solution of the formulation H 1 -H -1 (2.6).

Proof. We prove here the existence of a fixed point of

T . Let v ∈ L 2 0 (Ω) ∩ B -1 (0, R). From Proposition 2.1, the energy (2.7) admits a unique minimizer u = T (v) in V ∩ B -1 (0, R). Since the embedding V → L 2 (Ω) is compact for the norm • -1,β (
as composition of a bounded and a compact operators), the operator T then maps L 2 (Ω) → K, where K is a compact subset of L 2 (Ω) for the norm • -1,β . Thus we have:

T : B -1 (0, R) -→ B -1 (0, R) ∩ K = K,
where K is a compact and convex subset of L 2 (Ω) for the norm • -1,β . To apply Schauder's fixed-point theorem, it remains to prove that T is continuous for the norm • -1,β . Let (v k ) k≥0 be a sequence which converges to v ∈ B -1 (0, R) and T (v k ) = u k . The function u k is then the unique minimizer of (2.7) associated with v k , and we have:

J (u k , v k ) ≤ J (0, v k ), i.e., J (u k , v k ) ≤ λ 0 2 F (v k ) 2 -1,β ,
from the boundedness of β and since v k -1,β ≤ R and f -1,β ≤ C for some given constant C > 0, we get the following estimate:

J (u k , v k ) ≤ C, C > 0,
and then (u k ) k≥0 is uniformly bounded in V . Thus, we can consider a convergent subsequence

u k j j→∞ u * ∈ V and u k j -→ j→∞ u * in L 2 (Ω). Hence, the unique (weak) solution T (v k ) = u k of: (2.11) -a∆ α u k + bu k + λ 0 ∆ -1 β (u k -F (v k )) = 0, in Ω, ∂u k ∂n = ∂(∆ -1 β λ 0 ∆ -1 β (u k -F (v k )) ∂n = 0, on ∂Ω,
weakly converges to the unique weak solution of (2.5) by passing to the limit in (2.11)

J(u * , v) ≤ lim inf k J(u k , v k ) ≤ lim inf k J(w, v k ) ≤ J(w, v) ∀w ∈ V.
that is u * = u. From the uniqueness of the minimizer of (2.7), we obtain u = T (v). We then deduce that T is continuous in L 2 (Ω) and the existence of a stationary solution u follows from Schauder's fixed-point theorem.

Remark 2.3. i) The formulation of problem (2.6) and the regularity theory for elliptic equations show that since α and β are discontinuous, the couple (u, ∆ -1

β (λ D (f -u))) belongs to the space [H s (Ω)] 2 , 1 ≤ s < 3
2 (e.g. see [START_REF] Belhachmi | Weighted harmonic and complex Ginzburg-Landau equations for gray value image inpainting[END_REF]) so that even if the operator ∆ β (∆ α •) is of fourth-order, no global regularizing effect can be expected for u. However, its hypo-ellipticity gives that u is smooth in the homogeneous areas where α and β are constants (u is at least

H 3 (Ω) if f ∈ V ).
Thus oscillations are damped strongly in these areas while the singular set is preserved.

ii) It may be checked that problem (2.6) and (2.1) are equivalent in the following sense: the unique solution u of (2.6) is the weak solution of (2.1) written as a uniformly elliptic system on the variables (u,

w = ∆ -1 β (λ D (f -u))).
iii) It is interesting to notice that there are two ways to transform (2.1) into a PDEs system of second order of two variables (u, w), precisely by choosing

-∆ α u = w or -∆ β w = λ(u -f ).
The first choice is more usual in the computer sciences community, as the operator is the usual bilaplacian and thus is obtained as the gradient flow of the H 2 -energy. Beyond some differences in the analysis of this two choices, we show that in the discrete setting as well as with regard to the numerical implementation the two systems are close and yields essentianlly the same results.

2.3. The evolution equation as a gradient flow. The previous existence of a stationary solution applies to show that the following unbounded operator (in L 2 ):

A(u) = a∆ β (∆ α u) -b∆ β u + λ D u,
is maximal. Moreover, we have:

A(u), u 2 ≥ a I =1 β m α m ∆u, ∆u L 2 (Ω ) + b I =1 β m ∇u, ∇u L 2 (Ω ) + λ D u, u L 2 (Ω) ≥ 0,
which means that it is monotone. Thus it follows from the theory of maximal monotone operators [START_REF] Brézis | Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert[END_REF], that the evolution problem (2.1) admits a unique solution u ∈ L 2 ((0, +∞);

V )∩ H 1 ((0, +∞); V ) ∩ C([0, +∞[ ; L 2 (Ω)).
2.3.1. First gradient flow. Since the product (∆ β u, ∆ α v) is not symmetric, the equation (2.1) is not a gradient flow of an energy functional. However, based on the properties of the operator A, we may write the problem (2.1) as "a formal gradient flow" of an "H 2energy", that we can split into two second-order equations by introducing an auxiliary function w ∈ L 2 (R + ; V ) such that:

(2.12)

           ∂ t u -a∆ β w -b∆ β u + λ D (u -f ) = 0, in R + × Ω, -∆ α u = w, in R + × Ω, ∂u ∂n = ∂w ∂n = 0, on R + × ∂Ω, u(0, x) = f (x), in Ω.
Therefore, a weak solution of the previous system is defined as a pair (u, w)

∈ L 2 (R + ; V ) × L 2 (R + ; V ), u(0, x) = f (x) such that: for a.e t > 0 (2.13) ∂ t u, φ + b β∇u, ∇φ 2 + a β∇w, ∇φ 2 + λ D u, φ 2 = λ D f, v 2 , ∀φ ∈ H 1 (Ω), α∇u, ∇ψ 2 -w, ψ 2 = 0, ∀ψ ∈ H 1 (Ω).
Without loss of generality we have replaced the inner product •, • V ,V with the L 2 -inner product. It is easy to check that the pair (u, w = -∆ α u) is a weak solution of (2.13) where u is the solution for the problem (2.1).

To prove uniqueness, we consider another solution (u 1 , w 1 ) ∈ L 2 (R + ; V ) × L 2 (R + ; V ) to the system (2.13), we then have: for a.e. t > 0

     ∂ t (u -u 1 ), φ 2 + b β∇(u -u 1 ), ∇φ 2 +a β∇(w -w 1 ), ∇φ 2 + λ D (u -u 1 ), φ 2 = 0, ∀φ ∈ H 1 (Ω), α∇(u -u 1 ), ∇ψ 2 -(w -w 1 ), ψ 2 = 0, ∀ψ ∈ H 1 (Ω).
Let (ζ ) I =1 be a partition of the unity associated to the decomposition (Ω ) , and by picking ψ = β α -1 ζ (w -w 1 ), in the second equation, we have the identity: For each ,

(2.14) Ω α -1 β ζ (w -w 1 ) 2 dx = Ω β α ∇(u -u 1 ) α -1 ∇ζ (w -w 1 ) dx.
Summing up, we get (2.15) a

I =1 α -1 β Ω ζ (w -w 1 ) 2 dx = a Ω β∇(u -u 1 ) ∇(w -w 1 ) dx ≥ 0.
Choosing the test function φ = u -u 1 in the first equation and using (2.15) and the positivity of α and β, we obtain:

∂ t (u -u 1 ), u -u 1 2 = -b β∇(u -u 1 ), ∇(u -u 1 ) 2 -λ D (u -u 1 ), (u -u 1 ) 2 -a β∇(u -u 1 ), ∇(w -w 1 ) 2 ≤ 0. (2.16) So that ∂ t (||u(t) -u 1 (t)|| 2 2 ) = 2 ∂ t (u -u 1 ), u -u 1 2 ≤ 0.
It follows that the function t → ||u(t) -u 1 (t)|| 2 2 is decreasing on R + . Since u(0) = u 1 (0), we get u = u 1 , in R + × Ω. It follows that w 1 and w are solutions of the same variational equation: for a.e. t > 0, r = w, respectively r = w 1 and

∂ t u, φ + b β∇u, ∇φ 2 + a β∇r, ∇φ 2 + λ D u, φ 2 = λ D f, φ 2 , ∀φ ∈ H 1 (Ω),
which admits a unique solution. Thus w = w 1 in R + × Ω and the problems (2.1), (2.12) are equivalent. In addition, from the elliptic regularity theory, we have that w ∈ L 2 (R + ; V ), thus for the discretization we will seek (u, w)

∈ L 2 (R + ; V ) × L 2 (R + ; V ).

Second gradient flow.

We introduce now a second gradient flow, namely the formulation H 1 -H -1 , which is the gradient flow associated to the energy functional J (u, u) in (2.7) and that we write as a second-order system : find (u, w) ∈ L 2 (R + ; V ) 2 such that:

(2.17)

           ∂ t u -a∆ α u + bu + w = 0, in R + × Ω, -∆ β w + λ D (u -f ) = 0, in R + × Ω, ∂u ∂n = ∂w ∂n = 0, on R + × ∂Ω, u(0, x) = f (x), in Ω.
Therefore, a weak solution of problem (2.17) is defined as a pair (u, w) ∈ L 2 (R + ; V ) 2 , u(0, x) = f (x) such that: for a.e t > 0

(2.18)

∂ t u, φ + a α∇u, ∇φ 2 + u, φ 2 + w, φ 2 = 0, ∀φ ∈ H 1 (Ω), β∇w, ∇ψ 2 -λ D u, ψ 2 = λ D f, ψ 2 , ∀ψ ∈ H 1 (Ω). Notice that w, φ 2 = ∆ -1 β (λ(u -f ), φ 2 = λ D (u -f ), φ -1,β
, therefore we obtain the uniqueness of the solution of problem (2.17) by choosing φ = u 1 -u 2 in the first line of the system and arguing as previously to deduce the desired result.

The discretization of this two PDEs system, based on mixed formulations, leads to similar discrete problems (with obvious changes), thus we only describe it for the first system.

3. Full discretization and adaptive strategy. We assume that the domain Ω is polygonal. We consider a regular family of triangulations T h made of elements which are triangles (or quadrilaterals) with a maximum size h, satisfying the usual admissibility assumptions, i.e., the intersection of two different elements is either empty, a vertex, or a whole edge. For h > 0, we introduce the following discrete space:

X h = v h ∈ C(Ω)|∀K ∈ T h , v h | K ∈ P 1 (K) ∩ V,
where P 1 (K) is the set of a polynomial function on K of total degree ≤ 1 and K is a triangle in T h .

For ∆t > 0, the discretized version of the problem (2.13) leads to finding a pair (u

h , w h ) ∈ X h × X h solution of (3.1)        u h -u old h ∆t , φ h 2 + b β∇u h , ∇φ h 2 +a β∇w h , ∇φ h 2 + λ D u h , φ h 2 = λ D f h , φ h 2 , ∀φ h ∈ X h , α∇u h , ∇ψ h 2 -w h , ψ h 2 = 0, ∀ψ h ∈ X h ,
where f h is a finite-element approximation of f associated with T h . Since X h ⊂ V , the well-posedness of the problem (3.1) follows as in the continuous case. Before we explicit the adaptive strategy, we present a sketch of the Γ-convergence analysis of such an approximation approach which shows how our diffusion model converges to the Mumford-Shah-H -s functional and therefore performs the inpainting by preserving the jump set and the curvature.

Γ-convergence approximations.

The Γ-convergence study of the adaptive strategy for a functional of second order was presented in [START_REF] Belhachmi | An adaptive approach for the segmentation and the TV-filtering in the optic flow estimation[END_REF] for the optic flow estimation. The authors proved that this algorithm is equivalent to the adaptive one introduced by Chambolle-Dal Maso [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] and Chambolle-Bourdin [START_REF] Chambolle | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF] where a numerical discrete approximation of the Mumford-Shah energy to the segmentation problem was proposed. This approach, based on finite-element discretization and adaptive mesh strategy, turns out to be a well suited approximation with a family of discrete energies, in the Γ-convergence sense [START_REF] Braides | Gamma-Convergence for Beginners[END_REF] to the Mumford-Shah functional [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] (see [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], [START_REF] Belhachmi | An adaptive approach for the segmentation and the TV-filtering in the optic flow estimation[END_REF] for more details).

Let E denotes the energy functional associated with (2.3) (after applying ∆ -1 β to the equation)

E(u, v) = a 2 Ω α(x)|∇u| 2 dx + Φ(u, F (v)),
where

(3.2) Φ(u, F (v)) = b 2 u 2 2 + λ 0 2 u -F (v) 2 -1,β ,
which measures the data fitting in the norm • -1,β and acts as a filtering term. The first term in E(•) is a regularization part, and if the diffusion function can be "chosen" such that it equals 1 except on a given (compact) set, of null Lebesgue measure, where it equals zero then this part of the functional will constitutes an approximation, in the Γ-convergence sense, of the energy of such a set. In other words, in this case, this term will converges to H 1 (S u ).

To show this, we follow the proof in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] which consists in introducing a family of discrete energies, that stem from a particular discretization of the regularizer. We briefly recall the method. For a fixed angle 0 < θ 0 ≤ 2π/3, a constant c ≥ 6, and for > 0, let T (Ω) = T (Ω; θ 0 ; c) be the set of all triangulations of Ω whose triangles K have the following characteristics:

(i) The length of each of the three edges of K is between and c. (ii) The three angles of K are greater than or equal to θ 0 . Let V (Ω) be the set of all continuous functions u : Ω -→ R such that u is affine on each triangle K of a triangulation T ∈ T (Ω). For a given u, we define T (u) ⊂ T (Ω) as the set of all triangulations adapted to the function u, i.e., such that u is piecewise affine on T. We consider a non-decreasing continuous function g : [0, +∞) -→ [0, +∞) such that:

lim t→0 g(t) t = 1, lim t→+∞ g(t) = g ∞ < +∞.
For any u ∈ L p (Ω), (p ≥ 1) and T ∈ T (Ω), the authors in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] introduced the following minimization problem:

(3.3) G (u) = min T∈T (Ω) G (u, T), where G (u, T) =    K∈T |K ∩ Ω| 1 h K g(h K |∇u| 2 ), u ∈ V (Ω), T ∈ T (u), +∞ , otherwise. 
When goes to zero and provided θ 0 is less than some Θ > 0, it was proven that the energy G Γ-converges to the Mumford-Shah functional:

G(u) =    Ω |∇u(x)| 2 dx + g ∞ H 1 (S u ), u ∈ L 2 (Ω) ∩ GSBV, +∞, u ∈ L 2 (Ω)\GSBV,
where is GSBV the generalized special function of bounded variation (see [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]).

Remark 3.1. If Φ : X -→ [-∞, +∞] is continuous and (G ) Γ-converges to G then (Φ + G ) Γ-converges to Φ + G.
Here, we assume that the function β(•) is fixed. Then we have the following proposition: Proposition 3.2. Let f ∈ L 2 0 (Ω) and > 0 be a positive parameter. The sequence of functionals

(G (•) + Φ(•, F (v))) Γ-converges for -→ 0 in the topology of L 2 (Ω) to G(•) + Φ(•, F (v)).
Proof. We have

G (u ) + Φ(u , F (v)) = G (u ) + Φ(u, F (v)) + Φ(u , F (v)) -Φ(u, F (v))
From the result of the Γ-convergence of G to G, see [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF]Theorem 2] and the previous remark we may handle the first two terms. Notice that, for fixed β and v, the continuity of the term Φ(u , F (v)) of the functional in L 2 (Ω) follows from the continuity of ∆ -1 β , (i.e. stability of the elliptic problems and the Poincaré-Wirtinger inequality). Therefore, we have

G (u ) + Φ(u, F (v)) Γ-converges to G(u) + Φ(u, F (v)),
and standard convergence results of the finite element solution in the energy norm give:

Φ(u , F (v)) -Φ(u, F (v)) -→ 0 when → 0
In the theorem we note that the function α does not appear explicitly in G or G . To introduce such an α, let ψ be the Legendre-Fenchel transform of g. For a given triangulation T , it was proven in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] that the minimization of G is equivalent to the minimization of the following function

G (u, v, T ) = K∈T |K ∩ Ω| v K |∇u| 2 + ψ(v K ) h K , over all u ∈ V (Ω) and v = (v K ) K∈T (Ω)
, piecewise constant on each K ∈ T . The new minimization problem over u and α is implemented by an alternate minimization scheme and we have: For a given u, the minimizer over each α is explicitly given by:

(3.4) α K = g (h K |∇u| 2 ).
The minimizer u satisfies

(3.5) div(α K ∇u) + ∇Φ(u, F (v)) = 0, in Ω,
where the ∇Φ(u, F (v)) denotes the Fréchet derivative of Φ(u, f ) over L 2 (Ω). Then, from equation (3.5), we can see now how the function α K appears in the minimization of the energy G and the link with our problem. The choice of α, as explained above, depends on the function g. An example of such a function is given by [START_REF] Chambolle | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF] 

g(t) = 2g ∞ π arctan ( π t 2g ∞ )
which gives a smoothly decreasing sequence α (as the inverse of the gradient square). In what follows, we will use another way to decrease, in a geometric way, such an α. Moreover, we give a unified framework to perform the minimization in (3.3) and the choice of α based on appropriate a posteriori error indicators. We emphasize that the function β is not fixed in our approach and is also chosen adaptively to control the diffusion in the length term. Thus, writing

E(u, v) = a 2 Ω α(x)|∇u| 2 dx + b 2 u 2 2 + λ 0 2 Ω β(x)|∇w| 2 dx, where (3.6) -∆ β w = u -F (v), in Ω, ∂w ∂n = 0, on ∂Ω,
and

Ω β|∇w| 2 dx = Ω (F (v) -u) w dx.
Therefore, we may write equivalently

E(u, w; v) = a 2 Ω α(x)|∇u| 2 dx + b 2 u 2 2 + λ 0 2 Ω β(x)|∇w| 2 dx - λ 0 2 Ω (u -F (v)) w dx,
and for > 0, we define E (u, w; v) = E(u, w; v) + w 2 2 . Similarly to the discrete energy G(u ) in (3.3), we define the energy H (w ) which approximates, in the Γ-convergence sense, the term λ 0 2 Ω β(x)|∇w| 2 dx. Then, we have

H (w ) Γ-converges to H(w) = λ 0 2 Ω |∇w| 2 dx + λ 0 h ∞ H 1 (S w )
Since for any > 0, w solves (3.6) (with v and u in the right-hand side), we have from the finite element theory

λ 0 2 Ω (u -F (v))w dx converges to λ 0 2 Ω (u -F (v))wdx
Therefore, setting

Ψ(u, w; v) = λ 0 2 Ω λ D (u -F (v)) w dx,
we write

E(u , w ; v) = a 2 Ω α(x)|∇u | 2 dx + b 2 u 2 2 + λ 0 2 Ω β(x)|∇w | 2 dx+ Ψ(u, w; v) + (Ψ(u , w ; v) -Ψ(u, w; v)).
Arguing like previously we approximate E (u , w ; v) with G (u ) + H (w ) + Ψ(u, w; v) + (Ψ(u , w ; v) -Ψ(u, w; v)) and we obtain Proposition 3.3. Let f ∈ L 2 0 (Ω) and > 0 be a positive parameter. The sequence of functionals

(G (•) + H (•) + Ψ(•, •; v)) , Γ-converges for -→ 0 to (G(•) + H(•) + Ψ(•, •; v)) in L 2 (Ω)-topology.
3.2. The adaptive approach. The adaptive strategy is based on two ingredients [START_REF] Belhachmi | Control of the effects of regularization on variational optic flow computations[END_REF]: the usual mesh adaptation and a "functional" adaptation which consists in choosing locally the diffusion coefficients in order to "cut" high gradients of the computed solution. In fact, mesh adaptation in finite-elements method has become an efficient tool for the computation of a numerical solution of partial differential equations, in particular it allows us to localize the singular set of the solution. Such localization leads to a coarsening of the mesh in the homogeneous areas (regions where the error indicator is small) and to refine near the singularities. Besides near the singular set, the diffusion coefficients tends to smooth the solution so that decreasing their values in these regions allows us to preserve such features.

In image processing, it is well-known that the discontinuities (edges) are contained in regions where the brightness changes sharply and consequently where the gradient of the image is large. Then, for each element K ∈ T h , we use the following local quantities:

(3.7) η K = α 1 2 K ∇u h L 2 (K) and η K = β 1 2 K ∇w h L 2 (K) ,
as error indicators.

Remark 3.4. Rigorously, the error indicator should be a mean value of the projection of ∇ u h in ω K = {K ; |K ∩ K | = 0} that is all the elements sharing an edge with K [START_REF] Verfurth | A Review of A Posteriori Error Estimation and Adaptive Mesh-Refnement Techniques[END_REF]. This allows also to reduce the artifact in the refinement process. Nevertheless, our rough indicator η K is faster to compute and already gives satisfactory results, so that is why we use it to.

The error indicator η K plays the same role as η K but for the variable w so it captures the brightness change in the Laplacian ∆ α u which gives a supplementary information on the discontinuities of the "second kind". Thus, the two quantities in (3.7) act as an edge detector (see also [START_REF] Auroux | Application of the topological gradient method to color image restoration[END_REF][START_REF] Auroux | Contour detection and completion for inpainting and segmentation based on topological gradient and fast marching algorithms[END_REF][START_REF] Auroux | Image processing by topological asymptotic expansion[END_REF]) which makes it well suited to control and locally select the diffusion coefficient α, β using the following algorithm (see [START_REF] Belhachmi | Control of the effects of regularization on variational optic flow computations[END_REF]): Algorithm 3.1 Adaptivity steps 1. Choose initial guesses α 0 , β 0 and compute u 0,h solution of (2.1) with the initial grid T 0 h corresponding to the image.

Adaptive steps: For

k ≥ 1 • Compute u k,h on T k h with α = α k and β = β k fixed.
• Build an adapted mesh T k+1 h (in the sense of the finite element method, i.e., with respect to the parameter h) with the metric error indicator.

• Perform a local choice of α(x) and β(x) on T k+1 h to obtain new functions α k+1 and β k+1 .

If ||u

k+1,h -u k,h || ≤ or k ≥ k max , stop. Otherwise k = k + 1, go to Step 2.
During the adaptation, we use the following formula for each triangle K;

α k+1 K = max      α k K 1 + κ η K η ∞ -0.1 + , α thr     
, where α thr is a threshold parameter and κ is a coefficient chosen to control the rate of decrease in α, u + = max(u, 0). The same formula is used to update the function β(x) and where η is replaced by η . The mesh refinement is generated as follows: we cut the element K close to the edges of the image (i.e., where the error (η K ) K∈T h is larger than the mean value) into a finite number of smaller elements to decrease the error and to fit the geometry of the edges, while, the mesh is coarsened in the other regions. This process produces a tight localization of the singular set (see the next section). Then, we make an "optimal" choice of the functions α and β, following the error map furnished by the error indicators (η K ) K∈T h , in each element K. We decrease the values of the diffusion parameters in order to correctly approximate the edges. The values may be chosen as regular functions of the computed gradient (e.g.

1 1+|∇u h | 2 )
or in order to give a geometric sequence as in the previous algorithm. In all cases, the size of the singular set (its Hausdorff measure) is controlled by | {x ∈ Ω; α(x) = α m } |, a and b (where | • | denotes the Lebesgue measure). Note that the function β influences also this size (in a less explicit way) but plays a more important role in the filtering part of the data term. The overall result expresses a balance between the filtering and the segmentation effects which is the key point to obtain curvy and short reconstructed paths.

Numerical examples.

In this work, all the PDEs are solved with the open source finiteelement software FreeFem++ [START_REF] Hecht | New development in freefem++[END_REF]. The goal is to reconstruct the missing information in the red parts, i.e., D, by the diffusion of the information from the intact part, i.e, Ω\D. In all examples, we set ∆t = 0.1, an initial guess u(0, x) = 0.5, ∀x ∈ D, λ 0 = 10 4 in the case of image restoration and λ 0 = 10 7 in the case of image inpainting.

4.1. Image restoration. We begin by testing our approach for an image denoising problem. In the left-hand plot of Fig. 4.1, we display the original (binary) image with a squared domain (120 × 120 pixels). In the middle, we display the noisy image f , obtained by adding a Gaussian noise, whereas the right-hand plot shows the restored one obtained by using our approach (2.1).

We initialized the algorithm with a large value of α = β = 50 and we performed 20 iterations of the adaptive algorithm. We plot in Fig. 4.2 the mesh, the function α and the error indicator at convergence. The latter indicates the regions where we have edges whereas α K plays in the present context a role similar to that of the z-field in the Ambrosio-Tortorelli approximation method for the Mumford-Shah energy. We can also see the "sparsification" effect on the mesh in the left-hand plot of Fig. 4.2, which emphasizes the low cost of the method.

We tested our model on a gray-scale image (200×200 pixels) in Fig. 4.3 where we displayed the original (noisy) image and the restored one. In Fig. 4.4, we vary the level of noise in the input images. In the top row, we superpose the three noisy images corrupted by Gaussian noise having zero mean and standard deviation 25 In the bottom row, we show the restored images. Large gap inpainting: We test the proposed model in interpolating large gaps along the inpainting domain in response to the values of the two weights a and b in (2.1). More precisely, we want to see if our approach fulfills the connectivity principle. In Fig. 4.5, we give the restored images using total variation [START_REF] Chan | Mathematical models for local non-texture inpainting[END_REF], harmonic [START_REF] Chan | Mathematical models for local non-texture inpainting[END_REF] and biharmonic models (our model for α = β = 1), respectively. The harmonic inpainting does not achieve any connectedness and produces a smooth solution u in D, blurring the edges. TV inpainting is unable to connect and preserve the edge of the strip. In the same figure, we display the restored images using the model (2.1) for different values of a and b. In contrast to harmonic, TV and biharmonic models, the proposed approach is able to connect large gaps and edges are well-captured. The results show that we have to favor the fourth-order term by choosing b small, because, matching edges across large distance is the main interest of higher-order PDEs. We notice here that this example illustrates the main difference between this combined model and the pure fourth-or second-order models proposed in [START_REF] Belhachmi | Weighted harmonic and complex Ginzburg-Landau equations for gray value image inpainting[END_REF][START_REF] Theljani | A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery[END_REF]. In fact, considering only fourthorder model in [START_REF] Theljani | A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery[END_REF] allowed for reconstructing curved edges, and this can easy seen in the last image where the broken edges are connected but they suffer form a curvature which is not present in the original image. Whereas considering only the second-order model [START_REF] Belhachmi | Weighted harmonic and complex Ginzburg-Landau equations for gray value image inpainting[END_REF] allows for a similar result to the total variation, which means that the edges will be disconnected.

Curvature inpainting: In Fig. 4.6, we tested the adaptive algorithm for different values of the ratio b a in equation (2.1), in order to show the effects of each term (the fourth-and second-order one). We plot in Fig. 4.6 the restored images at the end of algorithm. It appears that if more weight is set on the second-order derivatives in (2.1), then the inpainted edge tends to be a straight line as expected (the length term is enforced). In fact, if we consider equation (2.1) without the fourth-order derivatives, the adaptive algorithm gives a solution u that converges to the one given by the Mumford-Shah model in the sense of the Γ-convergence [START_REF] Belhachmi | An adaptive approach for the segmentation and the TV-filtering in the optic flow estimation[END_REF][START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF]. It is well know that the preferable edge curves in the Mumford-Shah model are those which have the shortest length because the penalization term acts on the length of the edge only. Therefore, promoting the second term allows the model to favors straight edges to commit the connectivity principle in perception [START_REF] Chan | Mathematical models for local non-texture inpainting[END_REF]. In Fig. 4.6, we can see that the curvature is well inpainted which proves that our approach, based on fourth order linear diffusion models, allows us to obtain a very interesting result that one might expect by solving some more complex models like the Euler's elastica [START_REF] Shen | Euler's elastica and curvature-based inpainting[END_REF], which is highly nonlinear and numerically difficult to solve.

Blood vessel inpainting: The experiment in Fig. 4.7 shows the efficiency of the proposed method in the reconstruction of damaged parts of two-dimensional image representing a narrowed blood vessel. The zones to be inpainted are marked with red color. We illustrate in this example three advantages of the model. First, the ability of producing curved edges in region 1, second the ability, in region 2, of connecting edges across large distance, and third, in region 3, the ability of separating three vessels which from a T -junction. In Fig. 4.8, we display the mesh at different adaptation iterations. The mesh is coarsed in the homogeneous regions which makes the overall numerical procedure fast.

Noisy images inpainting: We illustrate in Fig. 4.9 the efficiency of the approach in the restoration of noisy and damaged image. Here, we add to the intact parts of the image a Gaussian noise, with zero mean and a standard deviation equal to 20. We used our algorithm to perform restoration and inpainting simultaneously. We can see that edges are connected (see Fig. 4.9) and the curvature is well reconstruted (see Fig. 4.10) while the known regions of the image were restored in parallel.

Conclusion.

We have investigated a combined second-and fourth-order PDE model for the image restoration and inpainting problems. We proved existence of a H 1 -solution for the evolution equation as well as its corresponding stationary problem. Then, we proposed a simple discretization based on mixed finite element and we detailed an adaptive strategy for the choice of the regularization parameters. The adaptation strategy produces good solutions that one might obtain by using more complex higher order PDEs. We performed numerical experiments by denoising images that have been corrupted by Gaussian noise. 
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 44 Figure 4.4. In the top row and from left to right: Input noisy image obtained by adding Gaussian noise with zero mean and standard deviation 10, 15 and 25, respectively. In the bottom: Restored images.
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 45 Figure 4.5. Connectivity across large gaps: First image: the damaged. Second line: Total variation, harmonic and biharmonic models and our model for the ration b a = 10, respectively. Third line: our model for the ratio b a = 5, 1, 0.1, and our model when b = 0 (i.e., only fourth-order derivatives).
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 46 Figure 4.6. Top row: Original and damaged images. Bottom row: Model (2.1) and adaptation: the ratio
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 47 Figure 4.7. From left to right: Damaged image,d restored one at iteration 1, restored images at iteration 5 and 20, respectively.
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 48 Figure 4.8. From left to right: Initial mesh, the adapted one at iteration 1, adapted meshes at iteration 5 and 20, respectively.
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