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We consider a multi-scale approach for the discrete approximation of a functional proposed by Bake and Zisserman (BZ) for solving image denoising and segmentation problems. The proposed method is based on simple and effective higher order variational model. It consists of building linear discrete energies family which Γ-converges to the non-linear BZ functional. The key point of the approach is the construction of the diffusion operators in the discrete energies within a finite element adaptive procedure which approximate in the Γ-convergence sense the initial energy including the singular parts. The resulting model preserves the singularities of the image and of its gradient while keeping a simple structure of the underlying PDEs, hence efficient numerical method for solving the problem under consideration. A new point to make this approach work is to deal with constrained optimization problems that we circumvent through a Lagrangian formulation. We present some numerical experiments to show that the proposed approach allows us to detect first and second-order singularities. We also consider and implement to enhance the algorithms and convergence properties, an augmented Lagrangian method using the alternating direction method of Multipliers (ADMM).

INTRODUCTION

Image denoising and segmentation problems have been intensively studied in the last decades and several approaches based on statistical methods, learning, wavelets or PDEs were developed with variable success have been registered, depending on the nature of the images under consideration (geometric features, textures, . . . ) [START_REF] Anis | High-order anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems[END_REF][START_REF] Peter | Total variation image restoration: numerical methods and extensions[END_REF][START_REF] Tony | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF][START_REF] Vese Luminita | Image denoising and decomposition with total variation minimization and oscillatory functions[END_REF][START_REF] Peter | Color TV: total variation methods for restoration of vector-valued images[END_REF][START_REF] Wenqi | Implementation of high-order variational models made easy for image processing[END_REF] . Both the difficulties and the advantages of each method are deeply related to a best handling of small singular sets (edges, corners,. . . ). In the PDEs community, a secondorder model, proposed first by Mumford and Shah (M-S) [START_REF] David | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] , turns out to be among the most successful. It consists of minimising the energy:

2 ∫ Ω∖Γ |∇ | 2 + 1 2 ∫ Ω 0 ( -) 2 +  1 ( ), (1) 
where is the (reconstructed) image, the initial image and is the set of the contours of .  1 denotes the 1-dimensional Hausdorff measure is the size of , which generalizes the length for regular curves. The variational framework, allows for various approximations of the Mumford & Shah functional in both continuous and discrete settings (see [START_REF] Tortorelli | Approximation of functional depending on jumps by elliptic functional via Γ-convergence[END_REF][START_REF] Chambolle | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF][START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF][START_REF] Braides | Non-local approximation of the Mumford-Shah functional[END_REF] . In [START_REF] Tortorelli | Approximation of functional depending on jumps by elliptic functional via Γ-convergence[END_REF] , Ambrosio and Tortorelli proposed an elliptic approximation on the Sobolev spaces via the Γ-convergence. In their approach, the discontinuity set is approximated by an auxiliary variable which plays the role of an indicator function intended to take the value 0 at the edges and 1 in the rest. In [START_REF] Chambolle | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF][START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] , a discrete approximation of the Mumford-Shah energy were proposed and it is based on a finite element discretization and an adaptive mesh strategy.

However, the Mumford-Shah functional fails to capture the "discontinuities of second kinds", i.e., the set of gradient discontinuity. This limitation produces also some staircasing effect. In order to overcome such shortcomings of the Mumford-Shah functional, Blake and Zisserman (B-Z) [START_REF] Blake | Visual reconstruction[END_REF] proposed a new variational model (1987) which exhibits a second order derivatives by considering the following energy:

∫ Ω⧵( ∪ ∇ ) |∇ 2 | 2 +  -1 ( ∩ Ω) +  -1 (( ∇ ⧵ )) ∩ Ω) + 1 2 ∫ Ω 0 ( -) 2 . ( 2 
)
The previous energy is defined in the class of functions of

2 (Ω) = { ∈ (Ω), ∇ ∈ (Ω)} .
It depends on the free discontinuities, free gradient discontinuities and second derivatives of (see [START_REF] Michele | A second order model in image segmentation: Blake & Zisserman functional[END_REF][START_REF] Michele | Strong minimizers of Blake & Zisserman functional[END_REF][START_REF] Andrea | A compactness result for a second-order variational discrete model[END_REF][START_REF] Luigi | Variational approximation of a second order free discontinuity problem in computer vision[END_REF] for more details).

The discontinuities of and of ∇ are "a priori "unknown, hence the associated minimization problem turns out to be essentially non trivial. A challenging problem is how to get effective and suitable numerical schemes for the computation of solutions for Blake-Zisserman energy? In the same spirit of the elliptic approximation of the Mumford-Shah energy, Ambrosio et al. (2001) proposed the following functional:

( ) = ∫ Ω 2 |∇ 2 | 2 + ∫ Ω ( 2 + )|∇ | 2 + ( -) ∫ Ω |∇ | 2 + ( -1) 2 4 + ∫ Ω |∇ | 2 + ( -1) 2 4 + 1 2 ∫ Ω 0 ( -) 2 , (3) 
defined on Sobolev spaces. The minimization of the previous energy acts not only on the restored image but also on two auxiliary functions: which is a control function for ∇ and which is a control function of the Hessian of , i.e., ∇ 2 (see [START_REF] Blake | Visual reconstruction[END_REF][START_REF] Zanetti Massimo | Numerical minimization of a second-order functional for image segmentation[END_REF] ). Thus, the functional implies a minimization over the variables ( , , ) of a non-linear PDEs system. Besides, one of the limitation of this method is the dependency on threshold parameters, producing thickness around the edges. But a major shortcoming is the knowledge of the exact constants and the difference of which gives exactly the size ⧵ ∇ and which is difficult, if not impossible to have a priori.

CONTRIBUTION AND ORGANIZATION OF THE PAPER

In previous works, we have proposed another approach close to the one followed by [START_REF] Chambolle | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF] , based on the construction of a family of discrete energies which converge (in the Γ-convergence sense) to MS -like functional, i.e. with the length term  1 ( ), [START_REF] Anis | A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery[END_REF][START_REF] Zakaria | WEIGHTED HARMONIC AND COMPLEX GINZBURG-LANDAU EQUATIONS FOR GRAY VALUE IMAGE INPAINTING[END_REF] . The method acts essentially with two ingredients: a tight location of the singular set using a posteriori error indicators, and a decreasing of a diffusion function which inhibits the diffusion cross the edges. the method doesn't uses threshold parameters and the length of singular sets is controlled by the Lebesgue measure of the set where the diffusion value is minimal. In this article, we follow this idea and build a Γ-convergent family of discrete energies which aims to obtain, in the limit, the BZ-energy. We consider the following higher order energy

( ) = 1 2 ∫ Ω ( )|∇ 2 | 2 + 1 2 ∫ Ω ( )|∇ | 2 + 1 2 ∫ Ω | -| 2 + 2 2 ∫ Ω |∇ -∇ | 2 , ( 4 
)
where 0 < ≤ , 0 < ≤ . ∇ 2 is the Hessian matrix of , 1 > 0, 2 ≥ 0. The first and the second part in the energy (4) are regularization terms. The third part is a data fidelity term which enforce the solution to be close to the initial image (in the 2 or 1 norms). We emphasize that under this expression the relevant information on the singularity set and ∇ is contained in the diffusion functions and , but the set ⧵ ∇ is contained in the set ∈ Ω; = Λ > . We notice also that taking 2 > 0, adds a term which is not in the initial BZ functional; this term is only added to enhance the gradient of .

In order to solve problem (4), we consider a Lagrangian approach , where we transform our problem in a constrained minimization one, by considering as a variables and = ∇ , this has also the advantage of leading to solve only second order problems. Thus, problem (4) takes the form

min ,  1 ( ) +  2 ( ), subject to + = 0,
where  1 (⋅) and  1 (⋅) are (second order) convex functions, and are linear operators (namely ∇ and the identity). Then, we make an alternating process to solve separately  1 (⋅) (with fixed and ) and  2 (⋅) (with fixed , ). In each step, we perform the adaptive strategy with and obtained following the method in [START_REF] Belhachmi | An adaptive approach for the segmentation and the TV-filtering in the optic flow estimation[END_REF][START_REF] Anis | A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery[END_REF][START_REF] Zakaria | WEIGHTED HARMONIC AND COMPLEX GINZBURG-LANDAU EQUATIONS FOR GRAY VALUE IMAGE INPAINTING[END_REF] . The selection of these functions is performed locally and adaptively -using error indicators and an efficient mesh adaptation -, to decrease with explicit formulae their values close to edges and corners. These considerations lead to an overall approach that is numerically easy, low cost (in the sense that homogeneous regions are coarsed in the meshes), and efficient in determining the singular sets without a priori knowledge except that they have some length.

E-I

The paper is organized as follows: In section 2, we prove the existence of solution of the minimization problem (4) under a variational mixed formulation and we introduce the Lagrangian formulation. In section 3, we build a family of discrete approximation energies and perform the analysis in the framework of Γ-convergence approach. We give the main algorithm and the a posteriri error indicators which allows us to perform the diffusion coefficients selection that preserves the singular sets for the function and its gradient. In section 4, in order to improve the convergence rate of the algorithm we present an alternative approach to deal the higher order model ( 4) via an augmented Lagrangian formulation. In particular, we use an ADMM algorithm (alternating direction descent) to enhance the convergence of the Lagrange multiplier variable. In section 5, we present several numerical simulations to show that both singularities of first and second kind are preserved while the diffusion operators act as high order filtering in the homogeneous zones. We give some conclusions and perspectives to the proposed approach.

SPLITTING METHOD

The minimization of the energy (4) leads to a fourth-order partial differential equation. In this work, we consider the following constrained optimization problem:

1 2 ∫ Ω ( )|∇ | 2 + 1 2 ∫ Ω ( )|∇ | 2 + 1 2 ∫ Ω | -| 2 + 2 2 ∫ Ω | -∇ | 2 , ( 5 
) . . ∇ = , (6) 
Thus, the previous optimization problem splits as follows:

min ( , )∈ 1 (Ω)× 1 (Ω)  1 ( ) +  2 ( ), subject to (6) (7) 
where

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩  1 ( ) = 1 2 ∫ Ω ( )|∇ | 2 + 1 2 ∫ Ω | -| 2  2 ( ) = 1 2 ∫ Ω ( )| ( )| 2 + 2 2 ∫ Ω | -∇ | 2 and = 1 2 = 1 2 , ( ) = 1 1 1 2 2 1 2 2 .
Proposition 1. The problem (5) admits a unique solution ( * , * ) ∈ 1 (Ω) × 1 (Ω)

Proof. The functional  (⋅, ⋅), as a sum of norms, is continuous, strictly convex on 1 (Ω)× 1 (Ω). In fact, let

( 1 , 1 ), ( 2 , 2 ) ∈ 1 (Ω) × 1 (Ω) such that ( 1 , 1 ) ≠ ( 2 , 2 )
and ∈]0, 1[, then we have:

 ( 1 , 1 ) + (1 -) ( 2 , 2 ) ≥ min( 2 , (1 -) 2 ) ⎡ ⎢ ⎢ ⎣ ∫ Ω ( )|∇( 1 -2 )| 2 + 1 ∫ Ω | 1 -2 | 2 ⎤ ⎥ ⎥ ⎦ + min( 2 , (1 -) 2 ) ⎡ ⎢ ⎢ ⎣ ∫ Ω ( )| ( 1 -2 )| 2 ⎤ ⎥ ⎥ ⎦ + 2 ∫ Ω | 1 -2 | 2 > 0. (8) 
We also have that  (⋅, ⋅) is coercive and weakly lower semi continuous in 1 (Ω) × 1 (Ω). Moreover, the feasible set  = {( , ) ∈ 1 (Ω)× 1 (Ω), ∇ = } of the previous minimization problem is non empty, closed and convex set of 1 (Ω)× 1 (Ω). Thus, the existence and the uniqueness follows from classical results of calculus of variations [START_REF] Belhachmi | Mortar spectral element discretization of nonhomogeneous and anisotropic Laplace and Darcy equations[END_REF] Remark 1. Note that when 2 = 0, we modify in a standard way the space for , such that ∈ 1 ⧵ ℝ.

A Lagrangian algorithm

We introduce the space

0 (div, Ω) = ∈ ( 2 (Ω)) 2 ; div ∈ 2 (Ω); ⋅ = 0, on Ω .
We associate to the primal problem (2.1) -(2.2) the following Lagrangian form:

 1 ( , , ) =  1 ( ) +  2 ( ) -∫ Ω ⋅ + div , ( 9 
)
We can show that the there exists a saddle-point ( * , * , * ) ∈ 1 × × 0 (div, Ω) of the Lagrangian  1 (⋅). In fact, let  be the dual functional of  1 (⋅), which is defined by the following concave functional:

( ) = inf ∈ 1 (Ω), ∈ 1 (Ω)  1 ( , , )
Then, the dual problem consists in solving the following maximization problem:

max ∈ 0 (div,Ω) ( ). (10) 
Then, since the constraint convex minimization problem (4) has a unique optimal solution ( * ; * ), and the dual concave problem (10) also has an optimal solution * , it follows that ( * ; * ; * ) is a saddle point for  1 (⋅).

DISCRETE APPROXIMATION AND Γ-CONVERGENCE

In the sequel, we follows the adaptive method proposed in [START_REF] Anis | A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery[END_REF][START_REF] Belhachmi | Control of the effects of regularization on variational optic flow computations[END_REF] for the discrete approximation of Mumford-Shah energy (in the scalar case) and we explain how it can be extended to our case for the the variables , and . Notice that the Lagrangian is not convex in and thus this part of the energy should be treated separately within the data term.

Γ-convergence

In [START_REF] Tortorelli | On the approximation of free discontinuity problems[END_REF] , the authors proposed an adaptive approach which is based on two ingredients [START_REF] Belhachmi | Control of the effects of regularization on variational optic flow computations[END_REF] : the usual mesh adaptation and a "functional" adaptation which consists in choosing locally the diffusion coefficients in order to "cut" high gradients of the computed solution. This approach turns out to be a well suited finite element approximation with a family of discrete energies, in the Γ-convergence sense [START_REF] Braides | Gamma-Convergence for Beginners[END_REF] to the Mumford-Shah functional [START_REF] David | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] (see [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] for more details). For a fixed angle 0 < 0 ≤ 2 ∕3, a constant ≥ 6, and for > 0, let  (Ω) =  (Ω; 0 ; ) be the set of all triangulations of Ω whose triangles have the following characteristics:

(i) The length of each of the three edges of is between and .

(ii) The three angles of are greater than or equal to 0 .

Let (Ω) be the set of all continuous functions ∶ Ω ←→ ℝ such that is affine on each triangle of a triangulation ∈  (Ω). For a given , we define  ( ) ⊂  (Ω) as the set of all triangulations adapted to the function , i.e., such that is piecewise affine on . We consider a non-decreasing continuous function ∶ [0, +∞) ←→ [0, +∞), ( = 1, 2) such that:

lim →0 ( ) = 1, lim →+∞ ( ) = ,∞ < +∞.
(one may take for such a concave regularization of ( ) = min( , ∞ )). For any = ( , ) ∈ ( (Ω)) [START_REF] Tony | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF] , ( > 1) and ∈  (Ω), following [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF][START_REF] Chambolle | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF][START_REF] Belhachmi | An adaptive approach for the segmentation and the TV-filtering in the optic flow estimation[END_REF] we consider the finite dimensional minimization problem:

( ) = min ∈ (Ω) ̃ ( , ), (11) 
where

̃ ( , ) = ⎧ ⎪ ⎨ ⎪ ⎩ ∑ ∈ | ∩ Ω| 1 ℎ 1 (ℎ |∇ | 2 ) + | ∩ Ω| 1 ℎ 2 (ℎ |∇ | 2 ), ∈ ( (Ω)) 3 , ∈  (Ω), +∞, otherwise.
When goes to zero and provided 0 is less than some Θ > 0, we have that converges, in the Γ-convergence sense to the functional given by:

( ) = ⎧ ⎪ ⎨ ⎪ ⎩ ∫ Ω |∇ ( )| 2 + |∇ ( )| 2 + 1,∞  1 ( ) + 2,∞  1 ( ), ∈ ( 2 (Ω) ∩ (Ω)) 3 , +∞, ∈ ( 2 (Ω)∖ (Ω)) 3 .
where (Ω) is the space of generalized special functions of bounded variation (see [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF][START_REF] Chambolle | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF][START_REF] Belhachmi | An adaptive approach for the segmentation and the TV-filtering in the optic flow estimation[END_REF] for details). This means, in particular, that minimizers of converge to a minimizer of .

Remark 2. Notice the following important property that we will use next. If ∶ ←→ [-∞, +∞] is continuous and ( ) Γ-converges to , then ( + ) Γ-converges to + . Remark 3. Notice also that at this stage, the Γ-limit is different than BZ energy that we want to approximate as the singular sets and have no reason to be disjoints.

In the sequel, we better clarify the iterative algorithm used in this work (which mimic the proof of Γ-convergence), and we will see the role and the way to "compute" the diffusion coefficients and . For this purpose, let be the Legendre-Fenchel transform of ( , ) = 1 ( ) + 2 ( ) (concave for both variables). Then, we have ( , ) = 1 ( ) + 2 ( ) where 1 and 2 are the Legendre-Fenchel transforms of -( 1 ) and -( 2 ), respectively. For a given triangulation , it is readily checked (from convex analysis arguments) that the minimization of is equivalent to the minimization problem

′ ( , 1 , ) = ∑ ∈ | ∩ Ω| |∇ | 2 + 1 ( ) ℎ + ∑ ∈ | ∩ Ω| |∇ | 2 + 2 ( ) ℎ ,
over all = ( , ) and 1 = ( , ) where ∈ (Ω) and = ( ) ∈ (Ω) , ∈ ( (Ω)) 2 and = ( ) ∈ (Ω) , piecewise constant on each ∈  . Now, the minimization over each and which may be explicitly computed by:

= ′ 1 (ℎ |∇ | 2 ) and = ′ 2 (ℎ |∇ | 2 ). (12) 
Then, the choice of and depends on the functions 1 and 2 and may be computed analytically without solving any PDE. An example of such choices could be given by :

( ) = 2 ,∞ arctan ( 2 ,∞ ),
which produces smoothly decreasing sequences and (as the inverse of the magnitude of the respective gradients squared). Whereas, the minimizers ( , ) solve, up to the data terms,

( , ) = ∑ ∈ ∫ ∩Ω |∇ | 2 + ∑ ∈ ∫ ∩Ω |∇ | 2 (13) 
To complete the Γ-convergence analysis, let us denote the fidelity term of the Lagrangian by

Φ( , ; ) = 1 2 ∫ Ω | -| 2 + ∫ Ω | -∇ | 2 -∫ Ω ⋅ + div .
It is readily checked that Φ is continuous in ( 2 (Ω)) [START_REF] Tony | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF] × 0 (div, Ω), hence using remark -2, and Γ-convergence of the sequence to , yields:

Proposition 2. Let be a given function in 2 (Ω) and > 0 be a positive parameter. Then the sequence of functionals ( (⋅) + Φ(⋅, ⋅; )) , Γ-converges for ←→ 0. ( (⋅) + Φ(⋅, ⋅; )).

Remark 4. The Lagrange multiplier in the algorithm makes the data term also dependent on . However, due to the continuity of Φ, for this third variable, in (div, Ω) this dependance does not affect the Γ-convergence of + Φ. More we precisely, we write Φ(., ), as Φ(., ) plus (Φ(., ) -Φ(., )) and use the strong convergence of the last term and the remark 2.

To conclude this section, let us interpret in term of a PDE the Γ-limit of each functional , i.e., corresponding to and . The minimizers ( , ) converge to a minimum ( , ) of while ( ), respectively ( ), converges to 1 Ω⧵ , respectively 1 Ω⧵ . The singular sets are identified as the sets where lim ←→0 = 0 for , respectively lim ←→0 = 0 for . Notice that the two singular sets are not necessarily disjoints. However, the Hausdorff measure of each set is bounded (tightly) by the Lebesgue measure of the corresponding sets = , respectively = . Moreover, the Hausdorff measure of the set ∇ ⧵ is then controlled by | > , and = |. The constants in the BZ functional (or its elliptic regularization) are obtained directly from the data and not chosen a priori.

Alternate descent algorithm and adaptive approach

Following the method in [START_REF] Belhachmi | An adaptive approach for the segmentation and the TV-filtering in the optic flow estimation[END_REF][START_REF] Anis | A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery[END_REF] , we consider an alternate descent minimization scheme over ( , , ), , and which reads:

′ ( , 1 , ) + Φ( , ; ), (14) 
The alternate minimization is combined with an adaptive algorithm to approximate B-Z energy, see also [START_REF] Belhachmi | Control of the effects of regularization on variational optic flow computations[END_REF] . Mainly, we use mesh and "functional" adaptation which consists in choosing locally the diffusion coefficients and in order to "cut" high gradients of the computed solution and its gradient . More precisely, we consider the following algorithm Algorithm 1 MINIMIZATION METHOD:

1. Initialization: choose 0 = ( 0 , 0 , 0 ), 0 and 0 .

2. Iterations: for fixed and , find +1 = ( +1 , +1 ) ∈ (Ω) [START_REF] Tony | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF] and +1 ∈ (Ω) [START_REF] Peter | Total variation image restoration: numerical methods and extensions[END_REF] , solution of problem (13).

with

+1 and +1 fixed: a) Update with mesh refinement step (in our case using the metric adaptation with FreeFem++).

b) Perform a local choice of ( ) and ( ) on  +1 ℎ to obtain new functions +1 and +1 . (using a posteriori error indicators).

Go to step (1) until convergence.

The step ), plays the role of minimization over a class of triangulations  , and allows us to obtain a tight location of the singular sets as the residual error indicator is high (or equivalently with the metric adaptation). This means exactly that this locations are the candidate to contain the singularities. We emphasize that we obtain also an approximate solution to problem (14).

For a given and and , the step b) will consists in decreasing the diffusion parameters. Contrary to the scalar case, when a part of the singular set is located with the step ) we don't know whether this part is in or or both. Thus, to perform this step, we first consider the following local error indicators

= 1 2 ‖∇ ℎ ‖ 2 ( ) and ′ = 1 2 ‖∇ ℎ ‖ 2 ( ) , ( 15 
)
to decide which parameter ( , or both) we decrease. The change in the intensity of the image, respectively the brightness, indicate the set , respectively . Thus we may know which parameter to change. The map of the above errors indicator allows us to update locally and on each triangle using either the formula (12), or the following one (fast decreasing) [START_REF] Belhachmi | An adaptive approach for the segmentation and the TV-filtering in the optic flow estimation[END_REF][START_REF] Anis | A multiscale fourth-order model for the image inpainting and low-dimensional sets recovery[END_REF] and which is given by

+1 = max ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 + ‖ ‖ ∞ -0.1 + , ℎ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠
, where ℎ is a threshold parameter and is a coefficient chosen to control the rate of decrease in , + = max( , 0). The same formula is used to update the function ( ) and where is replaced by ′ . Notice that equivalently, we can use the residual errors indicators related to the discrete and subproblems.

Let us gives the details for the step 2. of the algorithm

The -subproblem For , and fixed, the -subproblem is quadratic and consists in solving the following minimization problem:

min ∈ 1 (Ω) { ∑ ∈ ∫ ∩Ω |∇ | 2 + Φ( , ; )} (16) 
The minimizer +1 satisfies the following first-order optimality condition

-Δ +1 + 1 +1 = 1 -div , in Ω, +1 = 0, in Ω,
The -subproblem For a fixed +1 , and , the -subproblem consists in solving the following minimization problem:

min ∈ 1 (Ω) { ∑ ∈ ∫ ∩Ω |∇ | 2 + Φ( , ; )} (17) 
which clearly admits a unique solution +1 which fulfils:

-Δ +1 + 2 +1 = 2 ∇ -, in Ω, +1 = 0, in Ω,

The -subproblem

The multiplier updates linearly as follows: for a given parameter (small)

+1 = + ( +1 -∇ +1 ). (18) 
Remark 5.

1. The existence of solutions of -and -problems follows from standard techniques of calculus of variations. In fact, it is readily checked by direct calculation that the functional to be minimized are strictly convex, coercive and weakly lower semi-continuous.

2. Notice that problems ( 16) and ( 17) may be solved in parallel to accelerate the convergence.

3. The role of 2 > 0 appears clearly at this step to deal with a "non degenerate" Neumann problem.

AUGMENTED LAGRANGIAN FORMULATION AND ALTERNATING DIRECTIONS METHOD OF MULTIPLIERS (ADMM)

In order to enhance the quality and the cost of the numerical computations, we use the Augmented Lagrangian formulation, which will be solved using the alternating directions method of multipliers (ADMM). The ADMM is one of the most extensively used algorithms to solve constrained optimization problems, particularly for augmented Lagrangian formulations (see [START_REF] Stephen | Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[END_REF][START_REF] Yu | Global convergence of ADMM in nonconvex nonsmooth optimization[END_REF][START_REF] Roland | Lectures on numerical methods for non-linear variational problems[END_REF][START_REF] Tom | Fast alternating direction optimization methods[END_REF] and the references therein).

In our case, we associate to the primal problem (2.1) -(2.2) the following augmented Lagrangian form:

 ( , , ) = ∑ ∈ ∫ ∩Ω |∇ | 2 + |∇ | 2 -⋅ + div + 2 | -∇ | 2 (19) = ∑ ∈ ∫ ∩Ω ( + 2 )|∇ | 2 + |∇ | 2 + 2 2 -⋅ ( + ∇ ) + div (20) 
for > 0 (usually = 1). The ADMM iterations consists in minimizing  (⋅, ⋅, ) with respect to one variable and keeping the other fixed. The Lagrange multiplier is up dated at each step in the algorithm and takes the same form (18) as for the classical Lagrangian method. The only change comparing to Algorithm is the and subproblems. The overall algorithm consists in the following steps:

Algorithm 2 ADMM ALGORITHM Given , , , .

Starting guess: 0 ∈ 1 (Ω), 0 ∈ 0 (div Ω) and 0 ∈ 1 (Ω). For = 0, 1, 2, ⋯ until convergence:

1. Update +1 by +1 = arg min  ( , , ).

2. Update +1 by solving +1 = arg min  ( , , ).

3. Update +1 by solving +1 = + ( +1 -∇ +1 ).

In the new formulation, problems ( 16) and ( 17) are replaced by

⎧ ⎪ ⎨ ⎪ ⎩ -Δ + 2 +1 + 1 +1 = 1 -div -div , in Ω, +1 = 0, in Ω, and -Δ +1 + 2 +1 + +1 = 2 ∇ + ∇ +1 -, in Ω, +1 = 0, in Ω.

The convergence of the ADMM algorithm

There are many convergence results for ADMM discussed in the literature [START_REF] Eckstein | Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results[END_REF][START_REF] Robert | A general analysis of the convergence of ADMM[END_REF][START_REF] Stanley | Plug-and-play ADMM for image restoration: Fixed-point convergence and applications[END_REF] . The convergence is guaranteed if the following assumptions are satisfied.

• Energies  1 (⋅) and  2 (⋅) are convex, closed and proper.

• The augmented Lagrangian  admits a saddle point ( * , * , * ) ∈ 1 × × 0 (div, Ω).

The first assumption is satisfied as each of the -and -subproblems admits a unique solution. For the second assumptions, we can show that the there exists a unique saddle-point ( * , * , * ) ∈ 1 × × 0 (div, Ω) of the augmented Lagrangian  . In fact, any saddle-point of the augmented Lagrangian  (⋅) is also a saddle-point of the Lagrangian  1 (⋅) in (9), which has a unique saddle point. Remark 6. The use of the ADMM seems to enforce the diffusivity on the function , which may cause loosing its singularities set. Moreover, the analysis of the Γ-convergence is questionable in the new formulation. To keep the adaptive algorithm able to detect the singularities sets of , we set a new diffusivity function

( ) = ( ) +
2 . Then, we adapt the function using the same formula and the we rescale it into the interval [ -2 , -2 ]. Thus, we will be able to detect singularities from the adaptation and the new diffusivity fulfils 0 < ≤ ( ) ≤ , which guarantees the well-posedness of the -problem.

NUMERICAL EXAMPLES

In this section, numerical experiments are conducted on images that are corrupted by Gaussian noise. We test the proposed model for first-and second-order discontinuities detection. For the denoising task, we compare our approach with the total variation model (TV) [START_REF] Vese Luminita | Image denoising and decomposition with total variation minimization and oscillatory functions[END_REF][START_REF] Peter | Total variation image restoration: numerical methods and extensions[END_REF] and a high-order model that we call HOM, which corresponds the energy (4) for (⋅) ≡ ≡ (⋅) = 1. The original image were corrupted with Gaussian noise having zero mean and different standard deviations, i.e., between 10 and 15.

Edge detection

In Fig 1 , we test proposed model for ≠ 0 and = 0 for edge detection. We note that the case = 0 corresponds to the discrete approximation of the Mumford-Shah energy [START_REF] Belhachmi | An adaptive approach for the segmentation and the TV-filtering in the optic flow estimation[END_REF][START_REF] Chambolle | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF] . The values of the functions and are 1 (white) on homogeneous areas and they are 0 (black) in correspondence of the edges of and ≈ ∇ . It is clear the map is unable to detect the gradient discontinuity. These are regions where is continuous while ∇ is discontinuous. The output map of our approach is given by meaningful boundaries corresponding to the discontinuity set of its first derivatives.

Lagrangian vs Augmented Lagrangian

In Figure 2 , we show the result of the proposed model, solved using the Lagrangian and ADMM, respectively. for both approaches, We display the denoised images, the Lagrange multiplier = ( 1 , 2 ) and the final mesh. The results of both approaches look visually similar, however, the ADMM is much faster for solving the model ( 5)- (6).

Image denoising and edges detection

In Figure 3 , we test the proposed model, solved by ADMM, in denoising a satellite image which has some fine structures, correspond to the roads. We show the denoised image, the maps of and . The function maps the discontinuity of and the function which maps the discontinuities of , i.e., approximates the gradient of . Form the map of , it clear that latter suitable in detecting fine structures. We also test the model in denoising a medical image, which contains some smooth regions and edges. In these regions, the gradient of the image should discontinuous and they can seen in the map of .

Medical image denoising and edges detection

In the last example, we give in Figure 4 the results obtained with the proposed model solved with the Lagrangian and with ADMM for medical images. We present the plot of and and the final mesh. This example show the efficiency of the method for medical images where in addition to the variety of fine structures to be detected, the high resolution of the images should also be considered.

We compare the proposed model with the total variation (TV) and the high-order (HOM) models. In Figure 5 , we display the restored image we give the PSNR values, which confirm that the proposed model can deliver better denoising quality than the other models. We also display the diffusion functions and which indicates regions that approximate the discontinuity sets of and ∇ , i.e., and ∇ , respectively.

CONCLUSION

In this paper, we proposed a novel variational model with the good performance such as the alleviation of the staircase effect and the preservation of the edges. By using an alternative approach, we obtain two simple subproblems, acting for alternatively for the solution and its first order derivatives ∇ . To solve these subproblems, the ADMM algorithm was used in the numerical computation. The use of the ADMM allowed as to see the initial model, which is of high order, as two first-order variational models with unknowns and ∇ . Then, we performed an adaptive strategy based on the objective selection of the regularization parameters appeared in both energies and mesh adaptation techniques. Analysing the proposed algorithm using Γ-convergence tools draw connections with the Blake and Zisserman energy. The numerical experiments have demonstrated the effectiveness of our proposed method. 
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 12 FIGURE 1Example of first-and second-order discontinuities detection using our model
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 3 FIGURE 3 Example of denoising and detection of thin structures (roads) using our model. The coefficient (⋅) is clearly more efficient than (⋅) for this task.
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 4 FIGURE 4 Our model solved by Augmented Lagrangian and ADMM: Example of medical image denoising and edges detection.
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 5 FIGURE 5 Medical image denoising and edges detection: Comparison between Total variation model (TV), the high-order model (LLT) and our model.