

Comment on "The global tree restoration potential"

Joseph Veldman, Julie Aleman, Swanni Alvarado, T. Michael Anderson, Sally Archibald, William Bond, Thomas Boutton, Nina Buchmann, Elise Buisson, Josep Canadell, et al.

▶ To cite this version:

Joseph Veldman, Julie Aleman, Swanni Alvarado, T. Michael Anderson, Sally Archibald, et al.. Comment on "The global tree restoration potential". Science, 2019, 366 (6463), pp.eaay7976. 10.1126/science.aay7976. hal-0.02463305

HAL Id: hal-02463305 https://hal.science/hal-02463305v1

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Title: Comment on "The global tree restoration potential"

Authors:

5

10

20

25

30

Joseph W. Veldman^{1,2*}†, Julie C. Aleman^{1,3}, Swanni T. Alvarado^{4,5}, T. Michael Anderson⁶, Sally Archibald⁷, William J. Bond⁸, Thomas W. Boutton¹, Nina Buchmann⁹, Elise Buisson¹⁰, Josep G. Canadell¹¹, Michele de Sá Dechoum¹², Milton H. Diaz-Toribio¹³, Giselda Durigan¹⁴, John J. Ewel¹³, G. Wilson Fernandes¹⁵, Alessandra Fidelis¹⁶, Forrest Fleischman¹⁷, Stephen P. Good¹⁸, Daniel M. Griffith¹⁹, Julia-Maria Hermann²⁰, William A. Hoffmann²¹, Soizig Le Stradic²², Caroline E. R. Lehmann^{23,24}, Gregory Mahy²⁵, Ashish N. Nerlekar¹, Jesse B. Nippert²⁶, Reed F. Noss²⁷, Colin P. Osborne²⁸, Gerhard E. Overbeck²⁹, Catherine L. Parr^{30,31,7}, Juli G. Pausas³², R. Toby Pennington^{33,23}, Michael P. Perring^{34,35}, Francis E. Putz¹³, Jayashree Ratnam³⁶, Mahesh Sankaran^{37,38}, Isabel B. Schmidt³⁹, Christine B. Schmitt^{40,41}, Fernando A. O. Silveira⁴², A. Carla Staver⁴³, Nicola Stevens⁴⁴, Christopher Still⁴⁵, Caroline A. E. Strömberg⁴⁶, Vicky M. Temperton⁴⁷, J. Morgan Varner⁴⁸, Nicholas P. Zaloumis⁴⁹

Affiliations:

¹Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843-2138, USA.

²Instituto Boliviano de Investigación Forestal, Casilla 6204, Santa Cruz, Bolivia.

³Département de Géographie, Université de Montréal, Montreal, QC H3C 3J7, Canada.

⁴Programa de Pós-graduação em Agricultura e Ambiente, Universidade Estadual de Maranhão (UEMA), Balsas, Maranhão, Brazil.

⁵Programa de Pós-graduação em Geografia, Natureza e Dinâmica do Espaço, Universidade Estadual de Maranhão (UEMA), São Luis, Maranhão, Brasil.

⁶Department of Biology, Wake Forest University, Winston-Salem, NC 27109 USA.

⁷Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa.

⁸Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa.

⁹Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland.

¹⁰Avignon Université, IMBE, CNRS, IRD, Aix Marseille Université, France.

¹¹Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia.

¹²Departamento de Ecologia e Zoologia, Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina, Brazil.

25

- ¹³Department of Biology, University of Florida, Gainesville, FL 32611-8526, USA.
- ¹⁴Floresta Estadual de Assis, Instituto Florestal do Estado de SP, 19807-300, Brazil.
- ¹⁵Departamento de Biologia Geral/ICB, Universidade Federal de Minas Gerais, 30161 Belo Horizonte MG, Brazil.
- ¹⁶Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), 13506-900, Rio Claro, Brazil.
 - ¹⁷Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA.
 - ¹⁸Department of Biological & Ecological Engineering, Oregon State University, Corvallis OR. 97330.
- ¹⁹Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA.
 - ²⁰Environmental Management, Evangelical-Lutheran Church District of Rendsburg-Eckernfoerde, Rendsburg, Germany.
 - ²¹Department of Plant and Microbial Biology, NC State University, Raleigh, NC, 27695, USA.
 - ²²Chair of Restoration Ecology, Department Ecology and Ecosystem Management, Technische Universität München, 85354 Freising, Germany.
 - ²³Royal Botanic Garden Edinburgh, Edinburgh, EH3 5LR, UK.
 - ²⁴School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.
 - ²⁵Terra Research Unit, Biodiversity and Landscape, Gembloux Agro-Bio Tech, University of Liège, Belgium.
- ²⁶Division of Biology, Kansas State University, Manhattan, KS 66506 USA.
 - ²⁷Florida Institute for Conservation Science, 1255 E Peppertree Dr., Apt. 407, Siesta Key, FL 34242, USA.
 - ²⁸Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
 - ²⁹Department of Botany, Universidade Federal do Rio Grande do Sul, 91501970 Porto Alegre, RS, Brazil.
 - ³⁰School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK.
 - ³¹Department of Zoology & Entomology, University of Pretoria, South Africa

15

- ³²Desertification Research Center (CIDE-CSIC), Valencia, Spain.
- ³³Geography, University of Exeter, EX4 4QE, UK.
- ³⁴Forest & Nature Lab, Department of Environment, Ghent University, Belgium.
- ³⁵Ecosystem Restoration and Intervention Ecology Research Group, School of Biological Sciences, The University of Western Australia, Crawley WA 6009, Australia.
- ³⁶Wildlife Biology and Conservation Program, National Centre for Biological Sciences, GKVK Campus, Bengaluru 560065, India.
- ³⁷National Centre for Biological Sciences, TIFR, Bengaluru 560065, India.
- ³⁸School of Biology, University of Leeds, Leeds LS2 9JT, UK.
- ³⁹Departamento de Ecologia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
 - ⁴⁰Center for Development Research (ZEF), University of Bonn, Germany.
 - ⁴¹Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Germany.
 - ⁴²Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
 - ⁴³Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA.
 - ⁴⁴Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, 7602, South Africa.
 - ⁴⁵College of Forestry, Oregon State University, Corvallis, OR 97331, USA.
- ⁴⁶Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle WA 98105, USA.
 - ⁴⁷Institute of Ecology, Faculty of Sustainability, Leuphana University Lüneburg, 21335 Lüneburg, Germany.
 - ⁴⁸Tall Timbers Research Station and Land Conservancy, Tallahassee, FL 32312, USA.
- 25 ⁴⁹7708, Cape Town, South Africa.
 - *Corresponding author: veldman@tamu.edu (J.W.V.)
 - †All other authors are listed alphabetically by last name

Abstract:

Bastin *et al.*'s estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change mitigation could sequester 205 gigatons of carbon is approximately five times too large. Their analysis inflated soil organic carbon gains, failed to safeguard against warming from trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to be restoration.

Main Text:

5

10

15

20

Bastin *et al.* (1) used remote sensing and machine learning to estimate that global "tree restoration" could sequester 205 gigatons of carbon (GtC). If accurate and achievable, this would constitute an astounding accomplishment, equal to 20 times the current annual fossil fuel emissions (10 GtC/yr) (2) and about one-third of total historical anthropogenic emissions (660 GtC) (2). Unfortunately, key assumptions and data underlying Bastin *et al.*'s analyses are incorrect, resulting in a five-fold overestimate of the potential for new trees to capture carbon and mitigate climate change. We show that Bastin *et al.*: (i) overestimated soil carbon gains from increased tree cover by a factor of two; (ii) modeled new tree cover in regions where trees reduce albedo and increase climate warming (3,4); and, (iii) relied heavily on afforestation of grasslands and savannas—biodiverse ecosystems where fires and large herbivores have maintained low tree cover for millions of years (5,6).

Bastin *et al.*'s inflation of soil carbon gains resulted in a ~98 GtC overestimate of potential carbon sequestration (Table 1). They mistakenly assumed treeless areas have no soil organic carbon (SOC) and that SOC increases in direct (1:1) proportion with tree cover. The contribution of SOC to total carbon stocks is substantial in most terrestrial ecosystems. In humid tropical savannas, for example, 85% of all carbon is in soils (174 tons of SOC per hectare) (7). In boreal

10

15

20

forests, 64% of carbon occurs in soils (8). North American grasslands can store as much carbon in soil (9) as tropical forests store as biomass (8). In Table 1, we display SOC-corrected carbon sequestration estimates that use more realistic (literature-derived) values for the changes in SOC that occur with afforestation and reforestation.

In addition to the SOC overestimate, Bastin $et\ al$. did not account for the warming effect of trees due to decreased albedo (3,4). Trees, particularly evergreen conifers, are less reflective than snow, bare ground, or grasses, and thus absorb more solar energy, which is ultimately emitted as heat. At high latitudes and elevations, the warming effect of trees is greater than their cooling effect via carbon sequestration (3,4). Similarly, trees planted in low-latitude, semi-arid regions can produce net warming for decades before carbon sequestration benefits are realized (10). Because, at a minimum, carbon from trees planted in boreal forests, tundra, or montane grasslands and shrublands should not be counted as climate change mitigation (Bastin $et\ al$. counted an SOC-corrected 17 GtC), in Table 1, we provide a corrected estimate that excludes these biomes.

The carbon sequestration estimate of Bastin *et al.* is also dependent on the false assumption that natural grasslands and savannas with fewer trees than predicted by their statistical model are "degraded" and in need of restoration (11). Ecological restoration of savannas and grasslands rarely involves planting trees, and more often requires tree-cutting and prescribed fire to promote biodiversity and ecosystem services (12). Yet after correcting for SOC, 43% of the carbon sequestration estimate of Bastin *et al.* comes from increased tree cover in grasslands, savannas, and shrublands (Table 1). Among all biomes, tropical grasslands are the largest contributor to Bastin *et al.*'s estimate of potential carbon sequestration (SOC-corrected 40 GtC or 37% of the global potential; Table 1).

Although Bastin *et al.*'s model, developed with climate and soil data in protected areas, may be reasonable in some of the driest and wettest places on Earth, any statistical approach to predict tree cover at intermediate precipitation (500 to 2,500 mm annually) must include the effects of fire, and where they still exist, large grazing and browsing animals (*13*). Because Bastin *et al.* failed to account for fire, their model had low predictive power across many of the open-canopy biomes they analyzed—as shown by their own uncertainty analysis. While we commend their intent to respect the "natural ecosystem type" by training their machine learning algorithm on protected areas, they map many of these same areas, particularly those with grassland-forest mosaics (e.g., Yellowstone National Park, USA), as opportunities for tree planting. Of additional concern, their method of interpolation between protected areas misrepresents some enormous savanna regions (e.g., western Los Llanos in Colombia is targeted for 75-100% tree cover), presumably because the protected areas are located in adjacent tropical forests, not savannas.

Bastin *et al.*'s model suggesting grasslands and savannas as potential sites for restoration using trees is inaccurate and misguided. Earth's savannas and grasslands predate humans by millions of years and formed through complex ecological and evolutionary interactions between herbaceous plants (grasses and forbs with extensive roots and underground storage organs), environmental change (climatic cooling, drying, changes in atmospheric CO₂), fires (first ignited by lightning, then by people), and large herbivores (*5*,*6*). These ecosystems and their iconic species are already gravely threatened by fire-exclusion and afforestation, processes which replace species-diverse biotic communities with lower-diversity forests (*14*). Carbon-focused tree planting will exacerbate these threats, to the detriment of people who depend on grasslands to provide livestock forage, game habitat, as well as ground- and surface-water recharge (*11*).

10

15

Moreover, trees planted in grasslands will be prone to carbon loss from fires. Because these detrimental effects should preclude tree planting in grasslands, savannas, and shrublands, we excluded these biomes from Bastin *et al.*'s estimate in Table 1.

In combination, our corrections for SOC, and corrections to avoid the unintended consequences of misguided tree planting (i.e., warming and biodiversity loss with afforestation), would reduce Bastin *et al.*'s estimate of potential carbon sequestration by a factor of five, to the still-substantial amount of ~42 GtC (Table 1). While ecological restoration, if carefully implemented, can have a role in mitigating climate change, it is no substitute for the fact that most fossil fuel emissions will need to stop to meet the targets of the Paris Agreement (*15*). Such action should be accompanied by policies that prioritize the conservation of intact, biodiverse ecosystems, irrespective of whether they contain a lot of trees.

References:

- 1. J. F. Bastin *et al.*, The global tree restoration potential. *Science* **365**, 76–79 (2019).
- 2. C. Le Quéré *et al.*, Global carbon budget 2018. *Earth Syst. Sci. Data* **10**, 2141–2194 (2018).
- 3. Y. Li, M. Zhao, S. Motesharrei, Q. Mu, E. Kalnay, S. Li, Local cooling and warming effects of forests based on satellite observations. *Nat. Commun.* **6**, 6603 (2015).
- 4. P. M. Mykleby, P. K. Snyder, T. E. Twine, Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests. *Geophys. Res. Lett.* **44**, 2493–2501 (2017).
- 5. C. A. E. Strömberg, Evolution of grasses and grassland ecosystems. *Annu. Rev. Earth Planet. Sci.* **39**, 517–544 (2011).
 - 6. J. W. Veldman *et al.*, Toward an old-growth concept for grasslands, savannas, and woodlands. *Front. Ecol. Environ.* **13**, 154–162 (2015).

20

- 7. J. Grace, J. S. José, P. Meir, H. S. Miranda, R. A. Montes, Productivity and carbon fluxes of tropical savannas. *J. Biogeogr.* **33**, 387–400 (2006).
- 8. Y. Pan *et al.*, A large and persistent carbon sink in the world's forests. *Science* **333**, 988–993 (2011).
- 9. R. B. Jackson, J. L. Banner, E. G. Jobbágy, W. T. Pockman D. H. Wall, Ecosystem carbon loss with woody plant invasion of grasslands. *Nature* **418**, 623–626 (2002).
 - 10. E. Rotenberg, D. Yakir, Contribution of semi-arid forests to the climate system. *Science* **327**, 451–454 (2010).
 - 11. J. W. Veldman *et al.*, Where tree planting and forest expansion are bad for biodiversity and ecosystem services. *BioScience* **65**, 1011–1018 (2015).
 - 12. E. Buisson *et al.*, Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. *Biol. Rev.* **94**, 590–609 (2019).
 - 13. A. C. Staver, S. Archibald, S. A. Levin, The global extent and determinants of savanna and forest as alternative biome states. *Science* **334**, 230–232 (2011).
- 14. R. C. R. Abreu, W. A. Hoffmann, H. L. Vasconcelos, N. A. Pilon, D. R. Rossatto, G. Durigan, The biodiversity cost of carbon sequestration in tropical savanna. *Sci. Adv.* 3, e1701284 (2017).
 - 15. IPCC, 2018: "Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty" [V. Masson-Delmotte *et al.* (eds.)].

10

15

20

- O. V. Menyailo, B. A. Hungate, W. Zech, Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment. *Plant Soil* 242, 171–182 (2002).
- 17. A. Don, J. Schumacher, A. Freibauer, Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. *Glob. Chang. Biol.* **17**, 1658–1670 (2011).
- 18. C. Poeplau *et al.*, Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. *Glob. Chang. Biol.* **17**, 2415–2427 (2011).
- 19. K. Makoto, S. V. Bryanin, V. V. Lisovsky, K. Kushida, N. Wada, Dwarf pine invasion in an alpine tundra of discontinuous permafrost area: effects on fine root and soil carbon dynamics. *Trees* **30**, 431–439 (2016).
- 20. J. P. Zhang, C. D. Shen, H. Ren, J. Wang, W. D. Han, Estimating change in sedimentary organic carbon content during mangrove restoration in southern China using carbon isotopic measurements. *Pedosphere* **22**, 58–66 (2012).
- 21. M. Hoogmoed, S. C. Cunningham, J. R. Thomson, P. J. Baker, J. Beringer, T. R. Cavagnaro, Does afforestation of pastures increase sequestration of soil carbon in Mediterranean climates? *Agric. Ecosyst. Environ.* 159, 176–183 (2012).

Acknowledgments:

J.W.V. thanks B.J. Danielson for many conversations on related topics. **Funding:** T.W.B. was supported by the Texas A&M Sid Kyle Global Savanna Research Initiative. N.B. was supported by Swiss National Science Foundation (20FI20_173691). E.B. was supported by Centre National pour la Recherche Scientifique CNRS PICS 2018-2020 [RESIGRASS]. G.D. was supported by CNPq (Brazil, 303179/2016-3). G.W.F was supported by CNPq (Brazil). A.F. was supported by

10

15

CNPq (Brazil, 303988/2018-5). F.F. was supported by NASA award NNX17AK14G. W.A.H was supported by NSF award 1354943. S.L.S. was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Brazil, 2016/13232-5). C.E.R.L was supported by the Office of the Royal Society (IC170015). G.E.O. was supported by CNPq (Brazil, 310345/2018-9). J.G.P. was supported by the Spanish Government (FIROTIC, PGC2018-096569-B-I00). N.S. was supported by the National Research Foundation (ACCESS, 114695). F.A.O.S. was supported by CNPq (Brazil, 303568/2017-8). C.J.S. and D.M.G. were supported by NSF awards 1342703 and 1926431. C.A.E.S. was supported by NSF award EAR-1253713. V.M.T. was supported by Deutsche Forschungsgemeinschaft (DFG grant 5579 POEM). J.W.V. was supported by USDA-NIFA Sustainable Agricultural Systems Grant 12726253. Author contributions: J.W.V. wrote the paper with conceptual input from C.L.P., S.A., C.J.S., G.M., W.J.B., J.J.E., and V.M.T. J.W.V. performed the carbon sequestration corrections in Table 1; J.G.P and A.N.N. contributed to the literature search for ΔSOC values. All authors read and provided feedback on the draft manuscript. **Competing interests:** The authors declare that they have no competing interests. Data and materials availability: All data, explanations of calculations, and references to literature-derived values are presented in Table 1.

Table 1. Corrected estimates of the potential for increased tree cover to sequester carbon and mitigate climate change. We corrected Bastin *et al.*'s estimate (205 GtC) to represent realistic gains or losses of soil organic carbon that occur with increased tree cover in each biome [based on (9, 16-21)]. We then excluded biomes (assigned a value of 0 GtC) where tree planting for climate change mitigation should not occur because of unintended consequences (e.g., net warming from reduced albedo or loss of biodiversity). Although we disagree with several of the carbon density values used by Bastin *et al.* [e.g., they applied values for intact tropical forests (8) to estimate second-growth forest biomass, and applied values from humid tropical savannas (7) to deserts and tundra], we retained these values to demonstrate the magnitude of the SOC and biome corrections.

	Potential carbon stocks, Bastin et al.(1)						Correction for soil carbon			Correction to avoid unintended consequences	
	Canopy								SOC- corrected	Biome-	i
	restoration	n Carbon	Carbon	Carbon	ΔC		Realistic	Realistic		carbon	-
	area	•	density	0	Biomass		ΔSOC	ΔSOC	gain	gain	Detrimental effects of
Biome ^a	(Mha) ^a	(tC/ha) ^a	source ^a	(GtC) ^a	(tC/ha) ^b	(tC/ha) ^b	(tC/ha)	source	(GtC)	(GtC)	carbon-focused tree planting
Boreal Forests/Taiga	178	239	(8)	42.6	85	154	0	$(16)^{c}$	15.2	0	↓albedo (net warming)
Deserts and Xeric Shrublands	78	202	(7)	15.7	28	174	5.1	$(9)^{d}$	2.6	0	↓provisioning of water, ↑fire intensity
Flooded Grasslands & Savannas	9	202	(7)	1.8	28	174	12.4	(17)	0.4	0	↓biodiversity
Montane Grasslands & Shrublands	19	202	(7)	3.9	28	174	-3.3	(18)	0.5	0	↓biodiversity, ↓albedo (net warming)
Temperate Grasslands	73	155	(8)	11.2	81	74	-3.3	(18)	5.6	0	↓biodiversity, ↓forage production, ↑fire severity
Tropical Grasslands	190	283	(8)	53.5	199	84	12.4	(17)	40.0	0	<pre>↓biodiversity, ↓provisioning of water, ↓forage production, ↑fire severity</pre>
Tundra	51	202	(7)	10.2	28	174	0	$(19)^{c}$	1.4	0	↓albedo (net warming)
Mangroves	3	283	(8)	0.7	199	84	198	(20)	1.0	1.0	·
Mediterranean Forests	19	202	(7)	3.8	28	174	0	$(21)^{c}$	0.5	0.5	(↑fire intensity) ^f
Temperate Broadleaf	109	155	(8)	16.9	81	74	-3.3	(18)	8.4	8.4	
Temperate Conifer Forests	36	155	(8)	5.6	81	74	-3.3	(18)	2.8	2.8	(↑fire intensity & severity, ↓albedo) ^f
Tropical Coniferous Forests	7	283	(8)	2.0	199	84	12.4	(17)	1.5	1.5	
Tropical Dry Broadleaf Forests	33	283	(8)	9.3	199	84	12.4	(17)	6.9	6.9	
Tropical Moist Broadleaf Forests	97	283	(8)	27.4	199	84	12.4	(17)	20.5	20.5	
Total	900			205					107	42	

^aFrom Materials and Methods and Table S2 of Bastin et al. (1): Carbon gain = Canopy cover restoration area × Carbon density

^bPortion of Carbon density attributable to biomass and soil, from the same sources used by Bastin *et al.* [i.e., (7,8)]

^cStudies that report no statistically significant change in SOC

^dMean of two sites with annual precipitation <300 mm

 $[^]e$ SOC-corrected carbon gain = Canopy cover restoration area \times (Δ C Biomass + Realistic Δ SOC)

^fStrength of effects depend on ecological context, but are not universal enough to exclude the biome