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Abstract:  

Bastin et al.’s estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change 

mitigation could sequester 205 gigatons of carbon is approximately five times too large. Their 

analysis inflated soil organic carbon gains, failed to safeguard against warming from trees at high 

latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to 5 

be restoration.  

Main Text:  

Bastin et al. (1) used remote sensing and machine learning to estimate that global “tree 

restoration” could sequester 205 gigatons of carbon (GtC). If accurate and achievable, this would 

constitute an astounding accomplishment, equal to 20 times the current annual fossil fuel 10 

emissions (10 GtC/yr) (2) and about one-third of total historical anthropogenic emissions (660 

GtC) (2). Unfortunately, key assumptions and data underlying Bastin et al.’s analyses are 

incorrect, resulting in a five-fold overestimate of the potential for new trees to capture carbon 

and mitigate climate change. We show that Bastin et al.: (i) overestimated soil carbon gains from 

increased tree cover by a factor of two; (ii) modeled new tree cover in regions where trees reduce 15 

albedo and increase climate warming (3,4); and, (iii) relied heavily on afforestation of grasslands 

and savannas—biodiverse ecosystems where fires and large herbivores have maintained low tree 

cover for millions of years (5,6).  

Bastin et al.’s inflation of soil carbon gains resulted in a ~98 GtC overestimate of potential 

carbon sequestration (Table 1). They mistakenly assumed treeless areas have no soil organic 20 

carbon (SOC) and that SOC increases in direct (1:1) proportion with tree cover. The contribution 

of SOC to total carbon stocks is substantial in most terrestrial ecosystems. In humid tropical 

savannas, for example, 85% of all carbon is in soils (174 tons of SOC per hectare) (7). In boreal 
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forests, 64% of carbon occurs in soils (8). North American grasslands can store as much carbon 

in soil (9) as tropical forests store as biomass (8). In Table 1, we display SOC-corrected carbon 

sequestration estimates that use more realistic (literature-derived) values for the changes in SOC 

that occur with afforestation and reforestation. 

In addition to the SOC overestimate, Bastin et al. did not account for the warming effect of 5 

trees due to decreased albedo (3,4). Trees, particularly evergreen conifers, are less reflective than 

snow, bare ground, or grasses, and thus absorb more solar energy, which is ultimately emitted as 

heat. At high latitudes and elevations, the warming effect of trees is greater than their cooling 

effect via carbon sequestration (3,4). Similarly, trees planted in low-latitude, semi-arid regions 

can produce net warming for decades before carbon sequestration benefits are realized (10). 10 

Because, at a minimum, carbon from trees planted in boreal forests, tundra, or montane 

grasslands and shrublands should not be counted as climate change mitigation (Bastin et al. 

counted an SOC-corrected 17 GtC), in Table 1, we provide a corrected estimate that excludes 

these biomes. 

The carbon sequestration estimate of Bastin et al. is also dependent on the false assumption 15 

that natural grasslands and savannas with fewer trees than predicted by their statistical model are 

“degraded” and in need of restoration (11). Ecological restoration of savannas and grasslands 

rarely involves planting trees, and more often requires tree-cutting and prescribed fire to promote 

biodiversity and ecosystem services (12). Yet after correcting for SOC, 43% of the carbon 

sequestration estimate of Bastin et al. comes from increased tree cover in grasslands, savannas, 20 

and shrublands (Table 1). Among all biomes, tropical grasslands are the largest contributor to 

Bastin et al.’s estimate of potential carbon sequestration (SOC-corrected 40 GtC or 37% of the 

global potential; Table 1).  
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Although Bastin et al.’s model, developed with climate and soil data in protected areas, may 

be reasonable in some of the driest and wettest places on Earth, any statistical approach to 

predict tree cover at intermediate precipitation (500 to 2,500 mm annually) must include the 

effects of fire, and where they still exist, large grazing and browsing animals (13). Because 

Bastin et al. failed to account for fire, their model had low predictive power across many of the 5 

open-canopy biomes they analyzed—as shown by their own uncertainty analysis. While we 

commend their intent to respect the “natural ecosystem type” by training their machine learning 

algorithm on protected areas, they map many of these same areas, particularly those with 

grassland-forest mosaics (e.g., Yellowstone National Park, USA), as opportunities for tree 

planting. Of additional concern, their method of interpolation between protected areas 10 

misrepresents some enormous savanna regions (e.g., western Los Llanos in Colombia is targeted 

for 75-100% tree cover), presumably because the protected areas are located in adjacent tropical 

forests, not savannas.  

Bastin et al.’s model suggesting grasslands and savannas as potential sites for restoration 

using trees is inaccurate and misguided. Earth’s savannas and grasslands predate humans by 15 

millions of years and formed through complex ecological and evolutionary interactions between 

herbaceous plants (grasses and forbs with extensive roots and underground storage organs), 

environmental change (climatic cooling, drying, changes in atmospheric CO2), fires (first ignited 

by lightning, then by people), and large herbivores (5,6). These ecosystems and their iconic 

species are already gravely threatened by fire-exclusion and afforestation, processes which 20 

replace species-diverse biotic communities with lower-diversity forests (14). Carbon-focused 

tree planting will exacerbate these threats, to the detriment of people who depend on grasslands 

to provide livestock forage, game habitat, as well as ground- and surface-water recharge (11). 
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Moreover, trees planted in grasslands will be prone to carbon loss from fires. Because these 

detrimental effects should preclude tree planting in grasslands, savannas, and shrublands, we 

excluded these biomes from Bastin et al.’s estimate in Table 1. 

In combination, our corrections for SOC, and corrections to avoid the unintended 

consequences of misguided tree planting (i.e., warming and biodiversity loss with afforestation), 5 

would reduce Bastin et al.’s estimate of potential carbon sequestration by a factor of five, to the 

still-substantial amount of ~42 GtC (Table 1). While ecological restoration, if carefully 

implemented, can have a role in mitigating climate change, it is no substitute for the fact that 

most fossil fuel emissions will need to stop to meet the targets of the Paris Agreement (15). Such 

action should be accompanied by policies that prioritize the conservation of intact, biodiverse 10 

ecosystems, irrespective of whether they contain a lot of trees. 
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Table 1. Corrected estimates of the potential for increased tree cover to sequester carbon and mitigate climate change. We corrected Bastin et 

al.’s estimate (205 GtC) to represent realistic gains or losses of soil organic carbon that occur with increased tree cover in each biome [based on (9, 

16-21)]. We then excluded biomes (assigned a value of 0 GtC) where tree planting for climate change mitigation should not occur because of 

unintended consequences (e.g., net warming from reduced albedo or loss of biodiversity). Although we disagree with several of the carbon density 5 

values used by Bastin et al. [e.g., they applied values for intact tropical forests (8) to estimate second-growth forest biomass, and applied values from 

humid tropical savannas (7) to deserts and tundra], we retained these values to demonstrate the magnitude of the SOC and biome corrections. 

  Potential carbon stocks, Bastin et al.(1)  Correction for soil carbon   Correction to avoid unintended consequences 

Biomea 

 Canopy 

cover 

restoration 

area   

(Mha)a 

Carbon 

density 

(tC/ha)a 

Carbon 

density 

sourcea 

Carbon 

gain 

(GtC)a 

ΔC 

Biomass 

(tC/ha)b 

ΔSOC 

(tC/ha)b 

 

Realistic 

ΔSOC 

(tC/ha) 

Realistic 

ΔSOC 

source 

SOC-

corrected 

carbon 

gain 

(GtC)    

Biome-

corrected 

carbon 

gain 

(GtC) 

Detrimental effects of  

carbon-focused tree planting 

Boreal Forests/Taiga  178 239 (8) 42.6 85 154  0 (16)c 15.2  0 ↓albedo (net warming) 

Deserts and Xeric Shrublands  78 202 (7) 15.7 28 174  5.1 (9)d 2.6  0 ↓provisioning of water, ↑fire intensity 

Flooded Grasslands & Savannas  9 202 (7) 1.8 28 174  12.4 (17) 0.4  0 ↓biodiversity  

Montane Grasslands & Shrublands  19 202 (7) 3.9 28 174  -3.3 (18) 0.5  0 ↓biodiversity, ↓albedo (net warming) 

Temperate Grasslands  73 155 (8) 11.2 81 74  -3.3 (18) 5.6  0 
↓biodiversity, ↓forage production,  

↑fire severity 

Tropical Grasslands  190 283 (8) 53.5 199 84  12.4 (17) 40.0  0 
↓biodiversity, ↓provisioning of water, 

↓forage production, ↑fire severity 

Tundra  51 202 (7) 10.2 28 174  0 (19)c 1.4  0 ↓albedo (net warming) 

Mangroves  3 283 (8) 0.7 199 84  198 (20) 1.0  1.0  

Mediterranean Forests  19 202 (7) 3.8 28 174  0 (21)c 0.5  0.5 (↑fire intensity)f 

Temperate Broadleaf  109 155 (8) 16.9 81 74  -3.3 (18) 8.4  8.4  

Temperate Conifer Forests  36 155 (8) 5.6 81 74  -3.3 (18) 2.8  2.8 (↑fire intensity & severity, ↓albedo)f 

Tropical Coniferous Forests  7 283 (8) 2.0 199 84  12.4 (17) 1.5  1.5  

Tropical Dry Broadleaf Forests  33 283 (8) 9.3 199 84  12.4 (17) 6.9  6.9  

Tropical Moist Broadleaf Forests  97 283 (8) 27.4 199 84  12.4 (17) 20.5  20.5  

Total  900   205   
 

  107  42  

aFrom Materials and Methods and Table S2 of Bastin et al. (1): Carbon gain = Canopy cover restoration area × Carbon density 
bPortion of Carbon density attributable to biomass and soil, from the same sources used by Bastin et al. [i.e., (7,8)] 
cStudies that report no statistically significant change in SOC  10 
dMean of two sites with annual precipitation <300 mm 
eSOC-corrected carbon gain = Canopy cover restoration area × (ΔC Biomass + Realistic ΔSOC) 
fStrength of effects depend on ecological context, but are not universal enough to exclude the biome  


