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The extreme rays of the 6× 6 copositive cone

Andrey Afonin ∗ Roland Hildebrand † Peter J.C. Dickinson ‡

December 5, 2019

Abstract

We provide a complete classification of the extreme rays of the 6 × 6 copositive cone COP6. We
proceed via a coarse intermediate classification of the possible minimal zero support set of an excep-
tional extremal matrix A ∈ COP6. To each such minimal zero support set we construct a stratified
semi-algebraic manifold in the space of real symmetric 6 × 6 matrices S6, parameterized in a semi-
trigonometric way, which consists of all exceptional extremal matrices A ∈ COP6 having this minimal
zero support set. Each semi-algebraic stratum is characterized by the supports of the minimal zeros u
as well as the supports of the corresponding matrix-vector products Au. The analysis uses recently and
newly developed methods that are applicable also to copositive matrices of arbitrary order.

Keywords: copositive matrix, extreme ray, minimal zero, non-convex optimization

1 Introduction

An element A of the space Sn of real symmetric n×n matrices is called copositive if xTAx ≥ 0 for all vectors
x ∈ Rn+. The set of such matrices forms the copositive cone COPn. This cone plays an important role in
non-convex optimization, as many difficult optimization problems can be reformulated as conic programs
over COPn. For a detailed survey of the applications of this cone see, e.g., [13, 2, 3, 19].

Verifying copositivity of a given matrix is a co-NP-complete problem [21], and the complexity of the
copositive cone quickly grows with dimension. It is a classical result by Diananda [6, Theorem 2] that for
n ≤ 4 the copositive cone can be described as the sum of the cone of positive semi-definite matrices Sn+
and the cone of element-wise nonnegative symmetric matrices Nn. In general, this sum is a subset of the
copositive cone, Sn+ +Nn ⊂ COPn. Matrices in the difference COPn \ (Sn+ +Nn) are called exceptional.

In this note we focus on the extreme rays of COPn. A non-zero matrix A ∈ COPn is called extremal if a
decomposition A = A1+A2 of A into matrices A1, A2 ∈ COPn is only possible if A1 = λA, A2 = (1−λ)A for
some λ ∈ [0, 1]. The set of positive multiples of an extremal matrix is called an extreme ray of COPn. The
set of extreme rays is an important characteristic of a convex cone. Its structure, first of all its stratification
into a union of manifolds of different dimension, yields much information about the shape of the cone. The
extreme rays of a convex cone which is algorithmically difficult to access are especially important if one
wishes to check the tightness of inner convex approximations of the cone. Namely, an inner approximation
is exact if and only if it contains all extreme rays, see [11] for such a construction applied to the cone COP5.

Since the extreme rays of a cone determine the facets of its dual cone, they are also important tools for
the study of this dual cone. The extreme rays of the copositive cone have been used in a number of papers
on its dual, the completely positive cone [7, 24, 4, 5, 23, 22].

There are few results on the extreme rays of COPn. The non-exceptional extreme rays of COPn have
been classified in [14]. The exceptional extreme rays of COP5 have been described in [16]. In [1, Theorem
3.8] a procedure is presented how to construct an extreme ray of COPn+1 from an extreme ray of COPn.
Those extreme rays of COPn with elements only from the set {−1, 0,+1} have been characterized in [20].
In [18, 9] large families of extreme rays of COPn have been constructed. In [8] a family of extreme rays of
COP6 has been constructed. In this paper we complete the classification the extreme rays of COP6.
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A useful tool in the study of extremal copositive matrices are its zeros [6, 1]. A zero u of a copositive
matrix A is a non-zero nonnegative vector such that uTAu = 0. The support suppu of a zero u =
(u1, . . . , un)T ∈ Rn+ is the subset of indices j ∈ {1, . . . , n} such that uj > 0. A zero u of A is called minimal
if there is no zero v of A such that supp v ⊂ suppu holds strictly. The minimal zero support set, i.e., the
ensemble suppVAmin of minimal zero supports of a copositive matrix A is an informative characteristic of
the matrix [17]. It is a subset of 2{1,...,n}, the power set of {1, . . . , n}. We shall use this combinatorial
characteristic to achieve the classification of the extreme rays of COP6.

In [17, Table 1] the list of possible minimal zero support sets of an exceptional extremal matrix A ∈ COP6

with positive diagonal has been narrowed down to 44 index sets, up to a permutation of the indices. In
Table 1 we reproduce this list up to permutations of the index set {1, . . . , 6}. We consider each of these
index sets and determine whether it can actually be a minimal zero support set of an exceptional extremal
matrix A ∈ COP6. We find that in 19 out of the 44 cases the answer to this question is affirmative, and
for each of the corresponding index sets we determine all exceptional extremal matrices A ∈ COP6 which
have the given index set as its minimal zero support set. For convenience the cases have been assigned new
numbers, which are given in Table 1 along with the numbers from [17]. In the last column of Table 1 we
summarize our findings on the different cases.

The remainder of the paper is structured as follows. In Section 2 we consider the non-exceptional extreme
rays of COP6 and those which can be obtained by padding the extremal matrices of COP5 with zeros. In
Section 3 we present a general strategy of how to determine all exceptional extremal matrices A ∈ COP6

which have a given minimal zero support set I ⊂ 2{1,...,6}. If there are such matrices, we shall describe
them explicitly by parameterizing the set of these matrices by a finite number of variables varying in some
domain, thus assigning to the index set I one or several submanifolds MI ⊂ S6 of extremal exceptional
copositive matrices. These manifolds are described in Section 5, along with Theorem 5.1 formalizing the
classification of the extreme rays of the cone COP6. The strategy presented in Section 3 achieves its goal
for most of the index sets in Table 1. The few remaining cases necessitate an individual approach, which
will be presented in Section 4. Finally, we summarize our finding in Section 6, where we also consider
perspectives for future work.

1.1 Notations

The space of real symmetric matrices of size n×n will be denoted by Sn. The cone of positive semi-definite
matrices in Sn will be denoted by Sn+, and the cone of element-wise nonnegative matrices by Nn.

We shall denote vectors with lower-case letters and matrices with upper-case letters. Individual entries
of a vector u and a matrix A will be denoted by ui and Aij respectively. For a matrix A and a vector
u of compatible dimension, the i-th element of the matrix-vector product Au will be denoted by (Au)i.
Inequalities u ≥ 0 on vectors will be meant element-wise, where we denote by 0 = (0, . . . , 0)T the all-zeros
vector. Similarly we denote by 1 = (1, . . . , 1)T the all-ones vector. We further let ei be the unit vector with
i-th entry equal to one and all other entries equal to zero. For a subset I ⊂ {1, . . . , n} we denote by AI
the principal submatrix of A whose elements have row and column indices in I, i.e. AI = (Aij)i,j∈I ∈ S |I|.
Similarly for a vector u ∈ Rn we define the subvector uI = (ui)i∈I ∈ R|I|. By Eij we denote a matrix which
has all entries equal to zero except (i, j) and (j, i), which equal 1.

Let I ⊂ 2{1,...,n} be an index set. We say that an element Aij of A ∈ Sn is covered by I if there exists
I ∈ I such that i, j ∈ I.

We call a vector u ∈ Rn+\{0} a zero of a matrix A ∈ COPn if uTAu = 0, and we denote the set of zeros of
A by VA = {u | uTAu = 0}. For a vector u ∈ Rn we define its support as suppu = {i ∈ {1, . . . , n} | ui 6= 0}.
We also define supp+ u = {i ∈ {1, . . . , n} | ui > 0} and supp≥0 u = {i ∈ {1, . . . , n} | ui ≥ 0}. Note that for
zeros of copositive matrices the two notions supp+ u and suppu are equivalent.

A zero u of a copositive matrix A is called minimal if there exists no zero v of A such that the inclusion
supp v ⊂ suppu holds strictly. We shall denote the set of minimal zeros of a copositive matrix A by VAmin

and the ensemble of supports of the minimal zeros of A by suppVAmin.
Finally, let us introduce the following notion. A copositive matrix A is called irreducible with respect to

another copositive matrix C if for every δ > 0, we have A − δC 6∈ COPn, and it is called irreducible with
respect to a subset M⊂ COPn if it is irreducible with respect to all nonzero elements C ∈M.
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2 Lower order and non-exceptional extreme rays

In this section we classify the extreme rays of COP6 which are not exceptional or which are effectively of
order 5.

The former have been described in [14]. They are generated by the matrices Eij , 1 ≤ i, j ≤ 6, and
by rank 1 matrices aaT such that the vector a has positive as well as negative elements. Note that by
multiplying the extremal matrix by a positive definite diagonal matrix from the left and from the right, we
may achieve that the elements of a are in the set {−1, 0,+1}. By multiplying a by −1 we achieve that the
number of positive elements is not smaller than the number of negative elements.

The exceptional extreme rays of COP5 have been described in [16]. They are generated by matrices of
the form PTDADP , where P ∈ S5 is a permutation matrix, D is a positive diagonal matrix, and A is given
by 

1 − cosφ1 cos(φ1 + φ2) cos(φ4 + φ5) − cosφ5
− cosφ1 1 − cosφ2 cos(φ2 + φ3) cos(φ1 + φ5)

cos(φ1 + φ2) − cosφ2 1 − cosφ3 cos(φ3 + φ4)
cos(φ4 + φ5) cos(φ2 + φ3) − cosφ3 1 − cosφ4
− cosφ5 cos(φ1 + φ5) cos(φ3 + φ4) − cosφ4 1

 ,

where either φ1 = · · · = φ5 = 0, or φi > 0 for i = 1, . . . , 5 and
∑5
i=1 φi < π. By adding a zero column and

a zero row to an extremal matrix of COP5 we obtain an extremal matrix of COP6.
All other non-zero extremal matrices of COP6 are exceptional and have positive diagonal elements.

They will be considered in the following two sections.

3 General algorithm

Out of the 44 index sets in Table 1 there are two (cases 19 and 41) which contain supports of cardinality
4 and require a separate consideration. All other index sets contain only supports of cardinality 2 and 3,
and can be treated by a common general scheme. This scheme will be described in this section. Due to
space limitations we shall not give a full proof in each case, but rather describe the method, which is the
same for all cases, and furnish intermediate results in the form of tables. A detailed treatment of the most
complicated case No. 19 is provided in Section 4, the calculations for the cases in this section are similar.

3.1 Parametrization

Our goal is to find all exceptional extremal copositive matrices A with a given set I ⊂ 2{1,...,6} of minimal
zero supports. Every index set from I imposes conditions on the matrix A by virtue of the presence of the
corresponding minimal zero. Therefore I determines a submanifold MI of candidate extremal copositive
matrices A ∈ S6 with minimal zero support set I. In this section we describe our method of parameterizing
A ∈ MI and its minimal zeros in a convenient manner. Equivalently, we construct a coordinate chart on
the manifold MI .

Let us first consider the diagonal elements of the copositive matrix A, which can be either positive or
zero. If one or more of the diagonal elements of an exceptional extremal copositive matrix A are zero,
then A equals an extremal copositive matrix of strictly lower order, padded with zeros. These have been
already considered in Section 2. We shall hence assume that all diagonal elements of A are positive. By
the transformation A 7→ DAD, where D is a diagonal matrix with positive diagonal elements, the diagonal
elements of A can be normalized to 1. This transformation preserves the copositive cone as well as the
minimal zero support set of A. We shall hence assume that Aii = 1 for i = 1, . . . , 6. A general exceptional
extremal matrix A ∈ COP6 with minimal zero support set I can be obtained from the normalized matrices
by scaling with arbitrary positive definite diagonal matrices D.

We are left with 15 off-diagonal elements Aij , 1 ≤ i < j ≤ 6, to determine. By a result of Hall and
Newman [14], we may assume that Aij ∈ [−1, 1] for all i, j. This allows us to represent the element Aij as
− cosφij with φij ∈ [0, π].

Let us now provide some results which demonstrate the way a support of a minimal zero with cardinality
2 or 3 imposes conditions on the elements of the matrix A.
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Lemma 3.1. [10, Corollary 4.4] Let A ∈ COPn with Aii = 1 for all i, and let u ∈ VAmin with suppu = {i, j}
for some indices i, j ∈ {1, . . . , n}. Then Aij = −1 and the two positive elements of u are equal.

Extremal copositive matrices are irreducible with respect to the nonnegative cone Nn if they have more
than one non-zero diagonal element. Hence the following result is a direct consequence of [10, Lemma 4.6].

Lemma 3.2. Let A ∈ COPn be extremal and Aii = 1 for all i. Suppose {i, j}, {j, k} ∈ suppVAmin,
where i, j, k are mutually different indices. Then A{i,j,k} is a rank 1 positive semi-definite matrix with
Aik = −Aij = −Ajk = 1.

The following result is a direct consequence of [17, Lemma 5.4 (e)] and [10, Lemma 4.7].

Lemma 3.3. Let A ∈ COPn have unit diagonal and suppose there exists a minimal zero u of A with support
{i, j, k}, where i, j, k ∈ {1, . . . , n} are mutually different indices. Then the submatrix A{i,j,k} is given by 1 − cosφk − cosφj

− cosφk 1 − cosφi
− cosφj − cosφi 1

 ,

where φi, φj , φk ∈ (0, π) and φi + φj + φk = π. Moreover, there exists λ > 0 such that λu{i,j,k} =
(sinφi, sinφj , sinφk)T .

These results allow us to parameterize some of the off-diagonal elements by a number of angles φi which
vary in a certain open polytope. Note that there are relations on the angles of equality type which allow
to eliminate some of them. However, in general this covers only a part of the off-diagonal entries of the
matrix A, in particular, those which are covered by the index set I. The remaining entries of A will be
parameterized by variables bi ∈ [−1, 1]. The construction guarantees that the matrix A indeed has minimal
zeros with the given supports.

For the cases 1–19 of Table 1 the parametrizations are given in Section 5, with the location of the
variables bi in Table 2, if there are any such elements.

In case 14 of Table 1 the matrix A does not contain any parameters at all and is determined uniquely
at this stage. It is exceptional extremal by the criterion of Haynsworth and Hoffman [15, Theorem 3.1].

For the cases 20–29 and 42 we obtain the following parametrizations, respectively:

20 :


1 −1 −1 −1 1 1
−1 1 1 1 −1 1
−1 1 1 1 1 −1
−1 1 1 1 b1 b2
1 −1 1 b1 1 −1
1 1 −1 b2 −1 1

 ,

21 :


1 −1 − cosφ2 − cosφ1 cos(φ2 + φ3) − cosφ4
−1 1 b1 b2 cos(φ5 + φ6) − cosφ6

− cosφ2 b1 1 cos(φ1 + φ2) − cosφ3 cos(φ3 + φ5)
− cosφ1 b2 cos(φ1 + φ2) 1 b3 cos(φ1 + φ4)

cos(φ2 + φ3) cos(φ5 + φ6) − cosφ3 b3 1 − cosφ5
− cosφ4 − cosφ6 cos(φ3 + φ5) cos(φ1 + φ4) − cosφ5 1

 ,

22 :


1 −1 b1 b2 b3 b4
−1 1 − cosφ1 cos(φ1 + φ2) cos(φ4 + φ5) − cosφ5
b1 − cosφ1 1 − cosφ2 cos(φ2 + φ3) cos(φ5 + φ1)
b2 cos(φ1 + φ2) − cosφ2 1 − cosφ3 cos(φ3 + φ4)
b3 cos(φ4 + φ5) cos(φ2 + φ3) − cosφ3 1 − cosφ4
b4 − cosφ5 cos(φ5 + φ1) cos(φ3 + φ4) − cosφ4 1

 ,

23 :


1 −1 − cosφ2 cos(φ1 + φ2) b1 b2
−1 1 cos(φ3 + φ4) cos(φ5 + φ6) − cosφ4 − cosφ6

− cosφ2 cos(φ3 + φ4) 1 − cosφ1 − cosφ3 cos(φ1 + φ5)
cos(φ1 + φ2) cos(φ5 + φ6) − cosφ1 1 cos(φ1 + φ3) − cosφ5

b1 − cosφ4 − cosφ3 cos(φ1 + φ3) 1 b3
b2 − cosφ6 cos(φ1 + φ5) − cosφ5 b3 1

 ,
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24 :


1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ2 + φ4) cos(φ1 + φ5)

− cosφ2 1 cos(φ1 + φ2) − cosφ3 − cosφ4 b1
− cosφ1 cos(φ1 + φ2) 1 cos(φ5 + φ6) cos(φ5 + φ7) − cosφ5

cos(φ2 + φ3) − cosφ3 cos(φ5 + φ6) 1 b2 − cosφ6
cos(φ2 + φ4) − cosφ4 cos(φ5 + φ7) b2 1 − cosφ7
cos(φ1 + φ5) b1 − cosφ5 − cosφ6 − cosφ7 1

 ,

25 :


1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ2 + φ4) cos(φ1 + φ5)

− cosφ2 1 cos(φ1 + φ2) − cosφ3 − cosφ4 b1
− cosφ1 cos(φ1 + φ2) 1 cos(φ5 + φ6) b2 − cosφ5

cos(φ2 + φ3) − cosφ3 cos(φ5 + φ6) 1 cos(φ6 + φ7) − cosφ6
cos(φ2 + φ4) − cosφ4 b2 cos(φ6 + φ7) 1 − cosφ7
cos(φ1 + φ5) b1 − cosφ5 − cosφ6 − cosφ7 1

 ,

26 :


1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ1 + φ4) b1

− cosφ2 1 cos(φ1 + φ2) − cosφ3 cos(φ3 + φ5) − cos(φ1 + φ2 − φ6)
− cosφ1 cos(φ1 + φ2) 1 cos(φ4 + φ5) − cosφ4 − cosφ6

cos(φ2 + φ3) − cosφ3 cos(φ4 + φ5) 1 − cosφ5 b2
cos(φ1 + φ4) cos(φ3 + φ5) − cosφ4 − cosφ5 1 b3

b1 − cos(φ1 + φ2 − φ6) − cosφ6 b2 b3 1

 ,

27 :


1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ1 + φ4) b1

− cosφ2 1 cos(φ1 + φ2) − cosφ3 cos(φ3 + φ5) b2
− cosφ1 cos(φ1 + φ2) 1 − cosφ7 − cosφ4 − cosφ6

cos(φ2 + φ3) − cosφ3 − cosφ7 1 − cosφ5 cos(φ6 + φ7)
cos(φ1 + φ4) cos(φ3 + φ5) − cosφ4 − cosφ5 1 cos(φ4 + φ6)

b1 b2 − cosφ6 cos(φ6 + φ7) cos(φ4 + φ6) 1

 ,

28 :


1 − cosφ2 − cosφ1 cos(φ2 + φ3) − cosφ4 cos(φ4 + φ6)

− cosφ2 1 cos(φ1 + φ2) − cosφ3 cos(φ3 + φ5) b1
− cosφ1 cos(φ1 + φ2) 1 b2 cos(φ1 + φ4) b3

cos(φ2 + φ3) − cosφ3 b2 1 − cosφ5 cos(φ5 + φ6)
− cosφ4 cos(φ3 + φ5) cos(φ1 + φ4) − cosφ5 1 − cosφ6

cos(φ4 + φ6) b1 b3 cos(φ5 + φ6) − cosφ6 1

 ,

29 :


1 − cosφ2 − cosφ1 − cosφ3 cos(φ2 + φ4) cos(φ1 + φ5)

− cosφ2 1 cos(φ1 + φ2) cos(φ2 + φ3) − cosφ4 cos(φ4 + φ6)
− cosφ1 cos(φ1 + φ2) 1 b1 cos(φ5 + φ6) − cosφ5
− cosφ3 cos(φ2 + φ3) b1 1 b2 − cos(φ1 + φ5 − φ3)

cos(φ2 + φ4) − cosφ4 cos(φ5 + φ6) b2 1 − cosφ6
cos(φ1 + φ5) cos(φ4 + φ6) − cosφ5 − cos(φ1 + φ5 − φ3) − cosφ6 1

 ,

42 :


1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ1 + φ4) b1

− cosφ2 1 cos(φ1 + φ2) − cosφ3 − cosφ5 − cosφ6
− cosφ1 cos(φ1 + φ2) 1 b2 − cosφ4 − cos(φ1 + φ2 − φ6)

cos(φ2 + φ3) − cosφ3 b2 1 cos(φ3 + φ5) b3
cos(φ1 + φ4) − cosφ5 − cosφ4 cos(φ3 + φ5) 1 cos(φ5 + φ6)

b1 − cosφ6 − cos(φ1 + φ2 − φ6) b3 cos(φ5 + φ6) 1

 .

In the remaining cases 30–41, 43, 44 the absence of exceptional extreme matrices can be certified without
computing the parametrization explicitly (see Sections 3.2, 3.3 below).

Along with the elements Aij we also obtain expressions for the minimal zeros as functions of the angles
φi. For reasons of limited space we shall not provide the expressions for the zeros, they can be deduced
from their supports and Lemmas 3.1, 3.3.

In Section 3.3 below we shall further constrain the set of possible extremal matrices with a given minimal
zero support set by using other conditions imposed by the copositivity of the matrix. However, first we shall
consider special constellations of the index set I, which immediately exclude the possibility of exceptional
extremal matrices with this minimal zero support set.

3.2 Linear dependence of minimal zeros

In the previous section we parameterized the entries of the minimal zeros u ∈ VAmin corresponding to supports
of cardinality 3 by angles φi. In some cases this allows to exclude the extremality of A immediately by
virtue of the following result [17, Theorem 4.5].

Lemma 3.4. A matrix A ∈ COPn is not reduced with respect to the cone Sn+ if and only if spanVAmin = Rn.

We now show that under some circumstances we may deduce the linear dependence of minimal zeros
just from their supports. Suppose the minimal support set VAmin of a matrix A ∈ COPn with unit diagonal

5



has a subset of the form
{{a, b, c}, {a, b, d}, {a, c, e}, {a, d, e}},

where I = {a, . . . , e} consists of 5 mutually distinct indices. Then by Lemma 3.3 the corresponding 5 × 5
sub-matrix AI of A has the form

1 − cosφ1 − cosφ2 − cosφ3 − cosφ4
− cosφ1 1 cos(φ1 + φ2) cos(φ1 + φ3) ?
− cosφ2 cos(φ1 + φ2) 1 ? cos(φ2 + φ4)
− cosφ3 cos(φ1 + φ3) ? 1 cos(φ3 + φ4)
− cosφ4 ? cos(φ2 + φ4) cos(φ3 + φ4) 1

 ,

and the corresponding sub-vectors uI of the minimal zeros u1, u2, u3, u4 are given by
sin(φ1 + φ2)

sinφ2
sinφ1

0
0

 ,


sin(φ1 + φ3)

sinφ3
0

sinφ1
0

 ,


sin(φ2 + φ4)

0
sinφ4

0
sinφ2

 ,


sin(φ3 + φ4)

0
0

sinφ4
sinφ3


for some angles φ1, . . . , φ4 ∈ (0, π). The other components of the zeros all vanish.

It is now directly verified that these 4 zeros are linearly dependent, namely we have

sinφ3 sinφ4u
1 − sinφ2 sinφ4u

2 − sinφ3 sinφ1u
3 + sinφ2 sinφ1u

4 = 0.

All coefficients are non-zero, hence every one of the 4 zeros can be represented as a linear combination of
the other 3.

In this way we may establish linear dependencies of the minimal zeros of a copositive matrix just by
examining its minimal zero support set. By removing a minimal zero which is linearly dependent on other
zeros we do not change the span of the zeros. If after successive removing of zeros which are dependent
on zeros which are still present we obtain a total number of zeros strictly smaller than the order of the
matrix, then all minimal zeros must be contained in a proper subspace. By Lemma 3.4 the matrix is then
not reduced with respect to the cone of positive semi-definite matrices and cannot be exceptional extremal.

In this way the absence of exceptional extremal matrices with minimal zero support set I can be certified
in the cases 30–40 of Table 1.

In the case 42 a linear dependence between the six minimal zeros can be established by verifying that
the determinant of the 6× 6 matrix

sin(φ1 + φ2) sinφ3 sinφ4 0 0 0
sinφ2 0 sin(φ1 + φ4) 0 sinφ6 0

0 0 sinφ1 sinφ3 sin(φ4 + φ6) sin(φ5 + φ6)
0 sinφ2 0 sin(φ3 + φ5) 0 sinφ6

sinφ1 sin(φ2 + φ3) 0 sinφ5 0 0
0 0 0 0 sinφ4 sinφ5


formed column-wise of these zeros vanishes identically. In this case exceptional extremal matrices are also
absent.

3.3 First order conditions

In Section 3.1 we parameterized the set of possible exceptional extremal matrices A with suppVAmin = I and
their minimal zeros by a number of angles φi and a number of additional variables bi, the latter corresponding
to some entries of A which are uncovered by I. In this section we obtain necessary conditions on these
variables.

The analysis proceeds using equality and inequality relations generated by the minimal zeros corre-
sponding to the given supports. If u is a zero of A, then the matrix-vector product Au has nonnegative
entries [1, p.200]. Moreover, since uTAu = 0 is a scalar product of two nonnegative vectors, the i-th entry
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of Au is zero whenever ui > 0. The first order conditions (Au)j ≥ 0, j = 1, . . . , 6, translate into non-strict
inequalities on the parameters φi, bi. While the angles φi enter the inequalities non-linearly, the result-
ing constraints on the bi are linear with positive coefficients. The next result shows that the extremality
condition together with the inequalities determine the elements bi up to a finite number of possibilities.

Lemma 3.5. Let I ⊂ 2{1,...,n} be an index set and let A ∈ COPn be an exceptional extremal copositive
matrix such that Aii = 1 for all i and such that suppVAmin = I. Let B be the set of all matrices B ∈ Sn
such that Bij = Aij for all elements Aij covered by I, and Bu ≥ 0 for all minimal zeros u ∈ VAmin.

Then A is an extremal element of the polyhedron B. In particular, there exists a subset of equalities
(Auj)k = 0 which determine the values of the uncovered elements of A uniquely.

Proof. Assume that there exists ∆ ∈ Sn such that A ±∆ ∈ B. If for some minimal zero u of A we have
(Au)k = 0, then by definition of B we get (Au)k ± (∆u)k = ±(∆u)k ≥ 0 and hence (∆u)k = 0. Then by
[12, Theorem 17] the matrix ∆ is in the linear span of the face of A in COPn. But A is extremal, and
therefore the face of A equals the ray generated by A. Hence ∆ is proportional to A. Now the diagonal
elements of any matrix B ∈ B equal 1. Since the diagonal elements are covered by I, we have diag ∆ = 0,
and therefore ∆ = 0. Thus A is extremal in B. This completes the proof.

Since the polyhedron B has a finite number of extremal points, there exists a finite number of possible
values of the variables bi for fixed values of the variables φi. As a consequence, we obtain a finite number
of (sub-)cases, in each of which the variables bi are expressed explicitly as a function of the angles φi. In
many cases the bi are trigonometric functions of the angles, but in some cases they are more complicated
ratios of trigonometric functions. In particular, such rational expressions appear in the extremal matrices
corresponding to the minimal zero support sets 11 and 12 in Table 1.

In Table 3 we present the equalities (Auj)k = 0 determining the variables bi for each of the cases 1–18,
if there are any. The equalities given for case 19 are necessary to enforce extremality.

The inequalities (Auj)k ≥ 0 not involving any of the elements bi may lead to additional constraints on
the variables φi. In many cases these constraints can be reduced to linear inequalities on the angles φi. In
some other cases these constraints can be shown to hold automatically.

It may, however, also happen that these constraints are incompatible. We first state the following
auxiliary result. Suppose the minimal support set VAmin of an extremal matrix A ∈ COPn with unit
diagonal has a subset of the form {{a, b, c}, {b, c, d}}, where I = {a, . . . , d} consists of 4 mutually distinct
indices. Then by Lemma 3.3 the corresponding 4× 4 sub-matrix AI of A has the form

1 − cosφ1 cos(φ1 + φ2) − cosφ4
− cosφ1 1 − cosφ2 cos(φ2 + φ3)

cos(φ1 + φ2) − cosφ2 1 − cosφ3
− cosφ4 cos(φ2 + φ3) − cosφ3 1

 ,

and the corresponding sub-vectors uI of the minimal zeros u1, u2 are given by
sinφ2

sin(φ1 + φ2)
sinφ1

0

 ,


0

sinφ3
sin(φ2 + φ3)

sinφ2


for some angles φ1, φ2, φ3, φ4 ∈ (0, π) with φ1 +φ2 < π, φ2 +φ3 < π. The other components of the zeros all
vanish. Then the condition (AIu

2
I)a = sinφ2(cos(φ1+φ2+φ3)−cosφ4) ≥ 0 yields |φ1+φ2+φ3−π| ≥ π−φ4

and hence leads to the alternatives φ1 + φ2 + φ3 + φ4 ≥ 2π or φ1 + φ2 + φ3 ≤ φ4. We are now in a position
to prove the following result.

Lemma 3.6. Suppose the minimal support set VAmin of a matrix A ∈ COPn with unit diagonal has a
subset of the form {{a, b, c}, {c, d, e}, {a, b, e}, {a, d, e}}, where I = {a, . . . , e} consists of 5 mutually distinct
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indices. Then the corresponding submatrix AI is of the form
1 − cosφ1 cos(φ1 + φ2) cos(φ4 + φ5) − cosφ5

− cosφ1 1 − cosφ2 ? cos(φ1 + φ5)
cos(φ1 + φ2) − cosφ2 1 − cosφ3 cos(φ3 + φ4)
cos(φ4 + φ5) ? − cosφ3 1 − cosφ4
− cosφ5 cos(φ1 + φ5) cos(φ3 + φ4) − cosφ4 1


with φ1, . . . , φ5 > 0 and

∑5
i=1 φi ≤ π.

Proof. The form of the matrix with φi ∈ (0, π) follows from Lemma 3.3. It remains to show the inequality∑5
i=1 φi ≤ π.
Applying the above reasoning to the pair {{e, a, b}, {a, b, c}} of supports, we get the alternative φ1 +

φ2 + φ5 + π − φ3 − φ4 ≥ 2π or φ1 + φ2 + φ5 ≤ π − φ3 − φ4. Applying it to the pair {{c, d, e}, {d, e, a}}, we
get φ3 + φ4 + φ5 + φ− φ1 − φ2 ≥ 2π or φ3 + φ4 + φ5 ≤ φ− φ1 − φ2. The first conditions of each pair are
incompatible by virtue of φ5 < π, hence in at least one pair the second condition holds. This proves our
claim.

Applying Lemma 3.6 to appropriate subsets of the minimal zero support set 43 or 44 of Table 1 we
establish that the constraints imposed by the lemma are incompatible, refuting the existence of copositive
matrices with the corresponding minimal zero support set. Note that this still holds if the six supports are
merely a subset of the full minimal zero support set, and the result is not limited to order 6.

In this section we established that the manifold of candidate exceptional extremal matrices A with unit
diagonal and suppVAmin = I can be represented as a finite union of subsets, each of which is parameterized
by a number of angles φi which are subject to linear and possibly non-linear constraints. In Section 3.5
below we obtain further constraints on the angles φi. However, first we shall show in the next section how
to reduce the number of subsets.

3.4 Symmetry

In some cases the index set I remains invariant under a non-trivial subgroup of permutations of the indices
1, . . . , 6. This group will also act on the subsets of candidate exceptional extremal matrices corresponding to
different extreme points of the polyhedron B from Lemma 3.5, permuting them. We then need to consider
only one subset per orbit of the group action. We may implement this by imposing additional non-strict
inequalities on the parameters φi which can be enforced by applying an appropriate group element.

In the cases 1, 11, 14, 15, 17, 18 of Table 1 there is only one subset which is itself invariant under the
action of the non-trivial symmetry group.

In the cases 2, 3, 5–8, 16, 19 we can reduce the initially larger number of subsets to one.
In case 9 the symmetry group is trivial, while the number of subsets is two. This case hence decomposes

into two non-isomorphic sub-cases.
In case 13 the symmetry group is non-trivial, but reduces the number of subsets only to two, and here

we also get two non-isomorphic sub-cases. The manifolds corresponding to these sub-cases intersect in a
submanifold of lower dimension.

In Table 4 we list the generators and types of the non-trivial symmetry groups of those minimal zero
support sets which are realized by exceptional extremal copositive matrices and provide the additional
inequalities on the angle parameters φi.

3.5 Copositivity and absence of additional minimal zeros

In this section we check which of the remaining candidate matrices are indeed copositive. In order to check
copositivity we use a criterion described in [8]. We show that this method can also be adapted to check, for
a given copositive matrix, the presence or absence of minimal zeros with a given support set. In this way
we ensure that the extremal matrices found for a given minimal zero support set I indeed do not possess
minimal zeros with additional support sets.
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3.5.1 Copositivity

The aforementioned copositivity criterion is based on the following result.

Theorem 3.7. [8, Theorem 4.6] For A ∈ Sn we have that A ∈ COPn if and only if for every non-empty
index set I ⊂ {1, . . . , n}, there exists v ∈ Rn \ (−Rn+) with supp v ⊆ I ⊆ supp≥0(Av).

Corollary 3.8. A matrix A ∈ Sn is copositive if and only if for every non-empty index set I ⊂ {1, . . . , n},
the submatrix AI is copositive or there exists v ∈ Rn \ (−Rn+) with supp v ⊆ I ⊆ supp≥0(Av).

Proof. The forward implication follows directly from the forward implication in Theorem 3.7.
Let us show the reverse implication. Suppose that AI is copositive for some index set I. By Theorem

3.7 there exists ṽ ∈ R|I| \ (−R|I|+ ) with supp ṽ ⊆ {1, . . . , |I|} ⊆ supp≥0(AI ṽ). Padding ṽ with n−|I| zeros at
appropriate places, we obtain v ∈ Rn \ (−Rn+) with supp v ⊆ I ⊆ supp≥0(Av). Now the proof is completed
by applying the reverse implication in Theorem 3.7.

This implies that for each non-empty index set I ∈ {1, . . . , 6} we have either to find a vector v ∈ R6

such that I contains the support of v and is contained in the nonnegative support of Av, or to prove that
the submatrix AI is copositive.

For I of size 1 or 2 we may take v =
∑
i∈I ei, because the diagonal elements of A equal 1 and are greater

or equal than the non-diagonal elements.
For I containing the support of a minimal zero u we may take v = u, as in this case we have I ⊂

{1, . . . , 6} = supp≥0 u. The equality is ensured by the conditions (Au)j ≥ 0 considered in Section 3.3.
For index sets I of cardinality 3 we check copositivity of AI by the following criterion, which amounts

to a linear inequality constraint on the angles φi.

Lemma 3.9. Let

A =

 1 − cosφ1 − cosφ2
− cosφ1 1 − cosφ3
− cosφ2 − cosφ3 1

 ∈ S3
with φ1, φ2, φ3 ∈ [0, π]. Then A is copositive if and only if φ1 + φ2 + φ3 ≥ π.

Proof. The claim follows from the strict monotonicity of the function φ 7→ − cosφ on [0, π] and [10, Lemma
4.7].

For index sets of size 4 we provide a vector v for each case individually or prove that it does not exist.
These vectors are listed in Table 5.

Index sets of cardinality 5 or 6 turn always out to be supersets of a minimal zero support.

It turns out that the additional constraints on the angles φi imposed by the copositivity of A further
reduce the set of φi in a way such that the non-linear constraints on the φi found in Section 3.3 become
redundant. As a consequence, the set of possible values of the angles φi is again reduced to a polytope.

3.5.2 Absence of additional minimal zeros

We also have to certify the absence of minimal zeros with additional support sets. We shall use the following
result, which is also of independent interest.

Lemma 3.10. Let A ∈ COPn and let w be a minimal zero of A with support set I. Let u ∈ Rn \ (−Rn+) be
such that supp u ⊂ I ⊂ supp≥0(Au). Set B = AI and v = uI . Then v is proportional to wI with a positive
proportionality constant and Bv = 0.

Proof. The condition supp u ⊂ I implies that v has at least one positive element. Further Bv = (Au)I ≥ 0
by virtue of I ⊂ supp≥0(Au).

Since w is a minimal zero of A, the submatrix B is positive semi-definite of co-rank 1 and with positive
kernel vector w [17, Lemma 3.7]. Hence Bw = 0 and we obtain vTBw = 0. But Bv ≥ 0 and w > 0, which
implies also Bv = 0 and proves our second claim. It follows also that the vector v is in the kernel of B and
must hence be proportional to the kernel vector w. The proportionality constant is positive because v has
a positive element. This completes the proof.
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Suppose we intend to check the absence of a minimal zero with support set I. In the previous section
we obtained a vector u ∈ Rn \ (−Rn+) such that supp u ⊂ I ⊂ supp≥0(Au). Set B = AI and v = uI . If v
has not all elements positive or if Bv 6= 0, then this certifies the absence of a minimal zero with support I.

In this way the absence of additional minimal zeros with support sets I of cardinality 4 or more is
certified for all occurring cases. For support sets I = {i, j, k} of cardinality 3 the absence of minimal zeros
can in many cases be certified by virtue of Lemma 3.3 by verifying the strict inequality φi + φj + φk > π,
where the angles are defined in the formulation the lemma. In other cases this inequality has to be added
as a constraint. In the remaining cases only the equality φi + φj + φk = π is possible, which leads to the
conclusion that a minimal zero with support I does indeed exist. In particular, this excludes the possibility
of extremal copositive matrices having the minimal zero support sets 21–29 in Table 1. In case 20 this
possibility is excluded by the appearance of additional minimal zeros with support of cardinality two. The
appearing additional support sets are listed in Table 6.

Having verified the copositivity and the absence of additional minimal zeros, it remains to check ex-
tremality of the remaining candidate matrices.

3.6 Extremality

In the previous sections we obtained a manifold of copositive matrices with a given minimal zero support
set I, parameterized by a number of angles φi varying in a polytope. The last step towards the classification
of the extreme rays is to check extremality of these matrices. First we provide an extremality criterion for
copositive matrices [12, Theorem 17].

Theorem 3.11. Let A ∈ COPn. Then A is not extremal if and only if there exists a matrix B ∈ Sn, not
proportional to A, such that (Bu)i = 0 for all u ∈ VAmin, i 6∈ supp(Au).

In other words, given A we consider the linear system of equations {(Bu)i = 0 |u ∈ VAmin, (Au)i = 0} on
B. Clearly all multiples of A are solutions of this system. If there are further solutions, i.e., the dimension
of the solution space is at least 2, then A is not extremal.

The coefficient matrix of the linear system consists of elements of the minimal zeros u ∈ VAmin and hence
depends on the angles φi. For different values of the φi the system may be different, because some of the
inequalities (Au)i ≥ 0 considered in Section 3.3 may become equalities at the boundary of the polytope of
angles, in which case the corresponding equations (Bu)i = 0 are added to the system. Each of these cases
necessitates a separate consideration.

In some cases special considerations lead directly to the conclusion that the manifold of candidate
matrices A consists of extreme rays. In particular, this is the case if there are 5 minimal zero supports of
cardinality 3, with its union I being of cardinality 5, and which are arranged in a cyclic manner (cases 11,
15, 16, 18 in Table 1). In this case the corresponding 5× 5 submatrix AI is extremal in COP5 [16]. Hence
BI is proportional to AI by the relations (Bu)i = 0 involving the 5 minimal zeros. The remaining relations
are then easily verified to determine the remaining entries of B uniquely.

However, in most cases the dimension of the system is too large to determine its rank directly. We
therefore apply a technique to reduce the dimension of the system, which is a development of the method
introduced in [18] and which may also be of independent interest.

We are given a system of linear equations (Buj)i = 0 on a matrix B ∈ Sn, where uj ∈ Rn, j = 1, . . . ,m
are some vectors and the index pairs (i, j) vary in some subset J ⊂ {1, . . . , n} × {1, . . . ,m}. As such the

system has n(n+1)
2 independent variables, namely the entries of B.

Let F ∈ Rn×r be a matrix, and let J ⊂ {j ∈ {1, . . . ,m} |FTuj = 0}. Suppose further that there exists
a subset I ⊂ {1, . . . , n} of cardinality r such that the corresponding submatrix F ′ of F is invertible. We

now make a linear change of variables, replacing the r(r+1)
2 entries of the principal submatrix BI by the

entries of P = (F ′)−1BI(F
′)−T ∈ Sr. Then BI = (FPFT )I is a linear function of P .

We now use some of the equations to express more entries of B as a function of P , namely by representing
them as the corresponding entries of the product X = FPFT . We proceed step by step. Suppose at some
stage there exists (i, j) ∈ J , corresponding to an equation (Buj)i = 0 of the system, and k ∈ suppuj such
that j ∈ J , and all variables Bil, l ∈ suppuj \{k}, have already been expressed as the corresponding entries
of X. Then the relation (Xuj)i = 0, which holds by definition of J , implies that also Bik = Xik. We may
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thus eliminate the equation (Buj)i = 0 from the system and add the element Bik to the list of entries of B
which have been expressed by the corresponding entries of X as linear functions of P .

If not all equations can be used, we may restart the process with a new matrix product Y = GQGT ,
choosing the factor G appropriately. We end up with a fewer number of independent variables, namely the
entries of the central factors P,Q, . . . . Some elements Bik may have been expressed as both Xik and Yik.
In this case we have to add the corresponding relations Xik = Yik to the system of equations, which become
equations on the entries of P and Q.

A concrete example to illustrate the method will be given in Section 4.5 further below.

In our situation it was in all cases sufficient to use at most two products X = FPFT , Y = GQGT ,
with the central factors P,Q being of size 2× 2 and possibly a few of the original equations (Buj)i = 0 and
entries Bik remaining as relations and independent variables, respectively. The factors F,G are chosen as
appropriate functions of the angles φi in order to be orthogonal to as many minimal zeros uj as possible.
The dimension of the solution space can then be determined by further transformations of the now low-
dimensional coefficient matrix.

In cases 1–5, 11, 12, 17, 18 the matrices corresponding to the interior of the polytope of possible angles
φi are exactly those which are extremal. In cases 7, 8, 13, 15, 16 parts of the boundary of the polytope
also correspond to extremal matrices, while in cases 7–10, 13 there exist submanifolds in the interior of
the polytope corresponding to non-extremal matrices. The exact expressions for each case are presented in
Section 5.

4 Special cases

In this section we consider the two minimal zero support sets in Table 1 which contain supports of cardinality
4.

Copositive matrices with minimal zero support set 41 of Table 1 fall into the framework considered
in [18]. They are either positive semi-definite or a sum of a positive semi-definite rank 1 matrix and an
exceptional extremal copositive matrix with minimal zero support set 13 of Table 1 [18, Theorem 5.12].
Hence case 41 does not yield exceptional extremal copositive matrices, and the minimal zeros of matrices
with this minimal zero support set are necessarily linearly dependent.

Let us consider case 19 of Table 1.

4.1 Auxiliary results

In this section we provide some results on 4×4 positive semi-definite matrices with a positive kernel vector.
This will be of use since the presence of the minimal zero support {2, 3, 4, 6} implies that the corresponding
principal submatrix of A is of this form.

Lemma 4.1. Let A ∈ S4+ be of rank 3 with positive kernel vector u, with unit diagonal, and with off-diagonal
elements Aij = − cosφij, φij ∈ (0, π). Suppose further that φ12 + φ23 < π. Then

sinφ23 cosφ14 + sin(φ12 + φ23) cosφ24 + sinφ12 cosφ34 > 0.

Proof. Define the vector v = (sinφ23, sin(φ12 + φ23), sinφ12, 0)T . Let also δ = A13 − cos(φ12 + φ23). Then
δ > 0, because A{1,2,3} � 0. It also follows that Av = (δ sinφ12, 0, δ sinφ23, ?)

T .
We have uTAv = 0 and hence

u4(Av)4 = −δ(u1 sinφ12 + u3 sinφ23) < 0.

It follows that (Av)4 < 0, which yields the desired claim.

Lemma 4.2. Let B ∈ S4 be a partially defined matrix with three undetermined elements B13, B14, B24 and
let u ∈ R4

++ be a vector. Then there exists a completion of B such that Bu = 0 if and only if

B11u
2
1 + 2B12u1u2 +B22u

2
2 = B33u

2
3 + 2B34u3u4 +B44u

2
4.

In this case the completion is unique.
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Proof. The condition Bu = 0 is equivalent to the linear system
B11u1 +B12u2 u3 u4

B12u1 +B22u2 +B23u3 u4
B23u2 +B33u3 +B34u4 u1

B34u3 +B44u4 u1 u2




1
B13

B14

B24

 = 0

on the unknown matrix elements. Thus there exists a completion if and only if the determinant of the coef-
ficient matrix vanishes. After removing non-vanishing factors we arrive at the condition in the formulation
of the lemma.

The positivity of the elements ui guarantees that the matrix elements are determined uniquely.

Lemma 4.3. Let B ∈ S4 be a partially defined matrix with two undetermined elements B13, B24 and let
u ∈ R4

++ be a vector. Then there exists a completion of B such that Bu = 0 if and only if in addition to
the condition in Lemma 4.2 the condition

B11u
2
1 + 2B14u1u4 +B44u

2
4 = B22u

2
2 + 2B23u2u3 +B33u

2
3

holds. In this case the completion is unique.

Proof. The condition Bu = 0 is equivalent to the linear system
B11u1 +B12u2 +B14u4 u3
B12u1 +B22u2 +B23u3 u4
B23u2 +B33u3 +B34u4 u1
B14u1 +B34u3 +B44u4 u2


 1
B13

B24

 = 0

on the unknown matrix elements. The coefficient matrix has deficient rank if and only if the two conditions
in the Lemmas hold.

The positivity of the elements ui again guarantees that the matrix elements are determined uniquely.

We have also the following result, which is a special case of [17, Lemma 5.6 (d)].

Lemma 4.4. Let A ∈ COP4 have unit diagonal and suppose there exists a minimal zero of A with support
of cardinality 4. Let the off-diagonal elements of A be given by Aij = − cosφij, φij ∈ [0, π]. Then for every
three pair-wise distinct indices i, j, k ∈ {1, 2, 3, 4} we have φij + φik + φjk > π and φij + φik − φjk < π.

We may now proceed to the study of copositive matrices with minimal zero support set 19 of Table 1.

4.2 Parametrization

As outlined in Section 3.1 we may use the minimal zero supports of cardinality 3 to express entries of a
copositive matrix A with unit diagonal and the considered minimal zero support set by some angles φi.
From the five supports {3, 4, 5}, {1, 4, 5}, {1, 2, 5}, {1, 2, 3}, {1, 5, 6} we get

A =


1 − cosφ4 cos(φ4 + φ5) cos(φ2 + φ3) − cosφ3 cos(φ3 + φ6)

− cosφ4 1 − cosφ5 A24 cos(φ3 + φ4) − cosφ7
cos(φ4 + φ5) − cosφ5 1 − cosφ1 cos(φ1 + φ2) − cosφ8
cos(φ2 + φ3) A24 − cosφ1 1 − cosφ2 − cosφ9
− cosφ3 cos(φ3 + φ4) cos(φ1 + φ2) − cosφ2 1 − cosφ6

cos(φ3 + φ6) − cosφ7 − cosφ8 − cosφ9 − cosφ6 1

 (1)

with the angles φi ∈ (0, π) satisfying the conditions
∑5
i=1 φi ≤ π (by Lemma 3.6), φ3 + φ6 < π.

The minimal zeros u1, . . . , u6 can be represented as the columns of the matrix
0 sinφ2 sin(φ3 + φ4) sinφ5 sinφ6 0
0 0 sinφ3 sin(φ4 + φ5) 0 u62

sinφ2 0 0 sinφ4 0 u63
sin(φ1 + φ2) sinφ3 0 0 0 u64

sinφ1 sin(φ2 + φ3) sinφ4 0 sin(φ3 + φ6) 0
0 0 0 0 sinφ3 u66

 , (2)

where u62, u63, u64, u66 > 0.
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4.3 First order conditions

In this section we investigate the conditions (Aui)j ≥ 0 for j 6∈ supp{ui}. It will turn out that most of
these inequalities have to be strict.

The presence of the minimal zero support {2, 3, 4, 6} implies that all proper principal submatrices of
A{2,3,4,6} are positive definite [17, Corollary 3.8].

The conditions (Au5)2 ≥ 0, (Au5)4 ≥ 0 yield − cos(φ2−φ6)− cosφ9 ≥ 0, cos(φ3 +φ4 +φ6)− cosφ7 ≥ 0
and hence either π+φ6 ≤ φ2+φ9 or φ6+φ9 ≥ π+φ2, and either φ3+φ4+φ6 ≤ φ7 or φ3+φ4+φ6+φ7 ≥ 2π.

From the copositivity of A{3,5,6} we get φ6 +φ8 +π−φ1−φ2 > π, while by virtue of Lemma 4.4 applied
to the submatrix A{3,4,6} we obtain φ8 + φ9 − φ1 < π. These inequalities combined exclude the possibility
π + φ6 ≤ φ2 + φ9.

Likewise, copositivity of A{1,3,6} yields φ8 + π − φ4 − φ5 + π − φ3 − φ6 > π, while Lemma 4.4 applied
to the submatrix A{2,3,6} implies −φ5 + φ7 + φ8 < π. These inequalities combined exclude the possibility
φ3 + φ4 + φ6 + φ7 ≥ 2π.

Hence φ6+φ9 ≥ π+φ2 and φ3+φ4+φ6 ≤ φ7. We shall now show that these conditions imply (Aui)j > 0
for all other pairs (i, j) with j 6= suppui.

Lemma 4.5. Let A be given by (1) and let u1, . . . , u6 be given by the columns of (2) with φi ∈ (0, π),
φ1+· · ·+φ5 ≤ π, A{2,3,4} � 0, u62, u63, u64, u66 > 0, A{2,3,4,6}u

6
{2,3,4,6} = 0, φ6+φ9 ≥ π+φ2, φ3+φ4+φ6 ≤

φ7.
Then (Au5){2,4}, (Au

2)6, (Au
3)6 ≥ 0, (Au1){1,2,6}, (Au

2){2,3}, (Au
3){3,4}, (Au

4){4,5,6}, (Au
5)3, (Au

6){1,5} >
0, and φ1 + · · ·+ φ5 < π.

Proof. Note that the symmetry (123456) 7→ (543216), which also acts on the zeros by u1 ↔ u4, u2 ↔ u3

and on the angles by φ2 ↔ φ4, φ1 ↔ φ5, φ7 ↔ φ9, φ6 7→ π−φ3−φ6, leaves the conditions and the assertions
in the lemma invariant.

The submatrix A{2,3,4,6} is PSD of rank 3 with a positive kernel vector. In particular, all its proper
principal submatrices are positive definite. Note also that Lemma 4.4 is applicable to A{2,3,4,6}.

From φ6 − φ2 ≥ π − φ9 we have cos(φ6 − φ2) + cosφ9 ≤ 0 and (Au5)4, (Au
2)6 ≥ 0. Likewise, φ7 ≥

φ3 + φ4 + φ6 gives cos(φ3 + φ4 + φ6)− cosφ7 ≥ 0 and hence (Au5)2, (Au
3)6 ≥ 0.

Define δ13 = A13 + cos(φ1 + φ2 + φ3), δ36 = A36 + cos(φ1 + φ2 − φ6), δ46 = A46 − cos(φ6 − φ2). Then
we get

A{1,3,4,5,6} =


1 0

− cos(φ1 + φ2 + φ3) − sin(φ1 + φ2 + φ3)
cos(φ2 + φ3) sin(φ2 + φ3)
− cosφ3 − sinφ3

cos(φ3 + φ6) sin(φ3 + φ6)




1 0
− cos(φ1 + φ2 + φ3) − sin(φ1 + φ2 + φ3)

cos(φ2 + φ3) sin(φ2 + φ3)
− cosφ3 − sinφ3

cos(φ3 + φ6) sin(φ3 + φ6)


T

+


0 δ13 0 0 0
δ13 0 0 0 δ36
0 0 0 0 δ46
0 0 0 0 0
0 δ36 δ46 0 0

 .

By virtue of φ1 + · · ·+ φ5 ≤ π we have δ13 ≥ 0, by virtue of φ6 + φ9 ≥ π + φ2 we have δ46 ≥ 0.
The submatrix

A{3,4,6} =

− cos(φ1 + φ2) − sin(φ1 + φ2)
cosφ2 sinφ2
cosφ6 sinφ6

− cos(φ1 + φ2) − sin(φ1 + φ2)
cosφ2 sinφ2
cosφ6 sinφ6

T

+

 0 0 δ36
0 0 δ46
δ36 δ46 0


is positive definite, which implies(

cosφ6
sinφ6

)T (− cos(φ1 + φ2) − sin(φ1 + φ2)
cosφ2 sinφ2

)−1(
δ36
δ46

)
=

sin(φ2 − φ6)δ36 + sin(φ1 + φ2 − φ6)δ46
sinφ1

< 0.
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From φ6 + φ9 ≥ π + φ2 we have φ6 > φ2 and sin(φ6 − φ2) > 0. Hence

δ36 >
sin(φ1 + φ2 − φ6)δ46

sin(φ6 − φ2)
. (3)

We then have

(Au5)3 = sinφ6δ13 + sinφ3δ36 > sinφ6δ13 + sinφ3
sin(φ1 + φ2 − φ6)δ46

sin(φ6 − φ2)
.

Therefore, if φ1 + φ2 − φ6 ≥ 0, then (Au5)3 > 0.
Applying the symmetry, we get (Au5)3 > 0 also in the case φ3 + φ4 + φ5 + φ6 ≥ π.
Let us now assume that φ1 + φ2 < φ6, φ4 + φ5 < π − φ3 − φ6. Then

(Au5)3 = cos(φ4 + φ5) sinφ6 + cos(φ1 + φ2) sin(φ3 + φ6) +A36 sinφ3

> cos(π − φ3 − φ6) sinφ6 + cosφ6 sin(φ3 + φ6)− sinφ3 = 0.

Hence in any case (Au5)3 > 0.
Further we have by virtue of (3)

(Au1)6 = sinφ2δ36 + sin(φ1 + φ2)δ46 >
sinφ2 sin(φ1 + φ2 − φ6) + sin(φ1 + φ2) sin(φ6 − φ2)

sin(φ6 − φ2)
δ46

=
sinφ1 sinφ6
sin(φ6 − φ2)

δ46 ≥ 0.

By symmetry we also get (Au4)6 > 0.
Further we have

(Au4)4 = (cos(φ2 + φ3) + cos(φ1 + φ4 + φ5)) sinφ5 + sin(φ4 + φ5)(A24 − cos(φ1 + φ5)) > 0,

(Au2)2 = sinφ3(A24 − cos(φ1 + φ5) + cos(φ2 + φ3 + φ4) + cos(φ1 + φ5)) > 0,

because A24 > cos(φ1 + φ5). Likewise (Au1)2, (Au
3)4 > 0 by symmetry.

Define δ14 = A14 − − sin(φ4+φ5)A24+sinφ4 cosφ1

sinφ5
, δ16 = A16 − sin(φ4+φ5) cosφ7+sinφ4 cosφ8

sinφ5
. Then

A{1,2,3,4,6} = P + δ14E14 + δ16E15, (4)

where P ∈ S5 is such its submatrices P{2,3,4,5}, P{1,2,3} are PSD of co-rank 1 and Pu4{1,2,3,4,6} = 0. Hence

P is PSD of rank 3 and Pu6{1,2,3,4,6} = 0. We then get

0 < (Au4)4 = δ14 sinφ5, 0 < (Au4)6 = δ16 sinφ5,

and hence δ14, δ16 > 0. It follows that

(Au6)1 = δ14u64 + δ16u66 > 0.

By symmetry we also get (Au6)5 > 0.
Now by Lemma 4.1, applied to the submatrix A{2,3,4,6}, we have

cosφ7 sinφ1 + cosφ8 sin(φ1 + φ5) + cosφ9 sinφ5 > 0.

By virtue of Lemma 4.4 applied to A{2,3,6} we have |π − φ5 − φ7| < φ8 and hence cosφ8 < − cos(φ5 + φ7).
Substituting into the above inequality we obtain

cosφ7 sinφ1 − cos(φ5 + φ7) sin(φ1 + φ5) + cosφ9 sinφ5 = (cosφ9 − cos(φ1 + φ5 + φ7)) sinφ5 > 0.

This yields |φ1 + φ5 + φ7 − π| < π − φ9 and therefore

φ1 + φ2 + φ3 + φ4 + φ5 + π = φ1 + φ5 + (φ3 + φ4 + φ6) + (π + φ2 − φ6) ≤ φ1 + φ5 + φ7 + φ9 < 2π.

This finally gives φ1 + φ2 + φ3 + φ4 + φ5 < π and hence also (Au1)1, (Au2)3, (Au3)3, (Au4)5 > 0.
This completes the proof.
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4.4 Copositivity

Let us now show that the same conditions already guarantee the copositivity of A.

Lemma 4.6. Let the matrix A be as in Lemma 4.5. Then A is copositive, exceptional, and there are no
other minimal zeros than the multiples of u1, . . . , u6.

Proof. From Lemma 4.5 we have that φ1 + φ2 + φ3 + φ4 + φ5 < π and Aui ≥ 0 for i = 1, . . . , 6.
By definition A{1,2,3,4,5} is the sum of an extremal copositive matrix [16] and a positive multiple of E24.

In particular, this submatrix is copositive.
By (4) we have that the submatrix A{1,2,3,4,6} is in S5++N 5. By symmetry this holds also for A{2,3,4,5,6}.
Let us prove the copositivity of A. Every subset I ⊂ {1, . . . , 6} is either a subset of {1, 2, 3, 4, 5} or

{1, 2, 3, 4, 6} or {2, 3, 4, 5, 6} or a super set of {1, 5, 6}. Thus the copositivity of A follows from Corollary
3.8, where for I ⊃ {1, 5, 6} we choose v = u5.

The submatrices A{1,2,3,4,5}, A{1,2,3,4,6}, A{2,3,4,5,6} do not have zeros other than multiples of ui by
construction. For strict supersets I ⊃ {1, 5, 6} there cannot be a minimal zero with support I because
suppu5 is a strict subset of I. Hence there are no additional minimal zeros.

Let us show that A is exceptional. We have that A is reduced with respect to N 6 by [17, Lemma 4.1],
because the minimal zero support set covers all elements of A. Hence if A is not exceptional, it must be
PSD. But then Aui = 0 for all i = 1, . . . , 6, which is in contradiction to Lemma 4.5.

This completes the proof.

We have proven the following result.

Lemma 4.7. Let the matrix A ∈ COP6 have unit diagonal elements and let its minimal zero support set
be given by the index set 19 in Table 1. Then there exist φ1, . . . , φ6 ∈ (0, π) and u62, u63, u64, u66 > 0,
satisfying φ1 + · · · + φ5 < π, φ3 + φ4 + φ6 < π, φ6 > φ2, such that the minimal zeros u1, . . . , u6 of A are
given by the columns of the matrix (2).

Moreover, given u1, . . . , u6 as above, a matrix A ∈ S6 with unit diagonal elements is copositive ex-
ceptional with minimal zeros u1, . . . , u6 if and only if it is of the form (1) and satisfies A{2,3,4} � 0,
A{2,3,4,6}u

6
{2,3,4,6} = 0, φ7, φ8, φ9 ∈ (0, π), φ6 + φ9 ≥ π + φ2, φ3 + φ4 + φ6 ≤ φ7.

It rests to determine which of these matrices are extremal.

4.5 Extremality

Let A and u1, . . . , u6 be as in Lemma 4.5. We shall investigate whether A is extremal by determining the
solution space of the linear system on B ∈ S6 in Theorem 3.11.

There are 19 linear relations generated by the conditions (Buj)supp uj = 0, j = 1, . . . , 6. In order for
A to be extremal we must, however, have 20 linearly independent conditions (Buj)i = 0 for index pairs
(i, j) such that (Auj)i = 0. Hence there must be at least one such index pair with i 6∈ supp uj . By Lemma
4.5 this can only be (Au2)6 = (Au5)4 = 0 or (Au3)6 = (Au5)2 = 0. These relations are equivalent to
the equalities φ6 + φ9 = π + φ2 and φ7 = φ3 + φ4 + φ6, respectively, and are related by the symmetry
(123456) 7→ (543216) of the index set {1, . . . , 6}.

By possibly applying this symmetry we may without loss of generality assume that φ7−φ3−φ4−φ6 ≥ 0
and φ6 + φ9 = π + φ2. Then A46 = cos(φ6 − φ2). We shall consider the cases φ7 − φ3 − φ4 − φ6 > 0 and
φ7 − φ3 − φ4 − φ6 = 0 separately.

Case φ7−φ3−φ4−φ6 > 0: We have 21 linear relations on B. Consider how the conditions (Bui)j = 0
coming from the zeros u1, . . . , u5 determine the elements of B. We shall use the method presented in Section
3.6. Set

F =



1 0
− cosφ1 − sinφ1

cos(φ1 + φ2) sin(φ1 + φ2)
− cos(φ1 + φ2 + φ3) − sin(φ1 + φ2 + φ3)

cos(φ1 + φ2 + φ3 + φ4) sin(φ1 + φ2 + φ3 + φ4)
− cos(φ1 + φ2 + φ3 + φ4 + φ5) − sin(φ1 + φ2 + φ3 + φ4 + φ5)

− cos(φ1 + φ2 − φ6) − sin(φ1 + φ2 − φ6)


.
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Then we have

FPFT =



B33 B34 B35 ? ? ? ?
B34 B44 B45 B14 ? ? B46

B35 B45 B55 B15 B25 ? B56

? B14 B15 B11 B12 B13 B16

? ? B25 B12 B22 B23 ?
? ? ? B13 B23 B33 ?
? B46 B56 B16 ? ? B66


for an appropriately chosen matrix P ∈ S2. Hence all elements of B except B24, B26, B36 are expressed
as linear functions of P with one constraint on P coming from the double representation of B33. This
constraint is the relation (FPFT )11 = (FPFT )66 and can equivalently be written as

sin(φ1 + φ2 + φ3 + φ4 + φ5)(P11 − P22)− 2 cos(φ1 + φ2 + φ3 + φ4 + φ5)P12 = 0.

The solution space of this equation is two-dimensional, with linearly independent solutions

P 1 =

(
1 0
0 1

)
, P 2 =

(
cos(φ1 + φ2 + φ3 + φ4 + φ5) sin(φ1 + φ2 + φ3 + φ4 + φ5)
sin(φ1 + φ2 + φ3 + φ4 + φ5) − cos(φ1 + φ2 + φ3 + φ4 + φ5)

)
. (5)

Here the solution P 1 corresponds to B = A.
By Lemma 4.2 the remaining relations (Bu6)suppu6 = 0 on the still undetermined elements B24, B26, B36

are compatible if and only if

B22u
2
62 + 2B23u62u63 +B33u

2
63 = B44u

2
64 + 2B46u64u66 +B66u

2
66. (6)

In this case these elements are determined uniquely by P .
It follows that for given φ1, . . . , φ6 the zero u6 has to satisfy the relation

u262 − 2 cosφ5u62u63 + u263 = u264 + 2 cos(φ6 − φ2)u64u66 + u266. (7)

This ensures the existence of the solution B = A. A second linearly independent solution exists if and only
if in addition the relation

cos(φ1 + φ2 + φ3 + φ4 − φ5)u262 − 2 cos(φ1 + φ2 + φ3 + φ4)u62u63 + cos(φ1 + φ2 + φ3 + φ4 + φ5)u263 = (8)

= cos(φ1 − φ2 − φ3 − φ4 − φ5)u264 + 2 cos(φ1 − φ3 − φ4 − φ5 − φ6)u64u66 + cos(φ1 + φ2 − φ3 − φ4 − φ5 − 2φ6)u266

is satisfied. In this case A is not extremal.

Case φ3 + φ4 + φ6 = φ7: Then we have the additional relations (Bu5)2 = (Bu3)6 = 0. These are
equivalent to the relation (FPFT )57 = B26, with F defined as above and P being a linear combination of
the solutions (5).

By Lemma 4.3 the remaining relations (Bu6)suppu6 = 0 on the still undetermined elements B24, B36 are
compatible if and only if in addition to (6) the condition

B22u
2
62 + 2B26u62u66 +B66u

2
66 = B33u

2
63 + 2B34u63u64 +B44u

2
64

holds. In this case these elements are determined uniquely by P .
It follows that for given φ1, . . . , φ6 the zero u6 has to satisfy the relations (7) and

u262 − 2 cos(φ3 + φ4 − φ6)u62u66 + u266 = u263 − 2 cosφ1u63u64 + u264.

This ensures the existence of the solution B = A. A second linearly independent solution exists if and only
if in addition the relations (8) and

cos(φ1 + φ2 + φ3 + φ4 − φ5)u262 − 2 cos(φ1 + φ2 − φ5 − φ6)u62u66 + cos(φ1 + φ2 − φ3 − φ4 − φ5 − 2φ6)u266 =(9)

= cos(φ1 + φ2 + φ3 + φ4 + φ5)u263 − 2 cos(φ2 + φ3 + φ4 + φ5)u63u64 + cos(φ1 − φ2 − φ3 − φ4 − φ5)u264

are satisfied. In this case A is not extremal.
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4.6 Result

Let us summarize our findings. We have proven the following result, which exhaustively describes the
sought exceptional extremal matrices.

Theorem 4.8. The exceptional extremal matrices A ∈ COP6 with minimal zero support set 19 of Table 1
and with unit diagonal are given by

(i) all matrices (1) with φi ∈ (0, π), φ1 + · · ·+φ5 < π, φ9 = π+φ2−φ6, φ3 +φ4 +φ6 < φ7, A{2,3,4} � 0,
A{2,3,4,6}u = 0 for some u = (u62, u63, u64, u66)T ∈ R4

++, except those satisfying (8);
(ii) all matrices (1) with φi ∈ (0, π), φ1 + · · ·+φ5 < π, φ9 = π+φ2−φ6, φ3 +φ4 +φ6 = φ7, A{2,3,4} � 0,

A{2,3,4,6}u = 0 for some u = (u62, u63, u64, u66)T ∈ R4
++, except those satisfying simultaneously (8) and

(9);
(iii) the images of the matrices listed in (i) under the symmetry (123456) 7→ (543216).

The matrices in (i) have 8 free parameters, namely the angles φ1, . . . , φ6 and the 4 non-zero elements of
u6, constrained by (7) and a normalizing constraint, e.g., ||u6|| = 1. The matrices in (i)) have one parameter
less due to the additional equality condition φ3 + φ4 + φ6 = φ7. However, there still remains the question
whether such matrices actually exist. We shall answer this question in the affirmative by giving examples.

A matrix satisfying the conditions in (i) of the theorem is given by

1 −
√
3
2

1
2

1
2 −

√
3
2 0

−
√
3
2 1 −

√
3
2 A24

1
2

√
2
2

1
2 −

√
3
2 1 −

√
3
2

1
2 −

√
1
2 +

√
2
4

1
2 A24 −

√
3
2 1 −

√
3
2

√
3
2

−
√
3
2

1
2

1
2 −

√
3
2 1 − 1

2

0
√
2
2 −

√
1
2 +

√
2
4

√
3
2 − 1

2 1


,

A24 =
(3 +

√
6)(2 +

√
2)(1−

√
1
2 +

√
2
4 )−

√
2(7
√

2 + 6
√

3)(7 + 5
√

2)− 2(39 + 27
√

2 + 22
√

3 + 16
√

6)
√

2 +
√

2

2
,

corresponding to the choice φ1 = φ2 = φ3 = φ4 = φ5 = π
6 , φ6 = π

3 , φ7 = 3π
4 , φ8 = π

8 , φ9 = 5π
6 .

A matrix satisfying the conditions in (ii) of the theorem is given by

1 −
√
3
2

1
2

1
2 −

√
3
2 0

−
√
3
2 1 −

√
3
2 A24

1
2

1
2

1
2 −

√
3
2 1 −

√
3
2

1
2 −

√
5+1
4

1
2 A24 −

√
3
2 1 −

√
3
2

√
3
2

−
√
3
2

1
2

1
2 −

√
3
2 1 − 1

2

0 1
2 −

√
5+1
4

√
3
2 − 1

2 1


,

A24 =
(3 +

√
3)(3−

√
5)− 2

√
2 + 6

√
3− 2

√
5− 2

√
15

2(5−
√

5)
,

corresponding to the choice φ1 = φ2 = φ3 = φ4 = φ5 = π
6 , φ6 = π

3 , φ7 = 2π
3 , φ8 = π

5 , φ9 = 5π
6 .

5 Classification

In this section we present our classification of the extreme rays of the cone COP6. In addition to the
extremal matrices listed in Section 2, there are manifolds of exceptional extremal matrices corresponding
to the first 19 minimal zero support sets in Table 1.

The general form of an extremal matrix is given by DPAPTD, where D is a positive definite diagonal
matrix, P is a permutation matrix, and A is a matrix with unit diagonal which depends on a number of
angles φi. Only the expressions for the factor A are given in the list below. Along with the expression of
the matrix A we provide the set in which the angles φi vary.
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In some cases the set of angles contains parts of its boundary, which manifests itself in the non-strictness
of some of the inequalities defining this set. The reason is that some of the inequalities (Aui)j ≥ 0 may
become equalities without the appearance of an additional minimal zero.

Case NE
The non-exceptional extreme rays are generated by products DPAPTD with central factor A = E11, E12, aaT , where a is one
of the columns of the matrix 

1 1 1 1 1 1 1 1 1
−1 1 1 1 1 1 1 1 1
0 −1 −1 1 1 1 1 1 1
0 0 −1 −1 −1 −1 1 1 1
0 0 0 0 −1 −1 −1 −1 1
0 0 0 0 0 −1 0 −1 −1

 .

Case O5 
1 − cosφ1 cos(φ1 + φ2) cos(φ4 + φ5) − cosφ5 0

− cosφ1 1 − cosφ2 cos(φ2 + φ3) cos(φ1 + φ5) 0
cos(φ1 + φ2) − cosφ2 1 − cosφ3 cos(φ3 + φ4) 0
cos(φ4 + φ5) cos(φ2 + φ3) − cosφ3 1 − cosφ4 0
− cosφ5 cos(φ1 + φ5) cos(φ3 + φ4) − cosφ4 1 0

0 0 0 0 0 0

 ,

where either φ1 = · · · = φ5 = 0, or φi > 0 for i = 1, . . . , 5 and
∑5
i=1 φi < π.

Case 1 
1 −1 −1 −1 1 1
−1 1 1 1 −1 cosφ2
−1 1 1 1 cosφ2 −1
−1 1 1 1 − cosφ1 cos(φ1 + φ2)
1 −1 cosφ2 − cosφ1 1 − cosφ2
1 cosφ2 −1 cos(φ1 + φ2) − cosφ2 1

 ,

φi > 0, φ1 + φ2 < π.

Case 2 
1 −1 −1 −1 1 cosφ2
−1 1 1 1 −1 cosφ1
−1 1 1 1 cos(φ1 + φ2) − cosφ2
−1 1 1 1 cos(φ1 + φ3) − cosφ3
1 −1 cos(φ1 + φ2) cos(φ1 + φ3) 1 − cosφ1

cosφ2 cosφ1 − cosφ2 − cosφ3 − cosφ1 1

 ,

φi > 0, φ2 < φ3 < π − φ1.

Case 3 
1 −1 −1 −1 − cos(φ1 + φ2) cosφ4
−1 1 1 1 cos(φ1 + φ2) − cosφ2
−1 1 1 1 cos(φ1 + φ3) − cosφ3
−1 1 1 1 cos(φ1 + φ4) − cosφ4

− cos(φ1 + φ2) cos(φ1 + φ2) cos(φ1 + φ3) cos(φ1 + φ4) 1 − cosφ1
cosφ4 − cosφ2 − cosφ3 − cosφ4 − cosφ1 1

 ,

φi > 0, φ4 < φ3 < φ2 < π − φ1.

Case 4 
1 −1 −1 1 cos(φ3 + φ4) − cosφ4
−1 1 1 −1 cosφ2 cosφ4
−1 1 1 − cosφ1 cos(φ1 + φ2) cosφ4
1 −1 − cosφ1 1 − cosφ2 cos(φ2 + φ3)

cos(φ3 + φ4) cosφ2 cos(φ1 + φ2) − cosφ2 1 − cosφ3
− cosφ4 cosφ4 cosφ4 cos(φ2 + φ3) − cosφ3 1

 ,

φi > 0, φ1 + φ2 + φ3 + φ4 < π.
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Case 5 
1 −1 −1 cos(φ2 + φ5) − cosφ5 cosφ3
−1 1 1 cos(φ1 + φ4) cosφ5 − cosφ4
−1 1 1 cos(φ1 + φ3) cosφ5 − cosφ3

cos(φ2 + φ5) cos(φ1 + φ4) cos(φ1 + φ3) 1 − cosφ2 − cosφ1
− cosφ5 cosφ5 cosφ5 − cosφ2 1 cos(φ1 + φ2)
cosφ3 − cosφ4 − cosφ3 − cosφ1 cos(φ1 + φ2) 1

 ,

φi > 0, φ1 + φ2 + φ4 + φ5 < π, φ3 < φ4.

Case 6 
1 −1 −1 cosφ2 cosφ1 cosφ5
−1 1 1 − cosφ2 cos(φ2 + φ3) cos(φ2 + φ4)
−1 1 1 cos(φ1 + φ3) − cosφ1 − cosφ5

cosφ2 − cosφ2 cos(φ1 + φ3) 1 − cosφ3 − cosφ4
cosφ1 cos(φ2 + φ3) − cosφ1 − cosφ3 1 cos(φ1 + φ5)
cosφ5 cos(φ2 + φ4) − cosφ5 − cosφ4 cos(φ1 + φ5) 1

 ,

φi > 0, φ1 + φ3 + φ5 < φ4, φ2 + φ4 + φ5 < π.

Case 7 
1 − cosφ1 cos(φ1 + φ2) cosφ4 −1 cosφ1

− cosφ1 1 − cosφ2 cos(φ2 + φ3) cosφ1 −1
cos(φ1 + φ2) − cosφ2 1 − cosφ3 cos(φ3 + φ4) cosφ2

cosφ4 cos(φ2 + φ3) − cosφ3 1 − cosφ4 cos(φ4 + φ5)
−1 cosφ1 cos(φ3 + φ4) − cosφ4 1 − cosφ5

cosφ1 −1 cosφ2 cos(φ4 + φ5) − cosφ5 1

 ,

φi > 0, φ1 ≤ φ5, φ2 + φ3 + φ4 + φ5 < π, φ1 + φ5 6= π.

Case 8 
1 −1 − cosφ2 cos(φ1 + φ2) cos(φ2 + φ3) cosφ5
−1 1 cosφ2 cos(φ4 + φ5) cos(φ5 + φ6) − cosφ5

− cosφ2 cosφ2 1 − cosφ1 − cosφ3 cos(φ1 + φ4)
cos(φ1 + φ2) cos(φ4 + φ5) − cosφ1 1 cos(φ1 − φ3) − cosφ4
cos(φ2 + φ3) cos(φ5 + φ6) − cosφ3 cos(φ1 − φ3) 1 − cosφ6

cosφ5 − cosφ5 cos(φ1 + φ4) − cosφ4 − cosφ6 1

 ,

φi > 0, φ3+φ4 ≤ φ1+φ6, φ2+φ3+φ5+φ6 ≤ π, φ1+φ4 < φ3+φ6 with either φ2+φ3 6= φ5+φ6 or with φ2+φ3 = φ5+φ6 = π
2

or with φ2 + φ3 = φ5 + φ6, φ1 + φ6 = φ3 + φ4.

Case 9.1 
1 −1 − cosφ2 cos(φ1 + φ2) cos(φ2 + φ3) cosφ5
−1 1 cosφ2 cos(φ4 + φ5) cos(φ5 − φ6) − cosφ5

− cosφ2 cosφ2 1 − cosφ1 − cosφ3 cos(φ1 + φ4)
cos(φ1 + φ2) cos(φ4 + φ5) − cosφ1 1 cos(φ4 + φ6) − cosφ4
cos(φ2 + φ3) cos(φ5 − φ6) − cosφ3 cos(φ4 + φ6) 1 − cosφ6

cosφ5 − cosφ5 cos(φ1 + φ4) − cosφ4 − cosφ6 1

 ,

φi > 0, φ2 + φ3 < π, φ2 + φ3 + φ5 < π + φ6, φ1 + φ4 + φ6 < φ3, φ2 + φ3 + φ6 < π + φ5, excluding φ2 + φ3 + φ6 = φ5.

Case 9.2
1 −1 − cosφ2 cos(φ1 + φ2) cos(φ2 + φ3) cosφ5
−1 1 cosφ2 cos(φ4 + φ5) − cos(φ2 + φ3) − cosφ5

− cosφ2 cosφ2 1 − cosφ1 − cosφ3 cos(φ1 + φ4)
cos(φ1 + φ2) cos(φ4 + φ5) − cosφ1 1 cos(φ4 + φ6) − cosφ4
cos(φ2 + φ3) − cos(φ2 + φ3) − cosφ3 cos(φ4 + φ6) 1 − cosφ6

cosφ5 − cosφ5 cos(φ1 + φ4) − cosφ4 − cosφ6 1

 ,

φi > 0, φ2 + φ3 < π, φ2 + φ3 + φ5 < π + φ6, φ1 + φ4 + φ6 < φ3, φ2 + φ3 + φ6 > π + φ5.

Case 10 
1 −1 − cosφ2 cos(φ1 + φ2) cos(φ2 + φ3) cosφ5
−1 1 cosφ2 cos(φ4 + φ5) cos(φ5 − φ6) − cosφ5

− cosφ2 cosφ2 1 − cosφ1 − cosφ3 cos(φ3 + φ6)
cos(φ1 + φ2) cos(φ4 + φ5) − cosφ1 1 cos(φ4 + φ6) − cosφ4
cos(φ2 + φ3) cos(φ5 − φ6) − cosφ3 cos(φ4 + φ6) 1 − cosφ6

cosφ5 − cosφ5 cos(φ3 + φ6) − cosφ4 − cosφ6 1

 ,
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φi > 0, φ1 + φ2 + φ4 + φ5 < π, φ3 + φ4 + φ6 < φ1, φ2 + φ3 + φ6 6= φ5.

Case 11
1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ2 + φ6) cos(φ1 + φ4)

− cosφ2 1 cos(φ1 + φ2) − cosφ3 − cosφ6 cos(φ3 + φ5)
− cosφ1 cos(φ1 + φ2) 1 cos(φ4 + φ5) − cos(φ1 + φ2 + φ6) − cosφ4

cos(φ2 + φ3) − cosφ3 cos(φ4 + φ5) 1 cos(φ3 − φ6) − cosφ5
cos(φ2 + φ6) − cosφ6 − cos(φ1 + φ2 + φ6) cos(φ3 − φ6) 1 b3
cos(φ1 + φ4) cos(φ3 + φ5) − cosφ4 − cosφ5 b3 1

 ,

b3 =
− cos(φ3−φ6) sin(φ4)+cos(φ1+φ2+φ6) sin(φ5)

sin(φ4+φ5)
, φi > 0, φ1 + φ2 + φ3 + φ4 + φ5 < π, π − φ1 − φ4 − φ5 + φ3 − φ2 < 2φ6 <

π − φ1 + φ5 + φ3 + φ4 − φ2.

Case 12 
1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ2 + φ4) cos(φ1 + φ5)

− cosφ2 1 cos(φ1 + φ2) − cosφ3 − cosφ4 cos(φ3 + φ6)
− cosφ1 cos(φ1 + φ2) 1 b1 cos(φ5 + φ7) − cosφ5

cos(φ2 + φ3) − cosφ3 b1 1 cos(φ3 − φ4) − cosφ6
cos(φ2 + φ4) − cosφ4 cos(φ5 + φ7) cos(φ3 − φ4) 1 − cosφ7
cos(φ1 + φ5) cos(φ3 + φ6) − cosφ5 − cosφ6 − cosφ7 1

 ,

b1 =
sin(φ5+φ7) cosφ6−cos(φ3−φ4) sinφ5

sinφ7
, φi > 0, φ1+φ2+φ4+φ5+φ7 < π, φ4+φ7 > φ3+φ6, φ4+φ6 > φ3+φ7, φ7+φ3+φ6 > φ4.

Case 13.1
1 − cosφ1 cos(φ1 + φ2) − cos(φ1 + φ2 + φ3) cos(φ5 + φ6) − cosφ6

− cosφ1 1 − cosφ2 cos(φ2 + φ3) − cos(φ2 + φ3 + φ4) cos(φ1 + φ6)
cos(φ1 + φ2) − cosφ2 1 − cosφ3 cos(φ3 + φ4) − cos(φ3 + φ4 + φ5)

− cos(φ1 + φ2 + φ3) cos(φ2 + φ3) − cosφ3 1 − cosφ4 cos(φ4 + φ5)
cos(φ5 + φ6) − cos(φ2 + φ3 + φ4) cos(φ3 + φ4) − cosφ4 1 − cosφ5
− cosφ6 cos(φ1 + φ6) − cos(φ3 + φ4 + φ5) cos(φ4 + φ5) − cosφ5 1

 ,

φi > 0,
∑6
j=1 φj < 2π, φi+φi+1 < π, i = 1, . . . , 5, φ1 +φ6 < π, φ1 +φ2 +φ3 ≥ φ4 +φ5 +φ6, φ2 +φ3 +φ4 ≥ φ1 +φ5 +φ6, φ3 +

φ4 + φ5 ≥ φ1 + φ2 + φ6, such that
∑6
j=1 φj 6= π, or at least two of the non-strict inequalities are equalities.

Case 13.2
1 − cosφ1 cos(φ1 + φ2) − cos(φ1 + φ2 + φ3) cos(φ5 + φ6) − cosφ6

− cosφ1 1 − cosφ2 cos(φ2 + φ3) − cos(φ1 + φ5 + φ6) cos(φ1 + φ6)
cos(φ1 + φ2) − cosφ2 1 − cosφ3 cos(φ3 + φ4) − cos(φ3 + φ4 + φ5)

− cos(φ1 + φ2 + φ3) cos(φ2 + φ3) − cosφ3 1 − cosφ4 cos(φ4 + φ5)
cos(φ5 + φ6) − cos(φ1 + φ5 + φ6) cos(φ3 + φ4) − cosφ4 1 − cosφ5
− cosφ6 cos(φ1 + φ6) − cos(φ3 + φ4 + φ5) cos(φ4 + φ5) − cosφ5 1

 ,

φi > 0,
∑6
j=1 φj < 2π, φi+φi+1 < π, i = 1, . . . , 5, φ1 +φ6 < π, φ1 +φ2 +φ3 ≥ φ4 +φ5 +φ6, φ2 +φ3 +φ4 ≤ φ1 +φ5 +φ6, φ3 +

φ4 + φ5 ≥ φ1 + φ2 + φ6, such that
∑6
j=1 φj 6= π, or at least two of the non-strict inequalities are equalities.

Case 14 
1 −1 −1 −1 1 1
−1 1 1 1 −1 1
−1 1 1 1 1 −1
−1 1 1 1 −1 1
1 −1 1 −1 1 −1
1 1 −1 1 −1 1

 .

Case 15 
1 −1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ1 + φ4)
−1 1 cosφ2 cosφ1 cos(φ5 + φ6) − cosφ6

− cosφ2 cosφ2 1 cos(φ1 + φ2) − cosφ3 cos(φ3 + φ5)
− cosφ1 cosφ1 cos(φ1 + φ2) 1 cos(φ4 + φ5) − cosφ4

cos(φ2 + φ3) cos(φ5 + φ6) − cosφ3 cos(φ4 + φ5) 1 − cosφ5
cos(φ1 + φ4) − cosφ6 cos(φ3 + φ5) − cosφ4 − cosφ5 1

 ,

φi > 0, φ1 + φ2 + φ3 + φ4 + φ5 < π, φ2 + φ3 + φ5 + φ6 ≤ π, φ6 ≥ φ1 + φ4.
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Case 16 
1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ2 + φ4) cos(φ1 + φ5)

− cosφ2 1 cos(φ1 + φ2) − cosφ3 − cosφ4 cos(φ3 + φ6)
− cosφ1 cos(φ1 + φ2) 1 cos(φ5 + φ6) cos(φ5 + φ7) − cosφ5

cos(φ2 + φ3) − cosφ3 cos(φ5 + φ6) 1 cos(φ6 − φ7) − cosφ6
cos(φ2 + φ4) − cosφ4 cos(φ5 + φ7) cos(φ6 − φ7) 1 − cosφ7
cos(φ1 + φ5) cos(φ3 + φ6) − cosφ5 − cosφ6 − cosφ7 1

 ,

φi > 0, φ1 + φ2 + φ4 + φ5 + φ7 ≤ π, φ4 + φ7 > φ3 + φ6, φ4 + φ6 ≥ φ3 + φ7.

Case 17 
1 − cosφ2 − cosφ1 cos(φ2 + φ3) cos(φ2 + φ4) cos(φ1 + φ5)

− cosφ2 1 cos(φ1 + φ2) − cosφ3 − cosφ4 cos(φ3 + φ6)
− cosφ1 cos(φ1 + φ2) 1 cos(φ5 − φ6) cos(φ5 + φ7) − cosφ5

cos(φ2 + φ3) − cosφ3 cos(φ5 − φ6) 1 cos(φ6 + φ7) − cosφ6
cos(φ2 + φ4) − cosφ4 cos(φ5 + φ7) cos(φ6 + φ7) 1 − cosφ7
cos(φ1 + φ5) cos(φ3 + φ6) − cosφ5 − cosφ6 − cosφ7 1

 ,

φi > 0, φ3 + φ6 + φ7 < φ4, φ1 + φ5 + φ7 + φ2 + φ4 < π.

Case 18
1 − cosφ4 cos(φ4 + φ5) cos(φ2 + φ3) − cosφ3 − cos(φ3 + φ6)

− cosφ4 1 − cosφ5 cos(φ1 + φ5) cos(φ3 + φ4) cos(φ3 + φ4 + φ6)
cos(φ4 + φ5) − cosφ5 1 − cosφ1 cos(φ1 + φ2) cos(φ1 + φ2 − φ6)
cos(φ2 + φ3) cos(φ1 + φ5) − cosφ1 1 − cosφ2 − cos(φ2 − φ6)
− cosφ3 cos(φ3 + φ4) cos(φ1 + φ2) − cosφ2 1 cosφ6

− cos(φ3 + φ6) cos(φ3 + φ4 + φ6) cos(φ1 + φ2 − φ6) − cos(φ2 − φ6) cosφ6 1

 ,

φ1, . . . , φ5 > 0, φ1 + φ2 + φ3 + φ4 + φ5 < π,−φ3 < φ6 < φ2.

Case 19 
1 − cosφ4 cos(φ4 + φ5) cos(φ2 + φ3) − cosφ3 cos(φ3 + φ6)

− cosφ4 1 − cosφ5 a24 cos(φ3 + φ4) − cosφ7
cos(φ4 + φ5) − cosφ5 1 − cosφ1 cos(φ1 + φ2) a36
cos(φ2 + φ3) a24 − cosφ1 1 − cosφ2 cos(φ6 − φ2)
− cosφ3 cos(φ3 + φ4) cos(φ1 + φ2) − cosφ2 1 − cosφ6

cos(φ3 + φ6) − cosφ7 a36 cos(φ6 − φ2) − cosφ6 1

 ,

φi ∈ (0, π), φ1 + φ2 + φ3 + φ4 + φ5 < π, φ2 < φ6, φ3 + φ4 + φ6 ≤ φ7, A{2,3,4} � 0, A{2,3,4,6} with positive kernel vector,
excluding matrices satisfying φ3 + φ4 + φ6 < φ7 and (8) or φ3 + φ4 + φ6 = φ7 and (8) and (9).

We are now ready to formulate our main result.

Theorem 5.1. Let the matrix C generate an extreme ray of COP6. Then there exists a permutation matrix
P ∈ S6, a positive definite diagonal matrix D, and a matrix A given by one of the above forms NE, O5, or
1–19 with the parameters φi in the corresponding range, such that C = PTDADP .

On the other hand, every matrix product of this form generates an extreme ray of COP6.

6 Conclusion

In this contribution we classified the extreme rays of the 6 × 6 copositive cone. The set of these extreme
rays is a stratified real algebraic manifold.

The classification proceeds via an intermediate classification of the minimal zero support set of the
matrix generating the extreme ray. This set is a discrete object. It turns out that different strata of the
manifold of extreme rays may correspond to the same minimal zero support set, and hence this object is
too coarse to classify the strata. However, the strata can be distinguished by the additional information
which of the inequalities (Aui)j ≥ 0 are equalities and which are strict. As a rule, strata corresponding to
the same support set have different dimensions, and the one with smaller dimension lies on the boundary of
the one with larger dimension. There may be, however, also non-isomorphic (with respect to permutation
of the indices) strata of the same dimension corresponding to the same support set.

In Table 7 below we present the dimensions of the mutually non-isomorphic strata of exceptional extremal
matrices with unit diagonal corresponding to the minimal zero support sets 1–19 in Table 1. The respective
maximal dimension equals the number of free parameters in the expressions for the factor A given in
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Section 5. The strata of smaller dimension are obtained by letting some of the non-strict inequalities on
the parameters be equalities. Removing the restriction that the diagonal elements of the matrix equal 1
increases all dimensions by 6.

Another observation is that the dimension of a stratum does not necessarily drop if a minimal zero
support is added to the support set. The dimensions of the maximal strata in cases 12 and 16 of Table 1
are equal, despite the fact that one of the support sets strictly contains the other. This can be explained
by the equality (Au2)5 = 0 in case 12, which in case 16 is a strict inequality.

There are strata which contain ”holes” carved out by embedded submanifolds of non-extremal matrices,
a phenomenon which does not occur for lower order of the copositive cone. These submanifolds may have
a co-dimension strictly larger than 1, as is the case for the manifold described by (ii) of Theorem 4.8.

In the case of 6×6 matrices new phenomena appear which are not present at lower orders. In particular,
the minimal zero support set may not cover all off-diagonal entries, which leads to elements bi in the
parameterized matrix which are a priori not part of a degenerated PSD submatrix AI corresponding to a
minimal zero support I. The first order conditions Au ≥ 0 at the minimal zeros yield a system of non-strict
inequalities on the bi whose feasible set is a polyhedron. In order to further constrain the values of these
variables to extremal points of the polyhedron we have to use the condition that A is extremal. Thus we
do not classify the reduced matrices and check for extremality a posteriori, as in [16].

We obtained also directly new constraints on the minimal zero support set of an extremal copositive
matrix. For instance, the combination of supports appearing in cases 43 or 44 of Table 1, augmented with an
appropriate number of zero entries, cannot occur at any order, because the resulting first order constraints
are incompatible. Another set of constraints can be obtained from the results in Section 3.2, which link
minimal zero supports to linear dependence of the corresponding minimal zeros.

The number of isomorphism classes of strata of extremal matrices is an order of magnitude larger than
in the case of 5 × 5 copositive matrices, which suggests that the complexity of the copositive cone very
rapidly increases with its order. The picture can be made more accessible by the following notion.

Definition 6.1. Let Mn be the stratified real algebraic manifold of extreme rays of the copositive cone
COPn. A stratum S ofMn is called essential if there does not exist a stratum S ′ 6= S such that S ⊂ ∂S ′.

Clearly the stratum of dimension 14 corresponding to case 19 in Table 1 is essential, because no other
stratum has larger dimension. Is there any other essential stratum?

In [17] necessary conditions on the minimal zero support set of an exceptional extremal matrix of COPn
have been found. How can these conditions be tightened using the additional condition that the matrix lies
on an essential stratum?
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No. No. in [17] suppVAmin result

1 2 {1,2},{1,3},{1,4},{2,5},{3,6},{4,5,6} exceptional extremal
2 3 {1,2},{1,3},{1,4},{2,5},{3,5,6},{4,5,6} matrices with this
3 4 {1,2},{1,3},{1,4},{2,5,6},{3,5,6},{4,5,6} minimal zero support
4 5 {1,2},{1,3},{2,4},{3,4,5},{1,5,6},{4,5,6} set exist
5 6 {1,2},{1,3},{1,4,5},{2,4,6},{3,4,6},{4,5,6}
6 8 {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,5,6}
7 9 {1,5},{2,6},{1,2,3},{2,3,4},{3,4,5},{4,5,6}
8 13 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6}
9 15 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{4,5,6}
10 16 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6}
11 21 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6}
12 22 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6}
13 34 {1,2,3},{2,3,4},{3,4,5},{4,5,6},{1,5,6},{1,2,6}
14 36 {1,2},{1,3},{1,4},{2,5},{4,5},{3,6},{5,6}
15 37 {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
16 41 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6},{3,5,6}
17 42 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6},{4,5,6}
18 43 {1,2,3},{2,3,4},{3,4,5},{1,4,5},{1,2,5},{3,4,6},{1,4,6},{1,2,6}
19 23 {3,4,5},{1,4,5},{1,2,5},{1,2,3},{1,5,6},{2,3,4,6}
20 1 {1,2},{1,3},{1,4},{2,5},{3,6},{5,6} copositivity and
21 11 {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6} extremality enforce
22 12 {1,2},{2,3,4},{3,4,5},{4,5,6},{2,5,6},{2,3,6} additional minimal
23 17 {1,2},{1,3,4},{2,3,5},{3,4,5},{2,4,6},{3,4,6} zero supports
24 24 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{3,5,6}
25 25 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{4,5,6}
26 28 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5},{2,3,6}
27 30 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,6},{3,5,6}
28 32 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{1,5,6},{4,5,6}
29 39 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6},{3,5,6}
30 7 {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,4,6} linear span of
31 10 {1,2},{1,3,4},{1,3,5},{2,3,6},{3,4,6},{3,5,6} minimal zeros is
32 14 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{3,5,6} a proper subspace
33 18 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{1,5,6}
34 19 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6}
35 20 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6}
36 26 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6}
37 27 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{3,4,6}
38 38 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6},{3,5,6}
39 40 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6},{4,5,6}
40 44 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6},{3,5,6},{4,5,6}
41 35 {1,2,3,4},{2,3,4,5},{3,4,5,6},{1,4,5,6},{1,2,5,6},{1,2,3,6}
42 33 {1,2,5},{1,4,5},{1,2,3},{3,4,5},{2,3,6},{3,4,6}
43 31 {1,2,5},{1,4,5},{1,2,3},{3,4,5},{1,3,6},{3,5,6} first order conditions
44 29 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{2,3,6},{2,5,6} are incompatible

Table 1: Candidate minimal support sets I of exceptional extreme matrices in COP6

Case No. location of the bi Case No. location of the bi
1 b1 = A26, b2 = A35 2 b1 = A16, b2 = A26

3 b1 = A15, b2 = A16 4 b1 = A25, b2 = A26, b3 = A36

5 b1 = A16, b2 = A25, b3 = A35 6 b1 = A14, b2 = A15, b3 = A16

7 b1 = A14, b2 = A25, b3 = A36, b4 = A16 8 b1 = A23, b2 = A16, b3 = A45

9,10 b1 = A23, b2 = A25, b3 = A16 11 b1 = A35, b2 = A45, b3 = A56

12 b1 = A34, b2 = A45 13 b1 = A14, b2 = A25, b3 = A36

15 b1 = A23, b2 = A24 16 b1 = A45

17 b1 = A34 18 b1 = A56

Table 2: Location of the variables bi in the candidate matrices
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Case No. equalities Case No. equalities
1 (Au5)5 = (Au4)6 = 0 2 (Au2)6 = (Au4)6 = 0
3 (Au1)5 = (Au3)6 = 0 4 (Au3)5 = (Au1)6 = (Au2)6 = 0
5 (Au2)6 = (Au1)5 = (Au2)5 = 0 6 (Au1)4 = (Au2)5 = (Au2)6 = 0
7 (Au1)4 = (Au1)2 = (Au2)3 = (Au2)1 = 0 8 (Au1)3 = (Au1)6 = (Au2)5 = 0

9.1 (Au1)3 = (Au6)2 = (Au1)6 = 0 9.2 (Au1)3 = (Au1)5 = (Au1)6 = 0
10 (Au1)3 = (Au4)5 = (Au1)6 = 0 11 (Au1)5 = (Au2)5 = (Au6)5 = 0
12 (Au6)4 = (Au2)5 = 0 13.1 (Au1)4 = (Au2)5 = (Au3)6 = 0

13.2 (Au1)4 = (Au5)2 = (Au3)6 = 0 15 (Au1)3 = (Au1)4 = 0
16 (Au6)5 = 0 17 (Au6)4 = 0
18 (Au3)6 = 0 19 (Au2)6 = (Au5)4 = 0

Table 3: Equalities (Auj)k = 0 determining the variables bi

Case No. Generator(s) Group Inequalities
1 (1, 3, 2, 4, 6, 5) S2

2 (1, 2, 4, 3, 5, 6) S2 φ2 ≤ φ3
3 (1, 3, 2, 4, 5, 6); (1, 2, 4, 3, 5, 6); (1, 2, 3, 4, 6, 5) S3 × S2 φ4 ≤ φ3 ≤ φ2
5 (1, 3, 2, 4, 5, 6) S2 φ3 ≤ φ4
6 (1, 3, 2, 5, 4, 6) S2 φ2 + φ4 + φ5 ≤ π
7 (6, 5, 4, 3, 2, 1) S2 φ1 ≤ φ5
8 (2, 1, 6, 4, 5, 3) S2 φ3 + φ4 ≤ φ1 + φ6
11 (2, 1, 4, 3, 5, 6) S2

13 (6, 5, 4, 3, 2, 1); (6, 1, 2, 3, 4, 5) D6 φ1 + φ2 + φ3 ≥ φ4 + φ5 + φ6,
φ3 + φ4 + φ5 ≥ φ1 + φ2 + φ6

14 (1, 4, 3, 2, 5, 6); (5, 2, 6, 4, 1, 3) S2
2

15 (1, 2, 4, 3, 6, 5) S2

16 (3, 6, 1, 4, 5, 2) S2 φ4 + φ6 ≥ φ3 + φ7
17 (2, 1, 4, 3, 5, 6) S2

18 (1, 2, 3, 4, 6, 5); (4, 3, 2, 1, 5, 6) S2
2

19 (5, 4, 3, 2, 1, 6) S2 φ7 − φ3 − φ4 − φ6 ≥ φ6 + φ9 − π − φ2

Table 4: Symmetry groups, their generators, and enforced inequalities
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Case No. Index subset Certifying vectors v
1 {2, 3, 4, 5} e3 − e2
2 {2, 3, 4, 5}, {2, 3, 4, 6} e3 − e2, e2 + e6
3 {2, 3, 4, 5}, {2, 3, 4, 6} e2 + e5, e2 + e6
4 {2, 3, 5, 6} e5 + e6
5 {2, 3, 4, 5}, {2, 3, 5, 6} e3 − e2, e2 − e3
6 {1, 4, 5, 6} e4 + e5
7 {1, 3, 4, 6} e3 + e4
8 {1, 4, 5, 6}, {2, 3, 4, 5} e4 + e6, e3 + e4 (φ1 ≤ 2φ3) or e3 + e5 (φ3 ≤ 2φ1)
9 {2, 3, 4, 5}, {2, 3, 5, 6} e3 + e4, e5 + e6 (9.1) or e2 + e6 (9.2)
10 {2, 3, 4, 5} e3 + e5
11 {1, 3, 4, 5}, {2, 3, 4, 5} e1 + e3, e2 + e4

{1, 4, 5, 6} sin(φ6 − φ3)e1 − sin(φ2 + φ6)e4 + sin(φ2 + φ3)e5
{2, 3, 5, 6} sin(φ1 + φ2 + φ6)e2 − sinφ6e3 + sin(φ1 + φ2)e5

12 {1, 3, 4, 5}, {2, 3, 4, 5} e1 + e3, e2 + e4
{1, 4, 5, 6} sin(φ4 − φ3)e1 − sin(φ2 + φ4)e4 + sin(φ2 + φ3)e5

13 {1, 2, 4, 5}, {1, 3, 4, 6}, {2, 3, 5, 6} e4 cosφ4 + e5, e1 + e6, e2 + cosφ2e3
15 {2, 3, 4, 5}, {2, 3, 4, 6} e3 + e5, e4 + e6
16 {1, 4, 5, 6} e5 + e6 (2φ6 ≥ φ7) or e4 cosφ6 + e6 (φ6 ≤ φ7)

{1, 3, 4, 5}, {2, 3, 4, 5} e1 + e3, e2 + e4
17 {1, 3, 4, 5}, {2, 3, 4, 5} e1 + e3, e2 + e4
18 {1, 3, 5, 6}, {2, 3, 5, 6} e1 + e5 (−φ3 ≤ 2φ6) or e1 + e6 (φ6 ≤ φ3), e2 + e3,

{2, 4, 5, 6} e4 + e5 (2φ6 ≤ φ2) or e4 + e6 (−φ2 ≤ φ6)

Table 5: Copositivity certifying vectors for index subsets of cardinality 4

Case No. Minimal zero support Case No. Minimal zero support
20 {4, 5} or {4, 6} 21 {4, 5, 6}
22 {1, 4, 5} 23 {2, 5, 6}
24 {2, 4, 6} or {2, 5, 6} 25 {1, 5, 6} or {2, 4, 6} or {2, 5, 6}
26 {2, 4, 6} 27 {2, 4, 6}
28 {1, 2, 6} 29 {4, 5, 6}

Table 6: Additionally appearing minimal zero support set

Case No. Dim. Case No. Dim. Case No. Dim. Case No. Dim.
1 2 6 5 11 6 16 7,6,6,5
2 3 7 5,4 12 7 17 7
3 4 8 6,5,5,4 13 6,6,5,5,4,3 18 6
4 4 9 6,6 14 0 19 8,7
5 5 10 6 15 6,5,5

Table 7: Dimensions of strata of extremal matrices with unit diagonal

26


