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On the algebraic structure of the copositive cone

Roland Hildebrand ∗

January 18, 2020

Abstract

We decompose the copositive cone COPn into a disjoint union of a finite number of open subsets SE
of algebraic sets ZE . Each set SE consists of interiors of faces of COPn. On each irreducible component
of ZE these faces generically have the same dimension. Each algebraic set ZE is characterized by a finite
collection E = {(Iα, Jα)}α=1,...,|E| of pairs of index sets. Namely, ZE is the set of symmetric matrices A
such that the submatrices AIα×Jα are rank-deficient for all α. For every copositive matrix A ∈ SE , the
index sets Iα are the minimal zero supports of A. If uα is a corresponding minimal zero of A, then Jα
is the set of indices j such that (Auα)j = 0. We call the pair (Iα, Jα) the extended support of the zero
uα, and E the extended minimal zero support set of A. We provide some necessary conditions on E for
SE to be non-empty, and for a subset SE′ to intersect the boundary of another subset SE .

Keywords: copositive matrix, minimal zero, facial structure, algebraic sets

1 Introduction

An element A of the space Sn of real symmetric n×n matrices is called copositive if xTAx ≥ 0 for all vectors
x ∈ Rn+. The set of such matrices forms the copositive cone COPn. This cone plays an important role in
non-convex optimization, as many difficult optimization problems can be reformulated as conic programs
over COPn. For a detailed survey of the applications of this cone see, e.g., [7, 2, 3, 10].

In [6] the local structure of the cone COPn around a given copositive matrix A was considered. In
particular, the cone of feasible directions and the tangent cone at A and the minimal face of A have been
computed. These objects have a description in terms of the minimal zeros of A.

A zero u of a copositive matrix A is a non-zero nonnegative vector such that uTAu = 0 [4, 1]. The
support suppu of a zero u = (u1, . . . , un)T ∈ Rn+ is the subset of indices j ∈ {1, . . . , n} such that uj > 0.
A zero u of A is called minimal if there is no zero v of A such that supp v ⊂ suppu holds strictly [8]. The
minimal zero support set, i.e., the ensemble suppVAmin of minimal zero supports of a copositive matrix A
is a characteristic that yields a finite classification of the matrices in COPn. However, this classification is
quite coarse, e.g., the set of matrices A′ ∈ COPn which share the minimal zero support set with A may
have a description by different ensembles of equalities and inequalities around different points.

Here we make a further step in the study of the local properties of COPn. While the paper [6] focussed on
the infinitesimal structure of COPn near a given matrix A, in this work we consider finite neighbourhoods of
A. To this end we propose a finer characteristic of copositive matrices, still leading to a finite classification,
namely their extended minimal zero support set. In addition to the minimal zero supports of the matrix A
this object contains the complementary index sets of its minimal zeros. Here the complementary index set
compu of a zero u of A is defined as the set of indices j such that (Au)j = 0. Here we show that the set
SE of matrices A′ ∈ COPn which share the extended minimal zero support set E with A is an open subset
of some explicit algebraic set ZE ⊂ Sn. As such it is described by the same set of polynomial equations at
every point, which yields a complete and homogeneous characterization of its local structure.

The proposed decomposition of COPn into subsets SE is compatible with the facial structure of the
cone. For every face F ⊂ COPn, the interior points of F all belong to the same subset SE , and hence each
SE can be represented as a disjoint union of such facial interiors. Moreover, for each subset SE we construct
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a coefficient matrix with entries polynomial in the elements of A ∈ SE such that the solution space of the
homogeneous linear system of equations with this coefficient matrix is the linear hull of the minimal face of
A. As a consequence, on each irreducible component of the algebraic set ZE the minimal faces of A ∈ SE
have generically the same dimension, with possibly higher dimensions on some algebraic subset.

The main purpose of this contribution is to provide new tools for the study of the facial structure and
especially the extreme rays of the copositive cone, which play a crucial role, e.g., in the verification of the
exactness of computationally tractable relaxations of the copositive cone.

The remainder of the paper is structured as follows. In Section 1.1 we provide some notations and formal
definitions. In Section 2 we prove our main result (Theorem 2.2) on the decomposition of the cone COPn
into relatively open subsets according to the extended minimal zero support set. In Section 3 we derive
some properties of the subsets and the extended minimal zero support set, in particular related to the facial
structure of COPn. We provide some necessary conditions on E for SE to be non-empty (Lemma 3.2), and
for a subset SE′ to intersect the boundary of another subset SE (Lemma 3.3). In Section 3.1 we provide
some examples of subsets SE . In Section 4 we list some open problems related to our decomposition.

1.1 Notations and definitions

The space of real symmetric matrices of size n× n will be denoted by Sn.
For an index set I ⊂ {1, . . . , n}, denote by I its complement {1, . . . , n} \ I.
We shall denote vectors with lower-case letters and matrices with upper-case letters. For a matrix A

and a vector u of compatible dimension, the i-th element of the matrix-vector product Au will be denoted
by (Au)i. Inequalities u ≥ 0 on vectors will be meant element-wise, where we denote by 0 = (0, . . . , 0)T the
all-zeros vector. Similarly we denote by 1 = (1, . . . , 1)T the all-ones vector. Let ∆ = {u ∈ Rn+ | 1Tu = 1}
be the standard simplex.

For a subset I ⊂ {1, . . . , n} we denote by AI the principal submatrix of A whose elements have row
and column indices in I, i.e. AI = (Aij)i,j∈I ∈ S |I|. For subsets I, J ⊂ {1, . . . , n} we denote by AI×J the
submatrix of A whose elements have row indices in I and column indices in J . Similarly for a vector u ∈ Rn
we define the sub-vector uI = (ui)i∈I ∈ R|I|.

For a nonnegative vector u ∈ Rn+ we define its support as suppu = {i ∈ {1, . . . , n} | ui > 0}.
A zero u of a copositive matrix A is called minimal if there exists no zero v of A such that the inclusion

supp v ⊂ suppu holds strictly. We shall denote the set of minimal zeros of a copositive matrix A by VAmin

and the ensemble of supports of the minimal zeros of A by suppVAmin. To each index set I there exists at
most one minimal zero u ∈ ∆ of A with suppu = I [8, Lemma 3.5], hence the minimal zero support set
suppVAmin is in bijective correspondence to the minimal zeros of A which are contained in ∆.

We now introduce the extended minimal zero support set of a copositive matrix.

Definition 1.1. Let A ∈ COPn and let u be a zero of A. The complementary index set compu of u is the
index set {j | (Au)j = 0} = supp(Au). The extended support esuppu of u is the pair (suppu, compu) of
index sets. The extended minimal zero support set esuppVAmin is the ensemble of extended supports of the
minimal zeros of A.

By [5, Lemma 2.5] we have that suppu ⊂ compu for every zero u of a copositive matrix A.
Let E = {(Iα, Jα)}α=1,...,m be a finite collection of pairs of index sets. Define the set

SE = {A ∈ COPn | esuppVAmin = E}

of copositive matrices having extended minimal zero support set E . Then the whole copositive cone COPn
decomposes into a disjoint union of a finite number of such subsets SE . We shall also associate to E the set

ZE = {A ∈ Sn | AIα×Jα is rank deficient ∀ α = 1, . . . ,m}.

Clearly ZE is algebraic, given by the zero locus of a finite number of determinantal polynomials in the
elements of A.
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2 Openness of SE in ZE

In this section we prove our main result, which states that the sets SE of matrices sharing the same extended
minimal zero support set E are open in the relative topology of the algebraic set ZE .

Lemma 2.1. Let E = {(Iα, Jα)}α=1,...,m be a collection of pairs of index sets. Then SE ⊂ ZE .

Proof. We have to show that whenever a matrix A ∈ COPn has extended minimal zero support set E , its
sub-matrices AIα×Jα are rank deficient for all α = 1, . . . ,m. First note that Iα ⊂ Jα, and hence AIα×Jα is
rank deficient if and only if its transpose has a non-zero right kernel vector. Such a kernel vector is readily
provided by the sub-vector uαIα , where uα is a minimal zero of A having support Iα. This completes the
proof.

Theorem 2.2. Let A ∈ COPn be a copositive matrix and let E = {(Iα, Jα)}α=1,...,m be the extended
minimal zero support set of A. Then there exists a neighbourhood U ⊂ Sn of A such that U ∩SE = U ∩ZE .

Proof. Assume for the sake of contradiction that there exists a sequence Ak ∈ ZE \SE of matrices converging
to A.

Let uα ∈ ∆ be the minimal zero of A with support Iα and complementary index set Jα, α = 1, . . . ,m.
By [8, Lemma 3.7] the submatrix AIα is positive semi-definite of co-rank 1. The 1-dimensional kernel of
this submatrix is generated by the element-wise positive sub-vector uαIα .

By definition the submatrix BIα is rank deficient for every matrix B ∈ ZE , i.e., its co-rank is at least 1.
Since the co-rank is upper semi-continuous, it can be at most 1 for all submatrices (Ak)Iα except possibly
a finite number. Without loss of generality we may assume that the co-rank of (Ak)Iα equals 1 for all k,
and hence has a 1-dimensional kernel. Since (Ak)Iα → AIα , this kernel tends to the 1-dimensional subspace
generated by the sub-vector uαIα > 0. Let us choose vectors vαk with support supp vαk ⊂ Iα such that the
sub-vectors (vαk )Iα generate the kernel of (Ak)Iα and vαk → uα. Without loss of generality we may assume
that all sub-vectors (vαk )Iα are element-wise positive, i.e., that vαk ≥ 0 and supp vαk = Iα, and that vαk ∈ ∆.

The submatrixAIα has |Iα|−1 positive and one zero eigenvalue. Since (Ak)Iα → AIα and the submatrices
(Ak)Iα have exactly one zero eigenvalue, the other eigenvalues of (Ak)Iα must be positive for all k sufficiently
large. Hence we may assume without loss of generality that the submatrices (Ak)Iα are positive semi-definite
for all k. It follows by [8, Lemma 3.7] that (vαk )Iα is a minimal zero of the submatrix (Ak)Iα .

By definition the submatrix BJα×Iα is rank deficient for every matrix B ∈ ZE , which by virtue of the
inclusion Iα ⊂ Jα implies that it has a non-zero right kernel vector. This kernel vector is also in the kernel
of the principal submatrix BIα . However, the kernel of (Ak)Iα is 1-dimensional and generated by the sub-
vector (vαk )Iα . Therefore (vαk )Iα is also in the kernel of (Ak)Jα×Iα , and (Akv

α
k )Jα = 0. On the other hand,

we have Akv
α
k → Auα, and hence we may assume without loss of generality that supp(Auα) ⊂ supp(Akv

α
k )

for all k. Since compuα = Jα by assumption, we obtain supp (Akvαk ) = Jα.
If Ak ∈ COPn, then by the preceding vαk is a minimal zero of Ak with extended support (Iα, Jα).

Let us show that indeed Ak ∈ COPn except for possibly a finite number of indices k. For each k,
consider the problem

min
w∈∆

1

2
wTAkw. (1)

Assume for the sake of contradiction that there exists a sub-sequence of matrices Ak converging to A, which
for brevity will also be denoted by Ak, such that the optimal value γk of problem (1) is negative for all k.
Let w∗k ∈ ∆ be the corresponding optimizers. Without loss of generality we may pass to a sub-sequence
{w∗k} which converges to some vector u∗ ∈ ∆. Then 0 > 2γk = (w∗k)TAkw

∗
k → (u∗)TAu∗, and we must

have (u∗)TAu∗ ≤ 0. However, the matrix A is copositive, which implies (u∗)TAu∗ ≥ 0 and hence u∗ is a
zero of A. Define the index sets I = suppu∗, J = compu∗, and note that I ⊂ J . Since w∗k → u∗, we may
assume without loss of generality that I ⊂ suppw∗k for all k.

By [8, Corollary 3.4] the zero u∗ can be represented as a sum of minimal zeros of A. Equivalently, u∗

is a convex combination of the minimal zeros uα, and there exist nonnegative numbers ηα,
∑m
α=1 ηα = 1,

such that u∗ =
∑m
α=1 ηαu

α. Note that suppu∗ =
⋃
α: ηα>0 Iα.

We have 0 = (Au∗)J =
∑m
α=1 ηα(Auα)J . However, Auα ≥ 0 for all α by [1, p.200]. Therefore

(Auα)J = 0 and as a consequence J ⊂ Jα and thus also (Akv
α
k )J = 0 for all α such that ηα > 0. For
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each k, define vk =
∑m
α=1 ηαv

α
k . Then vk ∈ ∆ for all k, and supp vk =

⋃
α: ηα>0 supp vαk =

⋃
α: ηα>0 Iα = I.

Moreover, (Akvk)J =
∑m
α=1 ηα(Akv

α
k )J = 0. It follows that vTk Akvk = (vk)TI (Akvk)I = 0.

Let us consider the first order optimality condition at w∗k. It states that for each k there exists a
nonnegative vector λk ∈ Rn+ and a number µk such that

∂

∂w

(
1

2
wTAkw − λTkw + µk(1− 1Tw)

)
= Akw − λk − µk1 = 0

at w = w∗k, and λTkw
∗
k = 0. Multiplying from the left by w∗k, we obtain

0 = (w∗k)TAkw
∗
k − (w∗k)Tλk − µk1Tw∗k = 2γk − µk,

and hence
λk = Akw

∗
k − µk1 = Akw

∗
k − 2γk1.

Passing to the limit on both sides and taking into account 2γk → (u∗)TAu∗ = 0, we obtain limk→∞ λk =
Au∗. Without loss of generality we may hence assume that supp(Au∗) ⊂ suppλk for all k. It follows that
suppw∗k ⊂ suppλk ⊂ supp(Au∗) = J .

Let us now introduce a parameter τ ≥ 0 and consider the vector wk(τ) = (1− τ)vk + τw∗k. By virtue of
(w∗k)TAkvk = (w∗k)TJ (Akvk)J = 0 the value of the objective function of problem (1) on this vector equals

1

2
wTk (τ)Akwk(τ) =

1

2

(
(1− τ)2vTk Akvk + 2τ(1− τ)(w∗k)TAkvk + τ2(w∗k)TAkw

∗
k

)
= τ2γk.

Recall that I = supp vk ⊂ suppw∗k and hence the minimal face of w∗k in ∆ contains the vector vk. Since
w∗k = wk(1) is in the relative interior of its minimal face, there exists τ > 1 such that wk(τ) is also in this
face and hence in ∆. However, τ2γk < γk for such τ , contradicting that γk is the minimum of the objective
function over ∆.

Thus we may assume that Ak ∈ COPn for all k. It remains to show that esuppVAkmin = E for all

sufficiently large k. The minimal zeros vαk of Ak ensure that E ⊂ esuppVAkmin. Let us show the opposite
inclusion.

Suppose for the sake of contradiction that there exists a pair of index sets (Î , Ĵ) which is not contained
in E and such that Ak has a minimal zero ûk ∈ ∆ with extended support (Î , Ĵ) for sufficiently large k.
Without loss of generality assume that ûk → û ∈ ∆. Then 0 = ûTkAkûk → ûTAû, and û must be a zero

of A with supp û ⊂ Î. Hence there exists a minimal zero uα of A such that Iα ⊂ supp û ⊂ Î. However,
every Ak possesses a minimal zero with support Iα, namely vαk . By the minimality of ûk we then must have

Î = Iα and ûk = vαk , contradicting the assumption (Î , Ĵ) 6∈ E .
Thus Ak ∈ SE for sufficiently large k, which completes the proof of the theorem.

The theorem implies that in a neighbourhood of any copositive matrix A ∈ COPn with esuppVAmin = E ,
the structure of the set SE of copositive matrices sharing the extended minimal zero support set with A is
completely described by the polynomial relations determining the algebraic set ZE . We have the following
result.

Corollary 2.3. Let E = {(Iα, Jα)}α=1,...,m be an arbitrary collection of pairs of index sets. Then SE is an
open subset in the relative topology of the algebraic set ZE .

Proof. If SE = ∅, then the assertion of the corollary is trivial. In the opposite case it follows from Theorem
2.2.

3 Properties of the subsets SE

In this section we establish some properties of the extended minimal zero support set and the corresponding
subsets SE , in particular in relation to the facial structure of COPn.

First we consider the action of the automorphism group of COPn on the decomposition into subsets SE .
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Lemma 3.1. The decomposition of COPn into subsets SE is invariant under scaling A 7→ DAD by positive
definite diagonal matrices and equivariant under the action A 7→ PAPT of the symmetric group Sn.

Proof. Let u be a minimal zero of A ∈ COPn with extended support (I, J).
Suppose D is a positive definite diagonal matrix. Then D−1u is a minimal zero of the diagonally scaled

matrix DAD ∈ COPn. It is easily seen that the extended support of D−1u is again (I, J). Hence A and
DAD have the same extended minimal zero support set and reside in the same subset SE .

On the other hand, let P ∈ Sn be a permutation matrix. Then Pu is a minimal zero of the permuted
matrix PAPT . However, the extended support (Ĩ , J̃) of Pu is obtained from (I, J) by element-wise appli-
cation of the permutation P . Hence the extended minimal zero support set of PAPT is obtained from E
by the element-wise action of P .

This completes the proof.

We have the following simple properties.

Lemma 3.2. Let E = {(Iα, Jα)}α=1,...,m be a collection of pairs of index sets such that SE 6= ∅. Then for
every α, β we have Iα ⊂ Jβ if and only if Iβ ⊂ Jα. Moreover, Iα ⊂ Jα for all α. If α 6= β, then Iα 6⊂ Iβ.

Proof. Let A ∈ SE and let uα be minimal zeros of A with suppuα = Iα, α = 1, . . . ,m. We shall show that
the inclusion Iβ ⊂ Jα is equivalent to the relation (uβ)TAuα = 0.

Indeed, since uβ ≥ 0 and Auα ≥ 0, the relation (uβ)TAuα = 0 is equivalent to suppuβ ∩ supp(Auα) =
Iβ ∩ Jα = ∅. This in turn is equivalent to Iβ ⊂ Jα.

By the symmetry of the condition (uβ)TAuα = 0 with respect to an exchange of α, β we obtain the first
claim of the lemma.

The second claim follows from the relation (uα)TAuα = 0.
The last assertion holds by the minimality property of the supports Iα of the minimal zeros uα.

If the set SE is non-empty and not the zero set {0}, then it has a boundary, which by Corollary 2.3
is a subset of ZE \ SE . Since COPn is closed, this boundary consists of copositive matrices, and hence
of elements of other subsets SE′ with E ′ 6= E . The following result describes a relation between the two
collections E ′, E .

Lemma 3.3. Let E = {(Iα, Jα)}α=1,...,m be a collection of pairs of index sets, and let Ak ∈ SE be a sequence
of matrices tending to some limit A ∈ SE′ , E ′ = {(I ′α, J ′α)}α=1,...,m′ . Then for every α = 1, . . . ,m there
exists α′ ∈ {1, . . . ,m′} such that I ′α′ ⊂ Iα, Jα ⊂ J ′α′ . In particular, we have ZE′ ⊂ ZE .

Proof. Let uk ∈ ∆ be the minimal zero of Ak with extended support (Iα, Jα). Assume without loss of
generality that uk → u ∈ ∆. We have 0 = uTkAkuk → uTAu, and hence u is a zero of A. Moreover,
suppu ⊂ suppuk = Iα. On the other hand, Akuk → Au, and hence supp(Au) ⊂ supp(Akuk) = Jα. It
follows that Jα ⊂ compu.

The zero u of A can be decomposed as a sum of minimal zeros of A [8, Corollary 3.4], u =
∑
α′ uα

′
with

the extended support of the minimal zero uα
′

being (I ′α′ , J ′α′) ∈ E ′. Note also that Au =
∑
α′ Auα

′
. Now

both uα
′

and Auα
′

are nonnegative vectors, and hence I ′α′ = suppuα
′ ⊂ suppu, supp(Auα

′
) ⊂ supp(Au)

for all α′ appearing in the sum, the second inclusion being equivalent to compu ⊂ J ′α′ .
The first assertion of the lemma now readily follows.
Now if the submatrix BJ′×I′ of some matrix B ∈ Sn has a non-zero right kernel vector, then also BJ×I

has a non-zero right kernel vector whenever I ′ ⊂ I, J ⊂ J ′. This proves the second assertion.

We now pass to the properties related to the facial structure of COPn.

Lemma 3.4. All matrices in the relative interior of a face F ⊂ COPn belong to the same subset SE . The
matrices in the boundary of the face F do not belong to the subset SE .

Proof. Let A in the relative interior of F have extended minimal zero support set E = {(Iα, Jα)}α=1,...,m,
and let uα be minimal zeros of A with support Iα. Note that F is the minimal face of A. By [6, Theorem
17] the linear hull of F is given by all matrices B ∈ Sn such that (Buα)Jα = 0 for all α = 1, . . . ,m. Hence
this linear hull is a subset of ZE . Thus by virtue of Theorem 2.2 there exists a neighbourhood U of A such
that U ∩ F ⊂ SE .
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It follows that the extended minimal zero support set is locally constant on the interior of the face F .
This implies the first assertion of the lemma.

On the other hand, suppose for the sake of contradiction that A′ ∈ ∂F ∩ SE . Then again by Theorem
2.2 there exists a neighbourhood U ′ of A′ in the linear hull of F such that U ′ ⊂ SE and hence U ′ ⊂ COPn.
This contradicts the assumption A′ ∈ ∂F and proves the second assertion of the lemma.

Corollary 3.5. Each of the subsets SE ⊂ COPn is a disjoint union of relative interiors of faces of COPn.

Proof. The corollary follows from Lemma 3.4 and the fact that relative interiors of different faces do not
intersect.

We shall need the following auxiliary result.

Lemma 3.6. Let M be a k × k matrix of rank k − 1 and with left kernel vector having a non-zero first
element. Denote Ii = {1, . . . , k} \ {i}, i = 1, . . . , k. Then the right kernel of M is generated by the vector
u ∈ Rk with elements ui = (−1)i detMI1×Ii .

Proof. By assumption the first row of M is a linear combination of the other k − 1 rows. Since the matrix
M is of rank k− 1, the remaining k− 1 rows are linearly independent and at least one of the determinants
defining the elements of u is non-zero. Let the vector v = (v1, . . . , vk)T generate the right kernel of M .

Now replace the elements of the first row of M by independent variables x1, . . . , xk and let f(x) =

−
∑k
i=1 uixi be the determinant of the so-modified matrix. This determinant is zero if and only if the

vector x = (x1, . . . , xk) is a linear combination of the other rows of the matrix. In this case v is a right

kernel vector of the matrix, and
∑k
i=1 vixi = 0. Thus v must be proportional to u, which completes the

proof.

Let now A ∈ COPn be arbitrary and let E be the extended minimal zero support set of A. Let F be the
minimal face of A. As mentioned in the proof of Lemma 3.4, its linear hull is given by the solution space
of a linear homogeneous system of equations with the non-zero coefficients being the positive elements of
the minimal zeros of A. By Lemma 3.6, these elements can be expressed by polynomials in the elements of
the matrix A. Moreover, the linear system has the same form for all matrices in SE .

Therefore the dimension of the minimal face of a matrix A ∈ SE is given by the column rank defect of
a matrix depending polynomially on A. We obtain the following result.

Lemma 3.7. Let E be a collection of pairs of index sets, and let C be an irreducible component of the
algebraic set ZE such that S = C ∩ SE 6= ∅. Then the dimension of the minimal face of a matrix A ∈ S is
constant over S, with the possible exception of an algebraic subset of lower dimension where the dimension
of the face is higher.

Proof. The column rank defect of a matrix is determined by which of its minors are zero or not. In our
case these minors are polynomials in the elements of A, and hence they either identically vanish on C or
their zero set is an algebraic subset of lower dimension. On this subset the column rank defect can only
increase.

In particular, each component of SE either does not contain any extremal matrix, or all matrices in the
component are extremal with the possible exception of an algebraic subset of lower dimension. This makes
the decomposition proposed in this paper especially well-suited for the study of the extremal matrices of
COPn.

3.1 Examples

In this section we provide some explicit examples of subsets SE .

Interior of COPn: The largest subset for any order n is the subset S∅, which equals the interior of the
cone. In this case Z∅ = Sn. This example shows that the boundary of SE may be as complicated as the
copositive cone itself.

Generic points in ∂COPn: On open dense subset of the boundary ∂COPn must be defined by subsets

SE of dimension n(n+1)
2 − 1. The corresponding algebraic set ZE is determined by a single polynomial
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equation. In this case we must have E = {(I, I)} for some non-empty index set I, and the corresponding
equation amounts to det AI = 0.

Zero subset: The unique 0-dimensional subset SE is the point {0}, with E = {({i}, {1, . . . , n})}i=1,...,n.

Orbit of the Horn matrix: A non-trivial example of a subset SE is the set of matrices

D


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

D ∈ COP5, D = diag(d1, . . . , d5) � 0.

In this case the extended minimal zero support set is given by

E = {({1, 2}, {5, 1, 2, 3}), ({2, 3}, {1, 2, 3, 4}), ({3, 4}, {2, 3, 4, 5}), ({4, 5}, {3, 4, 5, 1}), ({5, 1}, {1, 2, 3, 4})}.

Matrices with circulant zero support set: The previous example can be generalized to arbitrary order n.
The corresponding copositive matrices have been studied in [9].

Let E = {({1, 2, 3}, {2}), . . . , ({n, 1, 2}, {1})}, n ≥ 5, where the pairs of index sets in E are obtained
from each other by a circular shift of the indices 1, . . . , n. Then SE is an algebraic manifold of dimension
n(n−3)

2 consisting of extremal exceptional copositive matrices [9, Theorem 6.3].

Let E = {({1, 2}, {1, 2}), . . . , ({n, 1}, {n, 1})}, n ≥ 5, where the pairs of index sets in E are obtained from

each other by a circular shift of the indices 1, . . . , n. Then SE is an algebraic manifold of dimension n(n−1)
2

consisting of exceptional copositive matrices, which can be extremal only for odd n [9, Theorem 6.1].

4 Open problems

In this contribution we mainly studied the local properties of the sets SE . However, natural questions on
the global structure of the decomposition arise.

• Are the subsets SE irreducible, or even algebraic manifolds?

• If SE′ intersects the boundary of SE , does it follow that it is contained in this boundary?

• Does the decomposition into subsets SE define on COPn the structure of a stratified algebraic mani-
fold?

Another line of research is to find stronger necessary or sufficient conditions on a collection E of pairs
of index sets for the subset SE to be non-empty.

Convex duality implies that every face of the copositive cone has a complementary face in its dual,
the completely positive cone CPn. Any subset SE hence corresponds to a subset of CPn, consisting of the
interiors of the faces which are complementary to the faces in SE . A similar analysis can then be performed
for the completely positive cone.
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