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a b s t r a c t 

A recently developed fourth-order accurate implicit residual smoothing scheme (IRS4) is investigated for

the large eddy simulation of turbomachinery flows, characterized by moderate to high Reynolds numbers

and subject to severe constraints on the maximum allowable time step if an explicit scheme is used. For

structured multi-block meshes, the proposed approach leads to the inversion of a scalar pentadiagonal

system by mesh direction, which can be done very efficiently. On the other hand, applying IRS4 at each

stage of an explicit Runge–Kutta time scheme allows to increase the time step by a factor 5 to 10, leading

to substantial savings in terms of overall computational time. With respect to standard second-order fully

implicit approaches, the IRS4 does not require approximate linearization and factorization procedures nor

inner Newton-Raphson subiterations. As a consequence, it represents a better cost-accuracy compromise

for the numerical simulations of turbulent flows where the maximum time step is controlled by the

lifetime of the smallest resolved turbulent structures. Numerical results for the well-documented high- 

pressure VKI LS-89 planar turbine cascade illustrate the potential of IRS4 for significantly reducing the

overall cost of turbomachinery large eddy simulations, while preserving an accuracy similar to the explicit

solver even for sensitive quantities like the heat transfer coefficient and the turbulent kinetic energy field.

1. Introduction

The design of modern turbomachinery components requires ad- 

vanced computational fluid dynamics (CFD) tools. Turbomachinery 

flows are generally three-dimensional, unsteady, and often transi- 

tional. Additionally, they may be characterized by high Mach and 

Reynolds numbers, especially for compressor and high-pressure 

turbine configurations. Finally, they involve complex geometries 

and moving elements, with interactions between the fixed and 

moving wheels. Despite the intrinsic complexity of turbomachinery 

flows, CFD solvers are largely employed in the design process and 

are predominantly based on steady or unsteady Reynolds-averaged 

Navier–Stokes (RANS) models, due to their robustness and their 

moderate computational cost. However, RANS have known limita- 

tions in the prediction of non-equilibrium flows, and specifically 

flows with unsteadiness, separation, rotational effects, strong gra- 

dients and transition (see, e.g., [1] ). High-fidelity, scale-resolving 

simulation approaches like direct numerical simulation (DNS) and 

large-eddy simulation (LES) have recently shown their potential for 

drastically improving the prediction of some crucial turbomachin- 
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ery flow features, like heat transfer and separation [2–10] . Unfortu- 

nately, DNS still remains prohibitively expensive or just unafford- 

able at moderate to high Reynolds numbers, like those occurring in 

high-pressure turbines and in compressor cascades. On the other 

hand, LES is still computationally too expensive to be feasible in 

the regular design cycle. Part of the problem is, once again, the 

relatively high Reynolds number of the flow over turbomachinery 

blades and the requirements for wall resolved LES of extremely 

fine meshes near the wall for capturing the energetic structures 

in the boundary layer. This is especially critical for LES solvers us- 

ing explicit time integration schemes [3] , since fine wall resolu- 

tion leads to severe restrictions on the maximum allowable time 

step. The latter is much smaller than the time-step required to 

achieve a satisfactory accuracy level of the solution. A way of relax- 

ing stability constraints consists in adopting an implicit time inte- 

gration method. Unfortunately, this generally involves much larger 

computational and memory costs. As a consequence, fully implicit 

schemes are prohibitively expensive to use and some form of par- 

tial implicitation or approximate calculation of the Jacobians has to 

be used to reduce computational cost to an amenable level. Addi- 

tionally, the accuracy of such implicit schemes is generally limited 

to second order (the most used approach being the second-order 

backward time discretization), which may introduce significant dis- 

sipation and dispersion errors if large time steps are used. On the 
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other hand, such large time steps are preferred to compensate the 

overcost associated with the resolution of a nonlinear implicit sys- 

tem of equations, including inner subiterations used to rule-out 

approximate linearization and factorization errors. Nonetheless, for 

wall-resolved LES and for DNS, the maximum allowable time step 

has in any case to be sufficiently small to resolve the life time of 

the tiniest structures in the simulations. 

Inspection of the existing literature on LES and DNS applied 

to turbomachinery flows shows that the main time integrations 

strategies in use are explicit Runge–Kutta schemes (e.g. [6,7] ) and 

second-order implicit schemes with dual time stepping or Newton- 

Raphson subiterations [6,11] . Sometimes hybrid approaches are 

adopted [3] , whereby implicit schemes are used to relax the time 

step constraints in grid blocks close to the solid walls, whereas less 

costly explicit schemes are used to advance the calculation in grid 

blocks discretizing the blade passage. 

In a recent work, a high-order accurate and efficient implicit 

scheme was proposed and applied to the LES and DNS of se- 

lected geometrically simple flow configurations, like homogeneous 

isotropic turbulence and turbulent channel flows [12] . The ap- 

proach uses a high-order extension of the well-known Implicit 

Residual Smoothing (IRS) approach, initially proposed by Lerat 

et al. [13] and widely used in the past to speed-up convergence 

of steady Euler and Navier-Stokes calculations based on Runge–

Kutta time stepping [14,15] . The high-order IRS uses an implicit bi- 

Laplacian smoothing operator (of fourth-order accuracy) to filter- 

out high-frequency modes of the residual, which leads to the solu- 

tion of pentadiagonal systems for each space direction and Runge–

Kutta stage. Thanks to the efficient inversion of scalar pentadiag- 

onal matrices, the extra computational cost associated with the 

implicit operator was shown to remain much lower than standard 

implicit schemes at least for the considered configurations. 

The present paper aims at assessing the benefits of the high- 

order IRS scheme for the LES of turbomachinery flows, both in 

terms of accuracy and computational cost. In order to deal with 

turbomachinery geometries, the scheme of Cinnella and Content 

[12] is generalized to multiblock curvilinear structured grids by 

using a finite-volume formulation. The proposed methodology is 

first validated on a simple flow case (vortex advection) and a 2D 

turbine rotor geometry, and subsequently applied to the LES of a 

high-pressure turbine cascade configuration, specifically, the VKI 

LS89 cascade. The latter has been extensively investigated both 

experimentally and numerically [3,4,6–9,16,17] . The sensitivity of 

the numerical results to the tuning parameters of the IRS scheme 

and the benefits compared to standard explicit Runge–Kutta and 

second-order implicit schemes are shown up. 

The paper is organized as follows: Section 2 presents the gov- 

erning equations and the time and space integration schemes used 

in this study. Section 3 reports preparatory validations for under- 

lying flow configurations. LES results for the LS89 cascade are pre- 

sented in Section 4 . Finally, Section 5 contains concluding remarks 

and perspectives for future work. 

2. Numerical methods

We consider the compressible Navier–Stokes equations in their 

instantaneous, Reynolds-averaged or filtered formulation. A finite 

volume (FV) approach is used to deal with non-Cartesian mesh ge- 

ometries, so that the corresponding system of conservation laws is 

written in the integral form: 

d 

dt 

∫ 
�

w d� + 

∮ 
∂�

φ · n d� = 0 (1) 

with initial conditions 

w (x, y, z, 0) = w 0 (x, y, z) 

where t is the time, x, y and z are Cartesian space coordinates, 

w = [ ρ, ρ U, ρ V, ρ W, ρ E ] 
T is the vector of conservative variables 

(with ρ the fluid density, U, V, W the Cartesian components of the 

velocity vector and E the specific total energy), � is a closed con- 

trol volume with boundary ∂�, φ is the physical flux density and 

n is the unit outward normal. The flux density contains the con- 

tributions of both the convective and viscous fluxes: φ = φc − φv ,

where φc and φv are smooth functions of the variables ( w ), and of 

the variables and their spatial gradient ( w , ∇w ), respectively. 

The viscous fluxes may be set to zero (for inviscid flows), or 

may contain the contributions of the Reynolds stresses (for RANS 

calculations) or the contributions of the subgrid stresses (for LES 

calculations). In practice, the LES presented in the following are 

conducted without the introduction of an explicit model for the 

subgrid terms, i.e. we carry out an Implicit LES (ILES, [18,19] ), 

whereby the damping of unresolved subgrid scales is ensured im- 

plicitly by the regularizing numerical dissipation term associated 

with the spatial scheme, as discussed later. 

2.1. Spatial discretization 

Define a structured mesh composed of hexaedral cells �j,k,l and 

denote the cell faces by �
j+ 1 

2 
,k,l 

, �
j,k + 1 

2 
,l 

or �
j,k,l+ 1 

2 
, such that: 

∂� j,k,l = � j+ 1 2 ,k,l ∪ � j,k + 1 2 ,l
∪ � j,k,l+ 12

∪ � j− 1 
2 ,k,l ∪ � j,k − 1 

2 ,l
∪ � j,k,l− 1

2

The cell volume is denoted by | �j,k,l | and an edge surface by 

| �
j+ 1 

2 
,k,l 

| . For each cell face �
j+ 1 

2 
,k,l 

, we denote �
j+ 1 

2 
,k,l 

the

oriented surface directed in the sense of increasing mesh in- 

dices. For each cell �j,k,l we identify the cell center, noted C j,k,l , 

by its coordinates ( x j,k,l , y j,k,l , z j,k,l ), and we denote its maxi- 

mum dimension in each direction as δx j,k,l , δy j,k,l , and δz j,k,l , re- 

spectively. In this work, we consider cell-centered finite volume 

schemes, i.e. we choose to locate the unknown vector w at 

cell centers. Finally, we define a characteristic mesh size by h = 

max ( max 
j,k,l

δx j,k,l , max 
j,k,l

δy j,k,l , max 
j,k,l

δz j,k,l ) . 

Applied to the cell �j,k,l , the conservation law (1) reads: 

d 

dt 

∫ 
� j,k,l

w d� + 

∑ 

�∈ ∂� j,k,l 

∫ 
�
φ · n d� = 0 (2) 

By introducing suitable approximations of the volume and surface 

integrals, Eq. (2) can be written: 

| � j,k,l | ddt 

(
˜ V w 

)
j,k,l 

+ 

˜ S (w j,k,l ) = 0 (3) 

where ˜ V is a (linear) operator approximating the volume integral 

(
˜ V w 

)
j,k,l

= 

1 

| � j,k,l |
∫ 
� j,k,l

w d� + O(h 

p ) (4) 

and 

˜ S approximates the surface integrals 

˜ S (w j,k,l ) = 

∑ 

�∈ ∂� j,k,l 

(∫
�
φ · n d� + | �|O(h 

p )
)

(5) 

for any face � of �j,k,l . If Eqs. (4) and (5) are satisfied simultane- 

ously, the FV approximation (3) is said to be accurate at order p in 

the FV sense [20] . 

In the present work, we use a five-point per direction spa- 

tial scheme [21] supplemented with nonlinear artificial dissipa- 

tion based on a blending of second and fourth order derivatives 

[22] . Such a scheme is third-order accurate in smooth flow re- 

gions on sufficiently regular grids. Numerical dissipation through- 

out the domain is mostly ensured by the fourth derivatives, with 
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a dissipation coefficient (denoted k 4 ) that is kept as low as possi- 

ble while ensuring robustness of the calculation. The lower-order 

nonlinear dissipation is used to damp unphysical oscillations in 

flow regions characterized by discontinuities, so that the corre- 

sponding coefficient (denoted k 2 ) may be set equal to zero for 

fully subsonic flows. An analysis of the spectral properties of the 

spatial discretization scheme for a linear scalar problem (not re- 

ported for brevity, see [23] ), shows that, using k 2 = 0 , k 4 = 0 . 032 

the scheme requires a resolution of 10 and 16 points per wave- 

length to achieve, respectively, a dispersion and a dissipation er- 

ror of 0.1% on a Fourier mode of the numerical solution at each 

timestep. Since the numerical scheme introduces already sufficient 

damping of the solution at smaller scales, and based on our pre- 

vious studies [24,25] , we choose an Implicit LES (ILES) modeling 

approach, which relies on the numerical viscosity for solution reg- 

ularization. 

2.2. Time integration schemes 

In this section we first recall the baseline explicit time integra- 

tion scheme, and then introduce the high-order implicit residual 

smoothing procedure. The formulation of the second-order back- 

ward implicit time integration scheme, used for comparison with 

the IRS in the following sections, is also described for complete- 

ness. 

After approximating the space integrals by a suitable discretiza- 

tion scheme, Eq. (1) may be formally rewritten: 

dw 

dt 

∣∣∣∣
j,k,l

+ 

1 

| � j,k,l | R (w j,k,l ) = 0 (6) 

where R is the space approximation operator. The semi-discrete 

Eq. (6) represents a set of ordinary differential equations, depend- 

ing on the number of degrees of freedom, control volumes or grid 

points contained in each grid. 

2.2.1. Explicit Runge–Kutta scheme 

The baseline explicit time integration scheme is the low-storage 

six-step optimized Runge–Kutta (RK6) method of Bogey and Bailly 

[26] , widely used in the literature for LES and DNS calculation. This 

may be written in compact form as⎧ ⎪ ⎪ ⎨
⎪⎪ ⎩ 

w 

(0) 
j,k,l

= w 

n 
j,k,l

�w 

(k ) 
j,k,l 

= −a k 
�t 

| � j,k,l | R (w(k −1) 
j,k,l

) , k = 1 , . . . s 

w 

n +1 
j,k,l 

= w 

(s ) 
j,k,l

(7) 

where w 

n is the numerical solution at time n �t , �w 

(k ) = w 

(k ) −
w 

(0) is the solution increment at the k th Runge–Kutta stage, s = 6 

is the number of stages, and a k are the optimized scheme coeffi- 

cients. The latter can be found in [26] . The preceding RK6 is for- 

mally only second-order accurate but exhibits very low dispersion 

and dissipation errors up to the lowest resolved frequency for a 

given time-step �t . 

2.2.2. Implicit residual smoothing scheme 

The stability domain of the explicit RK schemes can be en- 

larged by using an implicit residual smoothing (IRS) technique. The 

main idea of IRS is to run the explicit scheme with a time step 

greater than its stability limit. The calculation is then stabilized by 

smoothing the residual by means of a dissipative spatial operator 

added to the left hand side of Eq. (7) . Most IRS operators intro- 

duced in the past were only first or second order accurate (e.g. 

[14,15] ), and introduced large additional dissipation and dispersion 

errors with respect to the baseline time scheme. In this work we 

extend the stability domain of the baseline RK6 by means of a re- 

cently proposed high-order IRS scheme [12] , presented hereafter in 

the finite-volume framework. 

The IRS smooths the residuals by means of a bi-Laplacian in- 

crement at each Runge–Kutta stage. In compact form this writes: ⎧⎪ ⎪ ⎪ ⎨
⎪⎪⎪⎩

w 

(0) 
j,k,l

= w 

n 
j,k,l( ∏ 

d= j,k,l

J d 

)
�w 

(k ) 
j,k,l 

= −a k 
�t 

| � j,k,l | R (w(k −1) 
j,k,l

) , k = 1 , . . . s 

w 

n +1 
j,k,l 

= w 

(s ) 
j,k,l

(8) 

In the preceding equation, J d denotes the implicit residual 

smoothing operator in the d th direction. This is a conservative 

finite-volume extension of the finite-difference IRS operator of Ref. 

[12] . Specifically, for d = j, J j is defined as: (
J j �w 

)
j,k,l 

= �w j,k,l + θ
�t ∣∣� j,k,l 

∣∣
×

[
σ 3 

j+ 1 2 ,k,l 
λ4 

j+ 1 2 ,k,l 

(
δ3 

j �w 

)
j+ 1 2 ,k,l

− σ 3 
j− 1 

2 ,k,l 
λ4 

j− 1 
2 ,k,l 

(
δ3 

j �w 

)
j− 1 

2 ,k,l

] (9)

where we introduced the difference operator in the grid direction 

j 

δ j (•) j+ 1 2 ,k,l = (•) j+1 ,k,l − (•) j,k,l 

such that, e.g., 

(δ3 
j �w ) j+ 1 2 ,k,l = �w j+2 ,k,l − 3�w j+1 ,k,l + 3�w j,k,l − �w j−1 ,k,l 

The coefficient σ , defined at cell face �
j+ 1 

2 
,k,l

is given by 

σ j+ 1 2 ,k,l = 

�t 

| � j+ 1 2 ,k,l| 
with | �

j+ 1 
2 

,k,l
| = 

(| � j+1 ,k,l | + | � j,k,l | 
)
/ 2 . Finally, θ is a tuning pa- 

rameter and λ is the spectral radius (denoted ρ( •)) of the inviscid 

flux Jacobian along the j th direction: 

λ j+ 1 2 ,k,l = ρ

( 

d φc 

dw 

∣∣∣∣
j+ 1 2 ,k,l

· � j+ 1 2 ,k,l

)

where the interface value 
d φc 
dw 

∣∣∣
j+ 1 

2 
,k,l

is computed as an arithmetic 

average of the Jacobians at cell centers C j,k,l and C j+1 ,k,l . Similar for- 

mulas and definitions hold for mesh directions k and l . 

An analytical study of the optimum value of θ for unconditional 

stability is difficult, but a numerical search for a 1D scalar problem 

[12] shows that unconditional stability is obtained for: 

θ � 0 . 005

For a 1D system of conservation laws and a regular Cartesian 

grid the additional error introduced by the IRS operator with re- 

spect to the explicit scheme is of the form: 

− 1 

12 

θ�t 4 ρ( A ) 
4 ∂ 

5 φc 

∂x 5 
+ O 

(
�t 4 

)
, A = 

d φc

dw 

(10) 

ie. , the proposed IRS treatment introduces an additional error of 

O ( �t 4 ), with respect to the baseline RK6. For this reason, this 

scheme is referred to as IRS4 in the following. Being proportional 

to a fifth derivative of the flux function φc , this error is recognized 

to have a dispersive nature. The error increases for larger values of 

the Courant–Friedrichs–Lewy ( CFL ) number and of the smoothing 

coefficient θ . As a consequence, the latter has to be taken as small 

as possible to ensure stability while not deteriorating accuracy. A 

detailed study of the dissipation and dispersion error introduced 

by the IRS4 scheme in the Fourier space has been carried out in 

[12] , showing that the smoothing operator does not alter the ac- 

curacy of the baseline scheme in use significantly, provided that 

the CFL number is not too high (typically, below 10). Such findings 

were verified for a linear advection problem and for the DNS of 



4 J.-Ch. Hoarau, P. Cinnella and X. Gloerfelt / Computers and Fluids 198 (2020) 104395

geometrically simple flow configurations, namely the decay of ho- 

mogeneous isotropic turbulence and a turbulent channel flow. The 

aim of this work is to assess the validity of the above-mentioned 

theoretical results for more realistic and challenging configurations. 

The factorized IRS4 operator J d in Eqs. (8) - (9) leads to the 

inversion of a pentadiagonal matrix per mesh direction at each 

Runge–Kutta step. Such a matrix requires special treatment close 

to the borders of a mesh block. Different treatments are used for 

solid walls and for permeable boundaries (inlet, outlet, and inte- 

rior boundaries between adjacent blocks for multi-block computa- 

tions). When Dirichlet boundary conditions are applied, the solu- 

tion increment at the boundary is set equal to 0. For other kinds 

of boundary conditions ( ie. Neumann, mixed or periodic) and at 

interior boundaries, layers of ghost cells are used to make mesh 

blocks independent from each other and reduce the required num- 

ber of parallel communications. A minimum of two layers of ghost 

cells is required by the present five-point IRS operator. Within the 

ghost cells, information for computing J d is lacking, and the IRS 

operator is simply set equal to the identity, which means that the 

ghost cells are advanced explicitly in time, while the right-hand 

sides are communicated from the neighboring block. Such a proce- 

dure leads to the inversion of an (n + 2) × (n + 2) matrix in each 

mesh direction, n being the number of inner cells. This simplified 

treatment may however lead to stability problems for high values 

of the CFL (larger than 10). Besides, it introduces an additional er- 

ror with respect to the single-block IRS operator, which may be re- 

duced by using a redundant number of ghost cells. Increasing the 

number of ghost cells implies a computational overcost in terms 

of parallel communications among mesh blocks, which varies ac- 

cording to the spatial operator in use. The simulation presented in 

the following are based on a 5-point spatial discretization opera- 

tor, which also requires two layers of ghost cells for multiple-block 

computations. Thus, if only two layers of ghost cells are used for 

the IRS treatment, the overcost associated with parallel communi- 

cations to the ghost cells is rather small, and good parallel scal- 

ability is observed by using mesh blocks with at least 50 3 cells. 

However, a number of ghost cells larger than two may be required 

for preserving accuracy, and the final choice derives from a trade- 

off between computational cost and accuracy. The influence of the 

number of ghost cells involved in the IRS treatment on both accu- 

racy and computational efficiency is investigated in the following 

Section. 

2.2.3. Backward difference schemes 

In order to assess the performance of the IRS4 scheme, a widely 

used second-order implicit scheme is also considered in some of 

the following simulations. Specifically, we consider the second- 

order backward multistep scheme (Gear scheme), which writes: 

F n +1 
j,k,l 

= 

Dw 

n +1 
j,k,l 

�t 
+ 

1 

| � j,k,l | R (wn +1 
j,k,l 

) = 0 , (11) 

with 

Dw 

n +1 
j,k,l 

�t 
= 

3�w 

n 
j,k,l 

− �wn −1
j,k,l

2�t 
,

and �w 

n = w 

n +1 − w 

n . Like all second-order schemes, the leading 

error term of Gear scheme is of dispersive nature. 

Eq. (11) represents a system of non linear equations that is 

solved at each physical time step by means of the Newton-Raphson 

method. For this purpose, the residual is linearized, leading to: 

dF 

dw 

∣∣∣∣
n

j,k,l

�w 

n 
j,k,l = −F nj,k,l , (12) 

with the Jacobian: 

dF 

dw 

∣∣∣∣
n

j,k,l

= 

3

2�t 
I + 

1 

| � j,k,l | 
dR 

dw 

∣∣∣∣
n

j,k,l

In practice, the Jacobian of the spatial operator is not computed 

exactly. As we use high-order schemes for the evaluation of the 

explicit part, the full implicitation could not be performed with- 

out a considerable computational cost per iteration. This difficulty 

is circumvented by applying a defect correction approach, in which 

a first-order Roe–Harten operator is used to approximate the Jaco- 

bian matrix. Finally, a Krylov subspace method, namely GMRES, is 

used to solve Eq. (12) iteratively using the approximate Jacobian. 

Due to the use of an iterative technique instead of a direct linear 

solver, the resulting algorithm is categorized as an ”inexact” New- 

ton method. The reader may refer to [27] for more details on the 

formulation of the implicit scheme. 

The number of sub-iterations required to converge Eq. (12) de- 

pends on the problem and on the properties of the spatial dis- 

cretization scheme. In the following calculations, the number of it- 

erations of the inner loop is set equal to 4 and the inexact Newton 

iteration is converged until the residual is reduced by two order 

of magnitude with respect to the initial value or when a maxi- 

mum number of inner iterations is reached. For instance, for the 

expensive LES of Section 4 the maximum number of inexact New- 

ton subiterations was limited to 10. 

3. Preliminary validations

In this section the accuracy and efficiency of the IRS4 are pre- 

liminarily assessed for two test cases preparatory to the turbine 

LES presented in Section 4 . The first test case allows an investiga- 

tion of the scheme implementation for multi-block grids. The sec- 

ond one is a preliminary application to the unsteady flow around 

a turbine cascade, computed at this stage by solving the unsteady 

RANS equations. 

All the numerical methods described in Section 2 are imple- 

mented within the in-house structured finite-volume code DynHo- 

Lab [28] . 

3.1. Vortex advection 

The IRS4 is used to simulate the advection of a Taylor vortex 

by an inviscid uniform field. This test case has been often used to 

investigate the accuracy of numerical methods for computational 

aeroacoustics and is very sensitive to the boundary treatment [29] . 

The Taylor vortex is defined by the following velocity and pressure 

fields:⎧⎪ ⎪ ⎪⎨ 

⎪⎪⎪ ⎩ 

u = A 

y 

�y 
exp (αR 

2 ) 

v = v ∞ 

− A 

x

�x 
exp (αR 

2 ) 

p = p ∞ 

− ρ∞ 

A 

2 

4 α�x �y 
exp (2 αR 

2 ) 

(13) 

where R = 

√ 

(x − x 0 ) 2 + (y − y 0 ) 2 with (x 0 , y 0 ) = (−12 . 5 , 12 . 5) the 

initial vortex position, α = − ln 2 /b 2 and where we chose the half- 

width b = 10 × �x = 2 . 5 m and the vortex strength A = 10 m/s . The 

vortex is embedded in a constant mean flow with Mach num- 

ber M = v ∞ 

/c ∞ 

= −0 . 5 , i.e., it is advected downwards in the ver- 

tical direction. The vortex is set in a rectangular computational 

domain of sides L x = L y = 50 m. The domain is discretized by a 

set of four uniform Cartesian grids with a number of cells vary- 

ing between 100 × 100 and 1600 × 1600, subdivided into four 

equally sized blocks. The time-step used for the computations is 

reduced according to spatial mesh refinement, and varies between 
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Fig. 1. Vortex advection problem: L ∞ norm of the error E with respect to the exact

solution at final time, CFL = 2.5, and various numbers of ghost cells, as a function of 

the mesh size �x .

�t = 2 . 2 × 10 −3 and �t = 0 . 137 × 10 −3 s, respectively, correspond- 

ing to a maximum CFL number of about 2.5. During the advection, 

the vortex crosses the subdomain border, located at y = 0 . Several 

computations are carried out by varying the number of ghost cells 

( gh ), and the results are compared to those obtained using a sin- 

gle mesh block. For all the computations, the smoothing coefficient 

is θ = 0 . 01 and the artificial dissipation coefficients of the spatial 

scheme are k 2 = 0 . and k 4 = 0 . 032 . 

Fig. 1 shows the L ∞ 

norm of the error with respect to the ex- 

act solution, corresponding to pure advection of the initial vortex 

at constant velocity. Firstly, we notice that a convergence order of 

about three is obtained for the single-block computation, which is 

higher than the order of the present time integration scheme and 

close to the order of the spatial scheme, showing that the time er- 

ror is much smaller than the spatial error. The simplified IRS treat- 

ment at inter-block boundaries reduces the convergence order if 

only two layers of ghost cells are used. Increasing the number of 

ghost cells allows restoring the original accuracy and, for gh = 4 or 

higher, the solution is superposed to the single-block one. 

In Fig. 2 we report the iso-contours of the fluctuating pres- 

sure field (on the grid 200 × 200) by using an increasing num- 

ber of ghost cells. A higher maximum CFL number (equal to 5) is 

used here, to emphasize the differences among the various cases. 

In the same figure, we also report the results obtained with the 

second-order implicit Gear scheme and the same maximum CFL , 

as well as the exact solution. Increasing the number of ghost-cells 

from gh = 2 to gh = 5 decreases the spurious noise generated when 

crossing the internal border. Thanks to the inner subiterations, the 

Gear scheme generates lower errors at the interface using only two 

layers of ghost cells (as required by the spatial scheme). However, 

it introduces significant dispersion and dissipation errors at inner 

mesh points, leading to considerable deformation and smearing of 

the transported vortex. The L ∞ 

errors for an increasing number of 

ghost cells are plotted in Fig. 3 for the grid 200 × 200 and three 

values of the CFL number. It is worth noting that the effect of the 

ghost cells on the error becomes significant as the CFL number is 

increased up to 10. 

For this simple 2D problem we did not observe any appreciable 

impact of the number of ghost cells in use on the computational 

cost of the IRS4 scheme (differences of the order of 7% between 

gh = 2 and gh = 6 ). In all cases the IRS calculations allow reducing 

the overall CPU cost by a factor larger than 2 with respect to the 

Gear scheme. 

3.2. Turbine cascade VKI LS-59 

For preliminary assessment of the IRS scheme on a more chal- 

lenging flow configuration, and in view of the LES of a turbine 

flow, the IRS4 is then applied to a 2D unsteady flow in a turbine 

cascade. More specifically, we chose the VKI LS-59 transonic tur- 

bine rotor cascade, previously considered in several experimental 

and numerical studies [30–34] . To allow comparisons with other 

results in the literature, the flow is modeled through the unsteady 

RANS equations, supplemented by the Wilcox k − ω [1] model of 

turbulence. The VKI LS-59 is a high-loaded rotor blade with a thick, 

rounded trailing edge originally designed for near-sonic exit flow 

conditions. This rotor blade has been extensively tested in vari- 

ous European wind tunnels [30] . Experiments are available in a 

wide range of conditions, and Schlieren photographs clearly indi- 

cate the existence of vortex shedding downstream of the blade 

trailing edge, which is responsible for an appreciable fraction of 

profile losses. The flow conditions considered for this study cor- 

respond to an outlet isentropic Mach number equal to 1 and to 

a Reynolds number (based on the chord and exit conditions) of 

7.44 × 10 5 . The inlet angle is 30 ◦. This choice is motivated by the 

fact that most numerical computations available in the literature 

have been made for these conditions, and experimental distribu- 

tions of the isentropic Mach number at the wall are also available 

for closeby conditions. Indeed, the configuration is affected by both 

geometrical and operational uncertainties, since the blade geome- 

tries used in the various tests reported in [30] exhibit slight dif- 

ferences that affect the shock location and intensity, and the out- 

let isentropic Mach and Reynolds number also exhibit small differ- 

ences in the various tests. The computational domain, constituted 

of a single blade passage, is discretized by a single-block C-grid of 

384 × 32 cells, with a first cell height leading to �y + ≈ 2 . Non 

reflective boundary conditions are applied at the inlet and outlet 

boundaries, and periodic conditions are imposed at the lower and 

upper boundaries of the domain. The unsteady simulations are ini- 

tialized with a (partially converged) steady RANS field obtained us- 

ing the implicit backward Euler scheme available in the DynHoLab 

code [27] and a local time step. 

All the results presented in this Section were obtained by ap- 

plying the third-order spatial scheme with artificial dissipation 

coefficients k 2 = 0 . 5 and k 4 = 0 . 032 . The IRS4 was applied using 

θ = 0 . 01 as smoothing parameter and a constant time step leading 

to a maximum CFL ≈ 7, which corresponds to approximately 50 0 0 

time-steps per vortex shedding period. For the present single-block 

grid, the effect of the number of ghost cells is restricted to the 

treatment of the connection line behind the trailing edge. Numer- 

ical tests conducted by varying the number of ghost cells did not 

reveal any significant influence on the accuracy and computational 

cost of the simulations. As a consequence only the results corre- 

sponding to gh = 2 are reported in the following of this section. 

For this slow unsteady flow problem (only the mean flow in- 

stability in the wake is captured by the unsteady RANS solver), the 

explicit RK scheme leads to very severe constraints on the maxi- 

mum allowable time step, and was discarded. For comparison with 

the IRS4, we carried out two simulations using the Gear scheme. 

For the first simulation, we use the same physical time step as in 

the IRS case. In such conditions, 6 to 10 subiterations are needed 

to satisfy the prescribed tolerance on the residual. The second one 

uses a time step ten times larger (i.e. CF L max ≈ 70 and about 500 

time steps per period). In this case, approximately 20 subiterations 

per time step are necessary to converge the inner loop. In all cases, 

the simulations were run over an integration time corresponding 

to 20 shedding periods. 

In Fig. 4 , snapshots of the density gradient corresponding to the 

three simulations described previously are compared to a Schlieren 

picture obtained experimentally by Kiock et al. [30] (correspond- 
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Fig. 2. Vortex advection problem: Isocontours of the fluctuating pressure ( �p = 100 Pa, min = −150 Pa, max = 150 Pa) on the grid 200 × 200 and CFL = 5. Positive and 

negative values are represented with solid and dashed lines, respectively.

ing to slightly different exit conditions). The flow is characterized 

by shock waves departing from the blade trailing edge and by vor- 

tex shedding in the wake. In all cases, an instability of the wake is 

observed. However, the simulation based on the Gear scheme and 

500 time steps per period does not resolve accurately the vortices 

shed in the wake. Fig. 5 shows the distribution of the isentropic 

Mach number along the blade, averaged over 10 shedding periods. 

The present results are compared to two series of experimental 

data from Kiock et al. [30] and to the numerical results of Michel 

et al. [34] (based on the Spalart-Allmaras turbulence model and 

using a Residual-Based-Compact scheme for the spatial discretiza- 

tion and a second-order implicit time discretization). This quan- 

tity of interest is little affected by the time integration scheme, 

and all the results are in good agreement with the numerical data 

and match reasonably well the experimental measurements. The 

largest differences are observed at the upper side in the vicinity 

of x/c = 0 . 6 , which corresponds to the reflection of the impinging 

shock and is a particularly sensitive zone. Fig. 6 shows the Fourier 

transform of the time-dependent tangential force acting on the 

blade. A well-defined peak corresponds to the shedding frequency. 

The corresponding Strouhal number (based on the trailing edge 

thickness and exit velocity) is about 0.21 for the computations 
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Fig. 3. L ∞ norm of the error E as a function of the number of ghost cells gh on the

grid 200 × 200. 

Fig. 5. VKI LS-59 cascade: time-averaged wall distribution of the isentropic Mach

number for various time integration schemes. Comparison with experimental

[30] and numerical results [34] .

Fig. 4. VKI LS-59 cascade: snapshots of the density gradient computed with the IRS4 scheme at CF L max ≈ 7 (a), and with the Gear scheme at CF L max ≈ 7 (b), and CF L max ≈ 70 

(c); Schlieren picture from Kiock et al. [30] (d).
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Fig. 6. VKI LS-59 cascade: Fourier spectra of the tangential force on the blade for

various time integration schemes, as a function of the Strouhal number.

Table 1

VKI LS-59 cascade: CPU cost [s] for various time integra- 

tion scheme. The cost corresponds to the time integration

over two vortex shedding cycles. The computational costs

were measured on an IBM x3750M4 supercomputer (Intel

Sandy Bridge Processors). Single-processor calculation.

Scheme IRS4

GEAR GEAR

CFL 7 CFL 70

Number of iterations 10,000 10,000 1000

CPU Time (s) 10,260 15,582 4190

CPU cost per iteration 1.026 1.558 4.19

with the smallest time step, and about 0.20 for the computation 

with CF L max ≈ 70 . In all cases, the latter is in good agreement with 

previous numerical results, e.g. [34] , and in reasonable agreement 

with the range of frequency [0.2,0.4] observed experimentally for 

a similar cascade configuration [35] , although the larger numerical 

errors introduced by the second-order implicit time scheme with 

a large time step lead to a slightly lower value. 

With the present setting, the cost per physical time step and 

per mesh cell of the IRS4 coupled with RK6 is 1.2 times lower than 

the cost of the Gear scheme with the same CF L max , see Table 1 . 

When the CF L max is increased, the computational cost per iteration 

of the second-order scheme is nearly 3 times larger than the IRS. 

In this case, however, a much larger time step is allowed (although 

with some loss of accuracy) and thus the overall CPU cost is lower. 

This is an expected result, since the second-order explicit scheme 

with Newton-Raphson subiterations is particularly well suited to 

slow unsteady problems. 

4. Large-eddy simulation of the VKI LS-89 turbine cascade

In this section, the IRS4 scheme is applied to the LES of the 

flow around the VKI LS-89 planar turbine cascade instrumented 

at the von Kármán Institute by Arts et al. [16] . The chord blade 

C is 67.647 mm long with a pitch-to-chord ratio of 0.85 and a 

stagger angle χ = 55 ◦. The flow angle at turbine inlet is equal to 

0 ◦. For this configuration, several sets of experimental data are 

available, characterized by various inlet turbulent intensities and 

pressure ratios. Hereafter, we select flow conditions correspond- 

ing to the experiment called MUR129. This corresponds to an in- 

let total pressure P 0 = 1 . 87 × 10 5 Pa, outlet isentropic Mach number 

M is, 2 = 0 . 840 and outlet Reynolds number Re 2 = 10 6 . An isother- 

mal wall condition is used, with wall temperature T w 

= 298 K. In 

this experiment, the inlet free-stream turbulence intensity is very 

low, T u = 1% . Since our main goal is to assess numerical methods 

rather than to closely reproduce the experimental configuration, no 

inlet turbulence was prescribed in the present numerical simula- 

tions. This has the advantage of simplifying the numerical setup 

and reducing the number of parameters susceptible to affect the 

computed solutions. For the computed conditions, the flow field is 

subsonic, and natural boundary layer transition occurs at the rear 

of the blade upper surface. 

The computational domain used for the present LES is displayed 

in Fig. 7 (a). The mesh is a H-type structured mesh composed of 

850 cells in the streamwise direction, 180 in the pitchwise direc- 

tion and 200 in the spanwise direction. The total number of cells 

for the blade passage is equal to 30.6 × 10 6 . The blade upper and 

lower surfaces are discretized by 550 cells each. A close-up view 

of the computational mesh (every four points are represented) is 

provided in Fig. 7 (b). The corresponding distributions of �y + , �x + 

and �z + are shown in Fig. 8 . The friction velocity, used for com- 

puting the wall coordinates, is based on the local values of the wall 

shear stress. The average first layer size is 2.5 μm, corresponding 

to �y + ≈ 2 . The average resolutions in the streamwise and span- 

wise directions are �x + ≈ 100 and �z + ≈ 25 . These values corre- 

spond to a coarse LES, but are similar to those of Collado et al. 

[6] . The LES is initialized with a preliminary 2D laminar calcula- 

tion extruded in the spanwise direction. A sinusoidal perturbation 

of the conservative variables with an amplitude of 10% is applied in 

the spanwise direction only on the initial solution, to speed-up the 

initial transient toward a fully 3D field. The simulations are first 

run over about ten flow-through times to evacuate the initial tran- 

sient. A flow-through time is calculated as the time required for 

a particle dropped at the blade leading edge to reach the trailing 

edge, when traveling at a constant velocity approximated as the 

arithmetic average of the velocity at the passage inlet ( x = 0 in our 

reference frame with origin at the blade leading edge) and the ve- 

locity at the passage outlet ( x = C cos χ ). Afterwards, the statistics 

are collected over the five subsequent flow-through times. 

The artificial dissipation coefficients of the spatial scheme were 

taken equal to k 2 = 0 . and k 4 = 0 . 064 for this series of calculations. 

For simulations based on the IRS4 time scheme, the dimen- 

sional time-step is set equal to 3 × 10 −8 seconds, which corre- 

sponds to a maximum CFL number of approximately 7. The value 

of the smoothing parameter is set to θ = 0 . 01 and two layers of 

ghost cells are used. The results are compared to those of the ex- 

plicit scheme and the second-order implicit scheme. Due to the 

high computational cost of the simulation, the latter was carried 

out with a maximum number of Newton subiterations equal to 10. 

Fig. 9 presents a typical field of the time-averaged Mach num- 

ber, obtained with the IRS4 scheme. The flow field is smooth 

and subsonic everywhere. An overview of the instantaneous flow 

field is given in Fig. 10 , showing an iso-surface of the Q-criterion 

( Q = 10 3 ) colored by the velocity magnitude (the domain span- 

wise length was reproduced three times for an easier visualiza- 

tion), as well as the distribution of the density gradient in the 

background plane. A close-up view on the trailing edge is displayed 

in Fig. 10 (b). Although the average flow is subsonic, instantaneous 

weak shocks are observed in the trailing edge region. It is also pos- 

sible to observe the instability growth and transition in the bound- 

ary layer at the suction side, with the formation of structures rem- 

iniscent of hairpins, and the onset of turbulence. Finally, the wake 

is characterized by coherent vortex sheddings. Note that, starting 

from a distance of about 1/3 of the blade chord from the trailing 
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0.85 C
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(a)

(b)

Fig. 7. Computational domain for the LES of the LS-89 cascade (a) and close-up

view of the grid (b) (every four points are represented).

edge, the mesh does no longer provide a sufficient resolution of 

the turbulent structures in the wake. However, this has little in- 

fluence on the prediction of the flow close to the blade wall. Flow 

snapshots for the RK6 and Gear schemes are qualitatively similar 

and are not reported. 

Fig. 11 (a) provides the time averaged wall distribution of the 

isentropic Mach number, calculated with various schemes (IRS4, 

RK6, and Gear). The time step selected for the RK6 simulation 

corresponds to a maximum CFL of about 1, whereas for the Gear 

scheme we used the same time step as for the IRS4 computation. 

This quantity is weakly sensitive to the time integration scheme 
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Fig. 8. VKI LS-89 cascade: Time- and span-averaged distributions of �y + (a), �x + 

(b) and �z + (c) along the blade wall. 
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Fig. 9. VKI LS-89 cascade: time-averaged isocontours of the Mach number (IRS4).

and all the results are in excellent accordance with the computa- 

tion of Collado et al. [6] , corresponding to the same flow conditions 

and using a computational grid with a similar resolution to the one 

used in the present computations. The weak influence of the time 

scheme shows that spatial resolution is more influential than time 

accuracy for this case. Since no experimental isentropic Mach num- 

ber data are available for case MUR129, we consider experimental 

results [16] for slightly different flow conditions (MUR43), charac- 

terized by the same inlet turbulence intensity and outlet Mach and 

Reynolds numbers as MUR129, but a different total inlet pressure 

P 0 = 1 . 435 × 10 5 Pa . 

In figure 11 (b), we report the time-averaged convective heat 

transfer coefficient at the wall, defined as: 

H = 

q w

T 0 − T w 

(14) 

where q w 

is the time-averaged wall heat flux, T 0 the total free 

stream temperature and T w 

the wall temperature. The results ob- 

tained with various time schemes are compared to the experimen- 

tal data of Arts et al. [16] for case MUR129 and to the numerical 

results of Collado et al. [6] and Segui et al. [9] . The solution of Col- 

lado et al. [6] was obtained by using a spatial scheme similar to the 

present one and a H–O–H grid with a resolution similar to the one 

considered in this study; time integration was carried out using a 

second-order dual time stepping method and the time step corre- 

sponds to a CFL of about 25. The solution of Segui et al. [9] is based 

instead on a third-order accurate explicit finite element solver and 

a hybrid unstructured grid of about 60 × 10 6 elements. The grid 

was adapted to obtain a very fine near wall spacing of about 5, 6 

and 6 wall units in the wall-normal, streamwise and spanwise di- 

rections, respectively. Several considerations are in order. First, de- 

spite the rather coarse grid resolution, all the present simulations 

compare fairly to the experimental and numerical data from the 

literature. Specifically, the present LES captures reasonably well the 

increase of H at the upper surface blade near a curvilinear abscissa 

of 0.07, which is due to the boundary layer transition. On the other 

hand, the present coarse simulations tend to underestimate H in 

the middle of the upper surface and in the rear part of the lower 

surface. This may be due to the coarse grid resolution in such re- 

Fig. 10. VKI LS-89 cascade: iso-contour of the Q-criterion ( Q = 10 3 ) colored with 

the velocity norm (a) and close up view near the trailing edge (b).

gion, characterized by an extremely fine boundary layer. Also note 

that the reference experiments and simulations use a non-zero tur- 

bulence intensity at the inlet. Second, all the time schemes in use 

provide similar results, except for minor differences in the transi- 

tion region at the suction side. In particular, the IRS4 provides a 

solution in close agreement with the explicit scheme by using a 

time step seven times larger. 

A sensitivity study to the IRS parameter θ and the number of 

ghost cells gh shows that the solution is essentially independent 

of the choice of these parameters (see Fig. 12 ). This indicates once 

again that the solution quality is dominated by spatial resolution 

for this case. Furthermore, due to mesh clustering, high values of 

the CFL number are reached only in the close vicinity of the wall, 

and the local CFL is close to unity elsewhere, reducing the influ- 

ence of IRS on the solution accuracy. 

For further investigation of the effect of time integration errors, 

a comparison of the resolved turbulent kinetic energy fields is re- 

ported in Fig. 13 . This quantity depends on the resolved velocity 

fluctuations and is thus more sensitive to numerical errors than 

mean flow quantities. Both the IRS4 and Gear schemes provide iso- 

contours of the kinetic energy in excellent agreement with the ref- 

erence explicit solution, showing that turbulent structures are well 

resolved in time. 
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Fig. 11. VKI LS-89 cascade: time-averaged and span-wise averaged wall distribu- 

tions of the isentropic Mach number (a) and of the convective heat transfer coeffi- 

cient (b). Various time integration schemes.

We conclude this section with some considerations about the 

computational cost of the simulations. In Table 2 we report the 

overall CPU time corresponding to the calculation of flow statis- 

tics (five flow-though times) for various time schemes and num- 

bers of ghost cells. Due to the severe constraints on the maxi- 

mum allowable time step, the RK6 requires about one order of 

magnitude more time steps to cover the integration time interval. 

The IRS4 scheme, on the other hand, allows increasing the time 

step (while preserving a comparable accuracy) and has a compu- 

tational cost per iteration only 35% higher if two layers of ghost 

cells are used. As a consequence, the overall CPU time is reduced 

by more than a factor 5 with respect to the explicit computation. 

This represents an extremely substantial improvement for costly 

LES. The computational gain is lesser if the number of ghost cells 

is increased. However, even when using 4 ghost cells, the overall 
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Fig. 12. LS-89 cascade: sensitivity of the heat transfer coefficient to the IRS param- 

eter θ (a) and the number of ghost cells gh (b).

Table 2

LES of the VKI LS-89 cascade: computational cost for various time integration

scheme. The cost is evaluated for the time interval corresponding to the compu- 

tation of flow statistics (five flow-through times). The computational costs were

measured on an IBM x3750M4 supercomputer (Intel Sandy Bridge Processors)

and 250 processors were used in all cases.

Scheme gh

Number of CPU time/Processor Time per

iterations (s) iteration and processor

RK6 2 450,000 933,750 2.075

IRS4 2 60,000 168,000 2.800

IRS4 3 60,000 219,000 3.651

IRS4 4 60,000 245,160 4.086

GEAR 2 60,000 348,600 5.810
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Explicit CFL 1
IRS4     CFL 7
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Explicit  CFL 7
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(b)
Fig. 13. VKI LS-89 cascade: close-up view of the turbulent kinetic energy isocon- 

tours in the trailing edge region for various time integration schemes.

computational cost is almost four times lower than the explicit 

scheme. These costs are given for the present calculations using 

250 blocks of approximately 49 3 points and may be dependent on 

the level of parallelization. The CPU cost for the Gear scheme is 

1.5 ÷2 times greater than IRS4 (depending on the number of ghost 

cells used), although it still represents a considerable improvement 

(about a factor 3) with respect to RK6. 

The preceding results show the interest of using time implicit 

schemes for the LES of turbomachinery flows, the IRS4 scheme 

providing the best compromise between cost and accuracy. The 

computational gain is only weakly dependent on the number of 

ghost cells in use, which, on the other hand, have no significant 

influence on the solution accuracy for the present case. 

5. Conclusions

A high order implicit time integration scheme based on the 

combination of a high-accurate implicit residual smoothing opera- 

tor with an optimized Runge–Kutta scheme was extended to struc- 

tured curvilinear grids by means of a finite volume formulation 

and applied to the numerical simulation of unsteady flows in tur- 

bomachinery, the focus being put on large eddy simulations of 

turbulent flows through turbine blade cascades. The proposed ap- 

proach, called IRS4, is designed to enlarge the stability domain of 

the underlying Runge–Kutta scheme significantly without incurring 

in costly matrix inversions and Newton-Raphson subiterations and 

while preserving an accuracy similar to the explicit scheme over 

a range of CFL numbers � 10. The IRS4 scheme requires the in- 

version of a scalar pentadiagonal matrix per mesh direction, which 

can be done very efficiently. The scheme is parallelized by intro- 

ducing layers of ghost cells at the interface between neighboring 

mesh blocks and by simplifying the smoothing operators at block 

borders, with a minimum of 2 layers. Numerical tests for a vortex 

advection problem show that very low error levels can be achieved 

by using 4 to 5 ghost cells instead of two. 

Preliminary validations of the scheme were carried out for the 

simulation of transonic turbine rotor cascade, namely, the VKI LS- 

59 cascade, by solving the unsteady RANS equations. The flow is 

characterized by a mean flow instability in the wake region leading 

to the formation of a von Kármán vortex street. Although the IRS4 

is not especially tailored for capturing this kind of low-frequency 

phenomenon, the overall computational cost is of the same order 

of that of a second-order implicit scheme (Gear scheme) with a 

time step ten times larger. This is due to the cost of the inner New- 

ton subiterations used to solve the fully implicit scheme at each 

physical time step. 

Finally, the IRS4 was applied to the LES of the high-pressure 

LS-89 turbine cascade. The simulations could be carried out using 

a maximum CFL of approximately 7 (i.e. about 7 times larger than 

the explicit scheme) and a comparable accuracy to the underly- 

ing explicit scheme. This leads to a reduction of the computational 

cost by a factor 5 for the same accuracy, using two layers of ghost 

cells. This factor reduces to about 4 when the number of ghost 

cell layers is increased to four. Note that, for the present computa- 

tions, the solution was found to be little sensitive to the param- 

eters chosen for the IRS4 scheme and dominated by the spatial 

resolution. Specifically, varying the number of ghost cell layers did 

not affect the results. The IRS4 solution was also compared to that 

obtained using the Gear scheme and the same maximum CFL . No 

appreciable differences between the numerical solutions are ob- 

served. However, the Gear scheme is about 1.7 times more costly 

than the IRS4, although it still allows a gain of a factor 3 with re- 

spect to the explicit scheme. In all cases, the present numerical re- 

sults were found to compare fairly with experimental and numeri- 

cal data from the literature, despite the use of a rather coarse grid. 

In conclusion, the IRS4 was successfully extended and assessed 

for complex turbulent flows in turbomachinery configurations and 

was demonstrated to be a promising numerical technique to 

speed-up large eddy simulations of complex wall bounded flows. 

Acknowledgments 

This work was granted access to the HPC resources of IDRIS 

National Scientific Computing Centre, under the allocation num- 

ber A0052A07332. This study was also funded by DGA (Direction 

Générale de l’Armement) under PhD contract 2016 60 0043. 

References 

[1] Wilcox D . Turbulence modeling for CFD. DCW Industries, Incorporated; 2006 .

[2] Michelassi V , Wissink JG , Rodi W . Direct numerical simulation, large eddy

simulation and unsteady Reynolds-averaged Navier–Stokes simulations of peri- 
odic unsteady flow in a low-pressure turbine cascade: a comparison. Proc Inst

MechEng Part A 2003;217(4):403–11 .
[3] Bhaskaran R , Lele S . Large eddy simulation of free-stream turbulence effects

on heat transfer to a high-pressure turbine cascade. J Turbul 2010;11(6) .

http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0001
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0001
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0002
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0002
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0002
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0002
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0003
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0003
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0003


J.-Ch. Hoarau, P. Cinnella and X. Gloerfelt / Computers and Fluids 198 (2020) 104395 13

[4] Bhaskaran R , Lele S . Heat transfer prediction in high pressure turbine cascade
with free-stream turbulence using LES. AIAA Paper, 2011–3266; 2011 .

[5] Gourdain N , Gicquel L , Collado E . RANS and LES for the heat transfer prediction
in turbine guide vane. J Propul Power 2012;28:423–33 .

[6] Collado E , Gourdain N , Duchaine F , Gicquel L . Effects of free-stream turbulence
on high pressure turbine blade heat transfer predicted by structured and un- 

structured LES. Int J Heat Mass Transf 2012;55(21):5754–68 .
[7] Pichler R , Kopriva J , Laskowski G , Michelassi V , Sandberg R . Highly resolved

LES of a linear HPT vane cascade using structured and unstructured codes. In:

ASME Turbo expo conference, GT2016-49712; 2016 .
[8] Wheeler A , Sandberg R , Sandham N , Pichler R , Michelassi V , Laskowski G . Di- 

rect numerical simulations of a high-pressure turbine vane. Journal of Turbo- 
machinery 2016;138(7) . 071003–9

[9] Segui L , Gicquel L , Duchaine F , de Laborderie J . LES of the LS89 cascade: influ- 
ence of inflow turbulence on the flow predictions. In: European conference on

turbomachinery fluid dynamics & thermodynamics; 2017 .

[10] Pogorelov A , Meinke M , Schröder W . Large-eddy simulation of the unsteady
full 3D rim seal flow in a one-stage axial-flow turbine. Flow Turbul Combust

2019;102(1):189–220 .
[11] Marty J , Lantos N , Michel B , Bonneau V . LES and hybrid RANS/LES simulations

of turbomachinery flows using high-order methods. In: ASME turbo expo con- 
ference, GT2015-42134; 2015 .

[12] Cinnella P , Content C . High-order implicit residual smoothing time scheme

for direct and large eddy simulations of compressible flows. J Comput Phys
2016;326:1–29 .

[13] Lerat A , Sidès J , Daru V . An implicit finite-volume method for solving the Euler
equations. In: Lecture Notes in Physics, vol. 170; 1982. p. 343–9 .

[14] Jameson A , Baker T . Solution of the Euler equations for complex configurations.
AIAA Paper, 83–1929; 1983 .

[15] Blazek J , Kroll N , Rossow C-C . A comparison of several implicit residual

smoothing methods. In: ICFD Conference on numerical methods for fluid dy- 
namics; 1992 .

[16] Arts T , Lambert de Rouvroit M , Rutherford A . Aero-thermal investigation of
a highly loaded transonic linear turbine guide vane cascade: a test case for

inviscid and viscous flow computations. VKI Training center for experimental
aerodynamics technical note 174; 1990 .

[17] Gourdain N , Gicquel L , Fransen R , Collado E , Arts T . Application of RANS and

LES to the prediction of flows in high pressure turbine components. In: ASME
Turbo expo conference, GT2011-46518; 2011. p. 1773–85 .

[18] Rizzetta DP , Visbal MR , Blaisdell GA . A time-implicit high-order compact dif- 
ferencing and filtering scheme for large-eddy simulation. Int J Numer Methods

Fluids 2003;42(6):665–93 .
[19] Implicit large eddy simulation: computing turbulent fluid dynamics. Grin- 

stein F, Margolin L, Rider W, editors. Cambridge University Press; 2007. doi: 10.

1017/CBO9780511618604 .
[20] Rezgui A , Cinnella P , Lerat A . Third-order accurate finite volume

schemes for Euler computations on curvilinear meshes. Comput Fluids
2005;30(7–8):875–901 .

[21] Cinnella P , Congedo P . Aerodynamic performance of transonic
Bethe-Zel’dovich-Thompson flows past an airfoil. AIAA J 2005;43(11):2458–61 .

[22] Jameson A , Schmidt W , Turkel E . Numerical solution of the Euler equations by
finite volume methods using Runge–Kutta time-stepping schemes. AIAA Paper;

1981 .
[23] Marin Perez R . Hybrid RANS-LES simulations of turbulent flows in aerodynam- 

ics using high-order schemes, Paris, France: Ecole Nationale Supérieure d’Arts
et Métiers; 2013. Ph.D. thesis .

[24] Aubard G , Stefanin Volpiani P , Gloerfelt X , Robinet J-C . Comparison of sub- 

grid-scale viscosity models and selective filtering strategy for large-eddy sim- 
ulations. Flow Turbul Combust. 2013;91(3):497–518 .

[25] Gloerfelt X , Cinnella P . Large eddy simulation requirements for the flow over
periodic hills. Flow Turbul Combust 2019;103(1):55–91 .

[26] Bogey C , Bailly C . A family of low dispersive and low dissipative
explicit schemes for flow and noise computations. J Comput Phys

2004;194(1):194–214 .

[27] Content C , Outtier P-Y , Cinnella P . Coupled/uncoupled solutions of RANS equa- 
tions using a Jacobian-free Newton-Krylov method. In: 21st AIAA Computa- 

tional fluid dynamics conference, AIAA Paper 2013–2423; 2013 .
[28] Outtier P , Content C , Cinnella P , Michel B . The high-order dynamic computa- 

tional laboratory for CFD research and applications. AIAA Paper, 2013–2439;
2013 .

[29] Chicheportiche J , Gloerfelt X . Study of interpolation methods for high-accuracy

computations on overlapping grids. Comput Fluids 2012;68:112–33 .
[30] Kiock R , Lehthaus F , Baines N , Sieverding C . The transonic flow through a plane

turbine cascade as measured in four european wind tunnels. J Eng Gas Turb
Power 1986;108(2):277–84 .

[31] Rubino D , De Palma P , Pascazio G , Napolitano M . Solution of the steady Eu- 
ler equations using fluctuation splitting schemes on quadrilateral elements. In:

Deconinck H, Dick E, editors. Computational fluid dynamics. Springer, Berlin,

Heidelberg; 2009. p. 101–6 .
[32] Arnone A , Pacciani R . Numerical investigation on wake shedding in a turbine

rotor blade. In: Kutler P, Flores J, Chattot J-J, editors. Fifteenth international
conference on numerical methods in fluid dynamics. Lecture Notes in Physics,

490. Springer, Berlin, Heidelberg; 1997. p. 358–63 .
[33] Grimich K , Michel B , Cinnella P , Lerat A . Finite volume formulation of a

third-order residual-based compact scheme for unsteady flow computations.

In: Abgrall R, Beaugendre H, Congedo P, Dobrzynski C, Perrier V, Ricchiuto M,
editors. High order nonlinear numerical schemes for evolutionary PDEs. Lec- 

ture Notes in Computational Science and Engineering, vol. 99. Springer, Cham;
2014. p. 37–58 .

[34] Michel B , Cinnella P , Lerat A . Multiblock residual-based compact schemes for
the computation of complex turbomachinery flows. Int J Eng SystModell Simul

2011;27(1–2):2–15 .

[35] Sieverding H , Richard H , Desse J . Turbine blade trailing edge flow characteris- 
tics at high subsonic outlet Mach number. J Turbomach 2003;125(2):298–309 .

http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0004
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0004
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0004
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0005
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0005
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0005
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0005
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0006
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0006
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0006
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0006
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0006
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0007
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0007
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0007
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0007
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0007
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0007
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0008
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0008
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0008
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0008
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0008
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0008
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0008
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0008
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0009
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0009
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0009
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0009
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0009
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0011
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0011
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0011
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0011
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0011
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0012
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0012
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0012
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0013
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0013
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0013
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0013
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0014
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0014
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0014
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0015
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0015
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0015
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0015
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0016
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0016
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0016
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0016
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0017
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0017
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0017
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0017
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0017
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0017
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0018
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0018
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0018
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0018
https://doi.org/10.1017/CBO9780511618604
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0020
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0020
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0020
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0020
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0021
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0021
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0021
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0022
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0022
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0022
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0022
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0023
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0023
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0024
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0024
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0024
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0024
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0024
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0025
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0025
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0025
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0026
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0026
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0026
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0027
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0027
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0027
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0027
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0028
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0028
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0028
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0028
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0028
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0029
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0029
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0029
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0030
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0030
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0030
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0030
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0030
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0031
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0031
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0031
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0031
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0031
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0032
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0032
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0032
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0033
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0033
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0033
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0033
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0033
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0034
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0034
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0034
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0034
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0035
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0035
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0035
http://refhub.elsevier.com/S0045-7930(19)30353-6/sbref0035

	Large eddy simulation of turbomachinery flows using a high-order implicit residual smoothing scheme
	1 Introduction
	2 Numerical methods
	2.1 Spatial discretization
	2.2 Time integration schemes
	2.2.1 Explicit Runge-Kutta scheme
	2.2.2 Implicit residual smoothing scheme
	2.2.3 Backward difference schemes


	3 Preliminary validations
	3.1 Vortex advection
	3.2 Turbine cascade VKI LS-59

	4 Large-eddy simulation of the VKI LS-89 turbine cascade
	5 Conclusions
	Acknowledgments
	References


