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Abstract

Acoustic propagation in corrugated pipes offers interesting features in
presence of a mean flow, which are investigated experimentally in this pa-
per. The scattering matrix of the corrugated section is measured with and
without a mean flow. The analysis of the results is based on the extraction
of the wavenumbers of propagation within the corrugated pipe. Without
flow, a small decrease of the speed of sound and a slight increase of the at-
tenuation are observed. In presence of mean flow, oscillations against the
frequency of both the real part and the imaginary part of the wavenumber
occur. For sufficiently large flow velocities, the oscillation caused by the
sound-flow interaction is such that the acoustic waves are amplified by the
flow. The Strouhal number for maximum gain shows a small dependency
on the Reynolds number, and converges to values of 0.4 to 0.5 depending
on the presence of rounded or sharp upstream edges of the cavities. Non-
linear effects begin to appear for an acoustic amplitude such that the acoustic
velocity is about 1% of the flow velocity.
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1. Introduction

Corrugated pipes are found in various industrial applications, where a
global flexibility is required (to allow some relative movement of the two ends
of the pipe) while a local strength is also needed (for example to contain the
flow and to resist to high inner and /or outer pressures). Typical applications
are hoses for vacuum cleaners or ventilation, flexible tubing used for cooling
of high-end equipment, or multi-layered flexible pipes used for transport of
natural gas between installations and export pipe lines on an offshore plat-
form. The different designs involved (below-type flexible pipes or folded and
interlocked thin plate) all have an inner wall surface presenting some axis-
symmetrical (or nearly axis-symmetrical) cavities. In cases where it is not
possible to add a smooth liner as innermost layer, the flow of gas or liquid
through the pipe can lead to the generation of acoustic tones.

The phenomenon of ”whistling pipes” was first reported as early as 1922
by Burstyn [1] and Cermak [2, 3]. In the following years, a number of studies
have been published, providing further empirical and theoretical understand-
ing of this problem [4, 5, 6, 7]. The motivation for these studies was often
scientific curiosity, but could also be for musical purposes [8, 9, 10] or indus-
trial applications. Indeed, flow-induced pulsations in corrugated pipes can
lead to serious industrial problems [11] or discomfort for users of domestic
appliances.

Most studies have been considering the self-induced oscillation mechanism
leading to the whistling. An interesting approach to determine if whistling is
possible at a given flow velocity is based on a power balance analysis [7]. In
this approach, illustrated in Figure 1, it is considered a necessary condition
for whistling that the acoustic power generated by the cavities balances the
acoustic power dissipated anywhere in the system. The generated acoustic
power can be evaluated numerically [7, 12] or experimentally [13, 14, 15] and
even extrapolated to other cases with empirical rules [16]. These approaches
allow the estimation of the onset velocity of a particular pipe in a particular
environment and the amplitude and frequency of the tones can be evaluated,
within a certain confidence. Nevertheless, except for [17, 18, 19] the studies
were performed under conditions of whistling or at least quasi-whistling, i.e.
in the non-linear regime.

In a complementary way, we focus in this paper on the linear regime for
which no whistling can occur. Obviously, this type of study does not make it
possible to predict the amplitude of the whistling but gives precise criteria for
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Figure 1: (Color online) Schematic illustration of the balance between power production
and dissipation in a corrugated pipe: The acoustic power provided by the corrugated pipe
increases quadratically with the sound level, Pqr,, for a level u < ung, then increases along
a straight line (Pgni, for an acoustic velocity amplitude v > uny,). Two linear dissipative
cases are represented (the dissipated power increases quadratically). In the first case, Py,
the dissipated power is less than the produced power at low level and an equilibrium can
occur in the non-linear region for u = uy, which results in a stable whistling. In the second
case, Py2, the dissipated power is always larger than the produced power and no whistling
can exist.

its onset. This linearity of phenomena makes it possible to use classical tools
such as the scattering matrix of a corrugated pipe section. From the scatter-
ing matrix of a corrugated section, the dissipation or amplification of energy
can be determined [20]. This approach, based on experimental identification
of the scattering matrices, was used to study the potentiality of whistling of
an orifice with flow [21, 22] and the PT (parity-time) symmetrical behavior
of two orifices mounted in tandem, one providing absorption and the other
one amplification [23]. The method has also been extended to the study of
multiports such as T-junctions [24].

The present study reports an experimental investigation of linear acous-
tic propagation in a pipe with corrugated walls in presence of mean flow.
In section 2, the experimental setup, the geometry of the tested pipe, and
the measurement procedure are described. The result of this step is the
scattering matrix of the corrugated pipe, without flow or with flow. This
allows to quantify the effect of the flow on the reflection and transmission
coefficients. In section 3, the wavenumber of the sound waves propagating
in the corrugated pipe are extracted from the scattering matrix. In presence
of flow, the imaginary part of the wavenumber becomes positive, indicating
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an amplification of sound waves. In last section, a discussion of the results
is provided. Particularly, a gain-due-to-flow coefficient is defined as the dif-
ference between the amplification coefficient with flow and the amplification
coefficient without flow. The dependence of the maximum for this gain (and
of the Strouhal number at which it is maximum) on parameters such as the
amplitude and the Mach number allows to separate the different effects of
the flow.

2. Measuring acoustic propagation in a corrugated pipe

The present investigation is based on the measurement of the scattering
matrix of a corrugated pipe subjected to a mean flow. By definition, the
scattering matrix linearly connects the outgoing waves to the incident waves.
Therefore, measurements are made in the linear regime, under conditions
where no whistling occurs. The experimental setup allowing this measure-
ment is described in Section 2.1. The description of the experiments, as well
as some results illustrating typical coefficients of the scattering matrix with-
out flow and in presence of a mean flow through the pipe, are provided in
Section 2.2.

2.1. Ezxperimental setup

The investigated corrugated tube is shown in Figure 2(a). It is composed
of 165 elements with a pitch equal to 12 mm (total length of the tube: L; =
165 x 12 = 1980 mm). The elements are screwed together and the sealing is
achieved by O-rings. Some measurements are also performed on the same
tube but with only 103 elements, leading to a total length Ly = 1236 mm.
Each element is the same with a plateau of length [, = 8 mm and a cavity of
width [, = 4 mm. The inner radius 12, = 15 mm at the plateaus corresponds
to the inner radius of the smooth pipes in the experimental setup. The
larger radius R, = 19 mm creates cavities of depth 4 mm. The cavities
have a square shape (4 mm x 4 mm) but the edges of the cavities are not
symmetrical. Most measurements reported in this paper are done in the
configuration SR, illustrated in Figure 2(a), where the upstream edges of
the cavities are sharp while the downstream edges are rounded (radius r = 1
mm). The inverted configuration is called RS.

The corrugated tube is mounted in a flow-rig between two measurement
sections (see Figure 2(b)). A mean flow is provided by a centrifugal fan,
and the flow rate can be continuously varied in order to provide a mean flow

4
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Figure 2: (Color online) (a) Picture of a cut of the elements composing the corrugated
tube (left), sketch and dimensions of a cavity of the corrugated tube (right). The arrow
indicating the flow here corresponds to configuration SR. (b) Sketch of the experimental
setup with the corrugated tube subjected to a mean flow and placed between measuring
sections equipped with microphones. (¢) Drawing of the setup where the corrugated tube
is modeled as a tube filled with an equivalent medium.

velocity up to 20 m/s in the corrugated tube. The mean-flow velocity Uy is
measured in two different ways depending on the range of flow rates. At low
flow rates, it is determined from the measurement of the pressure drop over
a calibrated resistance. At higher flow rates, it is measured with a turbine

s flow meter. The Mach number is defined by M = Uy/cq where ¢ is the speed
of sound in the gas.

Each of the measurement sections consists in a hard walled steel duct of
radius R = 15 mm where four 1/4-in microphones (B&K 4136 with Nexus
2690 amplifier) are mounted. A relative calibration of the microphones was

o performed in-situ to avoid disassembling them from their supports (see Figure
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2 of [25]). The distances between the four microphones are respectively
30 mm, 145 mm and 288 mm (either upstream or downstream of the sample).
An overdetermined measurement of the incoming and outgoing waves can
thus be performed on both sides of the measured system from 100 Hz to
4000 Hz in steps of 5 Hz. In this frequency range, only plane waves propagate.
The over-determination of the system to be solved is used to adjust the speed
of sound by an optimization process.

Two acoustic sources, mounted on both sides of the system, give for each
frequency two different acoustic states, and the four elements of the scattering
matrix (transmission and reflection coefficients in both directions) for plane
waves can be evaluated for the corrugated pipe as a whole. A more detailed
description of the measurement technique and of the facility can be found in
25].

The signal acquisition was performed by a National Instrument acqui-
sition system (NI ¢cDAQ-9178 + 7 x NI 9234 + NI CRIO-9263) driven by
an in-house acquisition software called INTAC. This acquisition system is
used in the sine sweep mode and an average over 300 cycles is used at each
frequency step. In this study, particular attention is devoted to stay in
the linear regime of the sound-flow interactions happening in the corrugated
tube. A first step for this purpose is ensuring that the incident waves have
a controlled amplitude. Therefore, a specific controller has been included in
INTAC to ensure a constant amplitude of the incident acoustic wave. To
that end, a first measurement is made with a constant source level and the
recorded pressure field is decomposed in terms of the two possible directions
of propagation of the acoustic plane waves. The measurement is made again
with a source level such that the incident level is equal to a pre-determined
value. This process is repeated until the amplitude of the incident acoustic
wave is within 2% of the predetermined level. It has then been verified that
the coefficients of the scattering matrix are independent on the amplitude of
the incident field. In the case without flow, the propagation remains linear
up to an amplitude of 120 dB.

By performing two measurements, one with the upstream source on (down-
stream side with low reflections), one with the downstream source on (up-
stream side with low reflections), the scattering matrix S of the corrugated
tube is finally computed:

(2 )-s()-[ 7 () y
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with p?¥ the amplitude of the forward- and backward-propagating plane waves,
where 7 = 1 defines the position upstream, and 7 = 2 the position downstream
of the corrugated pipe.

2.2. Effect of flow on the transmission coefficient

Figure 3 displays the magnitudes of the transmission coefficients measured
for a corrugated pipe of length L; = 1980 mm without flow and with a mean
flow at M = 0.01, M = 0.016 and M = 0.029 in configuration SR (with
upstream cavity edges sharp and downstream cavity edges rounded with 1

0.5
0

500 1000 1500 2000 2500 3000
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Figure 3: (Color online) Transmission coefficients as a function of the frequency.

Tt: — (M=0), —&— (M=0.01), —&— (M=0.016), —— (M= 0.029);

T=: ==« (M=0),-0=- (M=0.01),-=4&- (M=0.016), - < - (M= 0.029).

Note: The symbols are here to distinguish the different measurement series. In no case
they indicate the data points, as the frequency spacing of the measurements is 5 Hz. This
also applies to Figures 4 to 7.

Without flow, the transmission coefficients 7% and T~ are equal as a
result of the reciprocity. The difference between |T#| and 1 is due to the
visco-thermal losses along the corrugated pipe. The small oscillations which
can be observed are due to small reflections at the interfaces between the
corrugated tube and the smooth tube, since the effective speed of sound and
the characteristic impedance slightly differs from one tube to the other.
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With flow, large oscillations of the modulus of the transmission coeffi-
cients are observed. At low frequencies, transmission coefficients are lower
with flow compared to the no-flow case. This indicates that the flow produces
additional absorption in this frequency range. Then, over a finite frequency
range, the transmission coefficients with flow increase and become higher
than the no-flow case, indicating that the flow causes some amplification. A
few additional zones of absorption and amplification, compared to the no-
flow case, are observed at higher frequencies, but the oscillations are damped
at high frequencies and the curves tend towards the no-flow curve. It is inter-
esting to note that above a certain velocity (M = 0.016 in the present case)
the transmission coefficient can become greater than 1. It means that am-
plification due to the flow is larger than the absorption due to visco-thermal
losses: the sound waves are overall amplified for a limited frequency range as
they pass through the corrugated tube.

The equality of |T*| and |T-| that existed without flow is destroyed by
the flow. Part of this phenomenon is caused by the convection which very
slightly increases T+ and decreases T~ for the measured Mach numbers, but
the largest effect is that the oscillations due to the flow are significantly larger
for T~ than for T, with a small shift in frequency. These two different effects
will be isolated from each other by the extraction of the effective propagation
wavenumber in the next section.

3. Wavenumbers deduced from the scattering matrix

3.1. The corrugated tube as an effective medium

In this section, the propagation in the corrugated tube is described by an
effective medium. A simple way for that is to consider the transfer matrix
T linking the downstream waves (p} and p;) to the upstream waves (p and

()-[ 7 2 0(0) @

The coefficients of this transfer matrix can be easily computed from the
coefficients of the scattering matrix by

Tw=T"-R'R°|T", Tie=R|T",
Ty =-R*[T", Too=1/T".
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Figure 4: (Color online) Imaginary part of the effective wavenumbers k! as a function of
the frequency for the two tubes of different lengths.

Ly = 1950 mm: — (M= 0), —@— (M= 0.01), —— (M= 0.016), ——(M= 0.029);

Ly = 1236 mm: - --(M=0), === (M= 0.01), = - (M= 0.016), -+ - (M= 0.029).

The transfer matrix can also be decomposed in
T=VEV, (3)

where E is the diagonal matrix composed of the eigenvalues £+ and E~ of T,
and V is a matrix whose columns are the corresponding eigenvectors. It can
be noted that each of the two eigenvectors is defined by only one parameter
(noted here Z} and Z7) and that these eigenvectors can be normalized so
that the following relationships can be written:

py+py =P+ P, ps+py =Pt EY+ PTE", (@)
pi—py=ZiPT-Z2P7,  py-p,=ZiPTET - Z;PTE",
leading to

1 1+7Z2> -1+2; 1V 1+Z2F 1-2;
-1 _ e e I e e
v _Ze++Ze—l—1+Zg 1+ 77 ]’V 2[1—2; 1+Ze‘]' (5)

The four parameters E*, E~, ZF and Z; can be computed from the
measured scattering matrix. To go a step further, we now consider that
E* represent the propagation of forward-traveling and backward-traveling
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waves in the corrugated pipe, thus assuming that E* = exp(-jk; L) and E- =
exp(—jk;L). A specific measurement has been performed to validate this
assumption: The scattering matrices of two tubes of different lengths (L; =
165x12 = 1980 mm and Ly = 103x12 = 1236 mm) have been measured and the
parameters Z} and Z; deduced from these two series of measurements have
been compared, as well as the two effective wavenumbers £k} and k;. The
effective parameters Z* and k* appear to be equal when computed from the
measurements in the two pipes of different lengths, as illustrated by Figure 4
showing a comparison of the imaginary part of the effective wavenumbers k.

The corrugated tube can thus be described as a one-dimensional effective
medium where the effective wavenumbers £} and k. can be computed from
the experimental scattering matrix. The matching conditions at both ends
of the tube are given by Eqs. (4) where the parameters Z} and Z_ are also
deduced from the experiments.

3.2. Measured acoustic wavenumbers in a corrugated pipe with flow

The real part of the wavenumber leads to an effective speed of sound
¢t = w/k¥, where w = 2nf, with f the frequency. This effective speed of
sound c* is plotted in Figure 5 after being normalized by ¢y and corrected
from the convective effects.

The speed of sound without flow (line without symbol) is about 92% of
what it would be without corrugations. This is a classical effect of slowing
down of the acoustic waves when the wall of a tube is lined with cavities[26].
A first approximation of the decrease in wave speed is given by the square
root of the ratio between the volume of the tube without corrugations and
the volume of the tube with corrugations. It leads to a good agreement with
the measurements:

Vi, +1.)/(1, +1.R2/R?) = 0.91. (6)

The convection induces an increase or a decrease of the effective speed
of sound with a factor (1 + M), as for propagation in smooth pipes. This
effect is displayed in the inset of Figure 5 showing c./co, where it is clear
that ¢, measured in the flow direction (plain lines) increases for increasing
Mach number while ¢, measured in the direction opposite to the flow (dashed
lines) decreases. When the speed of sound is divided by 1+ M, as in the main
figure, all the curves tend to collapse.

Nevertheless, after the correction for the convective effects, a difference
can still be observed between the curves corresponding to the measurements

10
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Figure 5: (Color online) Relative effective wave speed ce/co in the corrugated tube in
configuration SR, as a function of the frequency (inset) and divided (main figure) by 1+M
(forward propagation) or 1-M (backward propagation).

Forward propagation: =——(M=0), —@— (M= 0.01), —#&— (M= 0.016), —&— (M= 0.027);
Backward propagation: ==-(M=0), =<0 = (M=0.01), ==&- (M=0.016), =< - (M= 0.027).

with flow and without flow: a small oscillation in the speed of sound can be
seen. The frequency at which these oscillations occur increase linearly with
flow velocity.

The imaginary part of the wavenumber is related to the amplification
coefficient of the propagating waves. In Figure 6, this amplification coef-
ficient, Im(k}) for forward-propagating waves and —Im(k;) for backward-
propagating waves, is plotted versus frequency at different flow velocities. In
general, the amplification coefficient is slightly negative because it reflects
the damping of the acoustic waves, mainly due to visco-thermal losses at
the pipe walls. This is indeed what is observed here for the case without
flow (lines without symbols). In this case, the attenuation without flow is
about 40% larger than what it would be in a smooth pipe of identical inner
diameter. However, in presence of flow, a frequency-dependent oscillation
is observed around the no-flow curve. This means that the flow acts as an
amplifier for the acoustic wave at certain frequencies and as a damper at
other frequencies. The oscillations are actually so large that the total ampli-
fication coefficient becomes positive if the velocity is large enough. For the
case illustrated in Figure 6, this occurs when the Mach number is larger than

11
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Figure 6: (Color online) Imaginary part of the effective wavenumbers as a function of the
frequency in the corrugated tube in configuration SR.

kY. —(M=0), —&—(M=0.01), —&—(M=0.016), —&— (M= 0.027);

-k;: ==-(M=0), =-0 = (M=0.01), ==& = (M= 0.016), - <= (M= 0.027).
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Figure 7: (Color online) Imaginary part of the effective wavenumbers k} as a function of
the frequency for the two flow directions.

Configuration RS: ====(M=0), =-0 = (M=0.010), ==& = (M= 0.016), == = (M= 0.027);
Configuration SR: =——(M=0), —@—(M=0.010), —&— (M= 0.016), —&— (M= 0.027).

0.016. As with the real part of the effective wavenumbers, the frequencies
at which these oscillations occur are nearly linearly dependent on the flow
velocity, suggesting maximum gain for a nearly constant Strouhal number.

12
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The corrugated pipe used for the tests is not symmetrical, as displayed
in Figure 2(a). All the results reported above correspond to configuration
SR, where the cavities have a sharp upstream edge and a rounded down-
stream edge. In Figure 7, wavenumbers measured for both flow directions
are compared. For configuration RS, the amplitude of the oscillations is
slightly larger and the frequency of the peak of amplification is lower than
for configuration SR at the same velocity. This agrees with earlier studies on
whistling corrugated pipes [11, 6], where it was observed that an asymmetri-
cal pipe would whistle at a lower threshold velocity (or onset velocity), and
with a slightly lower frequency, when installed with upstream rounded edges.
Indeed, an oscillation of larger amplification (as is the case reported here for
configuration SR compared to configuration RS) means that absolute ampli-
fication of the sound waves occurs at a lower velocity. Furthermore, Belfroid
et al. [11, 6] explain the lower whistling frequency for configuration SR by
the fact that vortex shedding can occur at the start of the rounding of the
upstream edge, imposing a longer path for free vorticity.

4. Discussion

0.6 ‘ ‘ ‘ ‘ 0.018
0.016 -
0.55+ 3 g
98 0.014+
05¢ 3 3 . 0.012+
8 3 ¢ 0.01
o045} 8 &
A 0.008 -
og L4
04] 8 (o) 0.006 |
0.004 -
0.35¢
0.002 -
0.3 : : : : 0 ‘ ‘ ‘ ‘
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
M M

Figure 8: (Color online) (a) Strouhal number at the maximum of the amplification coefhi-
cient as a function of the Mach number. (b) Gain-due-to-flow coefficient G as function of
the Mach number. Configuration SR: ® (Forward traveling waves), O (Backward traveling
waves), Configuration RS: @ (Forward traveling waves), ¢ (Backward traveling waves).
(b): The arrows mark, for each case, the minimum Mach number at which the sound wave
becomes amplified.

In Figure 8(a), the Strouhal number (Sr = f,l./Uy) corresponding to the

13
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frequency f, for which the maximum of amplification occurs, is plotted ver-
sus the Mach number for the two flow directions. By definition, the Strouhal
number would be constant if the frequency f, was linearly dependent on the
flow velocity Uy. Actually, this frequency deviates from a linear dependence
when the flow velocity is very low (20% increase at M = 0.008 compared to
the asymptotic value obtained when M > 0.02). At such low flow veloci-
ties (corresponding to Reynolds numbers of less than 2-10°), the pipe flow is
possibly not completely developed and the profile of flow velocity becomes
less flat [27]. The effective boundary-layer thickness increases, and thus the
convection velocity in the shear layers above the cavities decreases, leading to
an increase of the Strouhal number. A similar increase of the Strouhal num-
ber for increasing boundary-layer thickness has been observed by Kooijman
et al. [28] for sound amplification at orifices. Similarly, the effect of larger
diameter on the peak-whistling Strouhal number in the case of whistling cor-
rugated pipes is explained as due to the increasing effective boundary-layer
thickness (or confinement ratio of the cavities) in [7].

As noted in the preceding section, the orientation of the cavities related
to the flow direction has a significant impact on the amplification peak and
thus on the Strouhal number: For the flow configuration RS, the Strouhal
number tends to 0.47, while it tends towards a lower value of 0.42 for the
configuration SR. This can partly be explained by the fact that the round-
ing edge increases the effective path of free vorticity [11, 6]. Note that the
Strouhal number is defined here from the cavity width /. and not from the
cavity width augmented by the radius upstream edge [. + r. For each con-
figuration, the Strouhal number is also slightly larger for forward-traveling
waves than for backwards-traveling waves.

A gain-due-to-flow coefficient is defined as the difference between the nor-
malized amplification coefficient measured with flow (taken at the frequency
fy where the strongest amplification due to the flow occurs) and the nor-
malized amplification coefficient measured without flow (taken at the same
frequency f,): Gp = Im(k}/ko)n —Im(k} /ko)n=o for forward-traveling waves
and G = -Im(k; [ko)ar + Im(k; ko) p=0 for backward-traveling waves. This
allows to separate two distinct effect: the visco-thermal losses at the walls
of the pipe and the amplification/attenuation of acoustic waves due to the
vortex-sound interaction. This flow gain G is plotted in Figure 8(b) ver-
sus the Mach number. The fact that the amplification due to the flow is
more important for the configuration RS than for the opposite flow direc-
tion (configuration SR) is clearly demonstrated in this figure. Furthermore,

14
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Figure 9: (Color online) Gain-due-to-flow coeflicient Gg as a function of /Uy , for M=
0.008 and pipe length L;. Configuration SR: ® (Forward traveling waves), O (Backward
traveling waves), Configuration RS: ¢ (Forward traveling waves), ¢ (Backward traveling
waves).

the influence of the direction of the acoustic waves (backward propagating or
forward propagating) for a same configuration is also noticeable in this figure:
waves traveling against the flow are more amplified than waves traveling in
the same direction as the mean flow. For all configurations, the flow gain G
increases linearly with the Mach number at low flows and then flattens out
for increasing Mach numbers. This reduced growth when the Mach number
increases is unexpected and calls for further investigations.

The incident wave level [p}| has been controlled and varied during the
measurements. In Figure 9, the flow gain G is plotted as a function of this
parameter. To facilitate the comparison with other available results [7, 11],
the incident pressure level has been converted into a relative velocity u/Uy
by using u = [p}|/poco. The measurements in Fig. 9 have been performed at a
single main-flow velocity (M = 0.008) for which the wave is always attenuated
(£Im(k%/ko) < 0). The results show that the flow gain is independent of the
level when u/Uy < 1%. For larger values of u/Up, the flow gain with the
amplitude, as described by Nakiboglu et al. [7]. It should be noted that
since the gain varies with amplitude and the amplitude varies along the
corrugated tube, the values of G are an average of all values along the tube
(although, for this measurement, the level varies only slightly along the duct,
the transmission coefficient being in the order of 0.94). Note also that all
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the other measurements reported in the rest of this article correspond to
amplitudes u/Uy lower than 1%.

A surprising consequence of the decrease of G when the acoustic am-
plitude increases is illustrated in Fig. 10. If the flow Mach number is high
enough (M ~ 0.016 for the present tube mounted in configuration SR), the
flow gain G is larger than the thermo-viscous losses and Im(k;) is positive.
As G decreases with the level, there is a point where the gain and losses
exactly compensate (Im(k}) =0). If the incident pressure has an amplitude
smaller than this value, the wave is amplified until it reaches the value for
which Im(k}) = 0. On the contrary, if the incident pressure has a larger
amplitude, the wave is damped. Therefore, for a sufficiently long corrugated
tube with amplification, the output wave will have the same amplitude, re-
gardless of the amplitude of the incident wave.

x

< 0

Figure 10: (Color online) Ilustration of the saturation of the amplitude of a wave propa-
gating along x when the flow gain G is going from positive (at small u/Uy) to negative.
Left curve : amplification coefficient as a function of the relative velocity. Right plot:
Spatial evolution of the relative velocity along the propagation axis when the initial value
is above the threshold (Red curve) or below the threshold (Blue curve).

5. Conclusions

The acoustic propagation in a corrugated pipe without flow and in pres-
ence of mean flow has been measured. Without flow, the main effect of the
corrugations is to slow down the acoustic waves and to increase their attenua-
tion. In presence of mean flow, two effects are observed. First, as for smooth
pipes, convection modifies the real part of the wavenumber. On the other
hand, the flow creates an oscillation of the wavenumber (as a function of
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frequency) around the wavenumber measured without flow. This oscillation
is visible both on the real part and the imaginary part of the wavenumber.
The oscillation of the imaginary part of the wavenumber reflects an additional
gain (or attenuation) due to the sound-flow interaction. For sufficiently high
velocities, the additional gain may be larger than the attenuation without
flow, which means that the sound waves are linearly amplified by the flow as
they travel in the corrugated pipe. This effect is more pronounced when the
cavities have an upstream edge rounded than when their upstream edge is
sharp.

The frequencies of the maximum gain due to the flow corresponds to
Strouhal numbers of 0.4 or 0.5 depending on the direction-installation of the
pipe. For the lowest flow velocities, the Strouhal number increases due to
the thicker boundary layer at lower Reynolds numbers. On the other hand,
at a constant Reynolds number, the gain decreases when the amplitude of
the incident acoustic waves becomes larger than a threshold of about 1%
of the main-flow velocity. These results confirm and refine earlier studies
which were mainly performed with corrugated pipes in whistling (or nearly
whistling) regime with standing waves. This also indicates that a linear
analysis relying on scattering of propagating waves by the corrugated pipe is
suitable to determine the threshold of whistling.
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