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3D optimal forcing and response of a 2D supersonic boundary layer are obtained by
computing the largest singular value and the associated singular vectors of the global
resolvent matrix. This approach allows to take into account both convective-type and
component-type non-normalities responsible for the non-modal growth of perturbations
in noise selective amplifier flows. It is moreover a fully non-parallel approach that does
not require any particular assumptions on the baseflow. The numerical method is based
on the explicit calculation of the Jacobian matrix proposed by Mettot et al. [1] for 2D
perturbations. This strategy uses the numerical residual of the compressible Navier-Stokes
equations imported from a finite-volume solver that is then linearised employing a finite
difference method. Extension to 3D perturbations, which are expanded into modes of wave
number, is here proposed by decomposing the Jacobian matrix according to the direction of
the derivatives contained in its coefficients. Validation is performed on a Blasius boundary
layer and a supersonic boundary layer, in comparison respectively to global and local
results. Application of the method to a boundary layer at M = 4.5 recovers three regions 
of receptivity in the frequency-transverse wave number space. Finally, the energy growth
of each optimal response is studied and discussed.

1. Introduction

Depending on their dynamics, open flows can be divided into oscillator and noise selective amplifiers [2]. Whereas the first 
ones have an intrinsic dynamics related to the physical parameters of the baseflow, the second ones only amplify perturba-
tions in specific ranges of frequencies, which grow in space and advected downstream. In terms of stability analysis, these 
considerations lead to distinguish absolute from convective instabilities. Local stability analysis [3] have extensively been 
employed to study the dynamics of various open flows (boundary layer [4], wakes [5], jet flows [6], etc.). This approach 
allows, in particular, to discriminate absolute and convective instabilities by computing the growth rate of zero group ve-
locity waves [7]. The assumption of a (weakly) parallel baseflow is however required in order to expand perturbations into 
Fourier-Laplace modes along the streamwise direction.
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Nomenclature

M Mach number
Pr Prandtl number
Re Reynolds number
x Streamwise direction
y Normal to the wall direction
z Transverse direction, supposed as homoge-

neous
R Residual of Navier-Stokes equations
F Flux of Navier-Stokes equations along

x-direction
G Flux of Navier-Stokes equations along

y-direction
H Flux of Navier-Stokes equations along

z-direction
q Vector of conservative variables (ρ, ρu, ρv, ρE)T

u Streamwise velocity
v Normal velocity
w Transverse velocity
ρ Density
c Speed of sound
E Total energy
e Internal energy
p Pressure
T Temperature
M̂ Relative Mach number
η Dynamic viscosity
γ Heat capacity ratio
κ Thermal conductivity
cp Heat capacity

∞ Far-field quantities
αr Streamwise wavenumber
β Transverse wavenumber
ω Angular frequency
	 Angle between the wave vector of the pertur-

bation and the baseflow direction
cϕ Phase velocity
μ Optimal gain

f̃ Forcing vector (in particular, optimal forcing 
vector)

q̃ Perturbations vector (in particular, optimal re-
sponse vector)

fx Streamwise forcing
f y Normal forcing
f z Transverse forcing
J Jacobian matrix
R Resolvent matrix
QE Norm matrix associated with the energy of the 

perturbations
QF Norm matrix associated with the forcing field
dChu Chu’s energy density profile
dF Forcing density profile
yChu

m Ordinate where Chu’s energy is maximum
yK

m Ordinate where the kinetic energy is maxi-
mum

δ∗ Boundary layer compressible displacement 
thickness

� Blasius length 
√

η∞x/ρ∞u∞

Focusing on the convectively unstable compressible boundary layer, first stability computations were based on a local 
approach [8–10]. Along with theoretical developments [11], these seminal studies established the main features of com-
pressible instabilities, especially noting their inviscid nature caused by the existence of a generalised inflection point and 
the prevailing growth of 3D perturbations (Squire theorem [12] does not hold for compressible flows [9]). Later, local sta-
bility analysis allowed to suggest the existence of an additional unstable mode [13] (generally referred to as second mode, 
or Mack mode) in the case of sufficiently high supersonic Mach numbers (M∞ ≥ 3.8), soon confirmed by experimental work 
[14,15]. Afterwards, more sophisticated local stability analysis taking into account the weak non-parallel effects produced 
more accurate results [16,17]. Following the work of Farrell [18] for incompressible flows, several local analysis then focused 
on computing non-modal growth for compressible boundary layer. Optimal growth in a temporal formulation was first pro-
posed by Hanifi et al. [19] who were able to observe the non-modal growth of compressible streaks. A spatial version of this 
analysis was suggested by Tumin and Reshotko [20], afterwards improved by considering non-parallel effects [21,22] and 
3D baseflows [23]. These approaches were coupled with a PSE method [24], resulting in a more general framework to study 
non-modal growth in weakly non-parallel flows [25,26]. However, these approaches can not be considered as universal as it 
does not allow to study fully non-parallel flows.

With the increase of computational resources, global stability analysis (in the sense of Theofilis [27]) became affordable. 
In this framework, the streamwise direction is solved as an eigen-direction which authorise to consider fully non-parallel 
baseflows. It offers a relevant tool to study globally unstable flows such as the bifurcations occurring in cavity flows [28]
and shock wave/boundary layer interactions [29] or the onset of the transonic buffet on an airfoil [30]). Global stability 
analysis is however not suited to describe the dynamics of convectively unstable flows, which are globally stable. Instead, 
characterising the response of these flows subject to an external forcing constitutes a more relevant analysis as it is directly 
related to their noise amplifier nature [31]. In practice, this approach is related to the resolvent operator and an optimisation 
framework is employed to compute the optimal forcing and response for different frequencies. Such an analysis was first 
implemented for an incompressible boundary layer by performing a projection of the response onto a restricted number 
of global modes [32,33]. Another strategy was afterwards developed by Monokrousos et al. [34] using a time-stepping 
technique associated with an adjoint-based optimisation method. More recently, Sipp and Marquet [35] suggested to solve 
a singular value problem associated with the global resolvent operator and showed that, additionally, the left and right 
singular vectors constituted an orthonormal basis onto which the forcing and response fields could be expanded. Besides, 
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it should be pointed out that these optimal response and forcing approaches are non-modal in nature. Indeed, the optimal 
response resulting from an optimisation problem can be seen as a superposition of global modes: both modal resonance 
and non-modal pseudo-resonance are thus taken into account [36]. These non-modal effects are a consequence of two 
types of non-normalities, associated with the non-normal nature of the linearised Navier-Stokes equations [37,38]. On the 
one hand, the convective-type non-normality (the term 

(
ρU · ∇)

u′ in the linearised momentum equation), ubiquitous in
convectively unstable flows, stems from the advection of perturbations by the baseflow. It was furthermore observed to 
cause a spatial separation of the forcing and response fields, respectively upstream and downstream [35]. On the other 
hand, the component-type or lift-up non-normality (the term 

(
ρu′ · ∇)

U in the linearised momentum equation) is caused
by the transport of baseflow momentum by the perturbations. It was shown to produce component-wise transfer of energy 
between the forcing and response fields as in the case of the lift-up mechanism [39] or the Orr mechanism [40].

In compressible flows, a global approach taking into account non-modal effects was first implemented for jet flows as an 
optimal growth problem where an optimal initial condition was looked for [41,42]. Global optimal forcing based on resolvent 
computation was then developed and applied to the receptivity of a turbulent shock wave/boundary layer interaction [43]. 
However, to our knowledge, no work dealing with non-modal growth of 3D global perturbations in compressible flows has 
been published to date. Given that 3D convective instabilities are especially prevailing in this regime, an efficient numerical 
framework appears to be missing to tackle this problem.

In this paper, we propose a numerical method to study 3D global linear perturbations developing in convectively unsta-
ble, fully non-parallel, compressible 2D baseflows. This approach is based on the computation of the optimal gain and the 
associated optimal forcing and response, which is achieved by solving a singular value problem associated with the global 
resolvent operator [35]. The explicit numerical computation of the Jacobian matrix - the first step of the numerical method -
uses the discrete framework presented by Mettot et al. [1] which is here extended to 3D perturbation. This point constitutes 
the main original point of the present work and the mathematical derivation will be fully detailed. An application to the 3D 
receptivity of the supersonic boundary layer at M = 4.5 is presented in order to demonstrate the potential of the method.

The paper is organised as follows. Governing equations and the theoretical approach involved in optimal gain com-
putations are introduced in section 2. The numerical framework is developed in section 3, especially emphasising the 
computation of the 3D Jacobian matrix (section 3.3). Validation of the numerical framework is given in section 4. Finally, a 
detailed study of the 3D receptivity of the supersonic boundary layer is presented in section 5.

2. Theoretical approach

2.1. Governing equations

The flow is governed by the compressible Navier-Stokes equations. Variables are made non-dimensional according to

x̃ = x

L
,̃ t = t

L/u∞
, ρ̃ = ρ

ρ∞
, ũ = u

u∞

p̃ = p

ρ∞u2∞
, T̃ = T

T∞
, Ẽ = E

u2∞
, η̃ = η

η∞
, λ̃ = λ

λ∞

(1)

In the following, the ∼ symbol will be dropped in order to lighten notations. The ∞ symbol refers to far-field quantities. 
Conservative variables q = [ρ,ρu,ρE]T are used, where ρ , u = (u, v, w)T and E respectively are the fluid density, the 
velocity vector and the total energy. T , p, η and λ respectively stand for temperature, pressure, dynamic viscosity and 
thermal conductivity. The reference length L may refer to the compressible boundary layer thickness δ∗ or to the Blasius 
length � = √

η∞x/ρ∞u∞ . Non-dimensional Reynolds Re, Mach M and Prandtl Pr numbers are introduced as

Re = ρ∞u∞L

η∞
, M = u∞

c∞
, Pr = η∞cp

λ∞
(2)

where c is the speed of sound and cp is the heat capacity of the flow. The compressible Navier-Stokes equations can then 
be written as

∂ρ

∂t
+ ∇ · (ρu) = 0, (3a)

∂

∂t
(ρu) + ∇ ·

[
ρu ⊗ u + pI − 1

Re
τ

]
= 0, (3b)

∂

∂t
(ρE) + ∇ ·

[
(ρE + p)u − 1

Re
τ 	 u − λ

PrRe(γ − 1)M2
∇T

]
= 0 (3c)

For a thermally and calorically perfect gas, the non-dimensional pressure p and total energy E can moreover be expressed 
according to

p = 1

γ M2∞
ρT , E = p

ρ(γ − 1)
+ 1

2
u · u (4)
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The viscous stress tensor of a Newtonian fluid is given by

τ = η

[
∇ ⊗ u + (∇ ⊗ u)T − 2

3
(∇ · u) I

]
(5)

The dynamic viscosity is a function of temperature and is described by Sutherland’s law [44]

η(T ) = T 3/2 1 + Ts/T∞
T + Ts/T∞

, (6)

where Ts = 110.4 K and T∞ = 288 K. The thermal conductivity coefficient also depends on the temperature in the same 
way as dynamic viscosity does (λ(T ) ∼ η(T ) [45]). Hence it leads to λ = η as non-dimensional variables are used.

In the following, equations (3) can be recast in the dynamical system form

∂q

∂t
= R(q), (7)

where R is the differential nonlinear operator of Navier-Stokes equations.

2.2. Linear dynamics

This study aims to study the forced dynamics of 3D perturbations q′(x, y, z, t) added to a 2D baseflow q(x, y). The latter 
is a solution of the steady nonlinear compressible Navier-Stokes equations (3). Considering small amplitude perturbations 
and introducing a forcing term f′(x, y, z, t), the governing equation of the perturbations is linear and written as

∂q′

∂t
= J q′ + f′ (8)

where J = ∂R/∂q|q is the Jacobian operator. The numerical computation of the Jacobian matrix will be described in 
section 3.3. In equation (8), the perturbations q′ can now be seen as the response of the flow to the external forcing f′. 
As z-direction is supposed to be homogeneous, these fields are expanded into Fourier modes of wave number β . Moreover, 
considering a harmonic forcing at frequency ω, these quantities are finally written as

q′(x, y, z, t) = q̃(x, y)ei(βz+ωt) + c.c. (9)

f′(x, y, z, t) = f̃(x, y)ei(βz+ωt) + c.c. (10)

Equation (8) can then be recast as

q̃ = R̃f (11)

where R = (iωI − J )−1 is the global resolvent operator (with I the identity operator) which depends both on the 
forcing frequency ω and the transverse wave number β . For globally stable flows, all eigenvalues of the Jacobian operator 
have a strictly negative real part. Thus, the resolvent operator is well defined and allows to study the forced dynamics of 
the flow by providing a relation between response and forcing fields. Optimal gain is now introduced and defined as the 
maximum ratio between the energy of the perturbations and the forcing. Formally, its expression reads

μ2 = sup
f̃

||̃q||2E
||̃f||2F

(12)

where the energy norms ||.||E and ||.||F and the numerical computation of equation (12) will be described in section 3.5.

3. Numerical strategy

3.1. Compressible Navier-Stokes solver

The baseflow is computed by means of a finite volume CFD solver as a steady solution of the nonlinear equations 
(3). Spatial discretisation of convective fluxes is performed using AUSM+ scheme [46] associated with a fifth-order MUSCL 
extrapolation [47]. Viscous fluxes at cell interfaces are obtained by a second-order centered finite difference scheme. The 
unsteady equations are marched in time until a steady state is reached. An implicit dual time stepping method with local 
time step is used [48]. This solver showed successful results in shock wave/boundary layer interaction computations [47]. 
In the present work, boundary layer baseflows are computed in a rectangular numerical domain (Fig. 1). A cartesian mesh 
is set with a geometrical progression from the wall. Boundary conditions are gathered in Table 1. Dirichlet and Neumann 
conditions are employed as only stationary solutions are computed. Besides, note that an adiabatic flate plate is considered. 
The length Lx0 upstream from the leading edge (see Fig. 1) is set to zero when supersonic flow are considered. In subsonic 
computations, this length is set so that results do not depend on its value. Independence from the height L y of the domain 
is also checked in every baseflow and optimal gain computations. Validation of this solver for the case of a supersonic 
boundary layer at M = 4 is provided in section 4.1.
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Fig. 1. Numerical domain.

Table 1
Boundary conditions used in baseflow computations.

Boundary Supersonic conditions Subsonic conditions

1 u = 1, v = 0, ρ = 1, p = 1

(γ M2)
u = 1, v = 0, ρ = 1,

∂ p

∂x
= 0

2
∂u

∂ y
= 0,

∂v

∂ y
= 0,

∂ρ

∂ y
= 0, p = 1

(γ M2)

∂u

∂ y
= 0,

∂v

∂ y
= 0,

∂ρ

∂ y
= 0, p = 1

(γ M2)

3
∂u

∂x
= 0,

∂v

∂x
= 0,

∂ρ

∂x
= 0,

∂ p

∂x
= 0

∂u

∂x
= 0,

∂v

∂x
= 0,

∂ρ

∂x
= 0, p = 1

(γ M2)

4 u = 0, v = 0,
∂ρ

∂ y
= 0,

∂ p

∂ y
= 0 u = 0, v = 0,

∂ρ

∂ y
= 0,

∂ p

∂ y
= 0

5
∂u

∂ y
= 0, v = 0,

∂ρ

∂ y
= 0,

∂ p

∂ y
= 0

∂u

∂ y
= 0, v = 0,

∂ρ

∂ y
= 0,

∂ p

∂ y
= 0

3.2. Computation of the Jacobian matrix for 2D perturbations

Before presenting the numerical strategy to compute the Jacobian matrix for 3D perturbations in section 3.3, the case 
of 2D perturbations q′(x, y, z, t) = q̃(x, y)eiωt + c.c. is first considered. Indeed, the former is actually an extension of the 
latter that was presented by Mettot [49]. The method is based on the linearisation of the 2D discretised equations. When 
dealing with compressible flows, provided that one owns a nonlinear CFD solver, this method allows to bypass the tedious 
linearisation and then discretisation of the compressible Navier-Stokes equations, thus reducing the risk of errors. Moreover, 
if one wants to compute adjoint quantities, working in a discretised framework may be more convenient [49].

From the discretisation of the system (7), whose dimension is N ∈N , the residual R ∈ RN of the 2D nonlinear Navier-
Stokes equations is used to perform a first-order approximation of the Jacobian matrix as

J v = R(q + εv) −R(q)

ε
+ O (ε) (13)

Here, q ∈ RN is the vector of conservative variables associated with the baseflow, v ∈ RN is an arbitrary vector and ε ∈ R
is a numerical parameter. The vector v is carefully chosen so that the coefficients of the matrix J can be conveniently 
recovered [49]. A simple approach consists in setting to zero every component of v except the k-component that is set 
to 1 (here, k ∈ [1, N]). Then, equation (13) allows to get every coefficient of the k-column of the matrix J . Repeating 
this procedure N times, the whole matrix is recovered. Moreover, it is possible to take advantage from the block diagonal 
structure of J in order to speed up the method. As described by Mettot [49], the vector v can be filled with more than 
one component equal to 1. This leads to reduce the number of calls to equation (13) by approximatively 100. This efficiency 
actually depends on the order of the numerical scheme and on the proportion of points in the normal and streamwise 
direction. As an example, computing the matrix J when N = 600000 using a 1500 × 100 mesh and a third order accurate 
scheme takes approximatively 5 minutes (on CPU: Intel Xeon(R) CPU E5-2630 v2 @ 2.60GHz). As for the choice of ε value, 
its order of magnitude has to be small enough so that second order terms can be neglected but need to be high enough 
to avoid numerical round-off errors. If the vector v contains only one non-zero element located at the k-component, Knoll 
and Keyes [50] suggest to chose ε = b(1 + |qk|), where b is the square root of the machine precision. If v contains multiple 
non-zero components, then an average of this expression can be used. However, in practice, setting a fixed value of ε
between 10−6 and 10−8 was observed to be a robust choice, probably thanks to the use of nondimensional quantities [50].

3.3. Extension to 3D perturbations

The method employed to compute a Jacobian matrix in a discretised-then-linearised framework presented in the previous 
section is now extended to 3D perturbations q′(x, y, z, t) = q̃(x, y)ei(βz+ωt) . In the present work, the baseflow is supposed 
to be homogeneous in the z-direction so that

∀(x, y) ∈ V ,
∂q

∂z
= 0 and w = 0 (14)
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where V is the computational domain. The proposed approach lies in the use of 3D Navier-Stokes residual (provided by 
a finite-volume solver) to perform the first-order approximation in equation (13). However, the z-direction must now be 
treated as a Fourier direction, which forbids the direct use of this approximation because transverse derivatives ∂/∂z must 
be turned into iβ terms. In order to apply a special treatment in this direction, let us first write equation (3) with fluxes as

∂q

∂t
= R(q) = −∂F

∂x
− ∂G

∂ y
− ∂H

∂z
(15)

where each flux term is now separated in two parts as follows

F = F′ − Fνz (16)

G = G′ − Gνz (17)

H = H′ − Hνz (18)

The part with subscript νz includes every transverse derivatives ∂/∂z, which are only of viscous nature. The other part 
(superscript ′) contains the remaining terms. Explicit expressions of these fluxes are given in Appendix A. The Jacobian 
matrix is finally separated into three different matrices as

J = J ′
F ,G + J ′

H + Jνz (19)

where

J ′
F ,G = ∂

∂q

[
−

(
∂F′

∂x
+ ∂G′

∂ y

)]
q

(20)

J ′
H = ∂

∂q

[
−∂H′

∂z

]
q

(21)

Jνz = ∂

∂q

[
∂Fνz

∂x
+ ∂Gνz

∂ y
+ ∂Hνz

∂z

]
q

(22)

Each matrix is then numerically computed by a specific method that is detailed in the following subsections.

3.3.1. Computation of J ′
F ,G

No transverse derivative is involved in the computation of J ′
F ,G in equation (20). Therefore, equation (13) can be 

straightforwardly used by introducing R′
F ,G = −∂F′/∂x − ∂G′/∂ y. The Jacobian matrix J ′

F ,G is thus computed according 
to

J ′
F ,G v = R′

F ,G(q + εv) −R′
F ,G(q)

ε
(23)

3.3.2. Computation of J ′
H

The computation of J ′
H is achieved by firstly reconsidering the following linearisation

J ′
H q′ = −∂H′(q + q′)

∂z
+ ∂H′(q)

∂z
(24)

where a first order expansion of H′(q + q′) in the first right hand term gives

J ′
H q′ = − ∂

∂z

[
H′(q) + ∂H′

∂q

∣∣∣∣
q

q′
]

+ ∂H′(q)

∂z
(25)

Finally, the following expression remains

J ′
H q′ = − ∂

∂z

[
∂H′

∂q

∣∣∣∣
q

q′
]

(26)

Here, ∂H′/∂q
∣∣
q does not depend on z as assumed in equation (14). And since ∂q′/∂z = iβq′ , equation (26) now reads

J ′
H q′ = −iβ

∂H′

∂q

∣∣∣∣
q

q′ (27)

The expression of J ′
H is finally identified as
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J ′
H = −iβ

∂H′

∂q

∣∣∣∣
q

(28)

Again, the numerical computation of ∂H′/∂q
∣∣
q is based on a first-order finite difference approximation. However, note that

the numerical flux H′ is here used instead of the flux divergence that was previously needed in equation (13) and (23). 
Hence, the matrix J ′

H is numerically built according to

J ′
H v = −iβ

H′(q + εv) − H′(q)

ε
(29)

3.3.3. Computation of J ′
νz

Because every flux term now contains a transverse derivative, a particular care is required to compute the matrix J ′
νz . 

It is not simply possible to replace each ∂/∂z into iβ within the fluxes Fνz , Gνz and Hνz . Indeed, spurious non-zero terms 
associated with the baseflow derivative along z would appear, thus violating the assumptions made in equations (14). To get 
around this problem, it can be observed that because of equations (14), the perturbations ̃q only appears under z-derivatives 
in the final linearised equations. For example, introducing the linearisation operator L , linearising the fourth component of 
the vector Fνz (see Appendix A) reads

L (
η

Re

∂u

∂z
) = η

Re

∂ ũ

∂z
= iβ

η

Re
ũ (30)

Anticipating the final result of linearisation, we here suggest to modify the fluxes Fνz , Gνz and Hνz into ̂Fνz , Ĝνz and Ĥνz in 
which every factor in front of a z-derivative is set to the baseflow value and each ∂/∂z is turned into iβ (which will appear 
as a factor in the final expression of the Jacobian matrix). To illustrate this procedure, let us take the example of Fνz (see 
Appendix B for exhaustive expressions of the modified fluxes)

Fνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

− 2
3

η
Re

∂ w
∂z

0
η
Re

∂u
∂z

η
Re

[
−u 2

3
∂ w
∂z + w ∂u

∂z

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
→ F̂νz =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

− 2
3

η
Re w

0
η
Re u

η
Re

[
−u 2

3 w + wu
]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(31)

The matrix J ′
νz is finally computed using the approaches presented in section 3.3.1 for ̂Fνz and ̂Gνz and in section 3.3.2 for 

Ĥνz . Introducing

R̂νz = ∂ F̂νz

∂x
+ ∂Ĝνz

∂ y
, (32)

the final practical expression to compute J ′
νz reads

J ′
νzv = iβ

R̂νz(q + εv) − R̂νz(q)

ε
− β2 Ĥνz(q + εv) − Ĥνz(q)

ε
(33)

3.4. Conclusion about 3D extension

It should finally be noted that the numerical implementation of the 3D extension from the 2D method is straightforward, 
provided that 3D Navier-Stokes residual is available. Indeed, 3D extension needs minor modifications of the numerical fluxes 
but recovering the coefficients of the Jacobian matrix, which constitutes the main effort of numerical implementation (see 
section 3.2), is achieved by directly using the 2D computation routine. Here is a summary of the main steps to compute 
the 3D Jacobian matrix from an already implemented 2D method (aside from redefinitions of numerical arrays to take into 
account the additional transverse momentum component).

1. Import 3D Navier-Stokes residual routines.
2. Modify the fluxes within these routines according to Appendix B.
3. Using equations (23), (29) and (33), compute

J v = J ′
F ,G v + J ′

H v + J ′
νzv (34)

4. Recover the coefficients using the method presented in section 3.2.

It should be finally pointed out that additional computational costs, in terms of random-access memory, is kept afford-
able compare to the 2D method (in practice, a 50% increase tends to be observed). Indeed, introducing a fifth component 
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(transverse velocity) automatically increases the storage, but because a Fourier expansion is used in the transverse direction, 
no discretisation is performed in this direction. Conversely, implementing a fully 3D method (necessary for 3D baseflows) 
would dramatically increase computations costs. Indeed, the number of coefficients in the Jacobian matrix would increase 
linearly with the number of points Nz in the transverse direction. Worst, the storage needed to solve the linear systems 
that will be introduced in section 3.5 would scale as N2

z . If it seems today possible to achieve such computations using 
large clusters and limited numbers of points, the method presented in this paper offers a significantly more efficient way to 
compute 3D perturbations when considering 2D baseflows.

3.5. Optimal forcing and response computation

This section presents the numerical approach proposed by [35] to compute the optimal gain defined in equation (12) and 
the associated optimal forcing and response fields ̃f(x, y) and ̃q(x, y). The resolvent matrix R is involved in this problem and 
first requires the computation of the Jacobian matrix introduced in the previous section. Note that the explicit construction 
of R will not be required since linear systems involving R−1 will be solved.

Equation (12) is an optimisation problem on the function μ(̃f) which depends on energy norms. These norms are asso-
ciated with discrete scalar products that can be expressed by norm matrices as

||̃q||2E =< q̃, q̃ >E= q̃∗QE q̃ (35)

||̃f||2F =< f̃,̃ f >F = f̃∗QF f̃ (36)

where ∗ stands for the transconjugate operator. The choice of QE in equation (35) is related to the energy of the pertur-
bations that one wants to optimise. For incompressible flows, considering the kinetic energy appears as a natural choice 
[18]. For compressible flows, Chu’s energy norm [51] (also called Mack’s norm) is widely used to study the non-modal be-
haviour of compressible flow dynamics [19,20,25]. It contains the kinetic energy of the perturbations and a strictly positive 
term relative to thermodynamical perturbations. As such, Chu’s energy is necessarily greater than or equal to kinetic energy. 
Explicit expression of the norm matrix QE = QChu associated with Chu’s energy and written for conservative variables is de-
rived hereafter, whereas QE = QEK, associated with the kinetic energy, is detailed in Appendix C. Starting off from primitive 
variables, Chu’s disturbances energy EChu reads [51]

EChu = 1

2

∫
V

(
ρ|u′|2 + T

ργ M2
(ρ ′)2 + ρ

(γ − 1)γ M2T
(T ′)2

)
d� (37)

The norm matrix QChu is then defined such that∫
V

q′∗QChuq′ = EChu (38)

where q′ is the state vector of perturbations written as conservative variables. Let us recall that physical variables are here 
made dimensionless following equations (1). Then, primitive variables can be translated into conservative variables by the 
following relations

u′
i = 1

ρ
((ρui)

′ − uiρ
′) (39)

T ′ = (γ − 1)γ M2

ρ

(
(

1

2
|u|2 − e)ρ ′ − ui(ρui)

′ + (ρE)′
)

(40)

where e is the internal energy of the flow. Two parameters, associated with baseflow quantities, are now introduced as

a1 = (γ − 1)γ M2ρ

T
(41)

a2 = ( 1
2 |u|2 − e)

ρ
(42)

Equation (37) can now be recast with conservative variables. Identifying this equation with equation (38) and searching the 
matrix Q Chu as symmetrical, its coefficients can be identified as
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QChu = 1

2
d�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|u|2
ρ

+ T

ργ M2
+ a1a2

2 −u(1 + a1a2)

ρ
− v(1 + a1a2)

ρ
0

a1a2

ρ

−u(1 + a1a2)

ρ

1

ρ
+ u2a1

ρ2

uva1

ρ2
0 −ua1

ρ2

− v(1 + a1a2)

ρ

uva1

ρ2

1

ρ
+ v2a1

ρ2
0 − va1

ρ2

0 0 0
1

ρ
0

a1a2

ρ
−ua1

ρ2
− va1

ρ2
0

a1

ρ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(43)

Numerically, a first-order integration over the numerical domain � is performed. To do so, a block diagonal matrix is built 
from the matrix in equation (43), taking care of setting d�i, j and baseflow values for each elementary volume.

The matrix QF in equation (36) is defined from the canonical scalar product ||̃f||2F = ∫
�

f̃∗̃fd� (see Appendix C for 
explicit expression). This matrix is positive definite. It can be noted that ||̃f||2F is not homogeneous to an energy, but it is 
rather a mathematical norm which is chosen in order to reflect the energy input of the external forcing field0.1 Hence the 
optimal gain is not strictly defined as a ratio of two energies, and its absolute value has no physical meaning. However, 
detecting maximum values of μ relative to different wave numbers and frequencies still allows to find out resonance and 
pseudo-resonance of the flow response to a harmonic forcing. As such, it remains a relevant tool to analyse the linear 
dynamics of a noise selective amplifier flow.

It is possible to constrain the forcing field both to a localised region of the flow and to specific components by introducing 
a matrix P such that ̃f = Pf̃s . In this paper, we choose to only consider the momentum components of the forcing field in 
order to simplify the interpretation of the forcing norm. A similar choice has been made for example by Sartor et al. [43]. 
In this case the matrix P has, before discretisation, the following expression

P =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (44)

If N is the size of the vector ̃f, then f̃s has a size M with M ≤ N and the matrix P has a size N × M . The relation between 
forcing and response fields then reads

q̃ = RP̃fs (45)

Introducing energy norm matrices, equation (12) can now be recast as

μ2 = sup
f̃s

(RP̃fs)
∗QE(RP̃fs)

(P̃fs)∗QF(P̃fs)
= sup

f̃s

(P̃fs)
∗R∗QER(P̃fs)

(P̃fs)∗QF(P̃fs)
(46)

Equation (46) can be seen as a generalized Rayleigh quotient [35] where the optimal gain μ2 is then the largest eigenvalue 
and f̃s the associated eigenvector of the Hermitian eigenvalue problem

(R∗QERP)̃fs = μ2(QFP)̃fs (47)

Because QF is invertible and P∗P = I, equation (47) reduces to

(P∗QF
−1R∗QERP)︸ ︷︷ ︸

A

f̃s = μ2̃fs (48)

To solve equation (48), only the inverse of the resolvent matrix R , which can conveniently be computed from the Jacobian 
matrix, is actually required. Indeed, the eigenvalue problem (48) can be solved by a matrix-free algorithm based on a Krylov 
method [52]. A set of vectors (v0, Av0, A2v0, ...), which composes the Krylov subspace associated with the matrix A, needs 
to be computed. Starting from an arbitrary vector v0, each Krylov vector vi is computed from the previous one vi−1 by 
solving equation vi = Avi−1. This computation requires to solve two linear systems involving R−1 and (R∗)−1. The detailed 
steps of this procedure are developed in Algorithm 1. Finally, the optimal response can be recovered by solving the linear 
system (45).

1 Note that defining an input mechanical work would be more rigorous, but, to our knowledge, this can only be achieved a posteriori of the optimal gain
computation. This point has been thoroughly discussed by Sipp and Marquet [35].
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Algorithm 1 Computation of the Krylov vector vi associated with the matrix A from the vector vi−1.

1. Computing the matrix-vector product: t1 = Pvi−1
2. Solving of the linear system: R−1t2 = t1

3. Computing the matrix-vector product: t3 = QE t2

4. Solving of the linear system: (R∗)−1 t4 = t3

5. Computing the matrix-vector product: vi = P∗Q−1t4

Open library PETSc [53] interfaced with MUMPS [54] is used to solve the linear systems by a direct sparse LU algorithm. 
The matrix-free eigenvalue problem is solved using SLEPc library [55] by a Krylov-Schur algorithm [56].

3.6. Boundary conditions on perturbations

Table 2 gathers the Dirichet-Neumann conditions that are applied on perturbations at each boundary. Numerically, a 
matrix B is introduced in the equations (8) such that

B
∂q′

∂t
= J q′ + f′ (49)

The matrix B is defined as the identity matrix except that diagonal coefficients are set to zero at lines corresponding to 
boundary points. Note that, in practice, the global resolvent matrix is hence defined as R = (

iωB − J
)−1

. In order to
finally implement the conditions given in Table 2, the coefficients of the Jacobian matrix are directly set without using the 
procedure given by equation (13).

Table 2
Boundary conditions applied on perturbations in optimal
gain computations according to the numerical domain
shown in Fig. 1.

Boundary Conditions

1 u′ = 0, v ′ = 0, ρ ′ = 0, p′ = 0

2 u′ = 0, ∂v
∂ y = 0, ρ ′ = 0, p′ = 0

3 ∂u′
∂x = 0, ∂v ′

∂x = 0, ∂ρ ′
∂x = 0, ∂ p′

∂x = 0

4 u′ = 0, v ′ = 0, ∂ρ
∂ y = 0, ∂ p

∂ y = 0

4. Validation of the present method

In this section, solvers presented in section 3 are validated against data from existing studies. Solutions from the CFD
solver are compared to the self-similar solution of the compressible boundary layer. Optimal gain computations are first 
validated against 3D global results for a Blasius boundary layer. Afterwards, a validation against 3D non-global results for 
a supersonic boundary layer is performed since no results for 3D global optimal perturbations are known for compressible 
flows (as opposed to 3D global stability results for compressible flows, for example presented by Hildebrand et al. [57]). 
Note that because three different test cases have been considered, Mach numbers and Reynolds numbers vary from one 
case to another accordingly with the existing data found in the literature. These configurations are gathered in Table 3.

Table 3
Flows studied in section 4 to validate CFD and optimal gain solvers. Reynolds numbers are given as presented in
the existing studies.

§ Validation purpose Reference Mach Reynolds at inflow/outflow

4.1 Non-linear solution [58] M = 4 self similar solution

4.2 3D global perturbations [34] M = 0.3 Reδ∗ = 1000/1836

4.3 3D non-global perturbations [21] M = 3 Re� = 0/1000

4.1. CFD solver validation

A computation of a supersonic boundary layer flow is performed at M = 4 in order to assess the baseflow solver pre-
sented in section 3.1. The numerical domain starts at the leading edge of the assumed adiabatic flat plate. The Reynolds 
number at outflow is set to Rex = 2 × 106. The steady nonlinear Navier-Stokes equations (3) are solved on a mesh of 800 ×
250. When plotted against variable y

√
Rex/x, the streamwise velocity and temperature profiles taken at different x-stations 
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Fig. 2. Supersonic boundary layer flow at M = 4: streamwise velocity (left) and temperature (right) profiles against self-similar variable y
√

Rex/x at different
x-location. Results from Özgen and Kırcalı [58] are shown in black circle symbols.

collapse, thus recovering the expected self-similar character of this flow (Fig. 2). Furthermore, these profiles are in very good 
agreement with the results of Özgen and Kırcalı [58] obtained by solving the compressible boundary layer equations.

4.2. Optimal gain of Blasius boundary layer

This section provides a validation of the optimal gain solver developed for 3D global perturbations (section 3.3 and 
3.5). Comparison to the global results of Monokrousos et al. [34] is proposed. These results were obtained by means of 
an incompressible solver based on an adjoint formulation, using a time-stepping method and a fringe zone technique. The 
physical configuration hereby studied is a Blasius boundary layer developing over a flat plate. Reynolds number at inflow 
(resp. outflow) is set at Reδ∗ = 1000 (resp. Reδ∗ = 1836). Using the displacement thickness δ∗

0 at inflow as the reference
length scale, the numerical domain spans over [0, 800] × [0, 30].

As the numerical framework of the present paper is for compressible flow, the Mach number is set to M = 0.3 in order 
to get a solution close to the incompressible results. First, the baseflow computation is performed using the CFD solver pre-
sented in section 3.1. Subsonic boundary conditions are used (see Table 1) and Lx0 is set to 200δ∗

0 . A new numerical domain,
which is hereafter used for optimal gain computations, is then obtained by truncating the fields computed from the CFD 
solver so that they match the domain described in the above paragraph. Optimal gain computations are then performed 
with the forcing frequency set to ω = 0 whereas the wave number β varies over [0, 1.2]. Kinetic energy is used as the norm 
matrix in equation (12). Note that Monokrousos et al. [34] do not take into account the 1/2 factor in the kinetic energy; 
therefore, these results are rescaled to match the kinetic energy definition hereby used. The present computation produces 
slightly lower optimal gain values (around 5%) compared to the results of Monokrousos et al. [34] (Fig. 3). No compressible 
effect or mesh influence have been found to account for this discrepancy. It is suggested that this small discrepancy might 
stem from the fundamentally different approaches used between the reference and the present work. Indeed, Monokrousos 
et al. [34] computed the time evolution of linearised perturbations on a greater numerical domain x ∈ [0, 1000], where 
perturbations are damped for x > 800 by means of a fringe zone technique. The authors thereby suggested to consider 

Fig. 3. Optimal gain as a function of the wave number β at ω = 0 for an incompressible boundary layer. Blue squares: present results, at M = 0.3. Black
line: results of Monokrousos et al. [34] computed for global 3D perturbations in a Blasius boundary layer, using a time-stepping method associated with a
fringe zone technique. Red crosses are obtained by rescaling the optimal gain values of the blue squares with those of Monokrousos et al. [34].
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Fig. 4. Real part of optimal forcing component f ′
z (left) and optimal response streamwise velocity u′ (right) at β = 0.6 and ω = 0 for a boundary layer at 

M = 0.3. Iso-surfaces at −10% and 10% of the maximum absolute value are shown in red and blue. The numerical domain is truncated in the y-direction
to ease visualisation.

Fig. 5. Real part of u′ of the optimal response computed for two values of R = xopt/xf . Here, the forcing field is constrained to be localised between the 
two vertical dot lines. In both cases, the energy optimisation domain of the response is located between the vertical solid line at xopt/�0 = 1000.

x ∈ [0, 800] as the optimisation domain, which we used in the present computation. However, residual perturbations might 
persist for x > 800 and could account for a slightly higher optimal gain value than a computation performed on a numerical 
domain strictly limited to x ∈ [0, 800]. Nevertheless, rescaling the present results allows to observe a perfect agreement 
between the optimal gain behaviours taken as a function of β . In particular, the optimal wave number β = 0.6 is retrieved. 
This agreement is the most significant: indeed, the absolute value of the optimal gain has no physical meaning [35] contrary 
to the forcing frequency or wave number at which the optimal gain is maximum. The 3D fields depicted in Fig. 4 further-
more support the validity of our computation since the same counter-rotating rolls and streaks topologies as Monokrousos 
et al. [34] are respectively found as the optimal forcing and response fields associated with the maximum optimal gain value.

4.3. Optimal gain of a supersonic boundary layer at M = 3

To our knowledge, no work dealing with 3D global optimal forcing in compressible flows has been published to this date. 
In order to validate the method proposed in section 3.3 - which allows to compute 3D optimal global perturbations, a com-
parison with the “non-global” results from Tumin and Reshotko [21] obtained for a supersonic boundary layer is performed. 
This method lies on the optimisation of an energetic ratio between perturbation profiles at two different locations, using 
Chu’s energy norm [51]. Hence, this approach is a spatial equivalent of an optimal initial condition computation whose so-
lution is based on the parabolised boundary layer equations by assuming the expected velocity scales of streaks (u ∼ O (1)

et v, w ∼ O (ε) [21]).
In order to compare these results to the global perturbations approach, we suggest to perform a computation in which 

the forcing field is constrained in a region around a location xf (Fig. 5) that corresponds to the upstream location used by 
Tumin and Reshotko [21]. Anywhere outside this region, the forcing field is equal to zero. This is achieved by means of the 
P matrix introduced in section 3.5. Moreover, the energy of the response is optimised in a restricted region at location xopt
(Fig. 5) which corresponds to the downstream location used by Tumin and Reshotko [21]. Thereby, the relation between our 
global approach and the “non-global” approach used as a reference is the following: the computed forcing fields at xf plays 
the role of the optimal condition, the response fields at xopt is the perturbation that grows downstream and the optimal 
gain mimics the energetic ratio.
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Fig. 6. Optimal gain computed at ω = 0 with constrained forcing and response fields for the compressible boundary layer at M = 3, for two values of 
R = xopt/xf . Black line: results from Tumin and Reshotko [21]. Reference length scale is �0 = √

η∞xopt/ρ∞u∞ . Square symbols: present results.

Table 4
Physical and numerical parameters of the baseflow.

Adiabatic flat plate

M = 4.5

Rex
(out) = 2 × 106 ⇐⇒ Re�

(out) = 1414 ⇐⇒ Reδ∗ (out) = 11770

Rex
(opt) = 1.75 × 106 ⇐⇒ Re�

(opt) = 1323 ⇐⇒ Reδ∗ (opt) = Reδ0
∗ = 11000

x/δ∗
0 ∈ [0,182] et xopt/δ

∗
0 = 159

y/δ∗
0 ∈ [0,45] (domain used for the computation of the baseflow)

y/δ∗
0 ∈ [0,9] (domain used for the computation of the optimal gain)

Mesh: 1600 × 180

The baseflow computation is performed with the Mach number set at M = 3 and the Reynolds number, based on the 
Blasius length scale � = √

η∞x/ρ∞u∞ , set at Re� = 1140 at outflow. The value of xopt is set at the abscissa corresponding 
to Re� = 1000 and the Blasius length at this specific abscissa, �0 = √

η∞xopt/ρ∞u∞ , will be used as the reference length 
scale. Two different values of xf will successively be considered such that the ratio R = xf/xopt is equal to 0.2 and 0.4. The 
numerical domain spans over x/�0 ∈ [0, 1300] and y/�0 ∈ [0, 100]. The regions over which the forcing and response fields 
are constrained span over �x/�0 = 40 in the streamwise direction but are not restricted in the normal direction. Results of 
optimal gain computations are compared to those of Tumin and Reshotko [21] by renormalising the optimal gain. Indeed, 
the definitions of these two quantities are different and their absolute value cannot be directly compared. A very good 
agreement is observed for the two ratios R considered (Fig. 6). The optimal response fields associated with the maximum 
optimal gain shows that the growth of streaks starts from the forcing location (Fig. 5). The convectively unstable nature of 
these structures is observed as their growth goes on downstream from the region where they are forced.

5. Optimal forcing and response of the supersonic boundary layer at M = 4.5

5.1. Baseflow

The baseflow used for optimal gain computations (section 5.2) is presented in this section. A boundary layer develop-
ing over an adiabatic flat plate is considered at M = 4.5, at which local stability analysis show that Mack mode reaches 
its maximum growth rate [59]. Physical and numerical parameters are reported in Table 4 where the Reynolds number is 
computed according to different reference length scales. Local stability studies usually take Blasius length � = √

η∞x/ρ∞u∞
as reference, which is associated with the plate abscissa x according to Re� = √

Rex . Here, compressible displacement thick-
ness δ∗(x) will be considered. As expected, the relation between Re� and Reδ∗ obtained from our numerical computation 
is observed to be linear as a consequence of self-similarity (Fig. 7). The corresponding local Mach number field is depicted 
in Fig. 8. Note that the domain over which Chu’s disturbances energy is integrated during optimal gain computation is 
defined over x < xopt, where xopt is the abscissa where Reδ∗ = 11000. The compressible displacement boundary δ∗

0 at this
abscissa will be used as the reference length. It should be pointed out that this length appears both in the non-dimensional 
forcing frequency ω and wave number β . Finally, the actual baseflow used for optimal gain computation is truncated in 
the y-direction for computational savings. It is shown in Appendix D that the results are independent from this choice of 
domain.
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Fig. 7. Computed Reynolds number Reδ∗ based on the compressible displacement thickness as a function of the Reynolds number Re� based on Blasius
length scale. a is the slope of the linear curve, obtained by linear regression (r2 > 0.99).

Fig. 8. Local Mach number field of the baseflow at M = 4.5. Optimisation domain used for optimal gain computation is located upstream from the vertical
dotted line. Note that the numerical domain is truncated in the y-direction to ease the visualisation.

5.2. Optimal gain

Results from optimal gain computations for 3D perturbations developing over the baseflow presented in section 5.1 are 
shown in Fig. 9. Mesh convergence and computational cost are given in Appendix D and Appendix E. In these calculations, 
the forcing field is not constrained to be localised in any zones of the flow. Three regions of maximum gain can be identified 
in the ω − β space, where the flow is therefore especially receptive to an external forcing. Optimal forcing frequency and 
wave number associated with these three regions are shown in Table 5. As the forcing frequency goes to zero, an optimal 
wave number is found to favour the non-modal growth of streaks. At medium frequency, a peak of optimal gain is detected 
for non-zero wave numbers (approximately half the value of the streaks one), which implies that the associated perturbation 
has an oblique wave structure. This is the first mode instability of the compressible boundary layer [11]. At high frequency, 
a maximum of optimal gain is reached for zero wave number and pertains to the growth of the second mode (Mack mode). 
Spatial structures of each optimal forcing and response corresponding to the three optimal gain maximums will be analysed 
in section 5.3.

The interpretation of the values reached by the gain peaks must be done cautiously. Indeed, as pointed out in section 3.5, 
the absolute value of the optimal gain has no physical meaning. Relative values can however be compared in order to assess 
the efficiency of the different receptivity mechanisms. Here, the maximum optimal gain value is associated with the first 
mode instability whereas the streaks has a lower value within the same order of magnitude. The second mode has an 
optimal gain one order of magnitude lower than the first mode. Note that this is not in contradiction with the fact that the 
second mode growth rate is twice higher than the first mode one obtained from local stability computations [11]. Indeed, 
the optimal gain is a global quantity that accounts for the energy growth of perturbations over a given physical domain. 
Thus it depends on both the growth rate of the instability and the length over which it grows, that is the width of its 
neutral stability curve at a given frequency. The analysis of the energy growth profiles plotted in section 5.4 will shed more 
light on this matter.

5.3. Analysis of the optimal forcing and response

Spatial structures of the optimal forcing and response associated with the three regions of maximal gain are examined 
in this section. At low frequency (Fig. 10), the lift-up mechanism is recovered. The optimal forcing is made of streamwise 
counter-rotating rolls that initiate the transport of streamwise momentum of the baseflow by the perturbation. Streaks of 
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Fig. 9. (b) Optimal gain of the compressible boundary layer at M = 4.5 for 3D perturbations is plotted in the ω−β space. Three regions of locally maximum
gain are detected and are associated with three linear instabilities. (a) Optimal gain associated with first mode instability is plotted against ω at β = 1.0,
β = 1.2 and β = 1.4. (c) Optimal gain associated with streaks is plotted against β at ω = 0.002. (d) Optimal gain associated with second mode instability
is plotted against ω at β = 0.

Table 5
Optimal forcing frequency and wave number for each instability.

Instability ωopt βopt

Streaks → 0 2.2
First mode 0.32 1.2
Second mode 2.5 0
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Fig. 10. Optimal forcing (left) and response (right) at ω = 0.002 and β = 2.2. Top: Iso-surfaces at 10% of f̃ z (left) and ̃u (right). Note that the spanwise 
axis is normalised using the wave number of the perturbations. Bottom: Profiles at the streamwise location corresponding to the maximum forcing density
(left) and Chu’s energy density (right). Profiles at x/δ∗

0 = 35 (left) and x/δ∗
0 = 159 (right). Forcing components are normalised by the maximum value of f̃ z . 

Black dotted line indicates the generalised inflection point.

high streamwise velocity, spanning in the streamwise direction, are thus generated which correspond to the local analysis 
results predicting a zero streamwise wave number [60]. These fields are actually similar to those obtained in an incompress-
ible boundary layer [34], showing that the lift-up effect can be generalised to compressible flow [19]. Note, however, that a 
peak of density appears in the response profile above the streamwise velocity peak and close to the generalised inflection 
point yi of the baseflow, which is defined for each streamwise station as ∂/∂ y [ρ∂u/∂ y] (yi) = 0. This feature has theoretical 
grounds in a local, modal instability framework [59] (it will indeed be observed in the optimal responses associated with 
the first and second modes, as described further in this section). It is here noted that the non-modal growth of streaks also 
shares this behaviour.

At medium frequency, optimal forcing and response fields appear as oblique waves (Fig. 11). Assuming a wavelike struc-
ture of the perturbation fields ̃q(x, y) = q̂(y)eiαx = q̂(y)eiαr xe−αi x , the streamwise wave number αr can be computed as

αr = �
(

1

ĩq

∂q̃

∂x

)
(50)

where � stands for the real part of the complex quantity. In practice, the streamwise velocity profile ũ(x) at y = 1 is used 
in equation (50). The wave angle compared to the baseflow direction can then be computed according to

ψ = tan−1
(

β

αr

)
(51)

Here, the angle of the optimal response is found to be equal to 72◦ which can be compared to the angle of 60◦ of the 
most unstable first mode obtained from a local stability analysis [11]. Since the optimal response is not on the one hand 
strictly modal in nature and on the other hand is based on a global and not a global analysis, there is no reason to find 
the 60◦ value of a first mode wave computed with a local approach (a comparison with results from an eN method would 
here be interesting, but is beyond the scope of the present study). Nevertheless, both approaches do show that growth of 
the first mode is stronger as an oblique wave. From Fig. 11, it is observed that the forcing fields tend to be localised in 
the upstream region of the numerical domain whereas the response grows downstream as a consequence of streamwise 
non-normality [37]. Moreover, the iso-surfaces of the forcing field are tilted upstream which suggests the action of the 
non-modal Orr mechanism. The examination of the disturbances profile (Fig. 11) shows that transverse forcing is the most 
efficient and that it mainly generates a streamwise velocity. Compared to incompressible Tollmien-Schlichting waves, the 
velocity profile appears further away from the wall, close to the generalised inflection point which pertains to the prevalent 
inviscid mechanism of the first mode instability as Mach number increases.
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Fig. 11. Optimal forcing and response at ω = 0.32 and β = 1.2. See caption in Fig. 10. Bottom: Profiles at x/δ∗
0 = 12 (left) and x/δ∗

0 = 159 (right).

Optimal forcing and response at high frequency are now examined. From the wave number computed following (50), the 
phase velocity cϕ and subsequently the relative Mach number field M̂ [8,11] of the optimal response can be obtained, the 
latter being defined as

M̂ = u − cϕ

c
(52)

where c is the speed of sound computed from the baseflow. A supersonic region M̂ > 1 is detected close to the wall 
(Fig. 12) which is, according to Mack [11], a condition for additional unstable modes to exist. In this region, profiles show 
that each physical quantity of the optimal response reaches a maximum. The optimal forcing is however not very active 
in this part of the flow. Instead, it tends to be localised near the generalised inflection point where, in addition, density 
reaches another peak. Hence, two distinct mechanisms seem to coexist. On the one hand, the growth of hydrodynamical 
and thermodynamical perturbations inside the supersonic region seem to purely pertain to the second mode instability. 
On the other hand, the thermodynamical perturbations are also amplified along the generalised inflection point. Note that 
similar density peaks were observed for streak and first mode optimal responses. This property, that seems shared by 
these three different compressible instabilities, can also be observed in the studies of Hanifi et al. [19] and Erlebacher and 
Hussaini [61].

5.4. Energy growth

In this section, the energy growth of the optimal responses are examined in order to further characterised the devel-
opment of the three convective instabilities previously exhibited. In order to assess these behaviours, energy densities can 
be defined at each streamwise station [35]. For example, the energy density associated with the kinetic energy is taken as 
dK(x) = ∫ ymax

0 ρ |̃u|2dy. The Chu’s energy density is constructed in a similar way and is referred to as dChu(x). The forcing 
density is also defined as dF(x) = ∫ ymax

0 |̃f|2dy and the streamwise evolution of these quantities are plotted in Fig. 13. It is 
observed that the maximum forcing density associated with the first mode response is located far upstream from the one 
of the second mode. The energy growth of the first mode also starts more upstream than the second mode and continues 
until the end of the optimisation domain whereas the growth of the second mode stops slightly before the downstream 
boundary. This allows to shed light on why the optimal gain associated with the first mode is higher than that of the sec-
ond mode. Indeed, even if its amplification is slower, it spans over a longer length. These observations are consistent with 
the neutral stability curve obtained by Malik and Balakumar [62], where it can be seen that, in the frequency range studied 
here, the lower (respectively upper) branch of the first mode is found at a lower (respectively higher) Reynolds number 
than the second mode.
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Fig. 12. Streamwise component of the optimal forcing (a) and streamwise velocity (b) and density (c) of the optimal response at ω = 2.5 and β = 0. (d)
and (e): Profiles at x/δ∗

0 = 90 (left) and x/δ∗
0 = 148 (right). See caption in Fig. 10. Here, the forcing components are normalised by the maximum value of 

f̃ x . Black solid line indicates the ordinate where M̂ = −1 (supersonic region is located below this line).

Because the streaks result from a purely non-modal instability, interpreting its energy growth cannot be done through 
neutral curve considerations. However, it is observed that the streaks growth occurs over a larger length than the first 
and second mode. Besides, the forcing density profile is more spread than that of the first and second modes, the latter 
being more localised around a particular streamwise location. Using the terminology described by Sipp et al. [31], these 
observations can be interpreted in terms of convective-type and component-type non-normalities, which are responsible for 
the growth of these different instabilities. The convective-type non-normality is at play for both the first and second modes 
as the support of the forcing and response fields are clearly separated in the streamwise direction, respectively upstream 
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Fig. 13. Forcing density (left) and Chu’s energy density (right) of optimal forcing and response associated with optimal gain maxima (see Table 5).

Fig. 14. Left: Streamwise evolution of yChu
m for each optimal response associated with optimal gain maximums (see Table 5). yChu

m is normalised by the 
value of δ∗(x) at each streamwise station. Right: yChu

m and yK
m (of the second mode only) normalised by δ∗

0 at x = xopt . The black and orange dotted lines 
respectively indicate the location of the generalised inflection point and the inflection point of the density profile. The location where M̂ = −1 is shown by
a black solid line.

and downstream [37]. In the case of the streaks growth, the component-type non-normality is active as it is related to the 
lift-up mechanism. This mechanism is local in the sense that, at each streamwise location, the growth of the response takes 
advantage of the transport in the normal direction of the baseflow momentum by the perturbations. As such, a local support 
of the forcing field over a large portion of the streaks growth domain appears to be more efficient.

To further characterise the energy growth of the optimal responses, the ordinate at which the density energy reaches its 
maximum is computed at each streamwise station. It is formally defined for Chu’s energy and kinetic energy as

yChu
m (x) = arg max

y

[
ρ |̃u|2 + T

ργ M2
ρ̃2 + ρ

(γ − 1)γ M2T
T̃ 2

]
(53)

yK
m(x) = arg max

y

[
ρ |̃u|2

]
(54)

When normalised by the local displacement thickness δ∗(x), it is found that yChu
m is constant along the plate (Fig. 14). 

Hence, the Chu’s energy profile grows as 
√

x, which can be seen as a property inherited from the baseflow (see section 5.1). 
Moreover, yChu

m is localised close to the generalised inflection point. The inflection point of the density profile is found 
to be less relevant to predict the peak of energy as it is localised slightly higher. However, these observations hide the 
growth of the second mode perturbation in the relative Mach number supersonic region close to the wall (Fig. 12). This 
is revealed in Fig. 14 by plotting yK

m which is normalised by the non-local displacement thickness δ∗
0 . Both yK

m and yChu
m

evolve along the general inflection point until the abscissa x1/δ∗
0 = 83. But for x > x1, yK

m is located closer to the wall 
inside the supersonic region and does not scale as 

√
x any more. This steep modification of growth indicates the start of 

the second mode instability as x1 also corresponds to the maximum of forcing density (Fig. 13). Indeed, this observation 
is in agreement with the work of Sipp and Marquet [35] who observed, for a Blasius boundary layer, that the location of 
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the forcing density coincides with the location of the lower branch of a convective instability. Finally, although not shown 
here, note that yK

m still grows as 
√

x for streaks and first mode instabilities. In this case, it is observed that yK
m < yChu

m since 
the energy peak, which is located further away from the wall than velocities peaks, is not taken into account in kinetic 
energy.

6. Conclusion

A numerical method allowing to compute the Jacobian matrix associated with 3D global perturbations developing over 
a 2D baseflow has been proposed. This method is an extension of the discretised-then-linearised procedure introduced by 
Mettot et al. [1] for 2D global perturbations which is particularly suited for compressible flows. Because a Fourier expansion 
is performed in the transverse direction, modifications of the 2D method have been required: the Jacobian matrix has been 
separated into three conveniently computable matrices. The numerical implementation of the 3D solver from an available 
2D solver is straightforward and the increase of computational cost is kept affordable. In order to study convectively un-
stable compressible flows, optimal gain computations have then been performed to compute 3D global optimal forcing and 
response. This approach is based on the computation of the largest singular value of the global resolvent operator (built 
from the Jacobian matrix) and takes into account both modal and non-modal effects (resonance and pseudo-resonance) in-
volved in the growth of perturbations subject to an external forcing. The validation of the numerical method has first been 
achieved for a Blasius boundary layer, for which global results were available from an incompressible solver [34]. Afterwards, 
validation against non-global results of a supersonic boundary layer [21] has been performed given that no global results 
were so far known.

To demonstrate the potential of the numerical method, a detailed study of the receptivity of the supersonic boundary 
layer at M = 4.5 and Reδ∗ = 11000 has finally been presented. Optimal gain computations as a function of the forcing 
frequency ω and the transverse wave number β has revealed three regions of locally maximum optimal gain value. They 
are associated with the growth of compressible streaks (ω → 0, β = 2.2), first mode instability as an oblique wave (ω = 0.32, 
β = 1.2) and second mode instability (ω = 2.5, β = 0). The generalised inflection point has been shown to play a role in 
the growth of thermodynamical perturbations and Chu’s energy growth profiles along the flat plate have been found to 
evolve as 

√
x. These findings have been moderated regarding the second mode instability as the profiles of hydrodynamical

perturbations have been observed to grow independently of x inside the supersonic relative Mach number region close to 
the wall.

As the numerical method does not require any assumptions on the non-parallel nature of the baseflow, future work may 
tackle more complex flows. For example, 3D receptivity of the shock wave/boundary interaction could be further examined 
[43]. Exhibiting the main features of the 3D dynamics of industrial flows, involving complex geometries, could also be 
achieved while keeping affordable computational costs. Asymmetrical flows could moreover be studied providing that the 
mathematical framework is extended to cylindrical coordinates. This would especially be relevant to analyse the acoustic 
radiation associated with the growth of wave packets in turbulent jet flows [63]. Finally, application of the numerical method 
to the control of compressible flows is a promising perspective. 3D perturbations, as we have shown for the supersonic 
boundary layer, can reach larger optimal gain values than 2D perturbations and can potentially represent the most dangerous 
instabilities that one would want to control. From the construction of the Jacobian matrix of 3D perturbations presented in 
this paper, and by following the adjoint and Hessian based method proposed by Mettot et al. [1] in a discrete framework, 
passive control strategies of 3D convective instabilities in compressible flows could be implemented.
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Appendix A. Numerical fluxes used for the 3D perturbations Jacobian matrix

The complete expressions of the flux separation performed in section 3.3 for the computation of the Jacobian matrix 
for 3D perturbations are given hereafter. Considering the Navier-Stokes fluxes F, G and H, the strategy lies on isolating the 
terms containing transverse derivatives ∂/∂z into vectors Fνz , Gνz and Hνz and writing the remaining terms into vectors F′ , 
G′ and H′ .
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F = F′ − Fνz

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρu

ρu2 + p − 1
Re τxx

ρuv − 1
Re τxy

ρuw − 1
Re τxz

u(ρE + p) − 1
Re

[
uτxx + vτxy + wτxz

] − λ

PrRe(γ −1)M2∞
∂T
∂x

⎞⎟⎟⎟⎟⎟⎟⎟⎠

F′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu

ρu2 + p − η
Re ( 4

3
∂u
∂x − 2

3
∂v
∂ y )

ρuv − η
Re ( ∂u

∂ y + ∂v
∂x )

ρuw − η
Re

∂ w
∂x

u(ρE + p) − η
Re

[
u( 4

3
∂u
∂x − 2

3
∂v
∂ y ) + v η

Re ( ∂u
∂ y + ∂v

∂x ) + w η
Re

∂ w
∂x

]
− λ

PrRe(γ −1)M2∞
∂T
∂x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

− 2
3

η
Re

∂ w
∂z

0
η
Re

∂u
∂z

η
Re

[
−u 2

3
∂ w
∂z + w ∂u

∂z

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
G = G′ − Gνz

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρv

ρuv − 1
Re τyx

ρv2 + p − 1
Re τyy

ρv w − 1
Re τyz

v(ρE + p) − 1
Re

[
uτyx + vτyy + wτyz

] − λ

PrRe(γ −1)M2∞
∂T
∂ y

⎞⎟⎟⎟⎟⎟⎟⎟⎠

G′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρv

ρuv − η
Re ( ∂u

∂ y + ∂v
∂x )

ρv2 + p − η
Re ( 4

3
∂v
∂ y − 2

3
∂u
∂x )

ρv w − η
Re

∂ w
∂ y

v(ρE + p) − η
Re

[
u( ∂u

∂ y + ∂v
∂x ) + v( 4

3
∂v
∂ y − 2

3
∂u
∂x ) + w ∂ w

∂ y

]
− λ

PrRe(γ −1)M2∞
∂T
∂ y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Gνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

− 2
3

η
Re

∂ w
∂z

η
Re

∂v
∂z

η
Re

[
− 2

3 v ∂ w
∂z + w ∂v

∂z

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
H = H′ − Hνz

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρw

ρuw − 1
Re τzx

ρv w − 1
Re τzy

ρw2 + p − 1
Re τzz

w(ρE + p) − 1
Re

[
uτzx + vτzy + wτzz

] − λ
PrRe(γ −1)M2∞

∂T
∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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H′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρw

ρuw − η
Re

∂ w
∂x

ρv w − η
Re

∂ w
∂ y

ρw2 + p − η
Re (− 2

3
∂u
∂x − 2

3
∂v
∂ y )

w(ρE + p) − η
Re

[
u ∂ w

∂x + v ∂ w
∂ y + w(− 2

3
∂u
∂x − 2

3
∂v
∂ y )

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
η
Re

∂u
∂z

η
Re

∂v
∂z

η
Re

4
3

∂ w
∂z

η
Re

[
u ∂u

∂z + v ∂v
∂z + 4

3 w ∂ w
∂z

]
+ λ

PrRe(γ −1)M2∞
∂T
∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Appendix B. Computation of J ′

νz : modified fluxes ̂Fνz , ̂Gνz and ̂Hνz

Full expressions of the modified fluxes ̂Fνz , Ĝνz and Ĥνz used in section 3.3.3 to compute the Jacobian matrix J ′
νz are 

given hereafter.

F̂νz =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

− 2
3

η
Re w

0
η
Re u

η
Re

[
−u 2

3 w + wu
]

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Ĝνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

− 2
3

η
Re w

η
Re v

η
Re

[
− 2

3 v w + w v
]

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Ĥνz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
η
Re u
η
Re v
η
Re w

η
Re

[
uu + v v + 4

3 w w
]
+ λ

PrRe(γ −1)M2∞
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Appendix C. Explicit expression of norm matrices written in conservative variables

Full expressions of norm matrices, associated with the discrete scalar products presented in section 3.5, are given for the 
kinetic energy of perturbations (QKE) and the canonical norm of the forcing field (QF ). The matrix QKE is derived similarly 
to QChu in section 3.5, the latter actually containing the former. Its expression reads

QKE = 1

2
d�

⎛⎜⎜⎜⎜⎜⎜⎜⎝

|u|2
ρ − u

ρ − v
ρ 0 0

− u
ρ

1
ρ 0 0 0

− v
ρ 0 1

ρ 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(C.1)



B. Bugeat et al. / Journal of Computational Physics 398 (2019) 108888 23

The matrix QF is associated to a canonical scalar product and can readily be expressed as

QF = d�

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (C.2)

As noted in section 3.5, the numerical implementation of the above expression is achieved by building a block-diagonal 
matrix from these blocks, taking care of setting elementary volumes d�i, j and baseflow values for each point.

Appendix D. Mesh convergence

Mesh convergence of optimal gain computations presented in section 5.2 is examined. Mesh A (1600 × 81, see Table D.6) 
is found sufficient for both streaks (low frequencies) and first mode (medium frequencies) computations (Fig. D.15). The 
height L y = 9δ∗

0 of the numerical domain is high enough to ensure the independence of the results with respect to this
parameter. At higher frequencies, it is observed that mesh A is not fine enough as the streamwise wave number of the 
computed responses gets smaller and a strong velocity gradient is observed close to the plate (see Fig. 12). Thus, a finer 
mesh is used for ω > 2.0 to ensure the mesh convergence of the peak associated with the second mode. As shown in 
Fig. D.15, mesh E (2400 × 108) is found sufficiently fine to compute this peak.

Fig. D.15. Mesh convergence (nomenclature of the different meshes is given in Table D.6). Left: optimal gain as a function of β at ω = 2 × 10−3. Right: 
optimal gain as a function of ω at β = 0.

Table D.6
Nomenclature of meshes used in Fig. D.15.

Mesh Nx N y L y

A 1600 81 9
B 1600 108 9
C 2400 81 9
D 1600 106 18
E 2400 108 9
F 2400 165 9
G 3200 108 9
H 2400 144 18

Appendix E. Computational costs

Solving the linear systems involved in the computation of the Krylov vector (Algorithm 1 in section 3.5) is the bottleneck 
in terms of both CPU time and RAM requirements. Besides, it cannot be known a priori how many Krylov vectors are needed 
to solve the eigenvalue problem in equation (48) until a residual equal to 10−3 is reached. In practice, it is observed that 
a minimum of 3 vectors and a maximum of 12 vectors are needed and that large values of the optimal gain require fewer 
number of Krylov vectors. Numerical costs involved in the optimal gain computations of the boundary layer at M = 4.5
(section 5.2) are reported in Table E.7. The 3D perturbations solver requires approximately twice the time and less than 
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Table E.7
CPU time and maximum RAM required to compute one
Krylov vector to solve the eigenvalue problem (48) using
mesh A (see Table D.6). These computations were con-
ducted using Intel Xeon(R) CPU E5-2630 v2 @ 2.60GHz.

Solver CPU time maximum RAM

2D perturbations 42 min 7.31 GB
3D perturbations 88 min 12.5 GB

twice the maximum RAM that is needed to compute the optimal gain for 2D perturbations. Hence, the numerical costs lie 
in the same order of magnitude for both solvers, which means that if one can afford a 2D perturbations computation, one 
can generally afford a 3D perturbations computation.
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