Conception de câblages robustes dans les parcs éoliens : recherche d'une Arborescence de Steiner "robuste"
Résumé
Nous nous intéressons à la conception de réseaux de collecte d'énergie produite dans les parcs éoliens : nous cherchons à élaborer un câblage permettant de router l'énergie produite par les éoliennes jusqu'à une sous-station. Ce problème de câblage peut être modélisé comme un pro-blème de graphe : le problème de l'arborescence de Steiner. Etant donné un graphe connexe G = (V, E) muni d'une fonction de coût sur les arêtes, d'un sous-ensemble de terminaux T ⊂ V et d'un sommet particulier r ∈ V \ T appelé racine, ce problème consiste à trouver un sous-graphe de coût minimal tel qu'il existe un chemin allant de la racine vers chaque terminal. Le problème de l'arbre de Steiner a été largement étudié dans la littérature [1, 2, 3]. Le problème de l'arborescence de Steiner avec capacités (une quantité maximale d'énergie peut circuler à travers un câble) a également été étudié dans le cas du câblage éolien [4, 5]. Nous abordons ici un autre aspect de ce problème : nous cherchons à créer un réseau robuste. Nous disons ici qu'un réseau arborescent est robuste si le nombre d'éoliennes déconnectées de la sous-station lors d'une panne sur un câble est le plus petit possible. Chercher un réseau arborescent robuste revient donc à chercher à minimiser l'énergie perdue en cas de panne d'un câble, dans le pire des cas. Dans un premier temps, nous supposons qu'une seule liaison peut tomber en panne à un instant donné. Notre problème peut alors être formulé ainsi : Problème de l'arborescence de Steiner Robuste (PASR) Données : un graphe connexe G=(V,E), un sous-ensemble de sommets T ⊂ V appelés termi-naux et un sommet r ∈ V \ T. Problème : Trouver une arborescence de Steiner S couvrant T telle que la suppression du "pire" arc de S déconnecte un nombre minimal de terminaux. Une solution de PASR minimise donc le nombre de terminaux déconnectés lors d'une panne sur un arc dans le pire des cas.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...