High resolution direction finding from rectangular higher order cumulant matrices: The rectangular 2Q-music algorithms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

High resolution direction finding from rectangular higher order cumulant matrices: The rectangular 2Q-music algorithms

Résumé

Recently, the 2q-MUSIC (q ≥ 2) direction finding algorithm has been developed for non-Gaussian sources and square arrangements of the 2qth-order data statistics, to overcome the main limitations of MUSIC and to improve the performance of 4-MUSIC for multiple sources. To further improve the performance of the 2q-MUSIC algorithm, the purpose of this paper is to extend the latter to rectangular arrangements of the data statistics, giving rise to rectangular 2q-MUSIC algorithms. It is shown in particular that rectangular arrangements of the higher order (HO) data statistics allow to optimize the compromise between performance and maximal number of sources to be processed. Besides, it also allows a complexity reduction for a given level of performance. These results, completely new, should open new perspectives for HO array processing.
Fichier principal
Vignette du fichier
06853998.pdf (783.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02462474 , version 1 (31-01-2020)

Identifiants

Citer

Hanna Becker, Pascal Chevalier, Martin Haardt. High resolution direction finding from rectangular higher order cumulant matrices: The rectangular 2Q-music algorithms. ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, Florence, Italy. pp.2242-2246, ⟨10.1109/ICASSP.2014.6853998⟩. ⟨hal-02462474⟩
64 Consultations
96 Téléchargements

Altmetric

Partager

More