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Abstract—These last three decades, many second order (SO)
and higher order (HO) high resolution (HR) direction finding
(DF) methods, such as 2q-MUSIC (q ≥ 1), exploiting the
information contained in the SO or HO circular (C) cumulants
of the data, have been developed. However, for 2qth-order non-
circular (NC) sources such as M -PSK sources with M ≤ 2q,
strong gains in performance may be obtained by taking into
account the information contained in both 2qth-order C and NC
cumulants of the data, giving rise to NC 2qth-order DF methods.
Numerous NC DF methods have been developed these last fifteen
years but mainly at the SO and under restrictive assumptions
on the sources. The purpose of this paper is to give new insights
into NC 2q-MUSIC methods for 1 ≤ q ≤ 2 and for arbitrary NC
sources.

I. INTRODUCTION

From the beginning of the 1980s, many SO, HR, DF meth-

ods have been developed among which the MUSIC method

is the most popular [1]. To improve the performance of SO

methods, in terms of resolution, robustness to modeling errors

and number of sources to be processed in particular, HO HR

DF methods have been developed for non-Gaussian sources

from the end of the 1980s. Among these methods, extensions

of MUSIC to both fourth-order (FO) and 2qth-order (q > 1),

called respectively 4−MUSIC [2] and 2q−MUSIC [3], are the

most popular. These 2q−MUSIC methods (q ≥ 1) exploit the

information contained in the 2qth-order circular cumulants of

the data. However, for 2qth-order NC sources such as M−PSK

sources with M ≤ 2q, omnipresent in radio-communications,

the information contained in the 2qth-order circular cumulants

of the data is not exhaustive and some information is also

contained in the 2qth-order NC cumulants of the data. In such

conditions, strong gains in performance may be obtained by

taking into account the information contained in all the 2qth-

order cumulants of the data, circular or not, giving rise to

2qth-order NC DF methods.

Numerous SO NC DF methods, and NC extensions of

MUSIC in particular, have been developed these last fifteen

years, but under restrictive assumptions about the sources such

as the assumptions of rectilinear sources [4][5] or of mixtures

of rectilinear and circular sources [6]. Let us recall that a

rectilinear source has a real-valued complex envelope to within

a constant phase term. Only two papers [7][8] propose NC

extensions of MUSIC for arbitrary sources, among which only

[7] proposes a generic algorithm able to process all kind of

sources with the capability to process up to 2N −2 rectilinear

sources from N antennas. On the other hand, HO NC DF

methods are very scarce among which [9] and [10] propose,

for rectilinear sources only, a bi-quaternion NC extension

of 4−MUSIC and a NC extension of 2q−MUSIC (q ≥ 1)

respectively. In [11] the concept of k−rectilinear source has

been defined as a source which can be decomposed as the sum

of k statistically independent rectilinear sources and the results

of [10] have been extended for mixtures of k−rectilinear and

2qth-order circular sources. More precisely two NC extensions

of 2q-MUSIC, called NC1-2q-MUSIC and NC2-2q-MUSIC

respectively, have been proposed in [11] for such mixtures

although the latter may be used in all contexts. The first

one implements a search procedure in both the phase and

the direction of the sources. The second one, based on the

application of [12] to the first one, limits the search to the

direction only but is very costly due to the need to compute

a (q + 1)× (q + 1) determinant for each point of the pseudo-

spectrum.

The purpose of this paper is to give new insights into the

full (C + NC) 2qth-order statistics of the data for 1 ≤ q ≤ 2
and for arbitrary sources potentially 2qth-order NC. These new

insights allow to show in particular that the NC1-2q-MUSIC

method developed in [11] for k−rectilinear sources only is in

fact powerful for most of the sources (C and NC) encountered

in practice.

II. MODEL AND PROBLEM FORMULATION

A. Model and extended model

We consider an array of N narrow-band (NB) sensors and

we call x (t) the vector of complex amplitudes of the signals at

the output of these sensors. Each sensor is assumed to receive

the contribution of P zero-mean statistically independent NB

sources corrupted by a noise. Under these assumptions, the

observation vector can be written as follows

x (t) =
∑P

i=1
a (Θi) mi (t) + n (t) (1)

where n (t) is the noise vector, assumed to be zero-mean,

spatially white, circular and Gaussian, a (Θ) is the steering

vector, mi (t) and Θi are the complex envelope and the

direction of the source i .

NC DF methods exploit the information contained in the ex-

tended observation vector x̃ (t) = [ xT (t) xH (t) ]T , where
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T and H denote transposition and conjugation-transposition

respectively. From (1) we deduce that x̃ (t) can be written as

x̃ (t) =
P

∑

i=1

A (Θi)mi (t)+ ñ (t) =
P

∑

i=1

Ã (Θi) m̃i (t)+ ñ (t)

(2)

where mi (t) = [ ℜ (mi (t)) ℑ (mi (t)) ]T , m̃i (t) =
[ mi (t) m∗

i (t) ]T , ∗ means complex conjugate, ñ (t) =

[ nT (t) nH (t) ]T , Ã (Θ) = [ a1 (Θ) a2 (Θ) ] where

a1 (Θ) = [ aT (Θ) 0T
N ]T , a2 (Θ) = [ 0T

N aH (Θ) ]T

and 0N is the null vector of size N , A (Θ) =
[ a3 (Θ) a4 (Θ) ] where a3 (Θ)= [ aT (Θ) aH (Θ) ]T

and a4 (Θ) = [ jaT (Θ) −jaH (Θ) ]T .

B. Particular case of k − rectilinear sources

If the source i is a ki − rectilinear source, mi (t) can be

written as [11]

mi (t) =
∑ki

j=1
vij (t) exp (jΦij) (3)

where the signals vij (t) (1 ≤ j ≤ ki) are real-valued

and statistically independent whereas Φij is a phase term. A

rectilinear source (BPSK or ASK source) is a 1− rectilinear
source, whereas a QPSK source, a square or a rectangular

QAM source are three examples of 2 − rectilinear sources.

From (3) we deduce that mi (t) and m̃i (t) can be written as

mi (t) =
ki
∑

j=1

vij (t) e (Φij) , m̃i (t) =
ki
∑

j=1

vij (t) ẽ (Φij)

(4)

e (Φ) =

[

cos (Φ)
sin (Φ)

]

ẽ (Φ) =

[

exp (jΦ)
exp (−jΦ)

]

(5)

Inserting (4) into (2), it is straightforward to show that x̃ (t)
takes the form

x̃ (t) =
∑P

i=1

∑ki

j=1 b̃ (Θi, Φij) vij (t) + ñ (t) (6)

b̃ (Θ,Φ) = Ã (Θ) ẽ (Φ) = A (Θ) e (Φ) (7)

where b̃ (Θ, Φ) is the generic extended steering vector of a

rectilinear source. This shows that without noise, x̃ (t) is

spanned by the extended steering vectors b̃ (Θi,Φij) (1 ≤
j ≤ ki) (1 ≤ i ≤ P ) and this allows straightforward NC

extensions of 2q−MUSIC methods (q ≥ 1) from the generic

extended steering vector b̃ (Θ,Φ) as done in [11].

C. Problem formulation

The first purpose of this paper is to show that whatever

the kind and the non-circularity properties of the sources, the

signal subspace of the SO statistical matrix of x̃ (t) has the

same algebraic structure as the one obtained for k-rectilinear

sources. The second purpose of this paper is to show that

this result remains valid at the FO for most of the sources

of practical interest. These results, completely unknown by

the scientific community, allow to use, whatever the kind of

sources (q = 1) and for most of sources of practical interest

(q = 2), NC extensions of 2q-MUSIC (1 ≤ q ≤ 2) initially

developed for k-rectilinear sources such as those presented in

[11].

III. NON-CIRCULAR SECOND-ORDER DF METHODS

A. Extended Second-Order Statistics

Most of SO NC DF methods exploit the information con-

tained in the time-averaged correlation matrix of x̃ (t), defined

by Rx̃ =
〈

E
[

x̃ (t) x̃H (t)
]〉

, where 〈.〉 is the time averaging

operation on a given observation window and E [.] is the

expected value operation. Under the assumptions of section

II-A, we deduce from (2) that Rx̃ can be written as

Rx̃ =
∑P

i=1
A (Θi)Rmi

AH (Θi) + σ2IN (8)

where σ2 is the noise power per sensor and Rmi
is the time-

averaged correlation matrix of mi (t). As Rmi
is a real-valued

(2 × 2) symmetric matrix, its eigen decomposition can be

written as

Rmi
=

∑2

k=1
µike (Φik) eT (Φik) (9)

where the orthonormal eigenvectors e (Φik) (1 ≤ k ≤ 2), such

that eT (Φik) e (Φik′) = δ(k−k′), are associated with the real

eigenvalues µik where δ(.) is the Kronecker symbol. For this

reason, Φi2 = Φi1 ± π/2. Using (9) into (8), we obtain

Rx̃ =
∑P

i=1

∑2

k=1
µikb̃ (Θi, Φik) b̃H (Θi, Φik) + σ2IN

(10)

B. Non-circular second order MUSIC methods

We deduce from (10) that the signal space of Rx̃ is spanned

by the vectors b̃ (Θi, Φik) associated with the non-zero µik

(1 ≤ i ≤ P ) (1 ≤ k ≤ 2). For each i at least one value

of µik is not zero and thus at least one b̃ (Θi, Φik) is in the

signal subspace of Rx̃. According to [11][1], the directions

Θi (1 ≤ i ≤ P ) can then be estimated by searching for the

zeros, over (Θ,Φ), of the NC1-MUSIC criterion

J1,2 (Θ,Φ) =
(

b̃H (Θ, Φ)Π2b̃ (Θ, Φ)
)

/
∥

∥

∥
b̃ (Θ, Φ)

∥

∥

∥

2

where ‖u‖
2

= uHu and Π2 is the orthogonal projector on

the noise subspace of Rx̃. Thus the NC1-MUSIC algorithm

developed for rectilinear or k − rectilinear sources [11] can

also be used for arbitrary SO NC sources and is able to process

up to 2N−1 rectilinear sources from a 2D search process with

respect to (Θ, Φ) when Θ is a scalar, i.e for 1D DF estimation.

IV. NON-CIRCULAR FOURTH-ORDER DF METHODS

A. Extended Fourth-Order Statistics

FO NC DF methods exploit the information contained in

the time-averaged circular FO cumulants of x̃ (t), defined

by cx̃,ijkl =< cum(x̃i (t) , x̃j (t) , x̃∗
k (t) , x̃∗

l (t)) > for 1 ≤
i, j, k, l ≤ 2N , where x̃i (t) is the component i of x̃ (t). These

latter entries can be arranged in the (2N)2 × (2N)2 matrix

Cx̃ in different ways as done in [3] or [11] but it is easy to

verify [11] that all these arrangements are equivalent. We then

choose the natural arrangement defined by Cx̃ (I, J) = cx̃,ijkl

with I = 2N(i − 1) + j and J = 2N(k − 1) + l. Under the
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assumptions of section II-A, we deduce from (2) that Cx̃ can

be written as

Cx̃ =
∑P

i=1
Ã⊗2 (Θi)Cm̃i

Ã⊗2H (Θi) (11)

where Ã⊗2 (Θ) = Ã (Θ) ⊗ Ã (Θ) , ⊗ is the kronecker

product and Cm̃i
is the (4 × 4) matrix of the time-averaged

circular FO cumulants of m̃i (t). Denoting by βi and γi the

parameters: βi =<cum(mi (t) , mi (t) ,mi (t) ,m∗
i (t))>/ci,

γi =<cum(mi (t) ,mi (t) ,mi (t) ,mi (t))>/ci and ci =
cm̃i,1111, the matrix Cm̃i

can be written as Cm̃i
= ciCi where

Ci is defined by

Ci =









1 βi βi γi

β∗
i 1 1 βi

β∗
i 1 1 βi

γ∗
i β∗

i β∗
i 1









= ΓC̄iΓ
H (12)

where Γ and C̄i are defined by

Γ =









1 0 0
0 1 0
0 1 0
0 0 1









and C̄i=





1 βi γi

β∗
i 1 βi

γ∗
i β∗

i 1



 (13)

It becomes obvious from (13) that the rank of Ci is at most

equal to 3 and the eigen-decomposition of Cm̃i
, Hermitian

matrix, can be written as

Cm̃i
= ci

∑3

j=1
µijuiju

H
ij (14)

where the µij’s (1 ≤ j ≤ 3) are the three real eigenvalues

of Ci with the greatest modulus, whereas the uij’s are the

associated orthonormal eigenvectors. Depending on the source

i, one, two or three of the µij’s may not be zero. We define

a ri − rank source i (1 ≤ ri ≤ 3), a source i for which only

ri eigenvalues µij’s (1 ≤ j ≤ ri) are not zero.

The purpose of what follows is to show that the space

spanned by the vectors uij(1 ≤ j ≤ ri) is also spanned by

vectors of the form ẽ⊗2 (Ψij) (1 ≤ j ≤ ri). In other words,

we will show that Cm̃i
can also be written as

Cm̃i
=

∑ri

j=1

∑ri

l=1
ẽ⊗2 (Ψij) ẽ

⊗2H (Ψil) qi
jl (15)

where the qi
jl’s and Ψil’s (1 ≤ j, l ≤ ri) are scalar quantities.

B. Algebraic structure of Cm̃i

We analyse in this section the algebraic structure of Ci =
Cm̃i

/ci for each possible value of its rank ri, i.e. for 1 ≤
ri ≤ 3.

1) Rank one source i: The matrix Ci (12) has a rank equal

to 1 if and only if the determinants of all the (2 × 2) sub-

matrices of Ci are equal to zero. This is obtained if C1, defined

by (16), is verified

C1 : |βi| = 1 and γi = β2
i (16)

In this case, ∃Ψi1 such that βi = exp(2jΨi1) and γi =
exp(4jΨi1). It is then easy to verify that in this case Cm̃i

= ciCi takes the form

Cm̃i
= ci ẽ⊗2 (Ψi1) ẽ

⊗2H (Ψi1)

which is a particular case of (15) with qi
11 = ci and ri = 1.

2) Rank 2 source i: The matrix Ci (12) has a rank equal

to 2 if and only if the determinant of C̄i (13) is equal

to zero while C1 is not verified. After some elementaries

computations, the rank 2 condition is obtained if C2, defined

by (17), is verified

C2 : ∃Ωi/ γi = (βi)
2
+ejΩi

(

|βi|
2
− 1

)

and |βi| 6= 1 (17)

Condition C2 implies that the matrix Qi composed of the two

first columns of Ci has a rank equal to 2. Let us analyze

the conditions under which there exist Ψi1 and Ψi2 such that

Span(Qi) = Span(ẽ⊗2 (Ψi1) , ẽ⊗2 (Ψi2)). This last property

is verified if and only if ∃(Ψi1, Ψi2) ∈ R
2 and ∃ T, a full

rank (2 × 2) matrix, such that

Qi =









1 βi

β∗
i 1

β∗
i 1

γ∗
i β∗

i









=

[

Qi
1

Qi
2

]

=

[

Ei
12

Ei
12Ω

i
12

]

T (18)

where the (2 × 2) matrices Qi
j , Ωi

12 and Ei
12 are defined by

Qi
1 =

[

1 βi

β∗
i 1

]

; Qi
2 =

[

β∗
i 1

γ∗
i β∗

i

]

(19)

Ei
12 =

[

ej2Ψi1 ej2Ψi2

1 1

]

; Ωi
12 =

[

e−j2Ψi1 0
0 e−j2Ψi2

]

After straightforward manipulations, it is easy to verify that

property (18) is equivalent to Qi
1 = Ei

12T and T(Qi
1)

−1

Qi
2T

−1 = Ωi
12 which requires that e−j2Ψi1 and e−j2Ψi2 are

eigenvalues of (Qi
1)

−1 Qi
2 and that the associated eigenvectors

correspond to the columns of T−1. From (17) and (19), we

obtain, after some elementary computations

(

Qi
1

)−1
Qi

2 =

[

αi 1
−e−jΩi 0

]

(20)

where αi = 2ℜ
(

βie
−jΩi/2

)

e−jΩi/2 (21)

We then deduce that the eigenvalues, λik (1 ≤ k ≤ 2), of (20)

are given by

λik = e−jΩi/2

(

ℜ
(

βie
−jΩi/2

)

±

√

ℜ
(

βie
−jΩi/2

)2
− 1

)

(22)

It is then easy to verify that |λik|
2 = 1 for (1 ≤ k ≤ 2) and

λi1 6= λi2 if condition C3, defined hereafter, is verified

C3 :
∣

∣ℜ
(

βie
−jΩi/2

)∣

∣ ≤ 1 (23)

In this case, it exist Ψi1 and Ψi2 such that λi1 = e−j2Ψi1

and λi2 = e−j2Ψi2 . Moreover, it is also easy to verify that

Qi
1 = Ei

12T, which means that T(Qi
1)

−1 Qi
2T

−1 = Ωi
12 is

verified and that Span(Qi) = Span(ẽ⊗2 (Ψi1) , ẽ⊗2 (Ψi2)).
Matrix Cm̃i

then takes the form (15). However if condition

C4 is verified

C4 :
∣

∣ℜ
(

βie
−jΩi/2

)
∣

∣ > 1 (24)

the previous results do no longer hold, it does not exist Ψi1

and Ψi2 such that Span(Qi) = Span(ẽ⊗2 (Ψi1) , ẽ⊗2 (Ψi2))
and Cm̃i

has no longer the form (15). However, most of rank 2

sources encountered in practice, such as square QAM sources,

verify (23) and not (24).
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3) Rank 3 source i: In this case,

C5 :

∣

∣

∣
γi − (βi)

2
∣

∣

∣
6=

∣

∣

∣
|βi|

2
− 1

∣

∣

∣
(25)

the space spanned by the uij’s (1 ≤ j ≤ 3) of (14)

corresponds to the one spanned by the columns of Γ, denoted

by Span(Γ). It is well-known that the orthogonal projector

on the subspace orthogonal to the columns of Γ is defined

by Π⊥
Γ

= I − Γ
(

ΓHΓ
)−1

ΓH where it is easy to verify that

ΓHΓ = diag ([1 2 1]). Then a vector v belongs to Span(Γ)
if and only if Π⊥

Γ
v = 0. It is then straightforward to verify

that, whatever the value of Ψ, Π⊥
Γ
ẽ⊗2 (Ψ) = 0, which means

that all vectors ẽ⊗2 (Ψ) for arbitrary values of Ψ belong to

Span(Γ). Moreover, it is easy to built three non-colinear

vectors ẽ⊗2 (Ψij) (1 ≤ j ≤ 3) where Ψi1 6= Ψi2 6= Ψi3,

which shows that there exists ẽ⊗2 (Ψij) (1 ≤ j ≤ 3) such that

Span(Γ) = Span(ẽ⊗2 (Ψij) , 1 ≤ j ≤ 3) and then such that

(15) holds.

C. Non-circular Fourth order MUSIC methods

It has been shown in section IV-B that in the presence of a

mixture of P sources i (1 ≤ i ≤ P ) with either rank 1, rank 2
verifying (23) or rank 3, Cm̃i

has, for each i, the form (15).

Inserting (15) into (11) and using (7) we finally obtain

Cx̃ =
P

∑

i=1

ri
∑

j,l=1

qi
jlb̃

⊗2 (Θi, Ψij) b̃
⊗2H (Θi, Ψil) (26)

We deduce from (26) that the signal space of Cx̃ is spanned

by the vectors b̃⊗2 (Θi, Ψij) for (1 ≤ i ≤ P ) (1 ≤ j ≤ ri).

For each i at least one vector b̃⊗2 (Θi, Ψij) is in the signal

subspace of Cx̃ of rank r =
∑P

i=1 ri. The directions Θi (1 ≤
i ≤ P ) can then be estimated by searching for the zeros or the

minima, over (Θ, Ψ), of the NC1−4−MUSIC [11] criterion.

J1,4 (Θ, Φ) =
(

b̃⊗2H (Θ,Φ)Π4b̃
⊗2 (Θ,Φ)

)

/
∥

∥

∥
b̃⊗2 (Θ,Φ)

∥

∥

∥

2

where Π4 is the orthogonal projector on the noise subspace of

Cx̃. For rank 2 sources verifying (24), the NC2 − 4-MUSIC

method presented in [11] must be used.

V. COMPUTER SIMULATIONS

To illustrate the performance of the NC1 − 2q-MUSIC

method for q = 1, 2, we consider a mixture of P = 2
statistically independent sources, having the same SNR equal

to 10dB, impinging on a uniform circular array of N = 3
antennas of radius λ/2, where λ is the wavelength. The first

source is a 2−rectilinear source (rank 2) whereas the second

one is an ASK source (rank 1). The angles of arrival of the 2

sources are Θ1 = 100◦ and Θ2 = 110◦, whereas their phase

are Ψ11 = 10◦, Ψ12 = 80◦ and Ψ21 = 45◦. Under these

assumptions, Fig.1 shows the variations of the Root Mean

Square Error (RMSE) of the direction estimate of the source 1

as a function of the number of snapshots L used to estimate the

statistics for both 2q−MUSIC and NC1 − 2q−MUSIC with

q = 1 and 2. Note the best performance of NC1−2q−MUSIC

with respect to 2q−MUSIC for both q = 1 and 2 and the

better performance of HO methods since the sources are poorly

angularly separated.

Fig. 1. RMSE of the source 1 as a function of L for 2q−MUSIC and
NC1− 2q−MUSIC with q = 1, 2.

VI. CONCLUSION

It has been shown in this paper that the NC1− 2q-MUSIC

algorithm developed in [11] for k−rectilinear sources is also

powerful for arbitrary NC sources for q = 1 and for rank 1,

rank 3 and most of rank 2 NC sources encountered in practice

for q = 2.
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