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From Strategic Modelling of Urban Transit Systems 

to Golden Rules for their Design and Management 
Fabien Leurent (

1
), François Combes, Rob Van Nes 

Université Paris Est, Laboratoire Ville Mobilité Transport, Ecole des Ponts ParisTech 

Abstract 

The paper provides a synthetic, “strategic” model of transit systems in urban areas that 

features out a set of modes, quality of service and terminal access, demand and network usage 

by users’ trips, with some hints of spatial heterogeneity. The model encompasses technical 

relationships relating fleet size and design parameters such as infrastructure length and station 

spacing, to frequency, commercial speed and access distance, hence to wait time, running 

time and access/egress time. Economic features are modelled, too: generalized costs to 

individual users, demand elasticity, supply costs and system welfare. The model can be used 

for synthetic statistical description of real-world systems as well as for economic analysis and 

the assessment of given system states against theoretical references. 

After introducing the model elements and relationships, we put forward a causal diagram that 

synthesizes the system under study and constitutes the model architecture. We then turn to 

mathematical analysis to formalize (i) the determination of a system state on the basis of a 

supply plan, technical relationships and demand behaviour, (ii) the optimisation of system 

welfare with respect to the action levers on the supply side. Next, for an uncongested system 

we establish theoretical conditions for both an optimum system state under fixed demand and 

a second best optimum under variable demand and tariffs. Three “golden rules” for transit 

network design and management are established, namely (i) balancing the rolling stock costs 

and the users’ costs of waiting time, (ii) balancing the station costs plus the value to users of 

the dwelling part of their in-network times, against the users’ costs of “longitudinal” access 

times, (iii) balancing the full supply costs and the users’ costs of “transversal” access times. 

Furthermore, the existence and uniqueness of a System Optimum state are proven and a 

solution scheme is provided. 

1. Introduction 

1.1 Background 

A transportation system is purported to serve the mobility needs of its customers. It is made 

up of one or several technical “modes” that are spread through the space in a given territory, 

mostly in network form in the urban setting. According to the general economic theory of 

welfare, such a technical system ought to be planned so as to serve travel demand in an 

optimal way i.e. by maximizing the net surplus of its users (Dupuit, 1844), which amounts to 

the difference between their gross surplus and the travel costs which they incur. In fact, the 

user bears both money costs that include prices paid for service access and use plus specific 

expenses (e.g. vehicle costs in private transport) and also the money equivalent of the time 

spent in travelling (Beckmann et al. 1956). In turn, the service prices should reflect the 
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production costs that are borne by the suppliers. Externalities such as scale or scope 

economies on the supply side, or impacts on the environment (such as pollutant emissions and 

contribution to greenhouse gases), can be taken into account by modifying the welfare 

function of collective surplus (Quinet and Vickerman, 2004). 

To apply these general principles to the management of a given system, it is required to build 

a specific economic model that represents both the “local” demand and the “local” supply – 

here “local” refers to the territory. The specific setting must be modelled in terms of modal 

techniques, spatial features and behavioural features of the economic agents. Furthermore, the 

action levers available for system management need be identified and characterized. The 

multi-layered structure of a transportation system, from infrastructure to services passing by 

vehicles, lends itself to a variety of action levers. Infrastructural schemes either roadway- or 

railway-based or modal / intermodal stations, as well as transit services and demand-oriented 

mobility policies are traditionally addressed by using a Travel Demand Model. Such a TDM 

depicts the demand side in terms of passenger and/or freight flows and their respective 

behaviour concerning the choice of mode, path, departure time, destination place etc., and 

also the supply side in terms of network routes and services (Ortuzar and Willumsen, 2004). 

Such a model enables mobility analysts to incept and test projects of infrastructure and/or 

services in an incremental way, as well as pricing policies, in order to assess alternative 

planning scenarios and to aid decision-making in system planning. The objective function 

used in scenario assessment involves both demand surplus and supply surplus, since in most 

cases the relationship between usage prices and production costs is not straightforward (De 

Rus, 200x). 

There are also network design models in which planning schemes are generated 

automatically, typically by adding links and nodes of infrastructure and/or services to a 

reference network (REF). In this stream, each scheme is evaluated on the basis of an objective 

function that involves some demand model (which amounts to a simplified TDM) and above 

all a technical and economic model of the production, its means and their costs. 

Every supply scenario is evaluated on the basis of reference unit costs, e.g. the cost of a new 

road link obtains by multiplying its length by a cost per unit distance that depends on the 

infrastructural type and local set-ups. Such unit costs are evaluated in an average way by 

reference to past experience for analogous cases: their nature is basically statistical. 

A second kind of system management models addresses traffic regulation at the level either of 

a junction node, or a line or corridor, or a sub-network or a full network; there, the action 

levers consist mainly in capacity set-ups – e.g. to share the time of green at a signalled 

roadway junction between the traffic streams via its branches. Other regulation levers consist 

in speed regulation, right-of-way assignment of some traffic lanes, access regulation, dynamic 

pricing and dynamic traffic information (e.g. Papageorgiou). 

To sum up, the above-mentioned models deal with system management at two levels: system 

planning with manual or automated system design versus traffic regulation. 

A third kind of management models may be identified concerning the composition of vehicle 

fleets: notably so to address the types of motors, energy vectors and environmental 

performance. The related vehicle-fleet models are generally built on a standalone basis prior 

to connecting them to a TDM at one or two stages (about network assignment and maybe also 

users’ decisions of motorization). 

Thus it appears that the complex structure of transportation systems is mirrored in 

management models that pertain each to one layer out of the three, Infrastructure, Vehicles, 

Services & operations. However, multi-layer policies are in order to manage the system in an 
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integrated way, by involving long-term, planning-based levers as well as short-term, 

regulation-based ones and by considering each technical mode in connection to the other 

modes rather than on a standalone basis. In a given territory, both the local authorities and the 

network operators are interested in such an integrated approach. 

Among the issues of strategic importance, let us mention (i) the multimodal quality of service 

supplied to the users, (ii) the multimodal environmental impacts, (iii) the financial costs to the 

community, especially so in contexts of diminishing financial resources. Among the diverse 

modes, a key issue is the “relevance area” of each mode: in the urban setting, is the mode 

better suited for more or less dense areas, under which particular technical set-ups – e.g. 

station spacing along a transit line? 

1.2 Objective: a synthetic model for strategic planning and theoretical 

properties 

From the previous discussion, let us conclude that there is room for a strategic model of 

transportation systems in order to provide synthetic overview, economic evaluation and some 

guidelines for system optimization. Our very aim in this paper is to bring about such a model 

in the field of urban passenger transit. 

The model captures (i) some spatial features, from trip endpoints and regions in space to 

distances between origins and destinations, passing by the lengths of way sections, (ii) modal 

techniques of urban passenger transit, each with specific technical factors including vehicle 

capacity, service frequency, running speed, station spacing, and a technical production 

function linking these factors to the resulting quality of service in terms of run time and wait 

time, (iii) service users and their trips, with individual generalized costs based on tariffs and 

travel times, plus some demand elasticity to cost, (iv) on the supply side, cost functions and 

the consideration of policy packages acting on design levers – infrastructure length and 

station spacing – as well as fleet size and tariffs. 

Thus it is a technical as well as economic model, and also a strategic model as it enables one 

to analyse planning trade-offs between modes and regions, in a simplified yet still meaningful 

way. We submit the model to an analytical study of system optimality: by mathematical 

derivation of optimality conditions between the action levers and the dependent state 

variables, we obtain generic properties that characterize the optimal design and management 

of an urban transit system. 

1.3 Method 

Previous works in the field of strategic models for transportation planning fall into two 

streams. First, some TDM have been designed as “strategic models” by reducing the set of 

Traffic Analysis Zones (TAZ) to at most some dozens of “macro-zones”, and similarly 

simplifying the roadway and / or transit networks to aggregate characteristics such as the line 

length of sub-network by mode in each TAZ. Then, by zone and mode the sub-network length 

and the local trip flow may be related to local speed by an aggregate function. The system of 

trip flows has been modelled as flow exchanges between neighbouring zones (REF) or as 

origin-destination (O-D) flows to be assigned to local and modal sub-networks by an average, 

aggregated network assignment (REF). Such models are mainly used to simplify the 

presentation to decision-makers of the detailed results obtained using a finer TDM (LAET). 

In the second stream, the set of demand zones is even more simplified into a couple of 

regions, of which the sub-networks by mode are also simplified and aggregated further than in 

the first stream. Van Nes (2002)… 
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Each technical factor… 

Our own work pertains to the latter stream of research. We build upon Van Nes’s model of 

urban transit, keeping the three technical relationships of (i) terminal access time, (ii) service 

frequency and (iii) service commercial speed, by adding the diversity of regions, a set of 

transit modes and traffic phenomena, and by dealing with intermodal trip chains between the 

regions. 

To curb the additional complexity, we have invested in systems analysis, “statistical” 

representation and mathematical formulation. We put the issue of system optimization as a 

mathematical program of constrained optimization, of which we derive the first order 

optimality conditions. At this stage, the linkage between strategic modelling and economic 

theory becomes very clear: our strategic model under its abstract formulation constitutes a 

theoretical economic model of multimodal transit in an urban area. 

1.4 Structure 

The rest of the paper is organized in six sections with roadmap as follows. Section 2 provides 

the macroscopic, statistical representation of space, supply, demand and usage that are the 

basic system features. In Section 3, the system structure is laid out and the interactions 

between the components are modelled as causal relationships of technical and / or economic 

nature. Section 4 completes the modelling framework by identifying the impacts and stating 

the values and costs of primary interest in the system, namely demand surplus and supply 

costs. Then, Section 5 provides a mathematical formulation of the model and uses it to 

analyse not only the determination of a system state under exogenous supply plan but also the 

optimization of system welfare by setting up an adequate plan. For the uncongested case in 

which traffic variations exert no effects on supply performance or demand behaviour, Section 

6 provides an economic theory of system optimization, with some characteristic properties of 

an optimal state that can be called “golden rules” for system design and management. Lastly, 

Section 7 offers a discussion and some conclusions. 

In a companion paper, the model is applied to the case of Greater Paris as an instance.  

Table 1: Notation 

z  region (i.e. macro-zone in urban area), with set Z 

zA  area of region z   

m  transit mode, with set M  

),( zmr =  supply component, with set R 

rL  infrastructure length or line length of component r , with unit cost Lrc  by period H 

rσ  number of stations in component r , with unit cost rcσ  by period H 

rS  station spacing in component r   

rv  commercial speed stations in component r  

rϕ  service frequency 

rβ  headway regularity factor 

rN  fleet size, with unit cost Nrc  by period H 
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Ard  average walking distance between trip endpoint and nearest station 

rχ  shape parameter of component r   

i  O-D pair belonging to set I, with origin region +
iz  and destination region −

iz   

iw  walking speed. 

X
rit  (resp. X

rid ) the time (resp. distance) in stage X and component r  by trip in segment i , 

with user’s specific value of time X
iγ . 

iθ  money equivalent of travel time by trip 

iτ  network tariff 

ig  generalized cost for individual user of segment i . 

iD  demand function 

iQ  trip flow during period H 

riI  (resp. riO ) input (resp. output) flow of segment i  from region to mode (during period) 

i
rs

i
rs

i
rs MMM ˆ+=  number of i -bound trips transferring from r  to s , i

rsM̂  with line / mode 

change and i
rsM  without.  

i
rA  (resp. i

rB ) the number of alightings (resp. boardings) in r  due to segment i . 

i
rΛ  (resp. i

rλ ) the number of legs (resp. average length of them) in r  due to segment i . 

X
rix  assignment factor of segment i  to component r  and  stage X in {A/E, R, W, T} 

rω  dwelling time per vehicle run and station in r , with reference value 0
rω   

ra  (resp. rb ) the number of alightings (resp. boardings) by vehicle run and station in r . 

AB
rk  exchange capacity per time unit by vehicle in r   

rk  (resp. rk ) seated (resp. standing) capacity by vehicle in r   

ry  (resp. rρ ) passenger flow (resp. density) by vehicle (underlined / barred for seated / 

standing)  

rη  average track reservation in r  during period 

rV̂  function linking reference running speed to track reservation 

X
rE  Effect factor of characteristic time in stage X and component r   

SR Minimum supply revenue to achieve under Variable demand 

Bµ+=µ 1  dual parameter, with Bµ  multiplier associated to budget constraint 

SC System cost function 

£ Lagrangian function of System Optimization program 

Xrµ  dual variable associated to the technical constraint that determines primal variable  rX   
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2. The statistical representation of supply and demand 

Our objective here is to model the essential technical and economic features of supply and 

demand in the system, in a both meaningful and sufficiently aggregate manner. As our 

treatment involves the aggregate description of collections of entities such as modal stations 

in a given region of space, we refer to it as “statistical”. We shall first provide the 

representation of space (§ 2.1), then that of transport supply (§ 2.2), followed by that of travel 

demand (§ 2.3). Next, we focus on two basic interactions between supply and demand, 

respectively the usage of transit supply by demand (§ 2.4) and the issue of access distance 

between trip end points and transit stations (§ 2.5). 

2.1 The representation of space 

A whole urban area is taken as study area, delimited by a given perimeter. It is divided in 

regions, indexed by Z∈z  the set of zones, each one with its own ground area, zA . Within 

the area, every transit user performs their activities in given locations, of which the particular 

points constitute endpoints for both the trips prior and next to the activity. Instead of locating 

particular points accurately, we shall only identify their regions and deal with the issue of 

network access in a specific, statistical way (Cf. § 2.5). 

Similarly, modal stations are characterized by their regions and modes, whereas their 

individual locations are dealt with statistically. Concerning points along transit routes, we do 

not need to identify them – the only requirement being to model transfers between regions 

and/or lines or modes (Cf. § 2.4). 

2.2 Transport supply 

Apart from walking that is addressed in a statistical way of its own (Cf. subsection on 

network access), let us describe the supply of transit services that belong to a set M  of transit 

modes indexed by m . These may represent the Bus, the Tram, the Metro, or Suburban Rail. 

A key notion is that of a “supply component”, or “network component” that is a mode and 

region pair denoted by ),( zmr =  with set R . We model transit supply basically by 

component, each of which is characterized by the following attributes: 

+ infrastructure length or line length rL  adds up the lengths of rail tracks or road lanes that 

are used in region z  by the transit routes of mode m . Each line track / lane section is counted 

only once: by assumption it serves the two directions of traffic. Line length is the 

component’s key feature concerning the coverage of space. 

+ as stations provide local access, the number rσ  of them is relevant. As it is counted at the 

line level then aggregated at the sub-network level, the total number represents a number of 

“stops” i.e. of incidences between lines and stations. 

+ between consecutive stations along a line served by transit routes, the spacing influences the 

running times of the vehicles. Let us consider an aggregate spacing, denoted rS , averaged 

over the line elements in the sub-network. 

+ commercial speed rv  depicts service efficiency and is averaged over the vehicle runs 

serving the component. More precisely, it is the harmonic average resulting from vehicles’ 

travel times over the runs 



Leurent, Combes, Van Nes  Strategic Transit Network Management 

Draft paper  7/40 

+ service frequency, denoted rϕ , is counted by station and traffic direction. It influences 

passenger wait time on service access. 

+ parameter rβ  is a regularity factor for headway intervals, with value of 1 for perfectly 

regular headways or 2 in the absence of memory. 

+ fleet size rN  denotes the number of vehicles involved in service operations in the 

component. It is a technical parameter of much economic significance since vehicle fleet 

constitutes a major part in the system investment costs. 

The statement of production costs is provided in Section 4. As for now, let us emphasize that 

the notion of a component is modeled very much like a single transit route in the theory of 

traffic assignment to a transit network (Andreasson et al., 2016). In practice, it is often the 

case that a given line links together several regions: this is modeled here by splitting it into 

line sections according to location; the service duty fulfilled by line vehicle in a regional 

sector is attributed to the region’s vehicle times and vehicle fleet, again in an abstracted way. 

Concerning time periods, we refer here to a peak period in which service frequency is 

maximized, which determines fleet sizing. 

2.3 Travel demand 

Again as in a transit assignment model, let us represent travel demand as a set of trips made 

by travellers within the urban area. Origin-destination (O-D) pairs of regions are indexed by i  

and constitute a set denoted I . The origin region (resp. destination region) of i  is denoted +
iz  

(resp. −
iz ). 

Each individual user making one trip has a given walking speed, w , and specific sensitivity to 

access distance (code A), transfer distance or time (code T), wait time (code W) and run time 

(code R). Denote by X a generic code for trip stage, with X
it  (resp. X

id ) the associated time 

(resp. distance) in the trip: the user’s specific value of time is denoted X
iγ . Taking into 

account the O-D network tariff, iτ , as well as the money equivalent of spent times, the 

resulting generalized cost is denoted ig . 

At the aggregate level and during the period under study, the trips are characterized by O-D 

pair i  using the following attributes: 

+ trip flow denoted iQ  (so the flow rate is H/iQ  during the period). 

+ by component r , the input flow from region to mode (resp. output flow) is denoted riI   

(resp. riO ): it takes value 0 if the component’s region differs from the region of trip origin 

(resp. destination), whereas for ),( zmr =  it holds that im izm QI =∑ ∈M ),(  if += iz z  (resp. 

im izm QO =∑ ∈M ),(  if −= iz z ). 

+ by pair ),( sr  of components, the number of trips with O-D pair i  passing from r  to s  is 

denoted i
rs

i
rs

i
rs MMM ˆ+= , in which i

rsM  accounts for transfers without line change whereas 

i
rsM̂  accounts for transfers with line or mode change. 

+ i
rR

i
r

i
r MOA ˆ+≡  where ∑ ∈≡ R

ˆˆ
s

i
rs

i
rR MM  is the number of alightings in r  due to segment i . 

+ i
Rr

i
r

i
r MIB ˆ+≡  where ∑ ∈≡ R

ˆˆ
s

i
sr

i
Rr MM  is the number of boardings in r  due to segment i . 
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These definitions enable us to deal with travel demand in an aggregate, macroscopic way, 

while paying some attention to space and especially O-D pairs. The associated indicators can 

be derived by e.g. statistical analysis of a household travel survey for the urban area. 

We may consider trip flows iQ  that respond to quality of service and fare on the basis of the 

generalized cost, via a demand function denoted iD . 

2.4 The usage of supply by demand 

Each individual trip contributes to the aggregate indicators of its O-D pair. To depict its path 

along the transit network, let us get again inspired by traffic assignment and decompose the 

path into legs, i.e. by walking sub-path or by line section between two stations of vehicle 

entry and exit. To account for transferring between regions along a “concrete” leg, we shall 

extend the definition of a leg by considering fictive stations at the points where the line 

crosses the frontier between two neighbouring regions. 

Let us denote: 

+ i
rΛ  the number of legs travelled in component r  by O-D pair i . 

+ i
rλ  the average travelled distance along such a leg. 

+ i
r

i
r

i
rT λΛ= .  the traffic of demand segment i  in component r . 

Flow conservation is assumed to hold in the following way: 

+ by origin (resp. destination) region, i
i
R QI =  (resp. i

i
R QO = ). 

+ between neighbouring regions r  and s , the leg flow associated to segment i  is proportional 

to the segment flow and constitutes both the leg flow going from r  to s , and that coming in s 

from r . 

We also take demand behaviour concerning mode and path choice as exogenous, by assuming 

constant ratios i
i
r QI / , i

i
r QO / , i

i
sr QM /  (also with hats), i

i
r Q/Λ  and i

i
r QB / . Such ratios will 

be hereafter denoted as X
rix  or X

rsix  by stage X in {A, E, T, R, W} along the trip sequence. Of 

course, this postulate imposes the topological structure of the utilized paths and makes it 

strongly dependent on the structure of the services supplied in the reference scenario of model 

application. 

2.5 Network access 

The access distance between trip endpoints and network stations plays an important, though 

external, role in transit quality of service. Three principles are postulated here: 

(1) that trip endpoints are evenly distributed across space, 

(2) that each user chooses the “nearest to endpoint” station of the selected mode in his region, 

(3) that the walk pathways make up a Manhattan grid. 

These principles enable us to derive the statistical distribution of walking distance in the 

following way. Let x  (resp. y ) denote the “longitudinal” (resp. “transversal”) distance 

between endpoint and station along the transit line (resp. perpendicular to it). From principle 

(2), x  is uniformly distributed in [ ]S
2
1,0  (recall that S  denotes station spacing). 

Let also l  denote the line stretch spanning the region area A  in the dimension along the line 

axis, n  the number of such stretches in the region. Similarly, in the other dimension of space, 
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let lA/=h  be the spanning length (since l.A h=  under sufficiently rectangular region shape) 

and m  the number of stretches (Cf. figure 1): then y  is uniformly distributed in [ ]Y
2
1,0  

wherein nhY /=  is the spacing between neighboring parallel lines in that dimension.  

For a mode that spans the region in one dimension only, it holds that Ln =l.  so that 

 
LL

Y
AA

. ==
l

l
. (2.1) 

In this case we set the shape parameter rχ  to a value of 1 for the component.  

For a mode that spans the region in two dimensions with rectilinear enough lines, then 

Lhmn =+ ..l : if Yhn /=  and Ym /l=  then LY A/2= . Let then 2=χr . 

Whatever the case, the average access distance along the Manhattan grid satisfies the 

following functional relationship with respect to the component station spacing rS , line 

stretch rL , shape parameter rχ : 

 [ ] )
A.

(
4

1
yxE

r

rr
rAr

L
Sd

χ
+=+≡ . (2.2) 

 

Fig. 1. Access distance between trip endpoints and component stations. 

3. Causal relationships and model structure 

So far we have focused on basic definitions to describe the subsystems of Supply, Quality of 

Service and Demand on the basis of quantitative variables, which are “state variables” in the 

system model. We shall now link together the state variables by causal relationships that 

depict the influences between the variables as factors or outcomes. Each relationship involves 

one or several influences of variables as factors, onto one dependent variable. 

The set of variables, taken as nodes, together with the set of influences, taken as oriented links 

from factor to outcome, constitute a causal network that is the logical structure of our model. 

We shall illustrate the causal sub-network by subsystem, concerning respectively the supply 

side (§ 3.1), Quality of service (§ 3.2), Usage and demand (§ 3.3), Traffic interactions (§ 3.4). 

Lastly, putting together the sub-networks obtains the overall model structure (§ 3.5). 
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3.1 Supply side 

There are four causal relationships between the state variables that characterize a given mode 

in a given region: they determine respectively (1) station spacing, (2) access distance, 

(3) commercial vehicle speed, (4) service frequency. 

First, station spacing rS  depends on both the line length, rL , and the number of stations, rσ , 

since it satisfies that rrr LS =σ. . Thus, 

(Supply-1) 
r

r
r

L
S

σ
= . (3.1) 

Second, the accessibility of places to a given station at the region level is characterized by the 

average access distance to nearest station in the mode-region component: from (2.2), we have 

(Supply-2) )
A.

(
4

1

r

rr
rAr

L
Sd

χ
+= . (3.2) 

Third, the effective commercial speed that applies on average to all legs in component r , rv , 

depends on the free-flow running speed, denoted rV , and the dwell time by station, denoted 

rω . By unit of distance, there are on average rS/1  stations hence dwellings per service runs, 

so that 

(Supply-3) 
r

r

rr Sv

ω
+=

V

11
. (3.3) 

Fourth, service frequency rϕ  stems from line length rL , commercial speed rv  and the size 

rN  of the employed fleet. In a period of given duration H , the cycle time of a fictive, average 

vehicle for a return trip along the full component length amounts to 

(Supply-4a) 
r

r
r

v

L
C 2= . (3.4) 

There are H.rϕ  such cycles runs accomplished by the rN  vehicles, so that  

 rrr CN .H.H. ϕ= , (3.5) 

Which leads to 

(Supply-4b) 
r

rr

r

r
r

L

vN

C

N

2
==ϕ . (3.6)  

Taking rχ , rV  and rω  as exogenous parameters, the three variables rL , rσ  and rN  are basic 

in the sense that they determine the other variables while being mutually independent. Figure 

2 depicts the influences on the supply side in a network structure. It also shows the transfer 

distance T
rsd  that applies to transfer steps in individual trips, which is here taken on average 

and as exogenous parameter. 
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Fig. 2. Causal relationships on the supply side. 

3.2 Quality of service 

A trip made by an individual user travelling on O-D pair i  involves access from origin point 

to network, egress from network to destination point, as well as running along line legs and 

waiting for each transit leg, plus transfer time for each (effective) transfer. The trip quality of 

service can be characterized by four kinds of user’s time spent on each kind of step, namely 

(1) Access or egress, (2) Waiting, (3) Running, (4) Transfer. 

First, access time A
,irt  (resp. egress time E

,irt ) depends on access distance A
rd  and also walking 

speed iw : 

(Quality-1) 
i

r
ir

w

d
t

A
A
, =  and 

i

r
ir

w

d
t

A
E
, = . (3.7) 

Second, the average wait time prior to boarding at a given station, denoted W
rt , depends on 

service frequency rϕ  in a straightforward way: 

(Quality-2) 
r

r
rt

ϕ
β

=
2

W . (3.8) 

This formula holds for 1=βr  depicting perfectly regular service headways between 

successive vehicles. Reciprocally, for “memoryless” service with exponentially distributed 

headways, it holds that rrt ϕ= /1W , which justifies value 2=βr  to depict that case. 

Third, leg run time R
,irt  involves leg length, i

rλ , and commercial speed, rv , in a simple way: 

on average 

(Quality-3) 
r

i
r

ir
v

t
λ

=R
, . (3.9) 

Fourth, let us denote T
,irst  an average transfer time. For an i -bound user transferring from 

component r  to component s , it depends typically on the walk distance T
rsd  and the walking 

speed of the users, iw : 
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(Quality-4) 
i

rs
irs

w

d
t

T
T

, = . (3.10) 

Relationships (Quality-1-4) depict quality of service in terms of user times. They are 

illustrated on Figure 3. 

 

Fig. 3. Causal relationships for Quality of service. 

3.3 Demand side 

In microeconomic theory, the “demand function” relates the volume of demand for a desired 

good to its price and, eventually, quality factors. As concerns transportation, quality of service 

plays a major role so that the dominant model involves a demand function in two steps: first, 

the evaluation of a “generalized cost” that synthesizes the price and the quality of service 

factors into a single value meaningful to the individual user, second, linking the generalized 

cost to the demand volume by a specific relationship. 

Here we shall keep to this two-step demand model. Denoting by X
iγ  the value of time 

associated to each time unit spent in a given state X in {A/E, W, T, R} (standing for 

Access/Egress, Wait, Transfer, Running, respectively) by a user on segment i , on average to 

such users the generalized cost of a trip amounts to  

(Demand-1) RRW
R

WT
RR,

TE
R

E
R

A
iiiiiiiiiiii tttttg γ+γ+γ+γ+γ+τ= Α . (3.11) 

Wherein iτ  is the tariff and the following times are average quantities: 

 ( ) ir ri
i
ri QtIt /RR ∑ ∈

ΑΑ = . (3.12) 

 ( ) ir ri
i
ri QtOt /R

EE
R ∑ ∈= . (3.13) 

 ( ) ir r
i
ri QtBt /R

WW
R ∑ ∈= . (3.14) 

 ( ) ir r
i

ri QvTt //R
R
R ∑ ∈= . (3.15) 

 ( ) isr irs
i
rsi QtMt /ˆ

R,
T

,
T
RR ∑ ∈= . (3.16) 

Then, the demand function iD  relates demand volume iQ  to ig : 
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(Demand-2) )(D iii gQ = . (3.17) 

The Assignment ratios { }QTQMQBQOQIxri /,/ˆ,/,/,/X ∈  are taken as exogenous for each 

demand segment. So, the dependence of the flow quantities { }TMBOIFri ,ˆ,,,X ∈  on iQ  and 

the respective ratios X
rix  amounts to an assignment function that can be denoted in a generic 

way as follows: 

(Demand-3) iriri QxF .XX = . (3.18) 

Figure 4 depicts the sub-network of causal influences for the demand side. 

 

Fig. 4. Causal relationships concerning Demand. 

3.4 From Usage to Traffic conditions 

Let us now turn to the features of traffic that stem from the aggregation of individual trips into 

local flows on network elements. Such flows meet service capacity of two kinds: first, at 

station dwelling of transit vehicles, second aboard these vehicles. 

On average over lines and stations in a component during the period under study, the dwelling 

time spent by a vehicle at a station depends on the numbers of boarding and alighting 

passengers, respectively, and also on the exchange capacity of the vehicle, denoted AB
rk  and 

counted as the number of passenger channels along a vehicle side (i.e. number of doors times 

their average number of passenger streams). 

As there are rrϕσ  such dwelling stops per unit time and traffic direction, the average number 

of boarding people per station and line and direction amounts to the following: 

 H)/(I
rrrr Bb ϕσ= , wherein ∑ ∈≡ I

I
i

i
rr BB . (3.19) 

Similarly, the average number of alighting people per stop amounts to: 

 H)/(I
rrrr Aa ϕσ= , wherein ∑ ∈≡ I

I
i

i
rr AA . (3.20) 

Assuming individual passage time of a
rp  or b

rp  on average for alighting and boarding, 

respectively, the overall passenger time spent at exchange adds up to b
rr

a
rr pbpa +  and is split 

between the passenger channels of the vehicle, yielding vehicle dwell time as follows: 

(Traffic-1) 
AB
r

b
rr

a
rr

rr
k

pbpa +
+ω=ω 0 , (3.21) 
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Wherein 0
rω  is a fixed, minimum time that accounts for reduced speed at deceleration then 

acceleration as well as for door opening and closing. 

Aboard the vehicle, the average passenger flow determines both seat availability and the 

standing area available on average per standing passenger. Let us denote: 

+ ry  the average passenger load per vehicle in component r , which is split into 
r

y  seated 

passengers and ry  standing passengers, 

+ rk  the seat capacity aboard a vehicle in component r  and rk  the standing capacity, 

In the component during the study period of length H, the vehicles travel a total distance of 

HrrvN  while users from segment i  travel a total distance of i
rT , so it comes out that 

 
H

I

rr

r
r

vN

T
y = , with ∑ ∈= I

I
i

i
rr TT . (3.22) 

From this stems the seated density 
r

ρ  and the standing density rρ , respectively: 

 








=ρ
r

r
rr k

y
U ,min , (3.23) 

 
r

rrr

r
k

ky +ρ−
=ρ

)(
. (3.24) 

In these formulas, coefficient rU  would have value 1 were the passengers evenly distributed 

among the vehicle runs and between the stations and along the vehicles. A value less than 1 

can be given to take unevenness into account. 

It thus remains to account for local densities in passenger discomfort, by way of specific cost 

functions R
rγ  and R

rγ : 

(Traffic-2) 
r

rrrrrrrrr
r

y

kyk )()()( RR

R
ργρ−+ργρ

=γ . (3.25) 

Another capacity phenomenon may be of interest: that of track capacity, especially for 

railway modes. A relevant indicator is track reservation rη  due to both track occupancy at 

station dwelling and safety margins: on average, denoting by rϖ  a minimum headway time 

taken as safety margin between successive vehicles, it holds that. 

 ).( rrrr ϖ+ωϕ=η . (3.26) 

This is bound to influence vehicle running speed, through a specific relationship as follows: 

(Traffic-3) )(V̂V rrr η= . (3.27) 

Figure 5 illustrates the sub-network of causal relationships for traffic phenomena. Additional 

traffic phenomena could be modelled, for instance the increase of passenger wait time for 

vehicle boarding when the ratio of boarding flow to the product of exchange capacity by the 

system time allowed for boarding approaches 1.  
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Fig. 5. Causal relationships concerning Usage and Traffic. 

 

3.5 Model architecture 

By subsystem, we have identified the model elements and the causal relationships that put 

them in straightforward interaction; a graphical synthesis has been provided. We can now 

bring together the subsystems: this is done graphically, too, by the diagram in Figure 6 (which 

provides justification for the pre-set positions in the previous diagrams by subsystem). The 

overall diagram displays the model architecture that mimics the system’s logical structure. 

The diagram also demonstrates the system complexity and the pragmatic need to model it in 

order to manage it. 

The model architecture constitutes an important outcome of our systemic analysis. We have 

made the causal influences explicit in it so as to respect the “complexity of meaning” inherent 

to the system. The systemic diagram of Van Nes and Bovy (2000) was a useful reference: 

however it does not include the technical relationships and it represents the supply side in 

terms of “network spatial properties” such as spatial accessibility, instead of action levers 

such as fleet size.  

Complementarily, we have endeavoured to reduce the “complexity of abundance” by taking a 

statistical, generic approach to detailed features such as point location, modal elements, 

individual passengers and their trips. This approach stems straightforwardly from previous 

analytical studies at Delft Technical University in the 1990s and 2000s (Van Nes, 2002). 
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Fig. 6. Causal diagram of the model. 

 

4. Economic analysis 

At that stage, the causal model is above all a technical one as it describes the system elements 

and their straightforward interactions. It has also some economic significance on the demand 

side since users’ individual generalized costs are modelled and determine demand volumes. In 

this Section, we set up the economic rationale for network management by turning to 

economic impacts and agents (§ 4.1) and identifying values (§ 4.2) and costs (§ 4.3) to them. 

We then build up the function of system cost that synthesizes the system technical and 

economic performance (§ 4.4). 

4.1 System impacts as stakes for economic agents 

Two kinds of economic agents are primarily involved in system operations and performance: 

on the demand side the individual users can make use of services and benefit from their 

availability, whereas on the supply side there are service providers (say operators) that 

combine the technical means (infrastructure, vehicles and operations) in order to deliver the 

commercial services. 

In fact, the system impacts are not limited to its technical and commercial operations. We 

have identified the issues of tariffs that cost to the users but yield commercial revenues to the 

suppliers, of service quality that benefits to the users yet involves technical means hence 

impose costs to the operators, of passenger traffic that interplays with productive operations. 
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Fig. 7. Synthesis of system impacts and agents. 

Fig. 7 summarizes the model architecture in these respects and introduces two additional 

categories of economic agents, namely the Environment and the Productive sphere. As is 

well-known (e.g. Combes and Leurent, 2016), transportation – especially traffic operations – 

exerts a series of impacts on the environment: at the local level, there are pollutant emissions 

from thermic motors and noise emissions, the consumption of energy and matters, whereas at 

the global level there is the contribution to greenhouse gases together with other broad 

consequences of resource depletion and pollution of natural resources (soil, water, air). These 

impacts are external to the interaction between supply and demand: they concern the 

Community as a whole, as the environmental quality is important in the Quality of life and its 

sustainability. Although the Community of course includes the service users, it may be better 

thought of as the set of residents that avail themselves of the environmental conditions locally 

and benefit from Quality of life.  

As concerns the Productive sphere, it should be kept in mind that the money flows that stem 

from operators’ expenditure hence as costs to them go to other economic agents as 

commercial revenues, hence as value streams (e.g. Leurent and Windisch, 2015). The relevant 

set of agents includes not only the resource providers (infrastructure builders, vehicle makers, 

maintenance, cleaning, energy provision…) but also the employees of the transportation firms 

that belong to the Community and get wages as income to them. The interaction between the 

transportation system and the Productive sphere is a system externality of socio-economic 

kind. 

For the sake of simplicity we shall hereafter restrict our scope to Supply and Demand in 

interaction. However the two broad kinds of externalities, environmental versus 

socioeconomic, should be included in further analysis to better compare alternative transit 

modes in a truly multicriteria framework. 

4.2 Agents’ Values 

By demand segment i.e. here by O-D pair i , the generalized cost to an individual user may be 

expressed in a generic way as follows: 

 ∑ γ+τ= X
XXX xtg ii , (4.1) 

In which the summation over X denotes the different stages along a trip (Access / Egress, 

Wait, Run, eventual Transfers). The cost of each stage is basically a time cost Xγ  multiplied 
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by a physical time XX xt  in which Xx  is an assignment factor. Index i  as well as the location 

details (components, transfers within / between components) have been omitted in the 

summation so as to preserve legibility. The money part of the cost, iτ , might also be 

decomposed along the trip sequence, were the tariff based on the effective usage. 

In transport economics, it is fairly standard to take the generalized cost as the argument of the 

demand function, which is the basic tool to evaluate consumer surplus. 

As an elemental demand Qδ  just above level )D(GQ =  would take the service at cost 

GG δ−  but not at cost G , its own gross surplus belongs to [ ])(D),(D )1()1( QQQ −− δ+  - say it 

amounts to )(D )1( Q− , while the net surplus at cost G  is null. As the full demand of the 

segment is made up of all elements with disaggregate gross surplus higher than G , its 

aggregate gross surplus is the following: 

 ∫ −= iQ

ii qq
0

)1( d)(DGUS , (4.2) 

with associated aggregate net surplus of: 

 ∫
∞=−≡

iG iiiii ggGQ d)(D.GUSNUS . (4.3) 

By adding up the segment gross (resp. net) surplus over the demand segments I∈i , we obtain 

the global demand gross (resp. net) surplus. 

As concerns the operators, the primary source of value for them consists in the commercial 

revenues from paid fees, i.e. ∑ ∈ τIi iiQ . This is often supplemented by government subsidies 

and always diminished by taxes. 

Let us take a net-of-tax approach: as subsidies are often related to usage, they constitute 

additional revenues analogous to those from tariff fees. The combined value of commercial 

fare iτ  and the “related” subsidy iτ∆  may be denoted iτ′ , so that the net-of-tax operators’ 

revenue amounts to 

 ∑∈ τ′= INOR i iiQ . (4.4) 

4.3 Agents’ Costs 

The subsidizing authority bears a cost of iτ∆  per trip on segment i , so it bears an aggregate 

cost of 

 ∑ ∈ τ∆= IAC i iiQ . (4.5) 

Each user according to his segment i  incurs a generalized cost of ig . By aggregation, users’ 

generalized costs amount to 

 ∑ ∈= IGUC i ii gQ . (4.6) 

The tariff part of that can be called also the money costs to users, 

 ∑ ∈ τ= IMUC i iiQ . (4.7) 

Net of tariffs, the users’ costs are time-based costs: 

 ∑ ∑∑ ∈ ∈∈ γ=τ−= I XR,
XXX

I )(TUC i r riririii iii txQgQ . (4.8) 

On their side, operators bear production costs that include holding costs for the purchase or 

hiring and the maintenance of their production means, together with operational costs for the 
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means’ utilization, which involves the consumption of consumable goods such as energy. We 

shall analyse the operators’ costs primarily with respect to cost-inductors i.e. by kind of 

means either linear infrastructure or station or vehicle. 

The associated cost inductors are the supply-related variables, rL , rσ  and rN , respectively. 

The distinction of the component enables us to specify the mode and also the region in the 

urban area, in order to emphasize the cost of ground space which is higher in more central 

places. At this stage, we associate unit costs denoted Lrc , rσc  and Nrc  to each basic supply 

variable taken by period of length H. Every such unit cost involves holding (capital) as well 

as utilization (operations) costs. The resulting operators’ costs can be evaluated by 

component, 

 rNrrrrLrr NL .c.c.cOC +σ+= σ , (4.9) 

 and aggregated other all transit modes and the whole urban area as follows: 

 ∑∑ ∈ σ∈ +σ+== RR .c.c.cOCOC r rNrrrrLrr r NL . (4.10) 

4.4 System costs 

Let us now sum up the costs minus the values to all of the agents in the system – authority, 

users and operators, under the limitations mentioned earlier about which impacts are here 

considered. 

The authority bears costs AC as stated in (4.5), neglecting both environmental costs and the 

values yielded to the community by taxes, impositions, accessibility advantages and effects on 

the productive sphere. The users benefit from gross surplus GUS that aggregates those of the 

demand segments as stated in (4.2), 

 ∑ ∫∑ ∈
−

∈ == I 0

)1(
I d)(DGUSGUS i

Q

ii i
i qq , (4.11) 

By subtracting users’ costs GUC given in (4.6), the net users’ surplus amounts to: 

 ∑ ∫∑ ∈
∞

∈ == II d)(DNUSNUS i G ii i
i

gg . (4.12) 

The operators get commercial and subsidized revenues of NOR and bear costs OC, so their 

net profit amounts to  

 OCNOROP −= . (4.13) 

The overall system cost is defined as the sum of its agents’ costs net from the surpluses and 

revenues, i.e.: 

 OPNUSACSC −−= ,  

 OCORNGUSGUCACSC +−−−+= ,  

 GUSOCTUCSC −+= , (4.14) 

Since OR is compensated in AC and the money costs to the users, MUC = GUC – TUC. 

Function SC encompasses the overall net costs of the transit system under the exogenous 

structure of demand and the supply set-ups (the basic variables rL , rσ , rN , iτ  and the 

derived variables). Thus it is taken as the objective function to be minimized in order to 

optimize system planning. 
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5. User equilibrium and system optimization 

Having modelled economic agents with the values and costs to them, we are now ready to 

study their joint behaviour and the scope for system management. To do that, we shall first 

synthesize the model even further owing to some mathematical formalization (§ 5.1); this 

enables us to deal with the determination of the endogenous system state on the basis of an 

exogenous supply plan (§ 5.2). Then we address the issue of system optimization by 

providing an analytical scheme to determine an optimal supply plan (§ 5.3). 

5.1 Mathematical synthesis 

Whereas the causal model in fact a synthesis of the technical features of the system, the unit 

costs constitute a synthesis of many economic features. Figure 8 encompasses the technical 

and economic features so far studied. The block diagram in it characterizes the 

straightforward influences between the system characteristics. By chaining influences along 

sequences, e.g. from supply variables rS  of station spacing, to users’ waiting times W
rit , 

passing by commercial speed rv , cycle time rC  and service frequency rϕ , we can identify 

influence paths. In other words, figure 8 depicts the topological structure of influences within 

the system. 

The vector of supply variables, [ ]IR
AB

X )(,),,,,,,( ∈∈ τβσ= iirrrrrrrr kkkNLS , is controlled by 

the operator: hence the X subscript, standing for Exogenous. The rest of the supply variables 

constitute the vector of Endogenous supply characteristics, denoted NS  with subscript N: 

[ ]R,
T

R
A

N )(,),,,,,( ∈∈ωϕ= srrsrrrrrrr ddvCSS  : it depends on XS  and also on the vector of traffic 

variables, [ ]R),,,,,,,( ∈ρρη= rrrrrrrrr yyybaT . 

 

Fig. 8. Diagrammatic model of technical and economic system. 
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Let us also define: 

[ ]IisrirsIirriririri ttttt ∈∈∈∈= R,,
T

,R,
WREA )(,),,,(t  

[ ]IisrirsIirriririri ∈∈∈∈ γγγγγ= R,,
T

,R,
WREA )(,),,,(Γ  

[ ]Iiig ∈= )(g  

[ ]IiiQ ∈= )(Q  

The combined vector [ ]Γ= ,,,,,, NX QgtTSSV  constitutes the state vector of the system. XS  

is its exogenous part, whereas the rest of the vector, denoted as NV , is endogenous. 

Let us now use vector notation and mathematical functions to described the modeled 

influences in a still more synthetic way: denoting [ ]NX ,SSS = , 

( )TSFS ,XSNN =  is the supply function,   (5.1a) 

)(t SFt =  is the user time function,   (5.1b) 

),(T QSFT =  is the traffic function,   (5.1c) 

)(TFΓ Γ=  is the comfort function,   (5.1d) 

)(Q gFQ =  is the demand function,   (5.1e) 

),,(g Γ= tτFg  the user cost function,   (5.1f) 

it involves τ  that belongs to XS  while the rest of S  exert indirect influences via t . 

The system of equations (5.1) is illustrated in figure 9 and may be put as a unified function  

 ),( NXVNN VSFV = . (5.2) 

 

Fig. 9. Synthetic diagram of influences. 

5.2 On User and Traffic Equilibrium 

Eqn (5.2) synthesizes in a formal way the mutual interaction between the subsystems. It 

constitutes a Fixed Point Problem (FPP) with respect to endogenous state vector NV . The 

FPP characterizes an equilibrium state between supply, traffic and demand, which is akin to 

the notion of Traffic equilibrium or User equilibrium in the theory of network traffic 

assignment. Thus, the system state appears as a solution of an FPP of User and Traffic 

Equilibrium (UTE). Despite an important part of the supply state is endogenous, we avoid to 

call such a solution state a supply-demand equilibrium because it captures the technical 

determination of supply but not its economic behaviour. 
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The determination of an UTE raises the issues of the existence and uniqueness of solutions to 

the FPP. Loosely speaking, a mathematical proof of existence involves some smoothness 

property of mapping VNF ; this is likely to hold since the constituent elementary functions are 

continuous almost everywhere. A proof of uniqueness could be based on a property of 

contraction for the mapping. Both issues, however, are left aside for further research with 

more mathematical orientation. Hereafter we shall take the two issues as granted.  

An important case where this holds obviously is the Uncongested case such that the variations 

in traffic conditions T  entail variations neither in Γ  nor in S . Then, the state determination 

involves no feedback loops (Cf. figure 10) and is thus straightforward. 

 

Fig. 10. Synthetic diagram of the uncongested model. 

5.3 On System Optimization 

The mathematical synthesis enables us to study the issue of system optimization in an 

analytical way. 

System Optimum Problem (SOP): minimize System costs SC with respect to “exogenous 

supply” state vector XS , subjected to technical and economic relationships in mapping VNF : 

 Min ),SC( NX VS   submitted to  ),( NXVNN VSFV = . (5.3) 

In other words, by solving the mathematical program (5.3) we obtain the optimum levels of 

supply provision either basic (infrastructure length, station number, fleet size, capacities, 

tariffs) or derived (station spacing, access distances, commercial speed, service frequency). 

A robust approach to solve this kind of problem is to relax the constraints by associating 

“dual” variables [ ]QgttTSN ,,,,,, µµµµµµµ≡ Γμ  to each part of them. Assuming that mapping 

VNF  is differentiable, system optimization requires the following “primal-dual optimality 

conditions” to hold: 
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),(

0).(SC

NXVNN

VN

VSFV

FUμ

=

=∇−∇+∇
. (5.4) 

Wherein NN: VVU a , SC∇  and VNF∇  are taken with respect to V , U∇  w.r.t NV . 

The primal-dual optimality conditions yield the advantages of a smooth enough state vector 

and differentiable functions VNF  and SC. This is an important advantage over the discrete 

approach to network design, on both analytical and numerical grounds. Of course the discrete 

approach is superior when it comes to providing detailed features such as the particular 

location of lines or stations. 

The mathematical treatment here is somewhat loose and mostly indicative. We are more 

interested in the model relevance for planning policies. In fact, policy considerations are 

likely to impose additional constraints, such as  

),(),( 00
rrrr LL σ≥σ   To capitalize over system history, 

0
rr ϕ≥ϕ    To enhance the local level of service, 

max
ArAr dd ≤   To satisfy a requirement of local accessibility in space. 

Along with specific political requirements, the major planning issue comes to which action 

levers are available: for instance, is it feasible to build additional lines, or to vary the tariffs? 

 

6. The uncongested model: economic theory 

Our aim here is to address system optimization of the uncongested model and establish some 

theoretical properties linking the variables (hence the system features in quantitative terms) of 

interest. These properties stem from optimality conditions by suitable reinterpretation with 

respect to the variables “under control” on the supply side. A companion objective is to 

establish the existence and uniqueness of an optimal system state, together with an efficient 

and straightforward solution scheme. 

After stating the economic program of system optimization and its primal-dual conditions of 

optimality (§ 6.1), we focus on demand flows and tariff optimization (§ 6.2). Then, we deal 

with the quality of service characteristics that play a crucial role and enable us to separate the 

supply side by network component (§ 6.3). Next, we address the analytical determination of, 

successively frequency and fleet size (§ 6.4), the number and spacing of stations (§ 6.5), 

commercial speed and line length (§ 6.6). To each range of issues is associated a specific 

relationship of theoretical interest. We then put together the three relationships and emphasize 

their economic meaning (§ 6.7). Lastly, we establish theoretical properties of existence and 

uniqueness for a System Optimum State and outline the solution scheme (§ 6.8): the detailed 

material is given in a specific appendix (cf. Section 9). 

6.1 Economic program with primal-dual optimality conditions 

The economic program for system optimization involves an objective function SC and a set of 

constraints as follows: 

∑ ∫∑
∈

−

∈
σ −τ−++σ+≡

I
0

)1(

R

d)(D)(.c.c.cSC
i

Q

iiii
r

rNrrrrLr
i qqgQNL , (6.1) 
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=   with associated multiplier Srµ , R∈∀r , (6.2) 
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rr Sv

ω
+=

V

11
  with associated multiplier vrµ , R∈∀r , (6.3) 

r

rr
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L

vN

2
=ϕ   with associated multiplier rϕµ , R∈∀r , (6.4) 

)
A

(
4
1A

r

rr
rr

L
Sd

χ
+=   with associated multiplier Arµ , R∈∀r , (6.5) 

∑ ∈ γ+τ= XR,
XXX

r riririii txg , I∈∀i .  (6.6) 

)(D iii gQ = , I∈∀i .  (6.7) 

We shall deal with user costs ig  and demand flows iQ  in a straightforward way, without 

associating specific multipliers to them. In the uncongested case, we take the discomfort costs 
X
riγ  as constant, as well as dwell times rω  and reference speeds rV . 

We also include a budgetary constraint to compel the system users to contribute to its funding  

at a floor level pre-set to SR (for Supply Revenue), 

 SRI ≥τ∑∈i iiQ ,  with associated multiplier 0B ≥µ . (6.8) 

Precisely, the economic program consists in: 

 Min SC with respect to II )( ∈τ≡ iiτ , RR )( ∈≡ rrLL , Rσ , RN , RS , Rϕ , Rv  and A
Rd , (6.9) 

 under constraints (6.2-8). 

To relax the constraints, we consider the Lagrangian function of the optimization program, 

namely 
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 (6.10) 

The primal-dual conditions for optimality basically consist in equating to zero the first-order 

derivatives of the Lagrangian function – with a little more sophisticated treatment for the 

inequality constraint (6.8): 

 x
x

variableprimalanyfor0
£
=

∂
∂

, (6.11a) 

 Bthanothervariabledualanyfor
£

µµ0=
µ∂
∂

, (6.11b) 

 0B ≥µ ,  0≤
µ∂
∂

B

£
  and  0=

µ∂
∂

µ
B

B

£
. . (6.11c) 
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6.2 Demand flows and tariff setting 

In a formal way, let us calculate 

.byDdenotingand)(Dsince)1(
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£
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g iiiiiii
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=
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∫
∞

 

Now, as iτ  contributes to the Lagrangian function both per se and via ig , we derive that 
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System optimization with respect to tariffs requires that 0/d£d =τi , hence that 

 
i

i
i

Q

Q
&

B

B

1 µ+
µ

−=τ . (6.12) 

 which is compatible with non-negative tariffs since 0B ≥µ  and iQ&  can be expected to be 

negative. Denoting by iii gQ ln/dlnd≡ε  the elasticity of demand volume to individual cost, 

then iiii gQQ // ε=&  so the previous condition can be put as 

 
i

i
i

g

εµ+
µ

−=τ
B

B

1
. (6.13) 

The main implication is that iii QQ BB )1( µ−=τµ+ & , so that 

 iii

i

QQQ
g

µ=µ+=
∂
∂

B

£
,  

Wherein B1 µ+≡µ . 

This enables us to deal with both elastic demand and variable demand in a unified framework, 

since under fixed demand iD  is constant so that ii Qg =∂∂ /£ , which is compatible with 

(6.13) by setting µ  to value 1. Then, the relationship B1 µ+=µ  induces that Bµ  is set to 

zero, in due consistency with the irrelevance of the tariffs as drivers of the system state and 

the neutralization of the budget requirement. 

Under variable demand, the relationship between iτ  and ig  can be restated as follows, letting 

iii g τ−≡θ  denote the time-based part in the generalized cost: 

 iiii εθ+τµ−=τµ /)).(1( , 

Hence, iii θ=τ−
−µ
µ

ε− )1
1

( . (6.14) 

If demand elasticity is constant and uniform among demand segments, then aggregation over 

them yields a linear relationship between MUC and TUC, namely: 

 MUC)1
1

(TUC −
−µ
µ

ε−= , with ∑∈ θ≡ ITUC i iiQ  and ∑∈ τ≡ IMUC i iiQ .  
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Under fairly common value of 6.−=ε , we can expect that TUC and MUC would be of 

similar order of magnitude at system optimum. 

Another consequence of (6.14) concerns the value of the dual parameter µ : as both iτ  and iθ  

are expected to be positive, then so is their ratio, leading to 01>+µ−µε− i  for every I∈i , 

hence to 

 
M1

1

ε+
<µ , with { }I:infM ∈ε=ε ii .  

Value 6.M −=ε  yields an upper bound of 5.2U =µ  on µ . 

Table 2. First-order derivatives of Lagrangian function. 
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6.3 Quality of service in quantitative terms 

Quality of service to system users is modelled by the time spent in a series of stages, X in 

{A, W, R, E, T} where letter A stands for Access, E for Egress, R for Run, W for Wait and T 

for Transfer. We shall omit Transfer times and focus on X in {A, E, R, W} and the associated 

characteristic times X
rt  spent in a given component r . Characteristic times are useful as 

intermediary variables between the supply-side factors and the objective function as well as 

the associated Lagrangian function. Let us then calculate the partial derivatives of the 

modified objective function SR))(D(SCSC
I

B
# −τµ−≡ ∑

∈i
iii g  with respect to characteristic 

times. 

Notionally,  

 ∑∑
∈∈

γµ=
∂
∂

∂
∂

=
∂
∂

I
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I
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#

X

# SCSC

i
ririi

i r
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xQ
t

g

gt
,  (6.15) 
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In which the X
rix  are the assignment factors and each X

riγ  represents discomfort cost per time 

unit. So the Right Hand Side in (6.15) is a value of time aggregated over all users in 

component r . 

As for wait time,  

 W

I

WW

W

#SC
r

i
ririi

r

ExQ
t

µ=γµ=
∂
∂

∑
∈

, (6.16) 

Wherein ∑∈ γ≡ I
WW

i
i
rir BE . We shall refer to W

rE  as the Effect of waiting time in the 

component. 

Concerning run time per unit distance, the characteristic variable is rr vt /1R ≡  so that 
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Wherein ∑∈ γ≡ I
RR

i
i

rir TE . 

As for Access and Egress times, the demand segments may exhibit different speeds, so the 

characteristic variable of major interest is the access distance is Ard  by component r . It holds 

that by demand segment, letting ii

Q

iiii QqqgQ i τµ−−τ−≡ ∫ −
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Thus, with respect to the access distance, as SRSCSC BI
#
i

# µ+=∑ ∈i , 
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So that A
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, (6.18) 

 wherein ∑∈ γ+γ≡ I
EAA /)(i i

i
ri

i
rir wOIE  is the indicator of effect for terminal distance onto 

system cost. 

To sum up, each indicator of effect is an economic value derived by aggregation over the 

demand segments. 

6.4 Service frequency and fleet size 

About fleet size rN , we have that 

 
r

r
rNr

r L

v

N 2
c

£
ϕµ−≡

∂
∂

. (6.19) 

So the related optimality condition, 0/£ =∂∂ rN , yields that 
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In which we recognize the cycle time rC . 

As for service frequency rϕ , as 
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The optimality condition 0/£ =ϕ∂∂ r  amounts to 
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Or equivalently to 
r
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W
2 . (6.23) 

The quadratic dependence of frequency onto a demand aggregate under system optimization 

is a well-known property for the operations of transit lines (Small and Verhoef, 2007). 

Combining (6.20) and (6.23) to the dual optimality condition with respect to rϕµ , namely 

0/£ =µ∂∂ ϕr  wherein rrrrr LvN 2//£ −ϕ≡µ∂∂ ϕ , we get that 
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Hence that 
rNr

rr
r

N

E

c2

Wβµ
=ϕ . (6.24) 

Which links the optimum frequency to the operator cost of the rolling stock, rNr Nc . 

Indeed this is a remarkable economic property, as is evidenced by the following equivalent 

form,  

 W
W

UC
2

c r

r

rr
rNr

E
N µ=

ϕ
βµ

= . 

Put in words, under system optimization the operator cost of the rolling stock, rNr Nc , is 

balanced by the user cost of waiting, denoted WUCr , since W
rE  is the aggregate time value of 

a unit waiting time while rr ϕβ 2/  is the average individual waiting time. The balancing is 

exact under fixed demand ( 1=µ ), whereas under variable demand it involves 1≥µ  as a lever 

arm on the demand side. 

In the solution scheme, eqn. (6.24) will be used as the following relationship between rL , rv  

and rN : 
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= . (6.25) 
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6.5 On station number and spacing 

Coming to the number of stations rσ  in the network component, we have that 
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Srr
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σ , (6.26) 

So the optimality condition associated to rσ , namely 0/£ =σ∂∂ r , yields that 
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The partial derivative of the Lagrangian function with respect to station spacing rS  is 
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Thus the related optimality condition, 0/£ =∂∂ rS , relates the dual variables and rS . We will 

use it in the following form, wherein Srµ  is replaced by rrr L/c 2σ− σ  using (6.27): 
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As regards the terminal distance, Ard , the partial derivative of the Lagrangian function with 

respect to it  is 
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So the related optimality condition, 0/£ =∂∂ Ard , states that  

 A
rAr Eµ−=µ . (6.31) 

Using the dual condition, 0/£ =µ∂∂ Sr , under system optimization it holds that rrr LS σ= / , 

so that (6.28) is equivalent to the following 
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This is indeed a second remarkable economic property, which states that under system 

optimization the operator’s cost of stations balances the “longitudinal” part of the users’ costs 

of walking, up to the partial effect of station spacing onto commercial speed and a lever arm 

of 1≥µ  on the demand side. The equality )/A(
4
1A

rrrrr LSd χ+=  is ensured by the dual 

optimality condition associated to the dual variable rAµ , 0/£ A =µ∂∂ r . 

6.6 Commercial speed and infrastructure length 

Concerning commercial speed rv , the partial derivative of the Lagrangian function is  
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On replacing rϕµ  by 2W 2/ rrrE ϕβµ  and rϕ  by rrr LvN 2/ , the optimality condition related to 

rv , 0/£ =∂∂ rv , yields that 
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For this condition to hold true it requires that 0<µvr . 

From (6.32): 
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Gathering (6.32) and (6.34), we obtain that 
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Which is the operational form of the second property in the solution scheme. 

As for infrastructure length rL , the related partial derivative of the Lagrangian function is 
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In the related optimality condition, 0/£ =∂∂ rL , we shall replace Srµ  by rrr L2c σ− σ , rϕµ  by 

rrNr vL /2c  and Arµ  by A
rEµ−  to get that  
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Or equivalently, 
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This constitutes the third remarkable economic property under system optimization: the full 

operator costs (Left Hand Side in the equality) balances the transversal part of the users’ costs 

of walking, up to a lever arm of 1≥µ  on the demand side. Under fixed demand it holds that 

1=µ  hence the matching is perfect and it means that the Time User Costs are quite greater 

than the Operator Costs in the full System Cost. 

Consequently, a fare policy requiring the users to cover the full costs of supply might be quite 

tolerable to them, since the related fee would only constitute a minor part in the individual 

generalized cost. 

6.7 A synthesis of conditions for system equilibrium 

To sum up, the primal-dual optimality conditions for the modelled transit system with no 

congestion amount to a net of 3R+1 relationships between three basic supply variables by 

network component, ( rL , rσ , rN ), and the dual variable µ  associated to a constraint of cost 

recovery. Let us gather them as a reduced set of conditions: 
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From (6.35): 
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A basic vector [ ]µσ ∈ ,),,( Rrrrr NL  that solves the previous system enables one to derive all 

characteristics of a system state under system optimization. 

A couple of comments are in order here. First, under fixed demand we have 1=µ  so the 

reduced problem breaks into R problems each with three equations in three unknowns: then, 

system optimization is decentralized by network component.  

Second, under variable demand the dual variable µ  summarizes the coupling between the 

components, through the determination of the demand which puts the components in 

interaction (in a “weak form” of interaction, actually). 

Third, the integration of several components in a unified framework of system optimization 

induces inter-regional and inter-modal analogies: between any two components r  and s , a 

number of characteristic features must be proportionate, notably so: 
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. 

Furthermore, all of these quantities are equal to µ  hence to one another in a given component 

as well as between components. 

Fourth and last, the equality between operator costs and the user cost of “transversal” access 

indeed constitutes a “golden rule” for transit networks, as it matches the cost of supply to the 

cost of transversal access, that for all trips in either a given component, or a specific area, or 

the multimodal network in the full urban area. So its spatial outreach goes far beyond the 

market area of a single line of transit. 

Let us summarize the three remarkable economic properties and emphasize their respective 

economic significance: 

[1] WUCc µ=rNr N  i.e. the cost of the rolling stock balances that of waiting, 

[2] A
allongitudin

RW UC)
V

1)(UC.(UCc µ=−+µ+σσ
r

r
rr

v
 i.e. the users’ costs of longitudinal access 

is balanced by the station costs, plus the dwelling proportion of commercial time multiplied 

by the cost of in-system time to the users.. 
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[3] A
ltransversaUCccc µ=+σ+ σ rNrrrrLr NL  i.e. the supply cost balances that of transversal 

access. 

The second relationship stems from (6.35), by replacing rrNr vNc  with WUCµrv  owing to [1] 

and also R
rE  with RUCrv . Then, rrrrNr vEvN )UC.(UCc RWR +µ=µ+ . Yet it does also hold 

that rrrrr vSv /V1/. −=ω  i.e. the proportion of “running time” that is spent at station dwelling. 

By adding up the two last relationships and remarking that AWR UCUCUCTUC ++=  (recall 

that the transfer costs were omitted), it comes out that 
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σ+ σ v
 

Hence that TUC
/V2

/V1cOC

/V2

1
UCA

v

v

v −
−

+
µ

σ+
−

= σ : 

The total value of users’ access time is worth more than half the operator costs plus a fraction 

of the time users costs. Under variable demand and constant elasticity, MUCTUC
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)1(1

−µ
µε+−= , 

so that 
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6.8 Formal properties and solution scheme 

In the Appendix (Section 9), we provide a solution scheme, which enabled us to derive formal 

properties of existence and uniqueness for a System Optimum State, together with some 

properties of sensitivity analysis. Let us here outline the main outcomes. 

Proposition 1: Existence and uniqueness of a system optimum state under Fixed demand. 

Under “Fixed demand” defined as given parameter µ  and demand flows I):(I ∈= iQiQ , 

there exists a System Optimal state, which is unique. 

Under “Fixed demand” the System Optimum problem is separable and reduces to a reduced 

problem of 3 equations linking three reduced unknowns µ≡′ /LL , µσ≡σ′ /  and µ≡′ /NN . 

It turns out that station spacing S  is the main factor, with respect to whom the SO sub-

problem of the component reduces in a single equation in S  only. 

The single equation in S  amounts to match a function of S  that increases from zero to 

infinity, with a given value that is non-negative: thus the equation has one and one only 

solution. The solution depends on µ  and the demand flows IQ  (via the Effect factors) as 

parameters in a simple way, which enables us to derive the following property of sensitivity 

for the reduced optimal state ( SL̂′ , SN̂ ′ , S ) and the reduced operator cost function, 

NccLcS ′+σ′+′≡′ σ NLCO : 

Proposition 2: Sensitivity analysis of optimum system state (under fixed demand).  

[i] The reduced system optimum solution ( SL̂′ , SN̂ ′ , S ) decreases with µ  and so does the 

reduced operator cost, SCO ′ . [ii] With respect to region area A, the system optimum solution 

( SL̂′ , SN̂ ′ , S ) increases and so does the reduced operator cost, SCO ′ . 
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Thus, under “Fixed Demand” it is easy to solve the problem of System Optimization. Under 

Variable demand, both µ  and the demand flows IQ  are endogenous as well as the supply 

side variables [ ]R:),,( ∈σ rNL rrr . We address the SO problem under Variable Demand as a 

three-level optimization program, with upper level to deal with µ , intermediary level to solve 

for IQ  and lower level to solve for the supply side variables on the basis of µ  and IQ . Of 

course the lower level consists in a Fixed Demand SO problem. 

The following Proposition holds true: 

Proposition 3: Existence and uniqueness of System Optimum State under Variable demand. 

Assuming that the target revenue SR is feasible, there exists a state of System Optimum for the 

transit system under variable demand. This state is unique. 

Our solution scheme to address the upper level problem consists in a dichotomy search on µ  

only so as to meet the condition of minimum commercial revenue. From each candidate value 

of µ , we derive the demand flows IQ  and the supply side variables that jointly satisfy all of 

the other conditions for optimality, by solving a Fixed Point Problem in IQ  which uses the 

Fixed Demand SO problem as a sub-program. Conditionally to µ , this Fixed Point Problem 

makes up the intermediary level in the overall, three-level scheme. 

7. Conclusion 

This paper owes much to previous contributions to the theory of transit network design. Our 

model of system elements and relationships essentially builds upon Van Nes (2002), whereas 

our synthetic diagram is both more detailed (adding up causal relationships and action levers) 

and more structured than the initial version (Van Nes and Bovy, 2000). We extended the 

model to deal with spatial heterogeneity (yet in a coarse way): this involves the distinction of 

regions within the study area and the identification of origin-destination pairs. Another 

theoretical extension pertains to traffic phenomena and their feedbacks on supply performance 

as well as on quality of service. Having stated the two related problems of, first, system state 

determination under exogenous supply set-ups and, second, state optimisation by acting on 

supply-side levers, we provided a theoretical study of system optimization. Three “golden 

rules” for the optimal design and management of urban transit networks have been established 

in a fairly generic framework (yet in the uncongested case). A fourth rule pertains to second 

best optimal tariffs under variable demand. Solution algorithms have been provided for the 

fixed demand case then for variable demand under a threshold constraint on commercial 

revenues. 

All in all, the strategic model is both technical and economic; it lies halfway of, on one hand, 

network traffic assignment models which feature out technical relationships and the supply-

demand interactions and, on the other hand, theoretical models in transport economics at the 

local or line or aggregate level. The generic framework allows for theoretical analysis. 

However it can support neither the spatial nor the temporal details that are required in the 

design of particular projects. 

Beyond system understanding, we believe that the model is suitable for practical applications, 

ranging from synthetic statistical description of an existing system, to the assessment of 

observed or hypothetical system states against a theoretically optimal state, passing by 

comparisons between network components within the system and also between the transit 

systems of different urban areas. 
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9. Appendix: solution scheme and formal properties 

In order to solve the problem of System Optimization, we designed a computation scheme 

that decomposes the problem in three layers: from bottom-up, the determination of supply-

side variables conditionally to dual parameter µ  and demand flows I):(I ∈= iQiQ , then the 

determination of demand flows IQ  conditionally to µ , and lastly the determination of µ  

itself. The lower layer constitutes the Fixed demand problem of System Optimization and it 

turns out to be separable by network component. 

The building-up of the solution scheme enables us to establish formal properties of existence 

and uniqueness of an SO state. These are obtained at first under Fixed demand, then under 

Variable demand. So the Section body is in two parts. Subsection 9.1 deals with the Fixed 

demand problem, its specific solution scheme and formal properties. Then, Subsection 9.2 

addresses Variable demand and the determination of the dual parameter µ  that has a key role. 

9.1 Algorithm for fixed demand and given dual parameter 

Here the dual variable µ  is taken as a parameter and the II )( ∈≡ iiQQ  are fixed. This approach 

includes the fixed demand case, in which µ  is set to 1 and the flows are fixed. In a more 

general setting, let us assume that µ  is fixed and also the demand volumes, hence the effect 

factors X
rE  for all components r  in R. 

Thus, the reduced problem of system optimization (6.38)[1]-[3] is separable by component 

and consists in three non-linear equations in three unknowns (we drop index r  for 

simplicity): 

 [1’] 
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2
Nc
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Nv
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β

′
=′   wherein  
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ω
+=
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11
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In this re-statement, we have taken reduced variables µ≡′ /LL , µσ≡σ′ /  and µ≡′ /NN  

with respect to which there only remains one dependency on µ  viz. in the right hand side of 

[3’]. Furthermore, SLS =σ′′=′ /  and vv =′  so we shall focus on S  as the main variable, 

together with L′  and N′ . 

From [1’], L′  is fully determined by N′  and S  (through v ), so it can be denoted SNL ,
ˆ

′′ . 

By substituting W2
N /c ENvS β′  to L′  in [2’] via SL /′=σ′ , and multiplying by S , we get 

that 

R2A
4
1

N
2

W

N c
cc

ESENvN
E

v
S

S ω−=′ω+′
β
σ , or equivalently 

 0)(
ccc

R2A
4
1

N

WW
2 =−

βω
−′

βω
+′

ω
σσ

ESE
v

E
N

E
N

S

. (9.1)  

Which merely amounts to a second-order equation in N′  that is parameterized by S . 
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Denoting 
σ

βω
≡ξ

c

WE
 and )(

c
R2A

4
1

N

ESE
vS

S −
ξ

≡ζ ω , the equation reduces to 

 02 =ζ−′ξ+′ SNN . (9.2)  

The discriminant amounts to 

 Sζ+ξ=∆ 42 , (9.3)  

Which is non-negative iff SNvESE c4 R2A1 ξ−≥−ω , or )c4( R2
A SNE

vES ξ−≥ ω . 

We shall satisfy ourselves with the stricter requirement that 0≥ζS  i.e. AR2 /4 EES ω≥  or 

 AR
0 /2 EESS ω≡≥ . (9.4)  

Under this requirement, 2ξ≥∆  hence the second-order equation in N′  admits one 

nonnegative solution only, namely 

 SSN ψ
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=
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ˆ   with  1)(1 2
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2
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Replacing N′  by Sξψ
2
1  in [1’], we obtain L′  as a function of S  only,  
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=′ . (9.6)  

In turn, SL /′=σ′  is a function of S  only, 
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By replacing in [3’] variables L′ , σ′  and N′  by SL̂′ , Sσ′ˆ  and SN̂ ′ , respectively, we obtain a 

single equation S  in only: 
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Notice that the Right Hand Side does not depend on S , while the Left Hand Side does not 

involve µ . We shall deal with (9.8) by considering the LHS as a function of S , more 

precisely a product function that multiplies SL̂′  by SSSS NL ˆcˆcˆcCO NL ′+σ′+′≡′ σ .  

Lemma. Functions SN̂ ′ , SL̂′  and SCO ′  are increasing with 0SS ≥ . 

Proof. Function 2
0

2 SSS −a  is non-negative on [ )∞,0S , thus so does Sψ  hence SN̂ ′ , too. As 

for )/(1
V
1

SSv ω+= , it is positive and has derivative 22 / Svv SS ω=′  which also is positive. Thus 

function SvS a  is both positive and strictly increasing with S  on [ )∞,0S . Coming back to 

Sψ ,  
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So Sψ  is increasing as well as non-negative on [ )∞,0S . The same applies to 2
SS ψa . Then, 

from its definition the function 2
4

c
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2
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SSES vLS ψ≡′
β
ξ

a  is the product of two non-negative and 

increasing functions on [ )∞,0S , which makes it non-negative and increasing on that domain. 
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As we already know that both Sψ  and SSv2ψ  are increasing with respect to S  on [ )∞,0S , we 

only have to check that SvS SS /2ψa  is increasing on that domain, in order to demonstrate 

that so is SCO ′  (postulating non-negative unit costs). By derivation, 
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which is indeed non-negative, implying that SvS SS /2ψa  is increasing as well as non-

negative. 
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Proposition 1: Existence and uniqueness of a system optimum state under fixed demand. 

[i] Function aS SL̂′ . SCO ′  is increasing with S  on [ )∞,0S  and varies from 0 to ∞+ .  

[ii] Therefore equation [3’] in S  admits a solution, which is unique. 

Proof. On domain ] [∞,0S  both functions SL̂′  and SCO ′  are positive and strictly increasing 

since their derivatives are strictly positive there (postulating positive unit costs). Therefore 

their product is positive and strictly increasing, too. From its definition, Sψ  = 0 at 0S  and 

tends to infinity as S  increases indefinitely. Thus so do SN̂ ′  and SL̂′  since 0V >→Sv  when 

+∞→S . This applies in turn to SCO ′  and SL̂′ . SCO ′ , which establishes [i]. 

[ii] From the previous point, each value [ )∞∈ ,0y  is the image of one and one only 

[ )∞∈ ,0SS y . This applies notably to µχ= A/A
4
1 Ey . Thus Equation [3’] admits one and one 

only solution in S . This solution induces SL̂′ , Sσ′ˆ  and SN̂ ′  that solve the reduced problem of 

system optimization, meaning that there exists an optimal system state, which is unique. 

Proposition 2: Sensitivity analysis of optimum system state (under fixed demand).  

[i] The reduced system optimum solution ( SL̂′ , SN̂ ′ , S ) decreases with µ  and so does the 

reduced operator cost, SCO ′ . 

[ii] With respect to region area A, the system optimum solution ( SL̂′ , SN̂ ′ , S ) increases and 

so does the reduced operator cost, SCO ′ . 

Proof. [i] As SL̂′  and SN̂ ′  increase with S , the chain functions )(
ˆ

ySL′  and )(
ˆ

ySN ′  increase with 

y . As µ  increases, µχ= A/A
4
1 Ey  decreases and so does yS  that solves the associated 

equation. By chaining, both functions )(
ˆ

µ′ ySL o  and )(
ˆ

µ′ ySN o  decrease with µ . The same 

reasoning applies to function SCO ′ . 

[ii] With respect to A, y  increases so the same line of argumentation applies to the optimal 

solution, yet in the opposite direction of variation. 

Then, in the fixed demand case, the wider the area to serve, the more infrastructure length and 

service vehicles are required for optimal service provision, yet also with increased station 

spacing and with larger operator costs.  

We may tentatively apply the same line of reasoning to the shape parameter, χ : larger values 

(e.g. 2 for grid networks) would yield larger solution triplets and operator costs than smaller 

ones (e.g. 1 for directional parallel lines). But this may well exceed the outreach of the model. 

9.2 Master program to determine dual parameter and demand flows 

In addition to the fixed demand problem, the variable demand problem involves the 

determination of the dual parameter µ  that acts as a scaling parameter, together with that of 

the demand flows: both are taken as exogenous factors in the fixed demand problem. 

So, in the master program dealing with system optimization under variable demand, let us 

specify the endogenous vector as follows: [ ]I)(, ∈µ iiQ . From it stem all of the other variables 

in the original system optimization problem, through the following algorithm: 
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“Derivation chain”: 

(i) By network component r : 

(a) Derive Effect factors X
rE  by status X in {A/E, R, W} from current demand flows. 

(b) Solve the “fixed demand” problem to yield rS , rL  and rN . 

(c) Derive the related variables rσ , rv , rϕ  and Ard . 

(ii) By demand segment i : 

(a) Derive the user times by stage X in {A/E, R, W} from the related supply variables, 

∑ ∈= R
XXX

r rrii txt . 

(b) Derive the individual time costs, WWRREEAA: iiiiiiiii tttt γ+γ+γ+γ=θ .  

(c) Derive the optimal tariffs, iii QQ &/:
1

µ
−µ−=τ  by solving the optimality condition 

about iτ  as a fixed point problem, )(D/)(D:
1

iiiiiii θ+τθ+τ−=τ µ
−µ & .  

(d) Let iiig θ+τ=: . 

Thus we can avail ourselves of “Derivation chain” as a subprogram. It exerts obvious 

feedback on the current state vector, since its )(k
ig  outcomes as of iteration k  enable us to 

infer “new” demand flows through the demand functions: )(D:ˆ )()( k
ii

k
i gQ = . 

Yet it is more robust to update the demand flows in a progressive way, by a rule of convex 

combinations: 

 )()()1( )1()(D: k
ik

k
iik

k
i QuguQ −+=+ , (9.9) 

Wherein 0)( ≥kku  is a sequence of non-negative numbers that decrease to zero. 

A convergence criterion as follows: 

 [ ]∑
∈

−=
I

2)()()( )(D:CC
i

k
i

k
ii

k Qg , (9.10) 

 is useful to check the convergence of the computational scheme with respect to the demand 

flows. 

Assuming that this convergence has been achieved satisfactorily, the last issue to address 

consists in making the dual parameter µ  satisfy its own condition of optimality. 

As a higher µ  puts more emphasis on the amount of commercial revenues in the Lagrangian 

function, the solution optimized with respect to all of the other variables, taken as a function 

of µ  only, will yield larger commercial revenues as µ  increases: denoting 

∑∈
µµτ≡µ I

)()()( i ii QτQ , function )(µµ τQa  is an increasing one.  

If SR)1( ≥τQ  then the optimality condition is satisfied, so 1=µ  together with the derived 

outcomes provides an optimal system state. 

In most cases, however, we can expect that SR)1( <τQ , so that value 1 for µ  is only a lower 

bound and we have to look for a higher value in order to satisfy the budget constraint. To do 

that, we put forward a dichotomy strategy, by progressively halving an interval [ ]UL ,µµ  

between a lower bound Lµ  and an upper bound Uµ , of which either one is updated in each 

iteration of the dichotomy algorithm that follows. 
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Dichotomy scheme: 

(i) Set initial interval bounds [ ])1(
U

)1(
L ,µµ  and iteration counter 1:=k . 

(ii) Let )(:ˆ )(
U

)(
L2

1 kk µ+µ=µ  and derive the optimal system state conditionally to µ̂ . 

(iii) If SR)ˆ( −µτQ  is smaller than a given preset tolerance then Terminate, else continue. 

(iv) If SR)ˆ( <µτQ  then { )(
U

)1(
U

)1(
L :andˆ: kkk µ=µµ=µ ++ } else { µ=µµ=µ ++ ˆ:and: )1(

U
)(

L
)1(

L
kkk }. 

(v) Update 1: += kk  and go to Step (ii). 

 

Assuming “reasonable” demand functions with elasticity that is bounded and greater than -1, 

a natural candidate as initial upper bound is (Cf. eqn. (6.14)): 

 
M

M
1

1
:

ε+
=µ   wherein { }I:min:M ∈ε=ε ii . (9.10) 

Effectively, if SR)( M >µτQ  then we can use it as the initial upper bound in the Dichotomy 

scheme. Otherwise, if SR)( M <µτQ  then we can use Mµ  to update Lµ  and test M2µ  as 

candidate upper bound, and repeat that until the inequality constraint is satisfied. 

For the scheme to succeed, it requires that the target revenue SR can be achieved. Taking this 

condition as granted, then the dichotomy scheme will yield a value of µ  that meets the 

constraint, and this value will be the unique solution since function τQ  increases with µ . In 

other words: 

Proposition 3: Existence and uniqueness of a system optimum state under Variable 

demand. Assuming that the target revenue SR is feasible, there exists a state of System 

Optimum for the transit system under variable demand. This state is unique. 

 


