TransitData 2019, Paris - La Sorbonne, July $10^{\text {th }}$

A Probabilistic Traffic Model to Estimate Fail-to-Board Probabilities in Transit Lines on the basis of AFC and AVL data

Fabien Leurent and Thomas Jasmin
Ecole des Ponts ParisTech, Laboratoire Ville Mobilité Transport, Urban Mobility Chair in partnership with IDFM

Motivation

Train platform may be loaded with user flows larger than residual capacity in incoming train

Objective

Research question

To define, model and estimate the Fail-to-Board Probabilities

Contribution

+ A Probabilistic Model involving F2B within "Transition Probabilities"
+ Maximum Likelihood (ML) estimation method
+ Application to Paris line A of RER (Regional Express Railway)

F2B probabilities: definition and measurement

Definition

Among users waiting for an incoming train, the probability of failing to board it
Thus it is particular to train run i and station r : denote it as $\bar{\rho}_{i, r}$

Measurement issues

Direct measurement:

get numbers $B_{i, r}$ of boarded passengers and $N_{i, r}$ of users remaining on platform,
to derive $\bar{\rho}_{i, r}=N_{i, r} /\left(B_{i, r}+N_{i, r}\right)$
Indirect measurement: based on

AFC data for users' trips and AVL data for train runs

SITUATION \& NOTATION

Situation

Notation

Random variable $t_{u}^{+}=>\operatorname{CDF}$ denoted as $\mathrm{T}_{u}^{+}(x) \equiv \operatorname{Pr}\left\{t_{u}^{+} \leq x\right\}$
PDF denoted as $\dot{\mathrm{T}}_{u}^{+}(x) \equiv \partial \mathrm{T}_{u}^{+}(x) / \partial x$
Similarly: for an instant $h_{u}^{-}, \mathrm{CDF}_{\vec{u}}^{-}(x)$ and $\operatorname{PDF} \dot{\mathrm{H}}_{u}^{-}(x)$

Physical and probabilistic model: 4 legs in u 's trip

1/ Access: from entry validation gate at h_{u}^{+}to platform, in time t_{u}^{+}to arrive during the HEADWAY of run k such that $\left.\left.h_{u}^{+}+t_{u}^{+} \in\right] h_{k-1, r}^{-}, h_{k, r}^{-}\right]$

$$
\operatorname{Pr}\left\{k \mid h_{u}^{+}\right\}=\mathrm{T}_{r}^{+}\left(h_{\bar{k}, r}^{-}-h_{u}^{+}\right)-\mathrm{T}_{r}^{+}\left(h_{k-1, r}^{-}-h_{u}^{+}\right)
$$

2/ Wait: during w_{u} up to boarding run i and departing at $\hat{h}_{u}=h_{\bar{i}, r}$, implying that $w_{u}=\hat{h}_{u}-\left(h_{u}^{+}+t_{u}^{+}\right)$

$$
\text { Transition probability } \pi_{i \mid k}^{(r)} \text { between two runs } k \leq i
$$

3/ Ride: from station r to station n, hence in time $h_{i, n}^{+}-h_{\bar{i}, r}^{-}$
4/ Egress: from alighting platform n to exit validation gate at h_{u}^{-}, in time $t_{\bar{u}}^{-} \equiv h_{\bar{u}}^{-}-h_{i, n}^{+}$. As $\left\{h_{\bar{u}}^{-} \leq x \mid i\right\}=\left\{h_{i, n}^{+}+t_{\bar{u}}^{-} \leq x \mid i\right\}$, it holds that

$$
\operatorname{Pr}\left\{h_{u}^{-} \leq x \mid i\right\}=\operatorname{Pr}\left\{t_{u}^{-} \leq x-h_{i, n}^{+}\right\}=\mathrm{T}_{n}^{-}\left(x-h_{i, n}^{+}\right)
$$

From F2B to Transition probabilities

The MINGLING postulate

All users waiting on the boarding platform at a particular instant have equal chance of boarding an incoming vehicle

Induction algorithm

Denote $\rho_{i r} \equiv 1-\bar{\rho}_{i, r}$ the success probability,
and $\widetilde{\pi}_{i \mid k}^{(r)}$ the probability of failure to board from k to i included
Initialization: $\pi_{k \mid k}^{(r)}=\rho_{k r}$
Induction step: calculate $\tilde{\pi}_{i+1 \mid k}^{(r)}=\bar{\rho}_{i+1, r} \tilde{\pi}_{i \mid k}^{(r)}$ and $\pi_{i+1 \mid k}^{(r)}=\rho_{i+1, r} \tilde{\pi}_{i \mid k}^{(r)}$
It's easy!

Exit time conditionally to entry time

Principle

Disaggregation according to arrival headway k and boarded run i :

$$
\begin{aligned}
\left\{h_{u}^{-} \leq x \mid h_{u}^{+}\right\} & =\bigcup_{k, i}\left\{h_{u}^{-} \leq x \bigcap i \cap k \mid h_{u}^{+}\right\} \\
\operatorname{Pr}\left\{h_{u}^{-} \leq x \mid h_{u}^{+}\right\} & =\sum_{k \leq i} \operatorname{Pr}\left\{h_{u}^{-} \leq x \cap i \cap k \mid h_{u}^{+}\right\} \\
& =\sum_{k \leq i} \operatorname{Pr}\left\{h_{u}^{-} \leq x \mid h_{u}^{+}, k, i\right\} \operatorname{Pr}\{i \mid k\} \operatorname{Pr}\left\{k \mid h_{u}^{+}\right\} \\
& =\sum_{k \leq i} \mathrm{~T}_{n}^{-}\left(x-h_{i, n}^{+}\right) \cdot \pi_{i \mid k}^{(r)} \cdot\left[\mathrm{T}_{r}^{+}\left(h_{\bar{k}, r}^{-}-h_{u}^{+}\right)-\mathrm{T}_{r}^{+}\left(h_{\bar{k}-1, r}^{-}-h_{u}^{+}\right)\right]
\end{aligned}
$$

Characterization of random variable $h_{\bar{u}}^{-}$conditionally to h_{u}^{+}
Conditional CDF is obtained as $\mathrm{H}_{\bar{u}}(x) \equiv \operatorname{Pr}\left\{h_{\bar{u}}^{-} \leq x \mid h_{u}^{+}\right\}$above

PDF:

$$
\dot{\mathrm{H}}_{u}^{-}(x) \equiv \operatorname{Pr}\left\{h_{u}^{-}=x \mid h_{u}^{+}\right\} \text {by partial derivation }
$$

$$
=\sum_{k \leq i} \pi_{i \mid k}^{(r)} \dot{\mathrm{T}}_{n}^{-}\left(x-h_{i, n}^{+}\right) \cdot\left(\mathrm{T}_{r}^{+}\left(h_{\bar{k}, r}^{-}-h_{u}^{+}\right)-\mathrm{T}_{r}^{+}\left(h_{k-1, r}^{-}-h_{u}^{+}\right)\right)
$$

Estimation scheme

Maximum Likelihood Estimation
Log-likelihood function of one observation: $\Lambda_{u}(\Theta) \equiv \ln \mathrm{L}_{u}(\Theta)$
Parameter Θ : distributions T_{r}^{+}and T_{n}^{-}and transition probabilities $\pi_{i \mid k}^{(r)}$
Maximize total log-likelihood function

$$
\Lambda_{\mathrm{U}}(\Theta) \equiv \ln \mathrm{L}_{\mathrm{U}}(\Theta)=\sum_{u \in \mathrm{U}} \Lambda_{u}(\Theta)
$$

w.r.t. Success-to-Board Probabilities $\rho_{k r}$, s.t. $0 \leq \rho_{k r} \leq 1$

Comparison to Model by Zhu et al (2017)

MIT

ACCESS proba \& EGRESS proba No JOINT integration w.r.t. speed Notion of "Left behind probability": from run k to run i as P_{i-k} :
it depends neither on the boarding station nor on the individual runs as it has one value only for all run pairs of given value i-k

ESTIMATION METHOD

ML with Bayesian framework

ENPC

ACCESS proba \& EGRESS proba WITH JOINT integration w.r.t. speed Transition probability from run k to run i as $\pi_{i \mid k}^{(r)}$: it depends on the individual runs and also on the boarding station There is a PHYSICAL model behind the Stochastic model, from F2B proba to Transition proba

ESTIMATION METHOD

ML on F2B proba

Train line and O-D pair

Train line

RER A => focus on common trunk

Origin-Destination pair

(Source: CityMapper)

- From Vincennes to La Défense
- 27 trains / hour at morning peak
- About 20 ' of ride time
- Vincennes: simple platform at level -1 with 2 access points
- La Défense: complex platform at level -3 with 3 access points and many validation gates at different places and levels

Determination of access and egress time distributions T_{r}^{+}and T_{n}^{-}

Direct estimation from AFC and AVL data on March $17^{\text {th }}, 2015$

Selection of users that can physically board in only one train
Egress time at a station: difference between tap out time and train arrival at this station

17th mars 2015 : LA DEFENSE-GRANDE ARCHE

17th mars 2015 : LA DEFENSE-GRANDE ARCHE

Concerning the Vincennes station

Hypothesis: access times and egress times at Vincennes have identical statistical distributions

Combining AFC \& AVL datasets: determination of train multiplicity index

Multiplicity index of train k : Mean of the numbers of available trains for travellers that could board into train k on the basis of respective times
First idea of the panel of train possibilities

Depend on:

- Train frequencies
- Failure to board probabilities

Failure to board: statistical determination by Maximum Likelihood estimation

Comments

Null F2B value for off peak trains and most of trains at peak
Yet, at peak, several trains have positive F2B values, with quite large value for some of them (up to 0.9)

Contribution to Traffic analysis

Discussion: walk times

Results depend on the choice of walk time distribution (hypothesis of one single distribution for the entire day, some passengers are not taken into account in the determination of distributions, possible dependence between failure to board probability and walk time)

Variability due to a change in walk time

Conclusion

Contribution

Probabilistic and physical model that captures F2B probabilities
Maximum Likelihood Estimation scheme
Computation scheme

Next steps
Focus on Metro line 13 along North-South axis

Acknowledgment
IDFM for provision of AFC data and its support to Urban Mobility Chair RATP for provision of AVL data

