
HAL Id: hal-02462441
https://hal.science/hal-02462441

Submitted on 21 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Epistemic Uncertainty Sampling
Vu-Linh Nguyen, Sébastien Destercke, Eyke Hüllermeier

To cite this version:
Vu-Linh Nguyen, Sébastien Destercke, Eyke Hüllermeier. Epistemic Uncertainty Sampling. 22nd
Internationnal Conference on Discovery Science (DS 2019), Oct 2019, Split, Croatia. pp.72-86,
�10.1007/978-3-030-33778-0_7�. �hal-02462441�

https://hal.science/hal-02462441
https://hal.archives-ouvertes.fr


Epistemic Uncertainty Sampling∗
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Abstract

Various strategies for active learning have been proposed in the machine learning

literature. In uncertainty sampling, which is among the most popular approaches, the

active learner sequentially queries the label of those instances for which its current

prediction is maximally uncertain. The predictions as well as the measures used

to quantify the degree of uncertainty, such as entropy, are almost exclusively of a

probabilistic nature. In this paper, we advocate a distinction between two different

types of uncertainty, referred to as epistemic and aleatoric, in the context of active

learning. Roughly speaking, these notions capture the reducible and the irreducible

part of the total uncertainty in a prediction, respectively. We conjecture that, in

uncertainty sampling, the usefulness of an instance is better reflected by its epistemic

than by its aleatoric uncertainty. This leads us to suggest the principle of “epistemic

uncertainty sampling”, which we instantiate by means of a concrete approach for

measuring epistemic and aleatoric uncertainty. In experimental studies, epistemic

uncertainty sampling does indeed show promising performance.

Key words: active learning, uncertainty sampling, epistemic uncertainty, aleatoric

uncertainty

1 Introduction

The goal in standard supervised learning, such as binary or multi-class classification, is to

learn models with high predictive accuracy from labelled training data [7, 22]. However,

labelled data does normally not come for free. On the contrary, labelling can be expen-

sive, time-consuming, and costly. The ambition of active learning, therefore, is to exploit

labelled data in the most effective way. More specifically, the idea is to let the learning

∗Draft version of a paper to be published in the proceedings of DS 2019, 22nd International Conference
on Discovery Science, Split, Croatia, 2019.
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algorithm itself decide which examples it considers to be most informative. Compared

to random sampling, the hope is to achieve better performance with the same amount of

training data, or to reach the same performance with less data [6, 20].

The selection of training examples is often done in an iterative manner, i.e., the active

learner alternates between re-training and selecting new examples. In each iteration, the

usefulness of a candidate example is estimated in terms of a utility score, and the one

with the highest score is queried. In this regard, the notion of utility typically refers to

uncertainty reduction: To what extent will the knowledge about the label of a specific

instance help to reduce the learner’s uncertainty about the sought model? In uncertainty

sampling [20], which is among the most popular approaches, utility is quantified in terms

of predictive uncertainty, i.e., the active learner selects those instances for which its current

prediction is maximally uncertain. The predictions as well as the measures used to quantify

the degree of uncertainty, such as entropy, are almost exclusively of a probabilistic nature.

Such approaches indeed proved to be successful in many applications.

Yet, as pointed out by [21], existing approaches can be criticized for not informing about

the reasons for why an instance is considered uncertain, although this might be relevant for

judging the usefulness of an example. In this paper, we advocate a distinction between two

different types of uncertainty, referred to as epistemic and aleatoric — roughly speaking,

these capture the reducible and the irreducible part of the total uncertainty in a prediction,

respectively. The conjecture that, in uncertainty sampling, the usefulness of an instance

is better reflected by its epistemic than by its aleatoric uncertainty leads us to the idea

of “epistemic uncertainty sampling”. Our approach, which builds on a formalization of

epistemic and aleatoric uncertainty as proposed by [19], is generic in the sense that is

can be instantiated for any learning algorithm; concretely, we present instantiations for a

Parzen window classifier, decision tree learning, and logistic regression.

The rest of this paper is organized as follows. In the next section, we recall the general

framework of uncertainty sampling and provide a brief survey of related work on active

learning. In Section 3, we recall the approach of [19] for modeling epistemic and aleatoric

uncertainty, and then present our idea of generalizing uncertainty sampling on the basis of

this approach. Instantiations of our approach for local learning (Parzen window classifier),

decision tree learning and logistic regression are presented in Sections 4. Experimental

evaluations are given in the section 5. The paper concludes with a short summary and an

outlook on future work in Section 6.

2 Uncertainty sampling

As usual in active learning, we assume to be given a labelled set of training data D and

a pool of unlabeled instances U that can be queried by the learner:

D =
{

(x1, y1), . . . , (xN , yN )
}
, U =

{
x1, . . . ,xJ

}
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Instances are represented as features vectors xi =
(
x1i , . . . , x

d
i

)
∈ X = Rd. In this paper,

we only consider the case of binary classification, where labels yi are taken from Y = {0, 1},
leaving the more general case of multi-class classification for future work. We denote by

H ⊂ YX the underlying hypothesis space, i.e., the class of candidate models h : X −→ Y
the learner can choose from. Often, hypotheses are parametrized by a parameter vector

θ ∈ Θ; in this case, we equate a hypothesis h = hθ ∈ H with the parameter θ, and the

model space H with the parameter space Θ.

In uncertainty sampling, instances are queried in a greedy fashion. Given the current

model θ that has been trained on D, each instance xj in the current pool U is assigned a

utility score s(θ,xj), and the next instance to be queried is the one with the highest score

[11, 20, 21]. The chosen instance is labelled (by an oracle or expert) and added to the

training data D, on which the model is then re-trained. The active learning process for a

given budget B (i.e, the number of unlabelled instances to be queried) is summarized in

Algorithm 1.

Algorithm 1: Uncertainty sampling

Input: U, D, θ- initial pool, training data, classifier, and B-budget
Output: U, D, θ - updated pool, training data, classifier

1 initialize b = 0;
2 while b < B do
3 foreach x ∈ U do
4 compute s(θ,x)

5 query the label of the optimal instance x∗ with respect to s(θ,x)
D = D ∪ {x∗, y∗} ;

6 U = U \ {x∗, y∗} ;
7 train θ from D;
8 b = b+ 1;

9 Return U, D, θ;

Assuming a probabilistic model producing predictions in the form of probability distribu-

tions pθ(· |x) on Y, the utility score is typically defined in terms of a measure of uncer-

tainty. Thus, instances on which the current model is highly uncertain are supposed to be

maximally informative [20, 21]. Popular examples of such measures include

– the entropy:

s(θ,x) = −
∑
λ∈Y

pθ(λ |x) log pθ(λ |x) , (1)

– the least confidence:

s(θ,x) = 1−max
λ∈Y

pθ(λ |x) , (2)
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– the smallest margin:

s(θ,x) = pθ(λn |x)− pθ(λm |x) , (3)

where λm = arg maxλ∈Y pθ(λ |x) and λn = arg maxλ∈Y\λm pθ(λ |x).

All the three measures ought to be maximized. In the case of binary classification, i.e,

Y = {0, 1}, all these measures rank unlabelled instances in the same order and look for

instances with small difference between pθ(0 |x) and pθ(1 |x).

3 Epistemic and aleatoric uncertainty

A main building block of our approach to active learning is the distinction between the

epistemic and aleatoric uncertainty involved in the prediction for an instance x. Although

this distinction is well accepted in the literature on uncertainty [8], it has been considered

in machine learning only very recently [9, 13, 19]. Here, we adopt the formal model

proposed by [19], which is based on the use of relative likelihoods, historically proposed

by [2] and then justified in other settings such as possibility theory [23]. For the sake of

completeness and self-containedness, we briefly recall the essence of this approach.

As before, we proceed from an instance space X , an output space Y = {0, 1} encoding the

two classes, and a hypothesis space H consisting of probabilistic classifiers h : X −→ [0, 1].

We denote by ph(1 |x) = h(x) and ph(0 |x) = 1 − h(x) the (predicted) probability that

instance x ∈ X belongs to the positive and negative class, respectively. Given a set of

training data D = {(xi, yi)}Ni=1 ⊂ X ×Y, the normalized likelihood of a model h is defined

as

πH(h) =
L(h)

L(hml)
=

L(h)

maxh′∈H L(h′)
, (4)

where L(h) =
∏N
i=1 ph(yi |xi) is the likelihood of h, and hml ∈ H the maximum likeli-

hood estimation on the training data. For a given instance x, the degrees of support

(plausibility) of the two classes are defined as follows:

π(1 |x) = sup
h∈H

min
[
πH(h), ph(1 |x)− ph(0 |x)

]
, (5)

π(0 |x) = sup
h∈H

min
[
πH(h), ph(0 |x)− ph(1 |x)

]
. (6)

So, π(1 |x) is high if and only if a highly plausible model supports the positive class much

stronger (in terms of the assigned probability mass) than the negative class (and π(0 |x)

can be interpreted analogously)1. Note that, with f(a) = 2a − 1, we can also rewrite

1Technically, we assume that, for each x ∈ X , there are hypotheses h, h′ ∈ H such that h(x) ≥ 0.5 and
h′(x) ≤ 0.5, which implies π(1 |x) ≥ 0 and π(0 |x) ≥ 0.
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(5)–(6) as follows:

π(1 |x) = sup
h∈H

min
[
πH(h), f(h(x))

]
, (7)

π(0 |x) = sup
h∈H

min
[
πH(h), f(1− h(x))

]
. (8)

Given the above degrees of support, the degrees of epistemic uncertainty ue and aleatoric

uncertainty ua are defined as follows:

ue(x) = min
[
π(1 |x), π(0 |x)

]
, (9)

ua(x) = 1−max
[
π(1 |x), π(0 |x)

]
. (10)

Thus, epistemic uncertainty refers to the case where both the positive and the negative

class appear to be plausible, while the degree of aleatoric uncertainty (10) is the degree

to which none of the classes is supported. These uncertainty degrees are completed with

degrees s1(x) and s0(x) of (strict) preference in favor of the positive and negative class,

respectively:

s1(x) =


1− (ua(x) + ue(x)) if π(1 |x) > π(0 |x),

1−(ua(x)+ue(x))
2 if π(1 |x) = π(0 |x),

0 if π(1 |x) < π(0 |x).

With an analogous definition for s0(x), we have s0(x)+s1(x)+ua(x)+ue(x) ≡ 1. Besides,

it has the following properties:

- s1(x) (s0(x)) will be high if and only if, for all plausible models, the probability

of the positive (negative) class is significantly higher than the one of the negative

(positive) class;

- ue(x) will be high if class probabilities strongly vary within the set of plausible

models, i.e., if we are unsure how to compare these probabilities. In particular, it

will be 1 if and only if we have h(x) = 1 and h′(x) = 0 for two totally plausible

models h and h′;

- ua(x) will be high if class probabilities are similar for all plausible models, i.e., if

there is strong evidence that h(x) ≈ 0.5. In particular, it will be close to 1 if all

plausible models allocate their probability mass around h(x) = 0.5.

Roughly speaking, aleatoric uncertainty is due to influences on the data-generating pro-

cess that are inherently random, whereas epistemic uncertainty is caused by a lack of

knowledge. Or, stated differently, ue and ua measure the reducible and the irreducible

part of the total uncertainty, respectively. It thus appears reasonable to assume that

epistemic uncertainty is more relevant for active learning: While it makes sense to query

additional class labels in regions where uncertainty can be reduced, doing so in regions of
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high aleatoric uncertainty appears to be less reasonable. This leads us to the principle of

epistemic uncertainty sampling, which prescribes the selection

x∗ = arg max
x∈U

ue(x) . (11)

For comparison, we will also consider an analogous selection rule based on the aleatoric

uncertainty, i.e.,

x∗ = arg max
x∈U

ua(x) . (12)

Let us note that the above approach is completely generic and can in principle be instan-

tiated with any hypothesis space H. The uncertainty measures (11–12) can be derived

very easily from the support degrees (7–8). The computation of the latter may become

difficult, however, as it requires the solution of an optimization problem, the properties of

which depend on the choice of H.

4 Instantiations of the general approach

We are going to present practical methods to determine (7–8) for the cases of local learning

and logistic regression in Sections 4.1 and 4.2, respectively.

4.1 Local learning

This section presents an instantiation of our approach for the case of local learning using

a Parzen window classifier [4]. The method is then adapted to the case where the decision

tree classifier [16, 18] is employed as the based learner.

As already said, instantiating the approach essentially means to address the question of

how to compute the degrees of support (7–8), from which everything else can easily be

derived.

By local learning, we refer to a class of non-parametric models that derive predictions

from the training information in a local region of the instance space, for example the local

neighborhood of a query instance [3, 5]. As a simple example, we consider the Parzen

window classifier [4], to which our approach can be applied in a quite straightforward way.

To this end, for a given instance x, define the set of its neighbours as follows:

R(x, ε) =
{

(xi, yi) ∈ D | ‖xi − x‖ ≤ ε
}
, (13)

where ε is the width of the Parzen window (a practical method to determine such a width

will be given latter).

In binary classification, a local region R can be associated with a constant hypothesis hθ,

θ ∈ Θ = [0, 1], where hθ(x) ≡ θ is the probability of the positive class in the region;
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Figure 1: From left to right: Epistemic, aleatoric, and total uncertainty (epistemic +
aleatoric) as a function of the numbers p, n ∈ {0, 1, . . . , 10} of positive and negative ex-
amples in a region (Parzen window) of the instance space (lighter colors indicate higher
values).

thus, hθ predicts the same probabilities ph(1 |x) = θ and ph(0 |x) = 1 − θ for all x ∈ R.

The underlying hypothesis space is given by H = {hθ | 0 ≤ θ ≤ 1}. With n and p the

number of positive and negative instances, respectively, within a Parzen window R(x, ε),

the likelihood and the maximum likelihood estimate of θ are respectively given by

L(θ) =

(
n+ p

n

)
θn(1− θ)p and θ̂ =

n

n+ p
. (14)

Therefore, the degrees of support for the positive and negative classes are

π(1 |x) = sup
θ∈[0,1]

min

(
θp(1− θ)n( p
n+p

)p( n
n+p

)n , 2θ − 1

)
, (15)

π(0 |x) = sup
θ∈[0,1]

min

(
θp(1− θ)n( p
n+p

)p( n
n+p

)n , 1− 2θ

)
. (16)

Solving (15) and (16) comes down to maximizing a scalar function over a bounded domain,

for which standard solvers can be used. We applied Brent’s method2 (which is a variant of

the golden section method) to find a local minimum in the interval θ ∈ [0, 1]. From (15–

16), the epistemic and aleatoric uncertainty associated with the region R can be derived

according to (11) and (12), respectively. For different combinations of n and p, these

uncertainty degrees can be pre-computed (cf. Figure 1).

How to determine the width ε of the Parzen window? This value is difficult to assess, and

an appropriate choice strongly depends properties of the data and the dimensionality of

the instance space. Intuitively, it is even difficult to say in which range this value should lie.

Therefore, instead of fixing ε, we fixed an absolute number K of neighbors in the training

data, which is intuitively more meaningful and easier to interpret. A corresponding value

2For an implementation in Python, see https://docs.scipy.org/doc/scipy-0.19.1/reference/

generated/scipy.optimize.minimize_scalar.html
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of ε is then determined in such a way that the average number of nearest neighbours of

instances xi in the training data D is just K (see Algorithm 2). In other words, ε is

determined indirectly via K.

Since K is an average, individual instances may have more or less neighbors in their

Parzen windows. In particular, a Parzen window may also be empty. In this case, we

set ue(x) = 1 by definition, i.e., we consider this as a case of full epistemic uncertainty.

Likewise, the uncertainty is considered to be maximal for all other sampling techniques.

If the accuracy of the Parzen classifier needs to be determined, we assume that it yields a

wrong prediction.

Algorithm 2: Determining the width ε.

Input: D-normalized data, K-number
Output: the local width εK

1 foreach xn ∈ D do
2 foreach xm 6= xn do
3 compute d

(
xn,xm

)
;

4 form 1× (n− 1) vector dn =
(
d
(
xn,xm

)
|n 6= m

)
;

5 sort dn by increasing order and determine the K-th element dKn ;

6 return εK =
∑ |D |
n=1 dKn
|D | ;

In a similar way, the approach can be applied to decision tree learning [16, 18]. In fact recall

that a decision tree partitions the instance space X into (rectangular) regions R1, . . . , RL
(i.e.,

⋃L
i=1Ri = X and Ri ∩ Rj = ∅ for i 6= j) associated with corresponding leafs of the

tree (each leaf node defines a region R). Again, in the case of binary classification, we

can assume each region R to be associated with a constant hypothesis hθ, θ ∈ Θ = [0, 1],

where hθ(x) ≡ θ is the probability of the positive class. Therefore, degrees of epistemic

and aleatoric uncertainty degrees can be derived in the same way as described above.

4.2 Logistic regression

In this section, we present another instantiation of our approach for a commonly used

learning algorithm, namely logistic regression. In contrast to nonparametric, local learning

methods such as the Parzen window classifier, logistic regression is a parametric class of

linear models, and hence coming with comparatively restrictive assumptions.

Recall that logistic regression assumes posterior probabilities to depend on feature vectors

x = (x1, . . . , xd) ∈ Rd in the following way:

h(x) = p(1 |x) =
exp

(
θ0 +

∑d
i=1 θi x

i
)

1 + exp
(
θ0 +

∑d
i=1 θi x

i
) (17)

This means that learning the model comes down to estimating a parameter vector θ =
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(θ0, . . . , θd), which is commonly done through likelihood maximization [12]. To avoid

numerical issues (e.g, having to deal with the exponential function for large θ) when

maximizing the target function, we employ L2-regularization. The corresponding version

of the log-likelihood function (18) is strictly concave [17]:

l(θ) = logL(θ) =
N∑
n=1

yn

(
θ0 +

d∑
i=1

θix
i
n

)
(18)

−
N∑
n=1

ln

(
1 + exp

(
θ0 +

d∑
i=1

θix
i
n

))
− γ

2

d∑
i=0

θ2i ,

where the regularization term γ will be fixed to 1.

We now focus on determining the degree of support (7) for the positive class, and then

summarize the results for the negative class (which can be determined in a similar manner).

Associating each hypothesis h ∈ H with a vector θ ∈ Rd+1, the degree of support (7) can

be rewritten as follows:

π(1 |x) = sup
θ∈Rd+1

min
[
π(θ), 2h(x)− 1

]
(19)

It is easy to see that the target function to be maximized in (19) is not necessarily concave.

Therefore, we propose the following approach.

Let us first note that whenever h(x) < 0.5, we have 2h(x)−1 ≤ 0 and min
[
πH(h), 2h(x)−

1
]
≤ 0. Thus the optimal value of the target function (7) can only be achieved for some

hypotheses h such that h(x) ∈ [0.5, 1]. For a given value α ∈ [0.5, 1], the set of hypotheses

h such that h(x) = α corresponds to the convex set

θα =

{
θ
∣∣ θ0 +

d∑
i=1

θix
i = ln

(
α

1− α

)}
. (20)

The optimal value π∗α(1 |x) that can be achieved within the region (20) can be determined

as follows:

π∗α(1 |x) = sup
θ∈θα

min
[
π(θ), 2α− 1

]
= min

[
sup
θ∈θα

π(θ), 2α− 1
]
. (21)

Thus, to find this value, we maximize the concave log-likelihood over a convex set:

θ∗α = arg sup
θ∈θα

l(θ) (22)

As the log-likelihood function (18) is concave and has second-order derivatives, we tackle

the problem with a Newton-CG algorithm [14]. Furthermore, the optimization problem

(22) can be solved using sequential least squares programming3 [15]. Since regions defined

3For an implementation in Python, see https://docs.scipy.org/doc/scipy/reference/generated/

scipy.optimize.minimize.html
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in (20) are parallel hyperplanes, the solution of the optimization problem (7) can then be

obatined by solving the following problem:

sup
α∈[0.5,1)

π∗α(1|x) = sup
α∈[0.5,1)

min
[
π(θ∗α), 2α− 1

]
. (23)

Following a similar procedure, we can estimate the degree of support for the negative class

(8) as follows:

sup
α∈(0,0.5]

π∗α(0|x) = sup
α∈(0,0.5]

min
[
π(θ∗α), 1− 2α

]
(24)

Note that limit cases α = 1 and α = 0 cannot be solved, since the region (20) is then not

well-defined (as ln(∞) and ln(0) do not exist). For the purpose of practical implementation,

we handle (23) by discretizing the interval over α. That is, we optimize the target function

for a given number of values α ∈ [0.5, 1) and consider the solution corresponding to the α

with the highest optimal value of the target function π∗α(1 |x) as the maximum estimator.

Similarly, (24) can be handled over the domain (0, 0.5].

In practice, we evaluate (23) and (24) on uniform discretizations of cardinality 50 of [0.5, 1)

and (0, 0.5], respectively. We can further increase efficiency by avoiding computations for

values of α for which we know that 2α− 1 and 1− 2α are lower than the current highest

support value given to class 1 and 0, respectively. See Algorithm 3 for a pseudo-code

description of the whole procedure.

Algorithm 3: Degrees of support for logistic regression

Input: Q, D, θml, x- initial pool, training data, classifier, unlabelled instance
Output: π(1 |x), π(0 |x) - degrees of support

1 initialize subsets Qp, Qn of cardinality Q;

2 π(1 |x) = max(2hml(x)− 1, 0) , π(0 |x) = max(1− 2hml(x), 0) ;
3 for q = 1, . . . , Q do
4 αp = max(Qp); αn = min(Qn) ;
5 if 2αp − 1 > π(1 |x) then
6 solve (22) for x, αp and return θ;
7 π(1 |x) = max(π(1 |x),min(πH(θ), 2αp − 1)) ;

8 if 1− 2αn > π(0 |x) then
9 solve (22) for x, αn and return θ;

10 π(0 |x) = max(π(0 |x),min(πH(θ), 1− 2αp)) ;

11 Qp = Qp \ {αp}, Qn = Qn \ {αn} ;

12 Return π(1 |x), π(0 |x) ;

10



Table 1: Data sets used in the experiments
# name # instances # features attributes

1 parkinsons 197 22 real
2 vertebral-column 310 6 real
3 ionosphere 351 34 real
4 climate-model 540 18 real
5 breast-cancer 569 30 real
6 blood-transfusion 748 5 real
7 QSAR 1055 41 integer, real
8 banknote-authentication 1372 4 real

5 Experimental results

To illustrate the performance of our uncertainty measures in active learning, we conducted

experiments on data sets from the UCI repository4, the main properties of which are

summarized in Table 1.

5.1 Local learning

We follow a 10-fold cross-validation procedure, considering each fold as the test set, while

the other folds are used for learning. The latter is randomly split into a training data set

and a pool set. The proportions of training/pool/test sets are 10/80/10 % and accuracies

are averaged. The budget of the active learner is fixed to be 30% of the original data.

After each query, we update the data sets and, correspondingly, the classifiers. The

improvements of the classifiers are compared for four different uncertainty measures, i.e.,

uncertainty sampling (following the strategy presented in Algorithm 1) based on four

measures for selecting unlabelled instances: random sampling, standard uncertainty (2),

epistemic uncertainty (9), aleatoric uncertainty (10).

To reduce the computational efforts, in each iteration, the learner is allowed to evaluate

and query instances from a randomly selected subset consisting of 10% of the data in the

pool. Since we are not, in the first place, interested in maximizing performance, but in

analyzing the effectiveness of active learning approaches, we simply fix the neighborhood

size K as the square root of the size of the data set (number of instances in the initial

training set and pool) [10].

As can be seen in Figure 2, the results are nicely in agreement with our expectations:

Epistemic uncertainty sampling performs the best and aleatoric uncertainty sampling the

worst. Moreover, standard uncertainty sampling and random sampling are in-between

the two. This supports our conjecture that, from an active learning point of view, epis-

temic uncertainty is the more useful information. Even if the improvements compared to

standard uncertainty sampling are not huge, they are still visible and quite consistent.

4http://archive.ics.uci.edu/ml/index.php
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Figure 2: Average accuracies (y-axis) for the Parzen window classifier as a function of the
number of examples queried from the pool (x-axis).

The results for decision tree learning (cf. Figure 3) are quite similar and again in agreement

with our expectations.

5.2 Logistic regression

For logistic regression, we start with a relatively small amount of initial training data,

thereby making improvements in the beginning more visible. More specifically, the pro-

portions of training/pool/test set are 1/89/10 %, and the accuracies are averaged. The

budget is fixed to be 20% of the original data, and in each iteration, the learner is allowed

to evaluate and query instances from a (randomly) subset consisting of 10% data of the

pool.
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Figure 3: Average accuracies (y-axis) for the decision tree classifier as a function of the
number of examples queried from the pool (x-axis).

In the case of logistic regression, the improvements through epistemic uncertainty sam-

pling are less pronounced — on the contrary, the performance of epistemic and standard

uncertainty sampling is quite comparable. Two examples, which are quite representative,

are shown in Figure 4. As a plausible explanation, note that logistic regression comes with

a very strong learning bias in the form of a linearity assumption. Therefore, the epistemic

(or model) uncertainty disappears quite quickly.
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Figure 4: Average accuracies (y-axis) for logistic regression as a function of the number
of examples queried from the pool (x-axis).

6 Conclusion

This paper reconsiders the principle of uncertainty sampling in active learning from the

perspective of uncertainty modeling. More specifically, it starts from the supposition that,

when it comes to the question of which instances to select from a pool of candidates, a

learner’s predictive uncertainty due to “not knowing” should be more relevant than its

uncertainty due to inherent randomness.

To corroborate this conjecture, we proposed epistemic uncertainty sampling, in which

standard uncertainty measures such as entropy are replaced by a novel measure of epistemic

uncertainty. The latter is borrowed from a recent framework for uncertainty modeling, in

which epistemic uncertainty is distinguished from aleatoric uncertainty [19]. We interpret

our experimental results, especially those for local learning (Parzen window classifier and

decision trees) as evidence in favor of our conjecture. They clearly show that a separation

of the total uncertainty (into epistemic and aleatoric) is effective, and that the epistemic

part is the better criterion for selecting instances to be queried. This was the main purpose

of the paper.

Given this affirmation, we are now encouraged to elaborate on epistemic uncertainty sam-

pling in more depth, and to develop it in more sophistication. This includes an extension

to other learning algorithms and more general learning problems (such as multi-class clas-

sification), as well as a comparison to other variants of uncertainty sampling, such as [1]

and [21].
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Reliable multi-class classification based on pairwise epistemic and aleatoric uncer-

tainty. In Proceedings of the 27th International Joint Conference on Artificial Intel-

ligence (IJCAI), pages 5089–5095. AAAI Press, 2018.

15



[14] Jorge Nocedal and S Wright. Numerical Optimization. Springer New York, 2006.

[15] E Philip and WONG Elizabeth. Sequential quadratic programming methods. UCSD

Department of Mathematics Technical Report NA-10-03, 2010.

[16] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[17] Jason DM Rennie. Regularized logistic regression is strictly convex. Technical report,

MIT, 2005.

[18] S Rasoul Safavian and David Landgrebe. A survey of decision tree classifier method-

ology. IEEE transactions on systems, man, and cybernetics, 21(3):660–674, 1991.

[19] Robin Senge, Stefan Bösner, Krzysztof Dembczyński, Jörg Haasenritter, Oliver
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