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Abstract 

Geotagged photos posted on photo-sharing platforms have recently become a new source of 

information for analysing landscape preferences and investigating the aesthetic dimension of cultural 

ecosystem services. Most studies seek to explain photo density by landscape or spatial characteristics 

that might account for individual preferences and aesthetic criteria favoured by photographers. We 

focus instead on a “panorama level” of analysis, based on the assumption that photos represent 

preferential directions within a given panorama. The analysis consists in comparing the content of the 

photographed views with the content of the antipodal views (i.e. the view at 180°). We apply this 

method to a set of Flickr photos taken in the Lake Geneva region (Switzerland and France) 

characterised by landscape descriptors based on a visibility modelling approach. The results of discrete 

choice modelling at the global level are consistent with several key concepts of landscape preferences 

(e.g., openness, naturalness). The local analyses conducted at eight photo hotspots confirm the 

influence of open landscapes while revealing variations for certain other landscape characters 

depending on the geographical setting. We conclude that the panorama level approach combining 

geotagged photos and visibility modelling is suitable for identifying the landscape signature of the most 

appealing views. This signature could be used in further studies to detect the potential of visual 

amenities. 
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Introduction 

Over the last decade, crowd-sourced data shared on social media have emerged as a new source 

for rapidly gathering large datasets in numerous domains, and specifically for analysing people’s 

behaviours and preferences (Agrawal, El Abbadi, Georgiou, & Yan, 2014). Geotagged photos posted on 

photo-sharing platforms such as Flickr or Instagram are a valuable resource for investigating recent 

land-use changes (Sitthi, Nagai, Dailey, & Ninsawat, 2016; Yan, Schultz, & Zipf, 2019), attractiveness 

for tourism (Sinclair, Ghermandi, & Sheela, 2018; Wood, Guerry, Silver, & Lacayo, 2013), place 

attachment and value of cultural landscapes (Tieskens, Van Zanten, Schulp, & Verburg, 2018), and 

more broadly the aesthetic dimension of cultural ecosystem services (Figueroa-Alfaro & Tang, 2017; 

Gliozzo, Pettorelli, & Hacklay, 2016; Lee, Seo, Koellner, & Lautenbach, 2019; Martínez Pastur, Peri, 

Lencinas, García-Llorente, & Martín-López, 2015; Oteros-Rozas, Martín-López, Fagerholm, Bieling, & 

Plieninger, 2018; Tenerelli, Demšar, & Luque, 2016; Yoshimura & Hiura, 2017). While a single photo 

may be insufficient for analysing aesthetic preferences (Palmer & Hoffman, 2001), the mass of data 

posted on photo-sharing platforms makes them relevant for capturing a wide diversity of views. 

When using geotagged photos of outdoor views for identifying aesthetic services, each picture 

can be associated with three types of data: (1) the possible comment or key-words recorded by the 

depositor, (2) the geo-location of the photo, and (3) its image content. The first type of data can be 

used to classify the photos in terms of landscape characteristics (Figueroa-Alfaro & Tang, 2017) or 

landscape values such as cultural identity or community attachment (Chen, Parkins, & Sherren, 2018). 

However, the scarcity and heterogeneity of comments on photos means these data are rarely 

analysed. In contrast, the geo-location data by which each photo can be represented by a point entity 

in a GIS are frequently used for making spatial analyses, computing the local density of photos and 

identifying hotspots (e.g., Antoniou, Morley, & Haklay, 2010; Figueroa-Alfaro & Tang, 2017; Tenerelli 

et al., 2016; Tieskens et al., 2018).  

The image content, i.e. the features visible in the photos, is essential for analysing landscape 

preferences. It conveys complex information identifiable by several methods. Some methods use the 

actual picture content, via manual coding (Angradi, Launspach, & Debbout, 2018; Martínez Pastur et 

al., 2015; Oteros-Rozas et al., 2018) or a tool based on artificial intelligence to automatically associate 

photos with tags (Lee et al., 2019). Other methods rely on coupling the pictures with landscape 

descriptors derived from geographical data such as land-cover maps and computed in the 

neighbourhood of the points of view. In recent studies, such computations have been based on the 

viewshed of each photo (Tenerelli, Püffel, & Luque, 2017; Yoshimura & Hiura, 2017). The viewshed 

analysis may be conducted either from the location of the photos all around the panorama as in 

Yoshimura and Hiura (2017) who mapped the “demand” for aesthetic services by overlapping all the 

viewsheds, or from the location of a virtual point (i.e. the centre of the cells in a grid) as in Langemeyer, 

Calcagni, & Baró (2018). However, an interesting approach is to use the azimuth and focal angle data 

recorded in photos taken with many recent smartphones and cameras to match the viewsheds with 

the space actually visible in the photos. Tenerelli et al. (2017) used this approach to characterise each 

photo by landscape metrics and so define a typology of aesthetic services. Basically, this method is 

helpful for analysing landscape preferences, because it provides more realistic results than the circular 

neighbourhood which represents an isotropic spatial environment only. 
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Whatever way landscape content is defined, most studies devised to identify landscape 

preferences focus on the local density and the presence of geotagged photo hotspots. Through this 

“geographical level” of analysis, the approach consists in comparing locations in terms of their 

landscape or the spatial characteristics likely to explain individual preferences or to make them 

attractive for tourists. The explanatory variables included in such investigations differ with the scale of 

analysis. For example, at country scale, Antoniou et al. (2010) correlate photo density with population 

density only. At a regional scale, Tieskens et al. (2018) explain the local density of photos by combining 

physical landscape attributes, population density, accessibility and infrastructure with place specific 

highlights. A similar approach is taken by Tenerelli et al. (2016) at a local scale, with the inclusion of 

precise spatial amenities such as the proximity to specific viewpoints, geological points of interest or 

points where refreshments are available. 

In other research fields, eye-tracking focus maps have been applied to landscape views in an 

attempt to identify points of interest or landmarks. Recent developments in this area have shown that 

visual attention distribution can be well predicted by saliency maps (Dupont, Ooms, Antrop, & Van 

Eetvelde, 2016). These maps exhibit the salient features likely to attract attention, using specific 

characteristics of colour, orientation or intensity in contrast with the surroundings (Itti, Koch, & Niebur, 

1998). The capacity of salience maps to predict potential landmarks in the case of landscape photos 

shows that the visual space of a given landscape cannot be considered as a uniform scene, but rather 

as a heterogeneous space in which certain features are striking while others go unnoticed. 

Between the geographical level with its focus on photo density and the identification of 

landmarks using eye-tracking focus maps, we hypothesise there is an intermediate level that should 

be relevant for identifying landscape preferences. We refer to it here as the “panorama level”. We 

assume that when confronted with a panorama, some sets of landscape features may capture the 

attention in terms of aesthetics, leading viewers to look in specific directions from among the 360° of 

the potential view. This selection of preferential directions in a panorama should not result from the 

same process as the visual attention of an observer confronted with a fixed view, because human 

binocular vision is limited to a focal angle of around 45° (but varies with perception criteria) and looking 

at a panorama from a given point of view involves moving the viewing apparatus. In this case, we 

hypothesise that the choice of a specific direction when taking a photo of a scenic view may reveal 

landscape preferences. That being so, the geotagged photos posted on sharing platforms are likely to 

be informative as to landscape preferences if they are considered as a directional choice from among 

other possibilities in the panorama. 

In this paper, we propose to test the relevance of the panorama level for identifying landscape 

preferences, when analysing a set of geotagged photos. Our research question is: “What is the 

specificity of the landscape features visible in the pictures of photo-sharing platforms as opposed to 

other features potentially visible from the same points?”. To investigate this, we extracted 

photographs taken in the south of the Canton of Vaud (Switzerland) from Flickr. These photos were 

associated with landscape attributes derived from a digital model of visibility.  
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2. Material and methods 

2.1. The study area 

The study was conducted in the Lake Geneva area, covering the south of the Canton of Vaud in 

the French-speaking part of Switzerland and the northern part of the department of Haute-Savoie, 

France. This area is mainly occupied by the western fringe of the Alps, where altitudes range from 

about 300 m to 3200 m. The centre of the area is occupied by Lake Geneva through which the River 

Rhône flows from East to West (Fig. 1). The north shore of the lake is composed of agricultural 

landscapes around the urban agglomeration of Lausanne (about 400,000 inhabitants). The limestone 

foothills of the Alps rise from the eastern and southern shores of the lake, which occupies a deep 

furrow dug by the glacial valley of the Rhône. These mountains are mainly covered by forest, grassland 

and rock, with small glaciers in the highest areas. 

 

Figure 1. The study area. 

2.2. Geotagged photos and geographic data 

A set of geotagged photos was acquired from the API of the Flickr platform (www.flickr.com). As 

a first step, all photos posted in 2015 (to limit the volume of data for a first test), located in the Swiss 

part of the study area and with geolocation and azimuth data were downloaded. Each photo was 

considered as a point entity associated with the following attributes: geographical coordinates of the 

point of view, azimuth (°), focal angle (°). As the focal angle of the lens used depends on the size of the 

sensor, this attribute was harmonised to correspond to the focal angle of a 35 mm sensor (i.e. full 

format in photography). 
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Several selection criteria were then applied to define the dataset to be analysed. The outdoor 

views were selected by using a layer describing the building footprint (www.openstreetmap.ch) and 

by removing photos taken from indoors. This procedure may lead to exclude pictures taken through a 

window or from a balcony, but these photos are not interesting in our case since their viewing angle 

was not chosen within a potential panorama. 

The investigation of azimuth values revealed an abnormal frequency of photos taken facing 

northwards (i.e. azimuth = 0°), leading to their removal from the sample. To limit edge effect in the 

visibility analysis, we also removed photos located within 500 m of the edge of the study area. The 

final step was to select the photos with a visual extent of at least 500 m (using the metric DISTmax, see 

section 2.3), to avoid very confined landscapes that could not readily be included in a digital modelling 

approach (see section 2.3). In addition, this last rule avoids the photos taken outside buildings but 

showing no landscape (e.g. picture inside a car). Starting from the initial set of 3065 photos, the 

selection procedure led us to retain 1313 photos (about 43%).  

As the study area straddled the border between Switzerland and France, two maps were 

generated by combining data from both countries. A digital elevation model (DEM) was compiled using 

altitudinal data from the Swiss and French topographic agencies (Swisstopo and Institut Géographique 

National respectively) and resampled at the spatial resolution of 25 m. Similarly, a land-cover map was 

created by combining data from Swisstopo and BDTopo (Institut Géographique National) at the same 

spatial resolution. This map comprised nine classes: building areas, main transport infrastructures, 

open spaces (i.e. arable and grassland), vineyards and orchards, forests, wetlands, rocks, glaciers, and 

water bodies. 

 

2.3. Characterisation of the photos by their landscape content 

We used a digital modelling approach to characterise the landscape content of each photo. For 

a given photo, this consisted in (1) positioning a virtual observer at the pixel corresponding to the point 

of view using the geographic coordinates recorded in the file, (2) applying the visibility rays method to 

identify the visible pixels from the point of view (Fisher, 1996) and (3) computing visibility metrics for 

characterising landscape features. We used the open access PixScape software (Sahraoui, Vuidel, Joly, 

& Foltête, 2018; https://sourcesup.renater.fr/www/pixscape/fr.html) to carry out these three steps 

and to benefit from specific functions. PixScape provides visibility metrics based on the tangential 

approach (i.e. assessment of visual weights in an angular surface unit) reproducing the view as it is 

perceived by a potential observer. This approach is more relevant than the planimetric approach (i.e. 

assessment of visual weights in number of visible pixels) commonly implemented in GIS software 

(Figure 2). Furthermore, the use of the tangential approach provides specific metrics of scene 

configuration that will be presented below.  

 

http://www.openstreetmap.ch/
https://sourcesup.renater.fr/www/pixscape/fr.html
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Figure 2. Tangential and planimetric approaches for modelling visibility from digital data 

 

Given the relatively low spatial resolution, we ignored the potential presence of visual masks 

formed by buildings or woodland and requiring a digital elevation surface. Consequently, the visibility 

modelling was applied from the DEM only, the land-cover map being used to compute the visibility 

metrics defined at the land-cover class level. 

Twenty-four visibility metrics were considered (Tab 1.). A first group (noted W) concerned 

landscape composition, including the visual weight of every land-cover class and the normalised 

Shannon diversity index for measuring diversity. The visual weight of a given class corresponds to the 

sum of the angular surface of each pixel of this class. The Shannon index was applied to the relative 

weights of the set of classes. A second group (noted P) also dealt with composition but expressed in 

terms of presence/absence by transforming the visual weights into binary variables. We assumed that 

the visual weight and the presence of a given class would provide complementary information, if for 

example the presence of a landscape element (e.g. set of buildings) increases the aesthetic value of a 

view, but decreases this value when the visual weight becomes too large. A third group was applied to 

the geometry of the view, including the degree of openness (average and maximum distances) and 

three metrics for describing the texture of the visual scene: the Shannon index applied to the 

distribution of distances of the visibility rays, expressing the statistical variation of the view depth, the 

“depthline” to characterise the spatial variation of the view depth, and the “skyline” to measure the 

more or less jagged aspect of the horizon (a low value meaning a flat horizon). For the computational 

details of all these metrics, see Sahraoui et al. (2018). 
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Tab.1. Visibility metrics computed from each point of view 

 

2.4. Method for identifying preferences at the panorama level 

As our aim was to test the distinctiveness of landscape features in each photo compared with 

features visible when focusing in another direction, the same set of visibility metrics was computed 

twice for each Flickr photo: once using the azimuth and the focal aperture recorded in the photo for 

representing “the photographed landscape”, and once using the same focal aperture but with the 

opposite azimuth, to represent the “antipodal landscape” (Fig. 3). 

 

Type of 

metric 

Code Meaning 

Compos

ition (visual 

weight) 

W-built Visual weight of built areas 

W-infra Visual weight of main transport infrastructures 

W-open Visual weight of open spaces 

W-

vineyards 

Visual weight of vineyards 

W-forests Visual weight of forests 

W-

wetlands 

Visual weight of wetlands 

W-rocks Visual weight of rocks 

W-glaciers Visual weight of glaciers 

W-water Visual weight of water bodies 

Compo 

diversity 

Normalised Shannon index of the landscape composition 

Compos

ition 

(presence/ 

absence) 

P-built Presence/absence of built areas 

P-infra Presence/absence of main transport infrastructures 

P-open Presence/absence of open spaces 

P-vineyards Presence/absence of vineyards 

P-forests Presence/absence of forests 

P-wetlands Presence/absence of wetlands 

P-rocks Presence/absence of rocks 

P-glaciers Presence/absence of glaciers 

P-water Presence/absence of water bodies 

Geomet

ry 

DISTavg Average length of the visibility rays 

DISTmax Maximum length of the visibility rays 

Skyline Skyline, for measuring the shape of horizon  

Depth 

diversity 

Shannon index applied to the distances (i.e. length of 

visibility rays) 

Depthline Depthline, characterising the spatial variation of the view 

depth 
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Figure 3. Principle of the panorama level of landscape preference analysis 

 

A first approach for investigating the difference between these two sets of visual landscapes 

consisted in comparing the way they are transcribed in space. To do this, we aggregated all the 

viewsheds corresponding to the photos so as to ascertain the spatial signature of the photographed 

landscape. Then the same operation was applied to the viewsheds corresponding to the antipodal 

landscape. It is worth noting that the pixels comprising these viewsheds were weighted by their visual 

impact in the tangential view, i.e. by an angular surface rather than by a uniform weight. Finally, by 

subtracting the value obtained for the antipodal landscape from that of the photographed landscape, 

we drew up a map on which positive values indicate the recurrent preferential locations in contrast 

with the negative values.   

A second approach aimed at the specific landscape features of the geotagged photos was based 

on a statistical analysis, in which each photo (i.e. the photographed landscape) was considered as a 

choice made by the photographer, as opposed to the antipodal landscape, which was considered as 

an alternative to that choice. This led us to implement discrete choice modelling, a statistical method 

similar to logistic regression and widely used in research on transportation (Ben-Akiva & Lerman, 1985; 

Ben-Akiva & Bierlaire, 1999). In this approach, the attributes of choice were the visibility metrics 

computed using the azimuth recorded in the photo, while the attributes of the alternative were the 

same metrics computed in the opposing direction. It is worth noting that in some cases, photos 

recorded in Flickr may cover several portions of the panorama visible from the same point of view, 

potentially providing statistical noise. However, we assumed that, given the large amount of data, 

statistical trends might emerge to distinguish the characteristics of photographed landscapes as 

opposed to those of the antipodal landscapes. Because we focused on the attributes of alternatives 

and not on the individual characteristics of photographers, we used a conditional logit model (CLM) 

(Ben-Akiva & Bierlaire, 1999; McFadden, 1973). Since our approach was to understand the choice 

criteria rather than to construct a predictive model, and given the moderate number of variables, they 

were selected in a stepwise process maximising the number of significant variables. This process was 

applied in reverse, by progressively pruning the model initially including all variables. It should be noted 

that we also tested the procedure of variable selection minimising the Akaïke Information Criterion 

(Hosmer & Lemeshow, 2000), but this provided models with no significant variables. The CLMs were 

computed with CrimeStat IV (http://www.nij.gov/CrimeStat), a freeware application for analysing 

point datasets (Levine, 2015). 

http://www.nij.gov/CrimeStat
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2.5. Extrapolation from the global statistical model to identify scenic views 

When considering the Flickr photos as a reliable signature of aesthetically valued landscapes, 

the outcome of the CLM explaining the choice of the photographed landscape versus the antipodal 

landscape was used to evaluate the potential of scenic views from the motorways in the study area, 

as if, for instance, we were seeking for implementing new rest areas with attractive views. To illustrate 

this application, we defined a set of points located every 2 km along the motorways, as if a scenic 

motorway service area were being planned. We first considered the mean of the focal angle calculated 

from the set of Flickr photos in the area. For each point, we used this focal angle to compute visibility 

metrics by moving the azimuth successively through 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300 

and 360°. The application of the CLM coefficients to the metrics calculated for the pairs of azimuths 

separated by 180° (i.e., including the direction of choice and that of its alternative) led us to assign a 

scenic score to each azimuth, and finally to represent those scores by geolocated vectors on a map. 

For a given point, large vectors contrasting with small vectors in the opposite direction indicate the 

direction for which a strong preference may occur. In the event of a small variation in the size of the 

vectors, there is no clear preference for any specific direction. 

2.6. Local variations of landscape preferences 

The analysis of all the Flickr photos in the study area provides global results that may mask local 

variations due to specific landscape configurations. To investigate this effect, we applied the statistical 

approach based on CLM performed on subsets of photos relating to the same site. The identification 

of dense clusters of photos taken from specific sites led us to convert the set of points into a density 

map using the kernel density estimation method (Bailey & Gatrell, 1995; Gatrell, Bailey, Diggle, & 

Rowlingson, 1994). Since the choice of the bandwidth used in applying this method greatly impacts the 

results, we applied Ripley’s K function to the set of points made up of the Flickr photos so as to 

determine the most relevant spatial scale (Ripley, 1977). To compare the observed pattern with a 

Poisson process (i.e. a random distribution), we considered the L-function derived from Ripley’s K 

(Bailey & Gatrell, 1995), for which values above the higher confidence envelope indicate significant 

clustering patterns, and the difference between the observed and the expected functions. This method 

was applied for distances from 100 m to 10 km at 100 m increments. Once the bandwidth had been 

chosen, the density map was thresholded to identify the most characteristic hotspots of Flickr photos, 

resulting in the definition of subsets of photos. The CLM applied to the whole set of photos was 

conducted in a similar way for each subset. 

In this local approach, we assumed that the relevance of the analyses depends in part on the 

more or less marked concentration in a specific direction. In a given city, for example, photographers 

may take numerous photos in all directions if many buildings are of architectural or historic interest 

(in this case, the local approach would be less relevant), while at another site they may concentrate 

on a particular monument (in this case, the local approach would be more relevant). To investigate 

this assumption, we calculated the angular standard deviation of the azimuths (Fisher, 1993) for the 

set of photos of each hotspot. This angular statistic quantifies the more or less concentration of the 

viewing angles around the average azimuth. It was expected to be lower when the explanatory power 

of the local model was higher. 
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3. Results 

3.1. Spatial analysis of landscape preferences 

The values of the aggregated viewsheds corresponding to the photographed landscape and to 

the antipodal landscape were subtracted after being converted to logarithms because of the highly 

contrasted values. The resulting map (Fig. 4) shows positive and negative values mixing roughly, but a 

number of trends emerge from the details in the distribution. The most significant feature is the 

contrast along the northern shore of Lake Geneva, where positives values are mainly located along the 

shoreline, on the lake and on its southern shore, rather than on the slope overlooking the lake. In the 

east of the area, a corridor of visual preference takes shape, encompassing both the lake and its 

eastern edge. Elsewhere, the distribution is less readable but we can observe the directional 

preferences from several viewpoints.  

 

Figure 4. Spatial preferences in the Flickr photos  

 

3.2. Thematic analysis of landscape preferences 

The 1313 photos were associated with two sets of visibility metrics, representing the 

photographed landscape and the antipodal landscape, resulting in a dataset of 2626 statistical 

individuals. Because of their decreasing and asymmetric distribution, the variables of visual weight 
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were transformed by a logarithm function. After this transformation, only W-built, W-open and W-

forests had a suitable distribution, the other variables still had a highly asymmetric distribution. 

The CLM applied to this dataset led to a model with an overall explanatory power (given by the 

adjusted pseudo McFadden R2) of 0.21. The CLM applied to this dataset led to the selection of six 

variables (Tab. 2), comprising one variable of visual weight (W-forests), two variables of geometry 

(DISTavg and Depthline) and three variables of presence (P-built, P-open and P-forests). Given the level 

of significance, the most important variables are DISTavg, P-forests and P-open. All variables have a 

positive influence, except for W-forests. 

 

Variable Coefficient Standard 
error 

t-
value 

p-
value 

Odds 
ratio 

W-built      
W-open      

W-

forests 

-0.301 0.107 -
2.799 

0.01 2.617 

Compo 

diversity 

     

P-built 0.962 0.343 2.809 0.01 2.617 
P-

infrastructures 

     

P-open 1.533 0.379 4.048 0.001 4.636 

P-

vineyards 

     

P-forests 1.545 0.286 5.396 0.001 4.690 

P-

wetlands 

     

P-rocks      

P-glaciers      

P-water      

DISTavg 0.686 0.098 7.010 0.001 1.986 
Skyline      
Depth 

diversity 
     

Depthline 0.542 0.241 -
2.255 

0.05 1.719 

Tab. 2. Results of the CLM 

 

3.3. Extrapolation of the statistical model to the views from motorways 

The coefficients of the logistic regression were applied to the metrics computed from the sample 

of points along the motorways in the 12 directions of the circular view. On the map showing the level 

of matching of the landscape with the photos from Flickr according to the direction (Fig. 5), the 

“cobwebs” (i.e. the 12 vectors drawn from a given point) take on different shapes in different locations. 

Along the shores of Lake Geneva between Nyon and Lausanne, the vectors tend to be larger towards 

the lake, although from certain spots attractive landscapes are to be found in other directions. Around 

the agglomeration of Lausanne, the views towards the lake prove to be more eye-catching, but here 

again, the preferred direction may vary locally. The attractiveness of the view in the direction of Lake 

Geneva becomes more pronounced where the motorway overlooks the eastern part of the lake. When 

the motorway enters the Rhône valley in the south-eastern part of the area, the cobwebs become 

more circular, meaning the attractive views do not lie in any specific direction. 

 



 

 

13 

 

 

Figure 5. “Cobwebs” along motorways showing the preferred directions of view resulting from the analysis of Flickr 
photos. 

 

3.4. Local analysis of landscape preferences 

The application of Ripley’s K to the set of points shaped by the photos provided a curve of 

observed values lying well above the curve of expected values (Fig. 6a), indicating a clustering pattern 

at all spatial scales. Several peaks on the curve of the differences between observed and expected 

values (Fig. 6b) indicate the most characteristic scales of clustering. To focus on precise sites, we chose 

the first peak corresponding to the distance of 600 m to define the bandwidth which was then used in 

the local density calculation.  
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Figure 6. Curves of Ripley’s K from 100 m to 10 km. (a) Observed and expected values with 95% confidence envelope. 
(b) Difference between observed and expected values. The dashed line indicates the shortest distance of clustering 
chosen for defining hotspots. 

The computation of local density of photos yielded a hotspot map (Fig. 7). Among the few 

locations exhibiting a high density, we chose eight sites with at least 20 photos and sufficiently far from 

the boundary of the study area to avoid any edge effect: Nyon, Prangins, Buchillon and Ouchy on the 

shores of Lake Geneva; Lausanne centre and Lausanne Chilly in the main urban agglomeration; 

Boussens on the plateau overlooking the lake; Saint-Maurice in the upper Rhône valley. 
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Figure 7. Selection of eight sites among the Flickr photo hotspots. The digital elevation model is visible where the 
density is zero. The white lines indicate the shores of Lake Geneva and the River Rhône. 

The results of the CLM applied to the subsets of photos corresponding to the eight hotspots 

show great variability in the selected variables (Tab. 3). First, the CLM yields no significant result in the 

case of Boussens and a very low pseudo R2 in the case of Buchillon and Lausanne centre. For the other 

five hotspots, DISTmax is always selected and has a positive influence, as does the variable DISTavg in 

the global model. The other visibility metrics exert a variable influence. 
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 Hotspots 

Nyon Prangins Buchillon Ouchy Lausanne 
centre 

Lausanne 
Chailly 

Boussens Saint-
Maurice 

Number of 
photos 

108 47 134 38 20 182 49 65 

Angular 
standard 
deviation (°) 

70 72 80 68 70 65 74 69 

Adjusted Mc 
Fadden 
pseudo r2 

0.36 0.34 
 

0.01 0.32 0.09 0.16 0.0 0.28 

W-built         
W-open   -4.318*   -3.701*  1.014* 

W-forests         

Compo 

diversity 

     0.758*  -0.277* 

P-built         
P-

infrastructures 

 3.614*       

P-open 2.783*        

P-vineyards  -2.739*       

P-forests         

P-wetlands      -0.816   

P-rocks -1.843** -7.282*       

P-glaciers      1.667**   

P-water -1.283* -7.004*    1.254*   

DISTavg         
DISTmax 1.642*** 7.806*  1.111***  1.431**  2.903* 
Skyline        1.872** 
Depth 
diversity 

1.944 -13.441*   10.633*   6.015** 

Depthline         

Tab. 3. Angular characteristics and coefficients resulting from the CLM of the eight Flickr photo hotspots. Only the 
variables with a p value less than or equal to 0.1 are listed. The levels of significance are represented as follows: 
p<0.001 ***, p<0.01 **, p<0.05 *, p<0.1 no sign. 

 

The angular standard deviation ranges around 70°. The linear correlation between this criterion 

and the pseudo R2 is negative (-0.56) but not significant given the small number of cases. However, it 

is noticeable that an angular variation of more than 72° leads to no significant models. 

 

4. Discussion 

Overview 

From a set of landscape photos posted on the Flickr platform, we have tested what we term a 

“panorama level” for analysing landscape preferences. This approach is original in that it considers that 

globally, the aesthetic value of landscape is not distributed in an isotropic manner around the locations 

of interest, but may vary in specific directions. Although some places offer attractive views around the 

entire panorama, many of what are considered aesthetic landscapes take in only limited portions of 

the total view. The difference between the aggregated viewsheds as well as the significant results 

obtained from CLM confirm that most of the time, the scenic views captured by photos result from a 

choice among all possible directions, and show that the panorama level of analysis is relevant. 
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Such an approach is complementary to the analysis explaining the presence of photo hotspots, 

which is referred to here as the geographical level. When investigating landscape preferences, the 

panorama level approach has the advantage of being independent of determinants of place (or 

touristic) attractiveness. By directly focusing on the views recorded from points of interest, the analysis 

deals with landscape features without involving criteria such as road access, population density, tourist 

facilities or other spatial amenities, as in Tenerelli et al. (2016). All these criteria are worth studying, 

but may be related to very different (and often unknown) spatial scales, whereas the panorama level 

approach is restricted to the single scale of the panorama.  

By opposing the characteristics of the landscape photographed and those of the antipodal 

landscape (i.e. the view at 180°) by discrete choice modelling, the specificity of this study is that it 

considers the preference criteria in a relative manner, depending on the local panorama. In other 

words, the analysis looks to answer the question: “What are the landscape features explaining the 

preference for one view as opposed to another possible view from the same viewpoint”. It is worth 

noting that, from the same dataset, the application of a standard logistic regression (i.e. opposing 

globally all captured landscapes and all antipodal landscapes) would lead to each view being 

considered an “isolated case” and would not answer our question. 

It could be argued that the binary opposition between two views is simplistic because a 360° 

panorama offers several possible views, for example six views with a focal angle of 60°. The present 

study is an initial test of the approach, and the analysis could be extended to the whole panorama 

using multinomial discrete choice modelling. However, the focal angle varies from one photo to 

another (in our case between 12° and 64°) and the presence of wide-angle photos could limit the 

number of alternative views without any overlap. Another perspective would be to restrict the 

opposition between the photographed landscape and the other potential views to the nearby 

directions (e.g., at the left and at the right), to focus on landscape preferences without opposing very 

different topographical settings. 

4.2. What are the thematic findings resulting from the panorama approach applied to 

Flickr photos? 

Thematically, our results are consistent with previous findings as to landscape preferences. In 

the global model as well as in several local models applied to hotspots, the most significant metric 

(DISTavg or DISTmax) expresses the extent of the view. Its positive influence shows that the 

photographers posting their photos on Flickr train their lens preferentially on open landscapes. This 

brings us back to a character already recognised as a factor of visual appeal, in different contexts and 

using different methods (Coeterier, 1996; Hur, Nasar, & Chun, 2010; Rogge, Nevens, & Gulinck, 2007; 

Sahraoui, Clauzel, & Foltête, 2016, Sevenant & Antrop, 2009; Youssoufi & Foltête, 2013), the visual 

scale having been defined as one of the nine key characters of any landscape (Tveit, Ode, & Fry., 2006) 

according to Appleton’s prospect-refuge theory (Appleton, 1975). In the case of geotagged photos, our 

result can be likened to the study by Tenerelli et al. (2016) who find a correlation between the residuals 

of the model explaining the photo density and the extent of the panorama. 

The presence of forests proves to be a positive criterion too. This is an expected outcome since 

many previous studies have reported the visual attractiveness of greenery in visual preference 

analyses based on photos (Sahraoui et al., 2016; Tieskens et al., 2018; Van Berkel & Verburg, 2014; 

Yoshimura & Hiura, 2017), residential satisfaction analysis (Ellis, Lee, & Kweon, 2006; Youssoufi & 
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Foltête, 2013) and landscape econometrics (Cavailhès et al., 2009). Furthermore, the view of forests 

can be related to the key criterion of natural landscapes (Tveit et al., 2006). However, in our global 

model (Tab. 2), the positive effect of the presence of forest combines with the negative influence of 

its visual weight. This means that the amount of forest cannot be used as an indicator of greenery 

invariably explaining the preferences in a positive manner. The implication is that the most attractive 

views are composed of a set of landscape features without any single one being prevalent as with a 

totally forested landscape. Such finding fits with previous studies applied to the Swiss Alps (Hunziker, 

1995; Soliva, Bolliger, & Hunziker, 2010), in which forests were positively perceived when being 

included in patchworks rather than covering the major part of the view. We may establish a link with 

the preference for isolated and scattered trees outlined by Sherren et al. (2011) in a different 

geographical context as well. This is also consistent with the positive impact of spatial variation of the 

view depth, which is an indicator related to landscape complexity, another key character identified by 

Tveit et al. (2006) and already reported in previous studies (Dramstad, Sundli Tveit, Fjellstad, & Fry, 

2006). 

The impact of water bodies does not feature among our main thematic results, although it was 

expected to be positive in the choice of landscapes photographed. Indeed many studies report this 

positive effect (e.g. Saharoui et al., 2016; Tieskens et al., 2018). Furthermore, as a large expanse of 

water located on the border of the alpine massif, it was expected that Lake Geneva would be a very 

attractive feature especially as a study designed to value landscape amenities has outlined the role of 

views of lakes in Switzerland (Schläpfer, Waltert, Segura, & Kienast, 2015). Despite this local specificity, 

water bodies are absent from the global model; they have a positive role in the local model at one site 

only (Lausanne Chailly) and appear to have a negative influence for the sites of Nyon and Prangins. 

This can be explained by the appeal of vineyards in the area (Tab. 3). When investigating the spatial 

dimension of landscape preferences (Fig. 3), it can be seen that Lake Geneva does not feature 

uniformly but is specifically prevalent near Lausanne and at its eastern end near Montreux. This focus 

encompasses the mountains located on the French side and around the Rhône valley, suggesting a 

preference for the visual pattern associating lake and mountains rather than just the lake as an isolated 

feature. This could explain the absence of water bodies in the global model.  

The local models based on hotspots in this study show that the influence of several landscape 

features may vary with location. This emphasises the importance of the local configuration of 

landscape and of “site effects” where some features work in a specific way. For example, while the 

visual weight of buildings often has a negative influence, its positive impact for the site of Lausanne 

Chailly could be explained by a preference for views of Lake Geneva over the town rather than views 

of the more rural hinterland. The local variability of the aesthetic values of landscape is nothing new 

(see for instance the negative appreciation of forests in Van Berkel et al., 2018) and can be associated 

with the outcomes of Tenerelli et al. (2016) who find spatial variations of the explanatory variables in 

their geographically weighted regressions. Although our local models have to be carefully considered 

because of the paucity of photos for some sites, the local variations show that only a few landscape 

features result in absolute preferences and that these preferences are usually related to their 

geographical context. 

In three hotspots (Buchillon, Lausanne centre and Boussens) no significant results were found 

or they had very little explanatory power. In the cases of Buchillon and Boussens, this can be explained 

by the lack of any specific landmarks (the angular standard deviation of azimuths is maximum) and by 
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the fact that Lake Geneva cannot be seen from these places. In the case of Lausanne centre, this is 

probably due to the urban context where attractive views (e.g. architectural features) are to be found 

in very different directions.  

 

4.3. Limitations of the approach 

In spite of significant advantages provided by geotagged data from social networks compared 

with specific surveys, the analysis of geotagged photos has limitations that have been mentioned 

several times. The lack of information about the users of photo-sharing platforms remains a critical 

problem for investigating the connections between preferences and socio-demographic profiles 

(Tenerelli et al., 2016; Tieskens et al., 2018). This is all the more problematic because preference 

analysis becomes more significant when different judgement groups are considered, as in Dramstad 

et al. (2016), Hunziker, Felber, Gehring, & Buchecker (2008), Kalivoda, Vojar, Skřivanová, & Zahradník 

(2014) and Sahraoui et al. (2016). Furthermore, the use of social media could act as a filter by 

attributing greater importance to computer-savvy people and so skewing the analyses. While all these 

limitations are specific to photo-sharing platforms, our approach might be improved by considering all 

pictures taken by the same photographer from a given viewpoint: in this case, the analysis should be 

applied to combinations of photos instead of individual photos. Even so, such an improvement would 

lead to other problems in defining the antipodal landscape of non-adjacent views. 

When combining the geotagged photos with indicators derived from GIS as in the present study, 

the accuracy of spatial data may be a real limitation. In the present case, we used land cover and 

altitudinal data with a low spatial resolution (25 m), that is why the visibility modelling was applied 

without taking potential obstacles into account. Using a higher spatial resolution and including visual 

obstacles would probably improve the relevance of the outcomes in a significant manner. Concerning 

the photos, the localisation of the viewpoint as well as the azimuth of the photo have to be precisely 

recorded if they are to serve as a relevant source of information, knowing that smartphones provide 

orientation data of very variable accuracy (Novakova & Pavlis, 2017). Here, to maintain the quality of 

the analysis, we removed all photos with aberrant values of elevation or with an azimuth recorded as 

0°, meaning a significant proportion of the data was lost. This meant the density of photos was 

comparatively low, apart from in the vicinity of Lake Geneva. Conversely, the western part of the 

spatial preferences map (Fig. 3) shows a sharp distribution due to this low density. However, we can 

assume that technological advances will facilitate the recording of accurate data and that these 

problems will probably be overcome soon, especially because the development of augmented reality 

devices (e.g., Diao & Shih, 2018) involves progress in orientation accuracy.  

 

4.4. Prospects for the modelling approach to visibility 

The use of visibility metrics to create an analytical representation of views is facilitated by user-

friendly tools such as Pixscape (Sahraoui et al., 2018). While most visibility modelling approaches work 

by counting visible pixels, the tangential approach provided by this tool yields more realistic metrics of 

composition and geometry for representing the content of a photo. Moreover, this approach directly 

integrates the role of distance into the visual weighting, unlike the planimetric approach which 

requires the view to be segregated among distance intervals, as in Tenerelli et al. (2016). 
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We certainly could add other metrics to enrich the analysis, for example by characterising the 

visual configuration (e.g. mean patch size in the visible space). A further challenge for making the digital 

modelling of visibility more relevant would be to consider how analytic metrics interact so as to have 

a more integrated description of pictures.  

The data extracted from photo-sharing platforms could also be subject to selection or filtering 

to achieve specific analyses, for example to study the change in landscape preferences over time 

depending on the season or the weather. From this perspective, the use of machine-learning 

algorithms to automatically tag the photos would provide useful support.  

 

5. Conclusion 

In this paper, we have defined a panorama level for analysing landscape preferences, by 

comparing the spatial and thematic signatures of a set of landscape photos posted on a photo-sharing 

platform with those corresponding to the antipodal views from the same viewpoints. The application 

of this approach to a set of Flickr photos led to significant results validating our assumption about 

preferential directions within a panorama. Open landscapes and forests are the most recurrent 

features explaining these choices. Locally, the influence of some landscape attributes may vary with 

the geographical context. However, apart from this site effect, the overall findings of the statistical 

model obtained from the geotagged photos could lead to a better use of visibility modelling in other 

domains (e.g. characterising the potential of attractive landscapes, evaluating the visual quality of 

residential environments), by detecting the focal angles at which observers tend to view the landscape 

rather than scanning all directions and averaging the landscape descriptors. 
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