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Delay-robust stabilization of an n +m hyperbolic PDE-ODE system

Jean Auriol1, Federico Bribiesca-Argomedo2

Abstract— In this paper, we study the problem of stabilizing
a linear ordinary differential equation through a system of an
n+m (hetero-directional) coupled hyperbolic equations in the
actuating path. The method relies on the use of a backstepping
transform to construct a first feedback to tackle in-domain
couplings present in the PDE system and then on a predictive
tracking controller used to stabilize the ODE. The proposed
control law is robust with respect to small delays in the control
signal.

I. INTRODUCTION

In this paper we present a full-state feedback control de-
sign that delay-robustly stabilizes an interconnected system
composed of a general system of coupled hetero-directional
transport equations coupled through their unactuated bound-
ary to a linear Ordinary Differential Equation (ODE). This
delay-robust feedback law is obtained by partially leverag-
ing the backstepping design in [16] and using the explicit
mapping between hyperbolic systems and time-delay systems
proposed in [5]. Using such a time-delay formulation, we
combine a full-state feedback of the Partial Differential
Equation (PDE) states (to stabilize the PDE system) with a
predictor-based tracking controller (that stabilizes the ODE).

The control of interconnected ODEs and hyperbolic PDEs
is an extremely active research topic [8], [10], [16], [27]. This
class of systems naturally appears when modeling delays
(that can be seen as first-order hyperbolic PDEs) in the
actuating and sensing paths of ODEs [8], [9], [17], [29],
[30], [33]. For instance, one can consider the problem of the
attenuation of mechanical vibrations in drilling applications
(see [28] for a review of drilling vibrations models). For such
a system, the hyperbolic PDEs model axial and torsional
stress propagation (with finite speed of propagation) along
the drill string. At the same time, the dynamics of the Bottom
hole Assembly (BHA) can be represented by an ODE. The
problem of delays acting on ODE systems has been tackled
by the Smith predictor [31]. Expressing these delayed terms
as PDE states of transport equations [21], numerous related
problems have been solved (non-constant and uncertain
delays for instance) [7], [9]. To solve the general problem
of stabilizing an ODE with a system of first-order linear
hyperbolic PDEs in the actuator path, a backstepping trans-
formation has been introduced in [16] to map the original
system into a cascade of exponentially stable subsystems.
The major drawback of such a transformation is that it
cancelled (among other terms) all the reflection terms at the
actuated boundary. Although this is mathematically correct,
such an approach completely neglects the impact on stability
of small delays in the feedback loop (delay-robustness).
Regarding the control of linear hyperbolic systems, it has
been shown in recent contributions [2] inspired by [14], [23]
(in which it has been observed that some feedback systems
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possess a zero delay margin under linear state feedback)
that some boundary reflections should not be compensated
by the control action. Thus, a new approach, by leveraging
the backstepping design given in [16] and complementing it
with a predictor-type feedback has been proposed in [3] to
guarantee the delay-robust stabilization of two linear PDEs
coupled with an ODE. The control design and robustness
analysis techniques developed in [2], [3] rely on a refor-
mulation of the PDEs system as a difference equation. If
only two coupled PDEs have been considered in [2], [3],
such a mapping between hyperbolic PDEs and difference
systems has been explicitly given in [5] for an arbitrary
number of PDEs, opening the perspective of adapting on
hyperbolic PDE systems the stability analysis methods for
time delay systems, such as those developed in [13], [18],
[26]. In recent contributions [1], an alternative approach has
been considered to solve the problem of delay robust control
design of an under-actuated PDE-ODE-PDE for which the
PDEs are scalar (the last one being a transport equation).
Finally, in [15], the authors consider the stabilization of an
ODE-PDE-ODE system (neglecting however the robustness
properties of the feedback law).

The main contribution of this paper is the development of
a new state-feedback control design (compared to [16]) for a
PDE-ODE system, that ensures its delay-robust stabilization.
Delay-robustness is guaranteed at the cost of preserving the
proximal reflection terms in the target system. The approach
of [3] cannot be directly extended due to the non-scalar
structure of the problem. In this paper we proceed as follows:
(i) Using two successive backstepping transformations (and
associated feedback operators) adjusted from [5], [11], we
remove most of the in-domain couplings present in the PDEs.
Without these in-domain couplings, we can prove that the
stability properties of the original system are equivalent to
the ones of an ODE coupled with a neutral system. (ii) The
stabilization problem of the ODE-neutral system is reduced
to the one of a linear ODE system with delayed input by
solving a tracking problem. We then design a state-preictor
feedback law. (iii) Finally, we study the delay-robustness
properties of the system by algebraic means. The paper is
organized as follows. In Section II we introduce the model
under considerationand the notations. In Section III, we
present the stabilization result: using successive backstep-
ping transformations, we rewrite the original system as a
distributed delay equation coupled with an ODE.After this
reformulation, we design a stabilizing control law, shown to
have a non-zero delay margin in Section IV. Finally, some
simulation results are presented in Section V.

II. PROBLEM FORMULATION

A. Definitions and notations
In this section we detail the notations used through this

paper. For any integer p > 0, ||·||Rp is the classical euclidean
norm on Rp. We denote L2([0, 1],R) the space of real-
valued square-integrable functions defined on [0, 1] with the



standard L2 norm, i.e., for any f ∈ L2([0, 1],R), ||f ||2L2 =∫ 1

0
f2(x)dx. The set L∞([0, 1],R) denotes the space of

bounded real-valued functions defined on [0, 1] with the
standard L∞ norm, i.e., for any f ∈ L∞([0, 1],R),
||f ||L∞ = supx∈[0,1] |f(x)|. In the following, for (u, v,X) ∈
(L2([0, 1]))n+m × Rp, we define the norm

||(u, v,X)|| =
n∑
i=1

||ui||L2 +

m∑
i=1

||vi||L2 + ||X||Rp . (1)

The set Cp([0, 1]) (with p ∈ N ∪ {∞}) stands for the space
of real-valued functions defined on [0, 1] that are p times
differentiable and whose p-th derivative is continuous. The
set T is defined as

T = {(x, ξ) ∈ [0, 1]2 s.t. ξ ≤ x}. (2)

L∞(T ) stands for the space of real-valued L∞ functions
on T . For any (p, q) ∈ N, we denote Mp×q(R) the set
of matrices with p rows and q columns. The symbol Ip
(or I if no confusion arises) represents the p × p identity
matrix. We use the notation f̂(s) for the Laplace transform
of a function f(t), provided it is well defined. The set A
stands for the convolution Banach algebra of BIBO-stable
generalized functions in the sense of [32]. A function g(·)
belongs to A if it can be expressed as g(t) = gr(t) +∑∞
i=0 giδ(t− ti), where gr ∈ L1(R+,R),

∑
i≥0

|gi| < ∞,

0 = t0 < t1 < . . . and δ(·) is the Dirac distribution. The
associated norm is ‖g‖A = ‖gr‖L1 +

∑
i≥0 |gi|. The set Â

of Laplace transforms of elements in A is also a Banach
algebra with associated norm ‖ĝ‖Â = ‖g‖A .

B. System under consideration
We consider a class of systems consisting of an ODE

coupled to a general linear heterodirectional first-order hy-
perbolic system in the actuation path.

More precisely, we consider systems of the form:

∂tu(t, x) + Λ+∂xu(t, x) = Σ++(x)u+ Σ+−(x)v, (3)
∂tv(t, x)− Λ−∂xv(t, x) = Σ+−(x)u+ Σ−−(x)v, (4)

Ẋ(t) = AX(t) +Bv(t, 0), (5)

evolving in {(t, x) s.t. t > 0, x ∈ [0, 1]}, with the
boundary conditions

u(t, 0) = Qv(t, 0) + CX(t),

v(t, 1) = Ru(t, 1) + V (t), (6)

where X ∈ Rp is the ODE state, and u = (u1 . . . un)T , v =
(v1 . . . vm)T are the PDE states. The matrices Λ+ and Λ−

are diagonal (Λ+ = diag(λi), Λ− = diag(µi)) and their
coefficients satisfy −µm ≤ · · · ≤ −µ1 < 0 < λ1 ≤ · · · ≤
λn. The constant real boundary coupling matrices are defined
by Q = {qij}1≤i≤n,1≤j≤m and R = {ρij}1≤i≤m,1≤j≤n.
The spatially-varying inside domain couplings matrices are
defined as follows

Σ
++

(x) = {σ++
ij (x)}1≤i,j≤n Σ

+−
(x) = {σ+−

ij (x)}1≤i≤n,1≤j≤m
Σ
−+

(x) = {σ−+
ij (x)}1≤i≤m,1≤j≤n Σ

−−
(x) = {σ−−ij (x)}1≤i,j≤m,

their coefficients are assumed to belong in C0([0, 1],R).
We assume that the diagonal terms of the matrices Σ++

and Σ−− are equal to zero (such coupling terms can
be removed using a change of coordinates, see [12] for
details). The matrices A,B and C respectively belong

to Mp×p(R), Mp×m(R) and Mn×p(R) The initial con-
ditions of the state (u, v) are denoted u0 and v0 and
are assumed to respectively belong to (L2([0, 1],R))n

and (L2([0, 1],R))m. The initial condition of the ODE (5)
is denoted X0. The function V is an input function (control
law) that has values in Rm. The resulting system (3)-(6)
is well-posed [6, Theorem A.6, page 254]. Remark that this
system naturally features several couplings that can be source
of instabilities. Finally, we denote τ = 1

λ1
+ 1

µ1
the sum of

the largest transport times in each direction.

C. Control problem

Let us consider the two following assumptions
Assumption 1: The pair (A,B) is stabilizable, i.e. there

exists a matrix K such that A+BK is Hurwitz.
Assumption 2: The system defined for all i ∈ [1,m] by

zi(t) =
∑

1≤l≤m
1≤k≤n

RikQklzl(t−
1

λk
− 1

µl
). (7)

is exponentially stable
In this paper, we show that if Assumption 1 and Assump-
tion 2 are satisfied, then it is possible to explicitly design
a feedback control law V = K[(u, v,X)] (where K :
(L2[0, 1])2 × Rp → R is a linear operator) that delay-
robustly stabilizes (in the sense of [23]) system (3)-(6), i.e.:

• the state (u, v,X) of the resulting feedback system (3)-
(6) exponentially converges to its zero equilibrium
(stabilization problem), i.e. there exist κ0 ≥ 0 and ν >
0 such that for any initial condition (u0, v0, X0) ∈
(L2[0, 1])2 × Rp

||(u, v,X)|| ≤ κ0e−νt||(u0, v0, X0)||, t ≥ 0. (8)

• the resulting feedback system (3)-(6) is robustly sta-
ble with respect to small delays in the loop (delay-
robustness), i.e. there exists δ? > 0 such that for
any δi(∈ [0, δ?])m, the control law whose components
are defined by (V (t− δi))i still stabilizes (3)-(6).

The first assumption (stabilizability of the ODE subsystem)
is necessary for the stabilizability of the whole system. It
can be shown that violating the second assumption results
in an open-loop transfer function with an infinite number of
poles on the closed right half-plane.Consequently (see [23,
Theorem 1.2]), one cannot find any linear state feedback
law V (·) that delay-robustly stabilizes (3)-(6). Note that if
the delays 1

λk
+ 1

µl
are rationally independent a necessary

and sufficient condition for this assumption to be satisfied is
given by [19, Theorem 6.1] in terms of spectral radius.

III. DESIGN OF THE CONTROL LAW

In this section we derive a control law that guarantees
the stabilization of (3)-(6), following the methodology intro-
duced above. Using two successive backstepping transforma-
tions, we map the original system to a simpler target system
for which local coupling terms Σ·· have been moved to the
boundary. The target system is recast as a neutral system for
which a predictor-based control law is developed.



A. Backstepping transformations

We derive two backstepping transformations to remove the
in-domain coupling terms of (3)-(6). These transforms will
introduce some non-local coupling terms yet keep pointwise
coupling terms, ensuring a non-zero delay margin for the
system.Let us consider the following Volterra transformation
adjusted from the one defined in [5], [11], [20]

α = u−
∫ x

0

(Kuu(x, ξ)u(ξ) +Kuv(x, ξ)v(ξ)) dξ

+ γ0(x)X(t), (9)

β = v−
∫ x

0

(Kvu(x, ξ)u(ξ) +Kvv(x, ξ)v(ξ)) dξ,

+ γ1(x)X(t), (10)

where the kernels Kuu,Kuv,Kvu,Kvv belong to L∞(T )
(where T is introduced in (2)), while γ0 and γ1 are differen-
tiable matrices defined on ([0, 1]). They satisfy the following
set of PDEs

Λ+∂xK
uu + ∂ξK

uuΛ+ = −KuuΣ++(ξ) −KuvΣ−+(ξ), (11)

Λ+∂xK
uv − ∂ξK

uvΛ− = −KuuΣ+−(ξ) −KuvΣ−−(ξ), (12)

Λ−∂xK
vu − ∂ξK

vuΛ+ = KvuΣ++(ξ) +KvvΣ−+(ξ), (13)

Λ−∂xK
vv + ∂ξK

vvΛ− = KvuΣ+−(ξ) +KvvΣ−−(ξ), (14)

and ODEs

Λ+γ′0(x) = −γ0(x)A+Kuu(x, 0)Λ+C, (15)
Λ−γ′1(x) = γ1(x)A−Kvu(x, 0)Λ+C, (16)

with the boundary conditions

Σ++(x)− Λ+Kuu(x, x) +Kuu(x, x)Λ+ = 0, (17)
Σ+−(x)− Λ+Kuv(x, x)−Kuv(x, x)Λ− = 0, (18)
Σ−+(x) + Λ−Kvu(x, x) +Kvu(x, x)Λ+ = 0, (19)
Σ−−(x) + Λ−Kvv(x, x)−Kvv(x, x)Λ− = 0, (20)
(Kvv(x, 0)Λ−)ij = (Kvu(x, 0)Λ+Q− γ1(x)B)ij (21)
γ0(0) = 0, γ1(0) = 0, (22)

where in equation (21), we have 1 ≤ j ≤ i ≤ m. To ensure
well-posedness of the kernel equations, we add the following
artificial boundary conditions for Kuu

ij (n ≥ i > j ≥ 1)
on ξ = 0: Kuu

ij (x, 0) = kij(x) ∈ C1([0, 1]). We have the
following lemma

Lemma 1: Consider system (11)-(22). There exists a
unique solution Kuu, Kuv , Kvu and Kvv in L∞(T ) and
differentiable matrices γ0, γ1.

Proof: This result follows, with some minor adap-
tations, from [20] and [16, Theorem 3.2]. The main idea
consists in reinterpreting the ODEs as PDEs evolving in
the triangular domain T with horizontal characteristic lines
(since there is only an evolution along x) and then solving
all the PDEs together. In the case n = m = 1, the proof can
be found in [3]. Due to page limitation, we do not give the
complete proof here.
Since the transformation (9)-(10) is a Volterra transformation,
it is invertible (see e.g. [22]). The corresponding inverse
kernels are denoted Lαα, Lαβ , Lβα, Lββ , γ̄0 and γ̄1. They

have the same regularity.

u = α−
∫ x

0

(
Lαα(x, ξ)α(ξ) + Lαβ(x, ξ)β(ξ)

)
dξ

+ γ̄0(x)X(t), (23)

v = β−
∫ x

0

(
Lβα(x, ξ)α(ξ) + Lββ(x, ξ)β(ξ)

)
dξ,

+ γ̄1(x)X(t). (24)

Defining the L∞ matrix G1(x) = γ0(x)B − Kuu(x, 0)Λ+

Q + Kuv(x, 0)Λ−, and the upper-triangular
matrix G2(x) = −Kvu(x, 0)Λ+Q+Kvv(x, 0)Λ−+γ1(x)B,
the invertible transformation (9)-(10) maps the original
system (3)-(6) to the target system

∂tα(t, x) + Λ+∂xα(t, x) = G1(x)β(t, 0), (25)
∂tβ(t, x)− Λ−∂xβ(t, x) = G2(x)β(t, 0), (26)

Ẋ(t) = AX(t) +Bβ(t, 0), (27)

along with the boundary conditions

α(t, 0) = Qβ(t, 0) + CX(t), (28)
β(t, 1) = Rα(t, 1) + V (t) + (Rγ̄0(1)− γ̄1(1))X(t)

+

∫ 1

0

(
Nα(ξ)α(t, ξ) +Nβ(ξ)β(t, ξ)

)
dξ, (29)

where Nα(ξ) = Lβα(1, ξ) − RLαα(1, ξ) and Nβ(ξ) =
Lββ(1, ξ) − RLαβ(1, ξ). The associated initial condition,
denoted (α0, β0, X0), is related to the initial condition
(u0, v0, X0) by the transformation (9)-(10). Let us now
consider the following transformation which is invertible due
to its cascade structure

α(t, x) = w(t, x), (30)

β(t, x) = z(t, x)−
∫ 1

0

F (x, ξ)z(t, ξ)dξ, (31)

where the kernel F is a strict upper triangular matrix
(i.e Fij(x, ξ) = 0 if i ≥ j) defined on T1 = {(x, ξ) ∈ [0, 1]2}
by the following set of PDEs

Λ−Fx(x, ξ) + Fξ(x, ξ)Λ
− = 0, (32)

along with the boundary conditions

F (x, 0) = G2(x)(Λ−)−1, F (0, ξ) = 0. (33)

It is straightforward to show that this set of PDEs admits
a unique solution F ∈ L∞([0, 1] × [0, 1])m×m whose
components can explicitly be obtained by the method of
characteristics [11]. Differentiating (30)-(31) with respect to
time and space, we obtain that the system (25)-(29) (and
consequently the system (3)-(6)) is equivalent to

∂tw(t, x) + Λ+∂xw(t, x) = G1(x)z(t, 0), (34)
∂tz(t, x)− Λ−∂xz(t, x) = G3(x)z(t, 1), (35)

Ẋ(t) = AX(t) +Bz(t, 0), (36)

with the boundary conditions

w(t, 0) =Qz(t, 0) + CX(t), (37)
z(t, 1) =Rw(t, 1) + V (t) + (Rγ̄0(1)− γ̄1(1))X(t)

+

∫ 1

0

Nα(ξ)w(t, ξ) +Nz(ξ)z(t, ξ)dξ, (38)



where G3 is the unique L∞solution of the equa-
tion G3(x) = F (x, 1)Λ− +

∫ 1

0
F (x, ξ)G3(ξ)dξ (which can

be directly solved due to the triangular structure of F ). and
where Nz(ξ) = F (1, ξ)+Nβ(ξ)−

∫ 1

0
Nβ(ν)F (ν, ξ)dν. Note

that G3 is upper-triangular. For the control design of the
target system (34)-(36) with the boundary conditions (37)-
(38), we decompose the control input V (t) as V (t) =
V 1(t) + V 0(t), where V 1(·) will be designed in the next
sectionsand where V 0(t) is defined by,

V 0(t) =− (Rγ̄0(1)− γ̄1(1))X(t)

−
∫ 1

0

(Nα(ξ)w(t, ξ) +Nz(ξ)z(t, ξ))dξ, (39)

so that (38) rewrites z(t, 1) = Rw(t, 1)+V 0(t). Remark that,
due to the invertibility of the backstepping transformations
(9)-(10) and (30)-(31), V 0(t) can be expressed in terms
of u, v and X .

B. A neutral system satisfied by z(t, 1)

Using the specific structure of the target system (34)-(38),
it is possible to express the state z(t, 1) as the solution of a
neutral system. We have the following theorem.

Theorem 1: There exists G4(·) an L∞([0, τ ]) function
such that for all 1 ≤ j ≤ m and all 1 ≤ i ≤ n and all t ≥ τ

zj(t, x) = zj(t−
1− x
µj

, 1) +

m∑
k=1

∫ 1−x
µj

0

(G3)jk(x+ µjs)

· zk(t− s, 1)ds, (40)

wi(t, x) =

m∑
k=1

(Q)ikzk(t− x

λi
− 1

µk
, 1) +

p∑
k=1

CikXk(t−

x

λi
) +

m∑
l=1

∫ τ

0

(G4)il(x, η)zl(t− η, 1)dη. (41)

Consequently, combining this equation with (38), there exists
m ×m L∞([0, τ ])-functions denoted Glj(·) (1 ≤ j, l ≤ m)
such that for all t ≥ τ , for all 1 ≤ i ≤ m we have

zi(t, 1) = V 1
i (t) +

n∑
k=1

m∑
l=1

RikQklzl(t−
1

λk
− 1

µl
, 1)+

m∑
l=1

∫ τ

0

Gli(s)zl(t− s)ds+

n,p∑
k,l=1

RikCklXl(t−
1

λk
) (42)

Proof: The proof follows the same steps as the ones
of [5, Theorem 4]. It relies on the method of characteristics.
It is not given here, due to the page limitation.
In the following we decompose the control law V 1(t) as
V 1(t) = VBS(t)+VODE(t) where VBS is defined for all 1 ≤
i ≤ m by

(VBS)i(t) = −
n∑
k=1

p∑
l=1

RikCklXl(t−
1

λk
)

−
∫ τ

0

Gli(s)zl(t− s)ds, (43)

while VODE(·) has to be designed for the stabilization of
the ODE dynamics. Remark that VBS can be expressed
as delayed values of u, v and X . With this control law,
equation (42) rewrites

zi(t, 1) =

n∑
k=1

m∑
l=1

RikQklzl(t−
1

λk
− 1

µl
, 1) + VODE(t). (44)

As the principal part of system (44) generates an exponen-
tially stable semigroup (due to Assumption 2), the control
law VBS would guarantee the stabilization of z(t, 1) in the
absence of the ODE. The objective now is to design VODE
such that the ODE state also converges to zero. If such a
stabilizing control law only depends on X(·), then once
the ODE has been stabilized, we are brought to the pre-
vious situation and have the convergence of z(t, 1) to zero,
and consequently of the system (w, z), due to the cascade
structure of system (34)-(38) (and using the invertibility
of the backstepping transformations, the stability of the
system (u, v)).

Remark 1: Contrary to [16] ,we do not cancel the princi-
pal part

∑n
k=1

∑m
l=1RikQklzl(t−

1
λk
− 1
µl
, 1) in the control

law to guarantee the existence of some delay-margins (see [2]
for details). However, as it is done in [5, Theorem 5], we
could cancel a small part of these reflection terms to improve
the convergence rate.

C. A tracking problem solved by a predictor

To stabilize the ODE (36), we would like to directly
control z(t, 0), and ideally we would like z(t, 0) = KX(t)
(where K is defined in Assumption 1 and is such that A+
BK is Hurwitz). This corresponds to a tracking problem.
Using equation (35) (and the fact that G3 is upper triangular),
we have for all 1 ≤ i ≤ m

zi(t, 0) = zi(t−
1

µi
, 1)

+

m∑
k=i+1

∫ 1
µi

0

(G3)ik(µis)zk(t− s, 1)ds.

This yields

zi(t, 1) = zi(t+
1

µi
, 0)

−
m∑

k=i+1

∫ 1
µi

0

(G3)ik(µis)zk(t+
1

µi
− s, 1)ds, (45)

and using the cascade structure of the integral part, we can
express z(t, 1) as a function of future values of z(·, 0)
which may lead to a non causal problem. Let us denote
1
µ̄ =

∑m
k=1

1
µk

and z̄(t, 0) = z(t+ 1
µ̄ , 0). If instead of track-

ing z(·, 0), we choose to track z̄(·, 0), the problem becomes
causal as equation (45) rewrites zi(t, 1) = z̄i(t− 1

µ̄+ 1
µi
, 0)−∑m

k=i+1

∫ 1
µi

0 (G3)ik(µis)z̄k(t + 1
µi
− 1

µ̄ − s, 1)ds. Thus, if
we want z̄(·, 0) to be equal to an arbitrary function ζ(·), it
immediately implies

zm(t, 1) =ζm(t− 1

µ̄
+

1

µm
), (46)

...

z1(t, 1) =ζ1(t− 1

µ̄
+

1

µ1
)

−
m∑
k=2

∫ 1
µ1

0

(G3)1k(µ1s)zk(t+
1

µ1
− s, 1)ds. (47)

In what follows, the function ζ will be chosen to stabilize the
ODE system. Using equations (46)-(47), it becomes possible



to express the state z(t, 1) as a function of ζ(·). More
precisely, we have the following lemma

Lemma 2: There exist L∞([0, 1
µ̄ ])-functions denoted

H l
j(·) (1 ≤ j, l ≤ m) that only depend on G3 and on ζ,

such that, if for all 1 ≤ i ≤ m we have

zi(t, 1) = χ(t) = ζi(t−
1

µ̄
+

1

µi
)

+

m∑
k=i+1

∫ 1
µ̄

1
µ̄−

∑m
l=k

1
µl

Hik(s)ζk(t− s)ds, (48)

then z̄i(t, 0) = ζi(t) and consequently zi(t, 0) = ζi(t− 1
µ̄ ).

Proof: The proof is straightforward by recursion, the
initialization (i = m+ 1) corresponding to (46).
Let us assume that we have z(t, 0) = ζ(t − 1

µ̄ ). The ODE
system (36) rewrites for t ≥ τ + 1

µ̄

Ẋ(t) = AX(t) +Bζ(t− 1

µ̄
), (49)

which is a finite-dimensional system with a delayed in-
put ζ(·). Different methods [34] can be used to design a
control law that stabilizes equation (49). A classical result
from [24] states that any control law that stabilizes such an
equation is equivalent to a predictor. More precisely, let us
define the function P by

P (t) = K

(
e
A
µ̄X(t) +

∫ t

t− 1
µ̄

eA(t−ν)BP (ν)dν

)
, (50)

It can be verified that if ζ(t) = P (t), then the system Ẋ =
AX + Bζ(t − 1

µ̄ ) is exponentially stable (as in this case
we have ζ(t) = P (t) = KX(t + 1

µ̄ )). Consequently, we
want z(t, 0) to converge to ζ(t− 1

µ̄ ) = P (t− 1
µ̄ ). This gives

us the corresponding value of z(t, 1), using Lemma 2. Let
us define for all 1 ≤ i ≤ m the control law (VODE)i(·) by

(VODE)i(t) =χi(t)

−
n∑
k=1

m∑
l=1

RikQklχl(t−
1

λk
− 1

µl
), (51)

where χi(t) = Pi(t − 1
µ̄ + 1

µi
) +∑m

k=i+1

∫ 1
µ̄
1
µ̄−

∑m
l=i

1
µl

Hik(s)Pk(t − s)ds, where the
function Hik are defined in Lemma 2. We can now
conclude this section with the following theorem.

Theorem 2: The feedback law

V (t) = VODE(t) + VBS(t) + V 0(t), (52)

where VODE VBS and V 0 are respectively defined
by (51), (43) and (39), exponentially stabilizes (in the sense
of equation (8)) the system (3)-(6) to its zero-equilibrium.

Proof: Using the computations done above (and in
particular equation (44)), and denoting e(t) = z(t, 1)−χ(t),
we have for all 1 ≤ i ≤ m

ei(t) =

n∑
k=1

m∑
l=1

RikQkl(el(t−
1

λk
− 1

µl
, 1)).

Thus, due to Assumption 2, this implies the convergence
of the function e to zero and consequently, the conver-
gence of z(t, 1) to χ(t). Using Lemma 2, we obtain the

convergence of z(t, 0) to P (t − 1
µ̄ ). This implies the sta-

bilization of X(t). Furthermore, the state-predictor P (t)
converges to KX(t + µ̄), which implies that P (t) (and
consequently χ(t) and VODE(t)) exponentially converges
to zero. Consequently, due to (44), z(t, 1) exponentially
vanishes. Using (35), this implies that z(t, ·) converges L2-
exponentially to zero. This implies from (34) and the
boundary condition (37), that w(t, )̇ converges also L2-
exponentially to zero. This yields the existence of 0 <
κ0 such that ||(w, z,X)|| ≤ κ0e−νt||(w0, z0, X0)||. Thus,
the control law V (t) ensures the exponential stabilization
of (34)-(38). Due to the invertibility of the backstepping
transformations (9)-(10) and (30)-(31), it is straightforward
to prove the stabilization of (3)-(6).

IV. DELAY-ROBUST STABILIZATION

In this section we prove the delay-robustness of the control
law designed in the previous section. To do so, we show
that the associated characteristic equation has all its zeros
on the left-half plane. Let us consider a vector of positive
delays δ = (δ1 δ2 · · · δm)

T acting on the actuation
input V (·) defined in (52) (each δi acting on the correspond-
ing component of V ). Using equations (40) and (41) and
doing some change of variables (see [5] for details) we have
(
∫ 1

0
Nαw(t, ξ)+Nzz(t, ξ)dξ)i =

∑m
k=1

∫ τ
0

(G5)ik(s)zk(t−
s, 1)ds+

∑p
l=1

∫ τ
0

(GX)il(s)Xl(t− s)ds, where for all 1 ≤
i ≤ m, 1 ≤ k ≤ m and 1 ≤ l ≤ p, the functions (G5)ik
and (GX)il are L∞ functions defined in [0, τ ]. Thus, in
presence of the delayed control law V (·), we now get for
all 1 ≤ i ≤ m and all t ≥ τ + max{δi}, denoting y(t) =
z(t, 1), we have

yi(t) =

n,m∑
k,l=1

RikQklyl(t−
1

λk
− 1

µl
) +

m∑
l=1

∫ τ

0

Gliyl(t− s)ds

+

n∑
k=1

p∑
l=1

RikCklXl(t−
1

λk
) +

p∑
l=1

(Rγ̄0(1) − γ̄1(1))ilXl(t)+

m∑
k=1

∫ τ

0

(G5)ikyk(t− s)ds+

p∑
l=1

∫ τ

0

(GX)il(s)Xl(t− s, 1)ds

−
m∑
l=1

∫ τ

0

Gliyl(t− s− δi)ds−
n,p∑
k,l=1

RikCklXl(t−
1

λk
− δi)

−
p∑
l=1

(Rγ̄0(1) − γ̄1(1))ilXl(t− δi) −
m∑
k=1

∫ τ

0

(G5)ik(s)·

yk(t− s− δi)ds−
p∑
l=1

∫ τ

0

(GX)il(s)Xl(t− s− δi, 1)ds

+ χi(t− δi) −
n∑
k=1

m∑
l=1

RikQklχl(t−
1

λk
− 1

µl
− δi) (53)

Taking the Laplace transfom of (53), we obtain

F (s, δ)(ŷ(s)− χ̂(s)) = (I −∆)(H1(s)X̂(s) +H2(s)χ̂(s)),

where for all 1 ≤ i, j ≤ m, for all 1 ≤ l ≤ p

(F (s, δ))ij = ηji −
n∑
k=1

RikQkje
−( 1

λk
+ 1
µj

)s − (1− e−δis)

(

∫ τ

0

(G5)ij(s)e
−νsdν +

∫ τ

0

Gji (s)e
−νsdν), (54)



(H1(s))il = (

n∑
k=1

RikCkle
− s
λk + (Rγ̄0(1)− γ̄1(1))il

+

∫ τ

0

(GX)il(s)e
−sνdν), (55)

(H2(s))ij = −(ηji −
n∑
k=1

RikQkje
−( 1

λk
+ 1
µj

)s
)

+

∫ τ

0

Gji (s)e
−νsdν +

∫ τ

0

(G5)ij(s)e
−νsdν, (56)

with ∆i,j = ηji e
−δis, where ηji stands for the Kronecker

symbol which is equal to one if i = j, and is equal
to zero otherwise. To obtain the characteristic equation
from (54), we need first to prove F is invertible on the
Right Half Plane (RHP). From [32, Theorem 1], we know
that F (·, δ) ∈ A has a unique inverse in A if and only if
infRe(s)≥0 |det(F (s, δ))| > 0. We have the following lemma
on invertibility of F1(s, δ) in Â (where the Banach algebra
Â is defined in section II-A).

Lemma 3: There exists δ? ∈ (0, τ ] such that

inf
δ∈([0,δ?])m

inf
Re(s)≥0

|det(F (s, δ))| > 0. (57)

Proof: The proof is analogous to the one of [Theorem
9][5] and is a consequence of Assumption 2 and of the fact
that the δi is arbitrarily small.
We now obtain the characteristic equation associated to (54).
We get from (35) thatẑ(t, 0) = M(s)ẑ(t, 1), where M is
the upper-triangular matrix defined for all 1 ≤ i ≤ j ≤
m by (M(s))ij = e

− 1
µi
s
ηji +

∫ 1
µi

0 (G3)ij(µis)e
−sνdν. By

construction (see equation (46)-(47)), we also have χ̂(s) =
M(s)e−

s
µ̄ P̂ (s) where P̂ is the Laplace transform of the

predictor state feedback given in (50), namely P̂ (s) =
K0(s)X̂(s) where

K0(s) =
[
I −K(sI −A)−1(I − e−(sI−A) 1

µ̄ )B
]−1

Ke
A
µ̄ .

Taking the Laplace transform of (36), we obtain for s ∈ C
such that Re(s) ≥ 0

(sI −A−BK0(s)e−
s
µ̄ )X̂(s) = Bẑ(s, 0)

−BK0(s)e−
s
µ̄ X̂(s) = BM(s)(ẑ(s, 1)− χ̂(s))

= BM(s)(F (s, δ))−1(I −∆)(H1(s) +H2(s)M(s)

K0(s)e−
s
µ̄ )X̂(s), (58)

as F is invertible. We are now finally able to prove that
the control law V (t) as defined in (52) delay-robustly sta-
bilizes the system (3)-(6) by proving that the characteristic
equation (58) does not have any root on the RHP.

Theorem 3: The control law V (t) defined in Theorem 2
delay-robustly stabilizes the system (3)-(6). That is, there
exists δ? > 0 such that, for all δi ∈ ([0, δ?])m, the control
law defined for all 1 ≤ i ≤ m by V (t) = (VODE(t −
δi) + VBS(t− δi) + V0(t− δi))i exponentially stabilizes the
system (3)-(6).

Proof: The closed-loop characteristic equation associ-
ated to (58) can be written

p(s) = det(F0(s)− E0(s)(I −∆)H0(s)) = 0, (59)

where

F0(s) =sI −A−BK0(s)e−
s
µ̄ ,

E0(s) = BM(s)(F (s, δ))−1,

H0(s) =(H1(s) +H2(s)M(s)K0(s)e−
s
µ̄ )

The holomorphic function F0(s) has all its roots in the
left-half complex plane as the system Ẋ = AX +
BP (t − 1

µ̄ ) is exponentially stable. As the holomorphic
functions M,H1, H2 and F−1 are bounded in the right-half
complex plane (see Lemma 3 for the boundedness of F−1),
so are E0(s) and H0(s) and the function det(E0(s)(I −
∆)H0(s)). As the holomorphic function F0(s) goes to
infinity for |s| large enough, there exists M2 > 0 such
that ∀s ∈ Ω1 = {s ∈ C, <(s) ≥ 0 and |s| ≥M2}

|det(F0(s)− E0(s)(I −∆)H0(s))| > 0

Let us now consider s ∈ C ∈ Ω2 = {s ∈ C, <(s) ≥
0 and |s| ≤ M2}. By contradiction, assume that there
exists s ∈ C, s 6= 0 and Re(s) ≥ 0, such that p(s) = 0.
There exists η 6= 0 such that F0(s)η = E0(s)(1−∆)H0(s)η.
This yields

η∗F ∗0 (s)F0(s)η = η∗H∗0 (s)(I−∆)∗E∗0 (s)E0(I−∆)H0(s)η,

where ∗ denotes the conjugate transpose. Since F (s) is non
singular in C+, there exists M3 > 0 such that M3 <
η∗F ∗(s)F (s)η. Similarly, H0(s) and E0(s) are bounded
in C+, so that there exists M4 > 0 such that

M3 ≤ η∗H∗0 (I −∆)∗E∗0E0(I −∆)H0η

≤ max
i
m|1− e−δis|2M4.

Construct δr(s) = δ̄
|s| , for some δ̄ > 0 such that eδ̄ < 1 +√

M3

mM4
. It follows that for any δi ≤ δr(s),

|1− e−δs| ≤ eδ̄ − 1 <

√
M3

mM4
. (60)

The function p(s) can only have a finite number of zeros
in Ω2 (isolated zeros theorem). As the quantity δ? =
mins δr(s) is strictly positive, equation (60) holds for any
δi ≤ δ?. This is a contradiction with the previous inequality.
Consequently, there does not exist any s ∈ C+ such that
p(s) = 0. This implies delay-robust stability as the asymp-
totic vertical chain of zeros of p(s) can not be the imaginary
axis (the principal term of p(s) being stable).

V. SIMULATION RESULTS

In this section we illustrate our results with simulations
Let us consider the unstable system (3)-(6) for which the
coefficients are defined by

Λ+ = 1, Λ− =

(
1 0
0 2

)
, Σ++ = 0, Σ+− = (1 1) ,

Σ−+ =

(
0.8
0.8

)
, Σ−− =

(
0 0.5

0.5 0

)
Q = (0.3 0.5) ,

R = (0.5 0.6)
T
, A =

(
0.1 0
0 0.1

)
, B =

(
0.1 0
0.1 0.1

)
,

C = (0.1 0.1) . (61)



The parameters values are chosen such that
• the ODE and the PDE open-loop system are unstable,
• the reflection terms Q and R satisfy Assumption 2.

We consider the norm || · || defined by (1). The initial
condition is chosen as a C1 function. The algorithm we use
is adapted from the one proposed in [4]. Using the method of
characteristics, we write the integral equations associated to
the PDE-system (11)-(22). Finally, the original system (3)-(6)
is simulated using a Godunov’s discretization scheme. The
predictor is adjusted from the one presented in [25]. Figure 1
pictures the ||·||-norm of the state (u, v,X) in open-loop and
using the control law (52) in presence of a 0.05-s delay.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Fig. 1. Evolution of the || · || norm of the system (3)-(6) for the
parameters (61) in presence of a 0.05s delay.

VI. CONCLUDING REMARKS

In this paper, we have developed a delay-robust stabilizing
feedback control law for a system composed of a PDE
coupled with an ODE through its boundary. Our approach
consists of a first backstepping-based feedback and a second
prediction based feedback. This second feedback control is
obtained after solving a tracking problem after reformulation
of the PDE-ODE system as a neutral system. This mixed
strategy is proved to robust to small delays as we preserve the
proximal reflection terms in the target PDE systems used for
the backstepping design. We will consider in future works the
delay-robustness properties of the output-feedback controller.
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[25] S. Mondié and W. Michiels. Finite spectrum assignment of unstable
time-delay systems with a safe implementation. IEEE Transactions
on Automatic Control, 48(12):2207–2212, 2003.

[26] S.-I. Niculescu. On delay-dependent stability under model transforma-
tions of some neutral linear systems. International Journal of Control,
74(6):609–617, 2001.

[27] C. Sagert, F. Di Meglio, M. Krstic, and P. Rouchon. Backstepping
and flatness approaches for stabilization of the stick-slip phenomenon
for drilling. IFAC Proceedings Volumes, 46(2):779–784, 2013.
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