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ABSTRACT Hydrogenerators are strategic assets for power utilities. Their reliability and availability can
lead to significant benefits. For decades, monitoring and diagnosis of hydrogenerators have been at the
core of maintenance strategies. A significant part of generator diagnosis relies on Partial Discharge (PD)
measurements, because the main cause of hydrogenerator breakdown comes from failure of its high voltage
stator, which is a major component of hydrogenerators. A study of all stator failure mechanisms reveals that
more than 85 % of them involve the presence of PD activity. PD signal can be detected from the lead of the
hydrogenerator while it is running, thus allowing for on-line diagnosis. Hydro-Québec has been collecting
more than 33 000 unlabeled PDmeasurement files over the last decades. Up to now, this diagnostic technique
has been quantified based on global PD amplitudes and integrated PD energy irrespective of the source of
the PD signal. Several PD sources exist and they all have different relative risk, but in order to recognize the
nature of the PD, or its source, the judgement of experts is required. In this paper, we propose a new method
based on visual data analysis to build a PD source classifier with a minimum of labeled data. A convolutional
variational autoencoder has been used to help experts to visually select the best training data set in order to
improve the performances of the PD source classifier.

INDEX TERMS Hydrogenerators, diagnosis, partial discharges, deep neural networks, convolutional
variational autoencoder, data visualization, feature extraction, model interpretation, generative model.

I. INTRODUCTION
One of the main problems that all industries face is the
massive high dimensionality unlabeled data. Artificial Neural
Networks (ANNs) and Deep Learning (DL) are actually the
leading machine-learning tools for intelligent condition mon-
itoring and diagnosis used for mechanical systems. However,
a major assumption accepted by default, is that the training
and testing data are taking from same feature distribution [1].
Like many other utilities, Hydro-Québec which has an elec-
tric generating capacity of 36 GW from its 62 hydroelectric
power plants, has collected a large number of measurement
files. Each hydrogenerator is worth several million to tens of
millions of dollars and is subject to preventive maintenance
comprising both systematic and conditional maintenance.

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

Availability, reliability and durability of hydrogenerators
are key features that have driven electrical utilities to imple-
ment monitoring and diagnostic methods in order to evolve
toward Condition Based Maintenance (CBM). More than
ten years ago, Hydro-Quebec has implemented a web-based
application, MIDA (Methodology for Integrated Diagnostic
of hydrogenerators [2]), which was developed at its research
institute. MIDA is an integrated diagnostic system for hydro-
generators and is based on the aggregation of individual
health indexes from seven diagnostic tools [2].

MIDA gives a ranking of more than 300 hydrogenerators
and thus helps maintenance engineers to better plan mainte-
nance actions. The MIDA centralized database contains all
the data from every diagnostic measurement performed on
each hydrogenerator since the 1990’s. The diagnostic data
from MIDA can then be used to identify symptoms of phys-
ical degradation states involved in failure mechanism and
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is used as input in a Failure Mode and Symptom Analysis
(FMSA) approach applied to hydrogenerator prognostics [3].

Data from MIDA used in conjunction with PHM tech-
niques can feed a prognostic model that will provide useful
equipment information and lead to the implementation of pre-
dictive maintenance. However, diagnostics need to improve
in order to generate a more detailed information input for the
prognostic model. One of these diagnostic tools on which we
will focus in this paper is PD measurements. The prognostic
model is built on more than 100 failure mechanisms for the
stator, the main component of hydrogenerators. These mech-
anisms are consigned in the form of causal trees or graphs [4].
A large number of these failure mechanisms involve the
presence of PD [3]. At Hydro-Quebec, PD measurements on
hydrogenerators have been carried out for the past 30 years
and this extensive PD database is integrated in MIDA. As
of December 2019, MIDA has more than 33 000 unlabeled
PD measurement files. Each of these files must be analyzed
and classified by the experts of Hydro-Quebec for PD source
recognition which is very time-consuming and can only be
done for PD files easily recognizable by the expert. A struc-
tured analysis of this huge amount of data is of paramount
importance to understand the behavior and evolution of the
PD activity. The implementation of an automatic recognition
based on an intelligent classification of all PD sources would
significantly improve diagnostic and prognostic models for
hydrogenerators.

However, to perform such an intelligent classification,
experts must first label a number of PD measurement files
for the training process. To do this, experts faced two chal-
lenging problems: how to select the most significant PD data
for labeling, and what is the minimum data size required
to complete the training process and which would be suffi-
cient to define each class? One solution to help the expert
choosing new training data is to use active learning [5], [6].
Active learning is an efficientmachine learning technique that
can simultaneously improve the quality of the classification
model and decrease the complexity of training samples. It is
frequently deployed in scenarios where large scale data sets
are easily collected, but labeling them is expensive and/or
time-consuming [7]. By using active learning, a classification
model can iteratively interact with experts to only select the
most significant instances for labeling and to further promote
its performance as quickly as possible [7]. However, sev-
eral previous studies have indicated that the performance of
active learning can be easily disrupted if the data set has an
imbalanced distribution [7]. Many research works have been
recently developed to improve the performance of learning
from imbalanced data [8]–[12]. However, none of thesemeth-
ods relies on a visual analysis of the learning data.

One of the first research dealing with feature selec-
tion based on 2D-data visualization has been developed by
Gill et al. [13]. The objective of this study was to enhance
the health-monitoring system for helicopters by visual data
analyzing of the structural vibrations, in order to recognize
different flight conditions directly from sensor information.

As introduced by [13], we consider that the visualization of
the learning data to understand their nature and to extract
more information from the 2D-space distribution is an impor-
tant step during the conception of the diagnosis model.

Otherwise, it is usually considered that classification
improves with the number of labeled data, but this is not
always true. In fact, it depends on the spatial distribution of
data used in training process. Figure 1 gives a basic illustra-
tion of two different training data sets in a 2D-dimensional
space. The first one has more data points than the second data
set, but the second data set is better dispersed than the first
one. The grey zone represents the conflict area, which is the
boundary between classes, where most of the false positive
predictions are produced by the classifier. Better is the spatial
distribution of the training data set, better is the accuracy of
the prediction. To reduce this ‘‘dead zone’’, the expert must
choose new data points to label them as belonging to or as
located nearby this conflict area.

FIGURE 1. Basic illustration of an arbitrary 2D-representation of two
different training data sets with two different spatial distributions. The
data set #1 has more samples than the data set #2 but the accuracy of
the classification is better for the data set #2.

Another reason that motivates our work is the lack of
interpretability obtained by the ANNs. It is very hard to
understand what happens in the hidden layers and why a
trained NN gives a positive diagnosis for a given input sam-
ple. This ‘‘black-box’’ aspect is very restrictive in many
application fields, where the interpretation of a decision
can lead to serious legal consequences especially in safety-
critical applications [14] (e.g., medical diagnosis [15], [16],
autonomous driving, electric power generation. . . etc.) When
the Convolutional Neural Networks (CNNs) are used for
image processing, several methods have been developed to
visualize what happens in the intermediate layers. Some of
these algorithms are for example visual explanations from
CNNs via gradient-based localization [17]; a visualization
technique of the input stimuli that excite individual feature
maps at any layer in a CNN model [18] or; a deep Taylor
decomposition method for interpreting generic multilayer
NNs by decomposing the network classification decision into
contributions of its input elements [19]. When the input data
are not images, as for industrial data, the interpretability of
the hidden layer’s activities is less obvious.
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FIGURE 2. The framework of the proposed PD source classification methodology using an encoder function of a CVAE as
a data projection for a 2D-visualization. The input vectors are encoded into a 2D-latent space. If the conflict zone,
identified on the 2D-visualization, is too large, new data nearby these conflict zones are selected and labeled by experts.
These new labeled data are then added to the initial training data set for a new training iteration.

Some visualization techniques, as the t-distributed stochas-
tic neighbor embedding projection (t-SNE) [20], converts
a high-dimensional data set into a 2D-matrix of pairwise
similarities. Feature maps of the model are then obtained. The
t-SNE method has been used and reported in many research
publications such as [8], [14], [21]–[25]. The main constraint
of this method is the lack of repeatability due to theminimiza-
tion of the Kullback-Leibler divergence between the input
space distribution and the embedding space distribution [22].

In this paper, a new method based on a visual data analysis
to build a PD source classifier with a minimum of labeled
data files is proposed. The framework of this methodology
for PD source classification is given in Fig. 2. The encoder,
part of a Convolutional Variational Autoencoder (CVAE),
is used for data projection in a 2D-visualization latent space.
The input vectors are encoded and displayed into this 2D-
space, which helps the expert to visually analyze the spatial
distribution of the training data set. At the beginning, few
data files from the huge unlabeled database are selected from
the 2D-latent space. These data files are labeled by experts
and used to train a neural network classifier. The obtained
classifier is then tested over all unlabeled data set. To identify
conflict areas, i.e., the gray zones illustrated in Fig. 1, several
classifiers are trained on the same labeled data set and tested
using the entire MIDA unlabeled data set. The resulting
conflict areas are identified on the 2D-space by analyzing
conflicting results between classifiers. As it can be seen
in Fig. 1, if the conflict zone is too large, the class boundary
defined by the classifier, is more uncertain, which leads to an
erroneous classification near this zone. New data files from
these conflict zones are then selected and labeled by experts
in order to reduce the conflict area. These new labeled data
files are then added to the initial training data set for a new
training iteration. Therefore, several iterations between the
PD experts and DL experts are necessary to refine the input
vector, reduce the boundary of conflict areas and improve

classification of PD source. This focuses the work on a lim-
ited number of data files out of the overwhelming existing
data.

The paper will focus in section 2 on the description of
how an Autoencoder (AE) and a Variational Autoencoder
(VAE) can be used to resolve real industrial challenges by
classifying PD sources obtained from hydrogenerators. Thus,
minimal background on partial discharge will be given in
section 3, in order to understand how PD source classification
would be a major breakthrough in this field. A description
of PD phenomena, their long term deleterious effect leading
to premature failure and the definition of the feature vector
will be discussed. In section 4, the convolutional varia-
tional autoencoder used jointly with a neural network clas-
sifier is described. The way that conflict areas are identified
and treated will be developed. Then, all the visual analysis
obtained by the encoder are illustrated in section 5. Some
confrontation results between the architecture used (i.e.,
the encoder part of the CVAE used jointly with a classifier)
and a traditional classifier without the convolutional encoder
are also presented. Finally, a discussion and a conclusion are
given in sections 6 and 7.

II. VARIATIONAL AUTOENCODERS
AnAE is an unsupervised NN trained to recreate or reproduce
the input vector x [23], [26]–[28]. The AE is composed by
two main structures: an encoder and a decoder (Fig. 3) which
are multilayered NNs parameterized by φ and θ , respectively.
The first one encodes the input data x into a latent represen-
tation z by the encoder function z = fφ(x), whereas the sec-
ond one decodes this latent representation onto x̂ = hθ (z)
which is an approximation or reconstruction of the original
data. In an AE, an equal number of units are used in the
input/output layers while less units are used in the latent space
(Fig. 3). The AEs are usually used for data compression (i.e.,
feature extraction/reduction), noise removal and pre-trained
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FIGURE 3. Schematic architecture of a standard deep autoencoder and a
variational deep autoencoder. Both architectures have two parts: an
encoder and a decoder.

parameters for a complex network.
A VAE has the same functions as the AE in the sense that

it is composed by an encoder and a decoder (Fig. 3). VAE
becomes a popular generative model by combining Bayesian
inference and the efficiency of the NNs to obtain a nonlinear
low-dimensional latent space [29]–[32]. The Bayesian infer-
ence is obtained by an additional layer used for sampling the
latent vector z with a prior specified distribution p(z), usually
assumed to be a standard Gaussian N (0, I ), where I is the
identity matrix. Each element zi of the latent layer is obtained
as follow:

zi = µi + σi · ε (1)

where µi and σi are the ith components of the mean and
standard deviation vectors, ε is a random variable following
a standard Normal distribution (ε ∼ N (0, 1)). Unlike the AE
which generates the latent vector z, the VAE generates vector
of means µi and standard deviations σi. This allows to have
more continuity in the latent space than the original AE. The
VAE loss function given by the equation 2 has two terms.
The first termLrec is the reconstruction loss function (equ. 3).
Usually the negative expected log-likelihood (e.g., the cross-
entropy function) is used ( [30], [31], [33]–[35]) but the mean
squared error [32] can also be used. The second term LKL
(equ. 4) corresponds to the Kullback-Liebler (KL) divergence
loss term that forces the generation of a latent vector with the
specified Normal distribution [36], [37]. The KL divergence
is a theoretical measure of proximity between two densities
q(x) and p(x). It is asymmetric (KL(q ‖ p) 6= KL(p ‖ q))
and nonnegative. It is minimized when q(x) = p(x) [38].
Thus, the KL divergence term measures how close is the
conditional distribution density qφ(z | x) of the encoded latent

vectors from the desired Normal distribution p(z). The value
of KL is zero when two probability distributions are the same,
which forces the encoder of VAE qφ(z | x) to learn the latent
variables that follow a multivariate normal distribution over a
k-dimensional latent space.

L = Lrec + LKL (2)

Lrec = −Eqφ (z|x)(log(pθ (x | z))) (3)

LKL = KL(qφ(z | x) ‖ p(z)) (4)

When the VAE is trained, each function (i.e., the encoder
and the decoder) can be used separately, either to reduce the
space dimension by encoding the input data, or to generate
synthetic samples by decoding new variables from the latent
space (Fig. 4). Most of the generative applications deal with
image processing as in [33] where a VAE was trained to
generate face images with much clearer and more natural
noses, eyes, teeth, hair textures as well as reasonable back-
grounds. In [30], a generative model is constructed to create
new random realizations of faces that are indistinguishable
from samples.

In nonlinear processesmonitoring, VAEhave been recently
used for high-dimensional process fault diagnosis. The most
relevant characteristics of the process are extracted by the
latent variable space by projecting the high-dimensional pro-
cess data into a lower-dimensional space [8], [29], [31], [32],
[34], [39]–[42].

III. PARTIAL DISCHARGE ANALYSIS
PD are minute sparks that occur within voids inside high
voltage insulation or in the air around the insulating system.
Each PD event does not cause immediate failure, but it will
slowly erode the insulation system andwill lead to breakdown
in years to decades [43], [44]. The impulses can be detected
on-line from sensors connected to hydrogenerators, which
is a major advantage, because diagnosis of upcoming prob-
lems is possible while the machine is running and generating
power. Over the past 30 years, Hydro-Québec has gathered
an extensive PD database using two types of commercial
measurement instruments. One of the instruments used is a
2D Partial Discharge Analyzer (PDA), which displays the
rate of discharge pulses as a function of their amplitude. Up
to now, over 33 000 measurement files have been recorded
yearly by plant personnel. Fig. 5 gives a representation of the
PD activity measured using the 2D PDA technique. Here the
graph shows the discharge pulse rate (PD/s) as a function of
the amplitude (in mV) and where positive pulses are in red
and the negative discharges are in yellow. The second type
of instrument used is a 3D system with much greater PD
recognition capabilities.

In hydrogenerator diagnostic, it is important to recog-
nize normal internal PD giving symmetrical distribution
of positive and negative PD from other type of discharge
sources [44]. Most measurement systems only rely on the
maximum PD amplitude and it’s trending for quantification,
regardless of the type of PD source. Even though it is well
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FIGURE 4. The VAE loss function. The first term Lrec is the reconstruction loss function. The second term LKL
corresponds to the Kullback-Liebler divergence loss term that forces the generation of a latent vector with the specified
Normal distribution. When the VAE is trained, the two functions encoder/decoder can be used separately even to reduce
the space dimension by encoding the input data or to generate synthetic samples by decoding new variables from the
latent space.

FIGURE 5. A simple 2D representation of the PD showing the discharge
rate (PD/s) as a function of 16 channels of amplitudes (mV) for positive
PD are (red) and negative PD (yellow).

recognized in the industry that different types of PD sources
represent different risks for the equipment. Some PD sources
may lead to failure after only 10 years of operation, for a
machine that would typically last 45 years or more. One of
the reasons that quantification is not done for each type of PD
independently, is that there is no easy way to automatically
recognize all PD signatures. To do this, it would require
having classification rules that work for all files. Expert rules
used up to now, consider asymmetries such as the one of slot
PD giving more activity for positive PD or in the case of
decohesion of insulation at the high voltage conductor giving
the opposite asymmetry with more negative PD [44].

A ratio of 2 between the two PD polarities is a clear
indication of asymmetry, but as this ratio reduces, experts
should analyze each PD signature, channel by channel, and
exception are more common than PD signature respecting the
expert rules.

Another type of PD source called gap type discharge takes
place in the end winding outside the magnetic core of the
stator. Because of their location and signal propagation mode,
these PDs experience very little attenuation. Thus, they reach
the detection point with apparent amplitudes much greater
than those for other types of PD. However, they do not
represent a higher risk as would suggest their high amplitude.

Since most systems tend to quantify the severity of PDs by
using their amplitude, these gap discharges should not be
rated on the same scale as other PD sources.

The logical solution would be to have different evaluation
criteria for different discharge sources, but because of the
overwhelming quantity of data, it is currently impossible to
sort all PD signatures. However, the current expert rules can
be used as a starting point to identify easily recognizable
PD signatures with distinctive asymmetry or other features.
In order to do this, the PD distribution in Fig. 5 can be
described by the following vector:

PD =
(
pdx1 , . . . , pd

x
i , . . . , pd

x
16

pdy1, . . . , pd
y
i , . . . , pd

y
16

)
(5)

where pdxi and pdyi are respectively the positive and negative
discharge rate in PD/s in each amplitude channel i of the
horizontal axis in Fig. 5 (where i=1 to 16).

Thus, the rules provided by experts can be used to define
the seven following classes. Table 1 gives a representative
illustration of each PD source:
• PD source 1 (F1): Negative Asymmetry,
• PD source 2 (F2): Positive Asymmetry,
• PD source 3 (F3): Symmetry,
• PD source 4 (F4): Negative Asymmetry with Gap,
• PD source 5 (F5): Positive Asymmetry with Gap,
• PD source 6 (F6): Symmetry with Gap,
• PD source 7 (F7): Gap.
As can be seen, some of these classes are combination of

single classes, such as the PD source 5 (i.e., positive asym-
metry with gap), which is a combination of PD source 2 and
PD source 7. This feature is important to capture because
hydrogenerators often have more than one PD active source.
Some typical examples of each class have been found in the
overall PD database and have been used for training.
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TABLE 1. An illustration of the seven PD sources Fi .

A. FEATURE VECTOR DEFINITION
The starting point of the above method is to extract features
which are efficient in characterizing the 2D-representation of
the PD activity.

In this study, we use traditional handcrafted features
extraction by adding some of the expert rules and knowledge
in the input vector. The feature vector S is composed by
four instances Si (equ. 6). Each instance Si is extracted from
the expert rules associated to at least one of the previous
PD sources. Table 2 highlights the relationship between all
features Si and each PD source Fj.

S =
(
S1, S2, S3, S4

)
(6)

The first set of features S1 is composed by all the positive
and negative discharges as follows:

S1 = (pdx1 ,−pd
y
1 . . . , pd

x
i ,−pd

y
i . . . , pd

x
16,−pd

y
16) (7)

The second feature instance S2 is given by the equation 8.
At each element i, a cumulative difference wi between the

TABLE 2. The relationship between all the used features Si and each PD
source Fi .

positive and negative discharges is calculated (as shown by
the equation 9.)

S2 =
(
w1, . . . ,wi . . . ,w16

)
(8)

wi =
(
(

i∑
j=1

pdxj )− (
i∑

j=1

pdyj )
)
· κi (9)

where κi is a parameter that depends on the amplitude chan-
nel. The cumulative difference wi have a significant impact
for the identification of the asymmetry or symmetry between
the positive and negative discharges.

Finally, to characterize the gap type discharges described
on the previous section, two features S3 and S4 have been
used:

S3 =
(
a1, a2

)
(10)

S4 =
(
b1, b2

)
(11)

These two features have been defined by formalizing the
expert’s knowledge through PD analysis when gap PDoccurs.
The algorithms 1 and 2 give the computation procedure for
each of these two features. The variables a1, a2 of the fea-
ture S3, respectively b1, b2 of the feature S4, increase each
time the discharge rate (PD/s) increase between two consec-
utive channels. Note that parameters ε, ε and η are defined by
the user.

IV. DEEP NEURAL ARCHITECTURES
A. THE CONVOLUTIONAL VARIATIONAL AUTOENCODER
The CVAE architecture is illustrated in Fig. 6. This architec-
ture includes two parts, an encoder and a decoder, which are
two symmetrical and reversed structures. Each one is com-
posed by two convolutional layers and two fully connected
layers. For the encoder, we use convolutional layers with 4×1
kernels and the same padding. The stride was 1 × 1 for the
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Algorithm 1 The computation procedure for the feature S3
Initialization:
a1 = 0, a2 = 0
ε > 1, ε < 1
for i=2 to 16 do

if pdxi > pdxi−1.ε then
a1 = a1 + ε

end
if pdyi > pdyi−1.ε then

a2 = a2 + ε
end

end

Algorithm 2 The computation procedure for the feature S4
Initialization:
b1 = 0, b2 = 0
for i=2 to k (k<16) do

if pdxi > pdxi−1 then

b1 = b1 +
pdxi
pdxi−1

.η

end
if pdyi > pdyi−1 then

b2 = b2 +
pdyi
pdyi−1

.η

end
end

FIGURE 6. The CVAE architecture.

first convolutional layer and 2× 1 for the second. The latent
two-dimensional space is represented by two layers for the
encoder: the mean and the standard deviation layers (i.e., µ
and σ ), and one sampling layer (Z) for the decoder.
The first step was to train the whole CVAE architecture for

the reconstruction of the feature vector (Ŝ = F(S)). Training
the CVAE does not need the label information of the input
data. However, for an efficient data encoding, an indirect
labeling is used, since all training samples belong to the PD
sources described above. When the training process of the
CVAE is successfully done, the encoder part is then used
jointly with a neural classifier, as presented in Fig. 7. The
mean layer µ of the convolutional encoder is considered as
the input 2D-vector of the classifier. The second step is then
to train the classifier for PD source recognition. The encoder
parameters obtained by the previous step are frozen during

FIGURE 7. The encoder used jointly with a neural classifier. The mean
layer of the convolutional encoder is considered as the input 2D-vector of
the classifier.

the classifier training step. All the details of the CVAE and
the classifier, are presented in Table 3.

TABLE 3. Proposed DNN architectures.

B. VISUALIZATION OF LATENT VECTORS AND
PERFORMANCE COMPARISON
Considering that the latent vectors are the encoding represen-
tation of the input feature vectors, it is interesting to visualize
the 2D-representation of the original vectors and to evaluate
the similarities between each PD source Fi according to each
feature set Sj. In the first test (Fig. 8), we have compared
the visualization performance of the CVAE with two state-
of-the-art dimension reduction methods including principal
components analysis (PCA) [45] and t-SNE [20]. All the
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FIGURE 8. The 2D-visualization using three dimension reduction
methods: the CVAE, the principal components analysis (PCA) and t-SNE.

training samples belong to one of the PD source Fi. The
color of each sample corresponds to the labelling knowledge
provided by experts. To quantitatively assessing the perfor-
mance of these methods in dimension reduction and visual-
ization, we compared the PD clusters obtained on the original
52-dimensionnal space (OS) with the 2D reduced subspaces,
obtained by the three reduction methods (i.e. CVAE, PCA
and t-SNE). We have first calculated the mean vector of each
PD source clusters in each dimension space (i.e. the original

space and in the three reduced spaces). Then we used the
k-nearest neighbors algorithm (k-NN) [46] to classify each
vector. By comparing the true label and the label obtained
by the k-NN, we have calculated the accuracy given by the
following expression:

Acc =
TP+ TN

TP+ TN + FP+ FN
(12)

where TP, TN, FP, FN are respectively the true positive, true
negative, false positive and false negative. Table 4 gives the
summary of the obtained accuracy. For each PD source Fi,
we highlight the highest and lowest valuewith the given color.
The mean accuracy is calculated for the original space and for
each of the reduction method.

TABLE 4. The accuracy obtained by the 52-dimensionnal original
space (OS) and the three reduction methods with the k-nearest
neighbors algorithm (k-NN).

By these comparative tests, the CVAE showed better sepa-
ration of the PD sources than the two other dimension reduc-
tion methods. Indeed, the best average accuracy has been
obtained by the CVAE (0.94%), as shown by the table 4. This
result is visually perceived by analyzing the clusters obtained
by each reduction method of the figure 8.

In the second test (Fig. 9), we have visually evaluated the
performance of the CVAE according to different combina-
tions of features S1, S2, S3, S4 described before. We can see
on the figure 9 that the PD source separation showed poor
performances when we consider only the feature S1. Cluster-
ing of the different PD source is less efficient. All PD sources
are mixed on one dense and localized cluster (colors overlap).
It is obvious that, in this 2D-representation, the performance
of the PD source classification will be very poor. On the
contrary, data files from PD sources showing similar features
of asymmetry (positive or negative) or of symmetric PD tend
to cluster together when the feature S2 is used jointly with S1.
Thus, three clusters are formed and spread over a larger area
of the latent representation: cluster 1 is formed by the latent
points of the PD sourceF1 andF4 while cluster 2 is formed by
F2 andF5. Finally cluster 3 groups points of sourceF3 andF6.
Moreover, the dissociation of the Gap is possible only when
the feature S3 is used. The PD sources with gap (F4,F5,F6)
are then separated from the other sources. Finally, due to
the feature S4, the PD source F7 is separated from the other
PD sources and can form an isolated cluster. This sensitivity
study confirms that the latent space simplifies data visualiza-
tion. By improving the input vector, isolated clusters of all
PD sources are more easily defined.
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FIGURE 9. 2D-latent representation obtained by the convolutional
encoder with different combinations of features S1, S2, S3, S4.

C. IDENTIFICATION AND REDUCTION OF THE CONFLICT
ZONE
As described in section I (see Fig. 1), the conflict zone is
the area between clusters where most of the false predictions
occur. This area is due to the poor distribution of data used in
the training process. Because the human brain can perceive
only two or three-dimensional space, it is impossible for
humans to process the 52-features dimensional space used to
define the input vector of a PD data file. It is even worse when
trying to compare files between them. Therefore, projecting
data in 2D-latent space helps experts to easily identify clusters
of similar PD sources and locate areas or conflict zones where
it is necessary to add new data to label. When the conflict
zone is too large, the boundary between classes, fixed by
the classifier, leaves a large number of files with uncertain
classification. This means that two different classifiersCi and
Cj with i 6= j will definitely have two opposite responses for
the same input data k:

9i(k) 6= 9j(k) (13)

where 9i(k) and 9j(k) are respectively the output class
obtained by the classifiers Ci and Cj for the input sample k .
To identify these conflict zones, several classifiers Ci were
trained with the same training data set. Subsequently, all the
trained classifiers have been tested over the entire MIDA
database. For each input sample k of the MIDA database,
if two classifiers have two opposite responses, the input
sample k is then considered as a conflict sample. To reduce
the proportion of false predictions, the size of the conflict
zone must be reduced. For this, experts will choose new
learning data files in these conflict areas in order to adjust
the learning of the classifier (Fig. 2). These new samples are
then labeled by experts and added to the previous training

data set even if they do not strictly respect the initial expert
rules. Algorithm 3 shows the steps of the entiremodel training
process and new data selection for reduction of the conflict
zone. The entire procedure is then repeated until the conflict
zone is considered as acceptable by experts. This is done
without having to consider all data files from the database,
but just a few additional files located in the conflict zone.

Algorithm 3 The training algorithm and data selection
Data
�train : is the training labeled dataset
�mida : is the whole MIDA unlabeled dataset
�2D
train: is the 2D-representation of �train

�2D
mida : is the 2D-representation of �mida

Round = 1 : is incrementing each time the steps 2,3,4 are
computed
*
Step1: Train the CVAE
→ Train the CVAE on �train
→ Use the encoder to convert the data from the feature space
to the 2D-latent space:
�train

Encoder
H⇒ �2D

train

�mida
Encoder
H⇒ �2D

mida
*
Step2: Train the classifier
→ Train 10 classifiers Ci on �2D

train as follow :
for i=1 to 10 do

Train the classifier Ci on �2D
train

Save the parameters of Ci
end
*
Step3: Identification of the conflict zone
→ Test the classifier Ci on �2D

mida
→ 9i(k) : is the output class obtained by the classifier Ci for
the input sample k
for each element k of the whole dataset �2D

mida do
for each two classifiers Ci and Cj with i 6= j do

if 9i(k) 6= 9j(k) then
The element k is considered to be part of the
conflict zone

end
end

end
*
Step4: Evaluation of the diagnosis model
if Performance criterion is obtained then

End of the training process
else
→Choose new unlabeled samples from thewhole dataset
�2D
mida in order to reduce the conflict area
→ Label these new samples
→ Add these new samples to the training dataset �2D

train
→ Repeat the steps 2, 3 and 4
→ Round = Round + 1

end
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V. RESULTS
This section presents the experimental results and is split into
four parts. The first part details the way the training data set
has been built. By applying the procedure of the algorithm 3,
three training rounds were sufficient to adjust the conflict
zone between classes. Then, in the second part, the effect of
the selected features on the classification performances was
visually evaluated. Several combinations of features Si have
been tested and applied on the overall MIDA database. In the
third part, the effect of the dimension reduction obtained by
the convolutional encoder was further studied and evaluated.
For this, we have compared the model used in this work,
called ‘‘convolutional encoder classifier’’ against a classi-
cal classifier, called ‘‘traditional classifier’’ (i.e., a classifier
without dimension reduction). Finally, in the last part, the val-
idation results are presented. These results were obtained
from a reference data set that have been labeled by experts
of Hydro-Québec and not used during the learning process.

A. BUILDING OF THE TRAINING DATA SET AND
REDUCTION OF THE CONFLICT ZONE
In this section the way that the training data set have been
built with the support of the 2D-representation is presented.
Fig. 10 shows the evolution of the conflict zone obtained
by the learning process described by the algorithm 3. This
conflict area is represented by the magenta points. Starting
with an initial training data set (Fig. 10.A), three rounds
of the algorithm 3 were sufficient to obtain an acceptable
conflict zone. At each round Ri, new data files were chosen
from the 2D-latent space, labeled by experts and then added
to the training data set. These new samples are pointed by
an arrow in the Fig. 10 B and C for rounds R2 and R3
respectively. Table 5 gives the size of the training data set
used for each PD source Fi and for each of the three rounds
R1,R2,R3. The reduction of the conflict zone when new data
files were added to the training set is shown for each round
in Fig. 10 (D, E and F). It is important to note that the
conflict zone is the boundary between classes, obtained by
the classifier during the training process. This boundary is
less confrontational when new learning data files are wisely
chosen. A total of 127 data files, which represent 0.38% of
the whole MIDA database, were used for the training process
during the third round R3.

B. EFFECT OF THE SELECTED FEATURES
Fig. 11 shows boundaries (i.e., the conflict zones) obtained
on the overall MIDA database by the convolutional encoder
classifier according to the feature combinations presented
earlier in Fig. 9. The smallest boundaries and the best defined
clusters for each PD source were obtained when all features
S1, S2, S3, S4 were used. All other combinations are worse
and as it can be seen in Fig. 11.B, when only the feature S1
is considered, the largest boundary size with the least defined
clusters is obtained. In fact, the size of the boundary zone
can be used as an indicator of the quality of classification.

FIGURE 10. The training data set and the conflict area obtained at each
round of the algorithm 3: (A,D) for the 1st round, (B,E) for the 2nd round
and (C,F) for the 3rd round.

For instance, during our three rounds of training process the
boundary zone decreased from 6% to 3 % of the latent space.

C. EFFECT OF THE DIMENSION REDUCTION
It can be argued that the use of an additional processing
function, such as the encoder function of the CVAE, cause
loss of information and deterioration of the classification
performances. To assess the effect of the additional use of this
encoding function, the output classification results obtained
by the architecture used (i.e., the encoder part of the CVAE
used jointly with a classifier, which is shown in Fig. 7)
was confronted with the output classification results obtained
without the use of the convolutional encoder.

Fig. 12 shows the confusion matrices for these confronta-
tion tests obtained over the entire MIDA database. Several
combinations of features S1, S2, S3, S4 have been tested. At
each test, the classifier used without VAE was trained on
the same data set obtained after round R3 of the learning
process (see table 5). The output classes #1 to #7 represent
the PD sources F1 to F7. The class #8 is the ambiguity
class, it means that none of the output classes #1 to #7 is
higher than the decision threshold (for these tests, a decision
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FIGURE 11. The conflict zones obtained by the convolutional encoder classifier according to different combinations of the features S1, S2, S3, S4. The
more confused result is shown by the Fig. B, when only the feature S1 is considered, and the best result is obtained by the Fig. A.

FIGURE 12. The confusion matrices for the confrontation tests between the convolutional encoder classifier and a
traditional classifier. Several feature combinations were used for these confrontation tests.

TABLE 5. The evolution of the training data set at each round Ri of the algorithm 3. The bold values are the percentage relative to the whole MIDA
database (33 223 measurement files). The Total column gives the number of training data files used at each round of the algorithm.

threshold of 0.5 was used.) It can be seen that the best result
of the concordance rate (85.1%) is obtained when all features
were used jointly (Fig. 12, matrix A). The worst score of

60.2% is obtained when only the feature S1 is used (Fig. 12,
matrix E). It is interesting to see how features Si influence
the concordance rates between the two models. For example,
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TABLE 6. The distribution of the validation data set according to each PD source Fi .

FIGURE 13. The confusion matrices of the convolutional encoder classifier for each learning round of the algorithm 3 (matrices A, B and C for
respectively the round 1,2 and 3).

the concordance rate of the PD source F7 is higher when the
feature S4 is used (Fig. 12, matrix C).

D. TEST ON A VALIDATION DATASET
This section presents results obtained from the validation data
set on which the performances of the convolutional encoder
classifier have been evaluated. Table 6 provides the distribu-
tion of this validation data set according to each PD source Fi.
A total of 83 PD data files have been labelled by the experts
of Hydro-Québec. As shown by the table 6, the proposed PD
recognition method (i.e. classifier with dimension reduction)
has been confronted to the PD recognition obtained by the
classical classifier on the one hand, and by the rules used
by the experts of Hydro-Québec on the other hand. For this
comparison test, we provide the true positive (TP), the false
positive (FP) and the Positive Predictive Value (PPV =
TP/(TP + FP)) obtained for each PD source. These results
show that the convolutional encoder classifier outperforms

the two other methods. For example, the total PPV of 65.06%
was obtained by the proposed method while 59.04% was
obtained by the classical classifier and 45.45% by the expert
rules. It should be noted that 17 PD files were not classified
by the expert rules.

Fig. 13 shows the confusion matrices of the convolutional
encoder classifier for each learning round of the algorithm 3.
The total classification accuracy is improved at each round of
the learning algorithm (51.8% at round R1, 61.4% at round
R2 and 65.1% at round R3). The best improvements were
obtained for both classes F4 and F5 with 17.6% to 47.1%
for F4 and 37.5% to 75% for F5. As seen in the Fig. 13.C,
the accuracy obtained for each class Fi is extremely disparate
(e.g., 93.8% for F2, and 33.3% for F3).
It is interesting to analyze these results visually on the

2D-latent space representation of the classified data files
(Fig. 14). The color of the square represents the label given by
expert while the color of the point in the center of each square
is the output class obtained by the convolutional encoder
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FIGURE 14. The 2D-latent space representation of the validation test
shown jointly with the training dataset. The validation data files are
presented by square. The color of the square represents the label given
by experts while the color of the point in the center of each square is the
output class obtained by the convolutional encoder classifier.

classifier. An enlargement of a zone of interest is presented
in Fig. 15.

FIGURE 15. A better view of the area around the PD source F3 obtained
from the Fig. 14.

For the worst result obtained in the case of PD source F3
(considered here as the positive class), which is composed
of 12 data files as presented in table 6, the confusion matrix
C in Fig. 13 leads to the following observations:
• 4 data files of the PD source F3 have been correctly
classified as F3 by the convolutional encoder classifier
(True Positive = 4).

• 8 data files of the PD source F3 have been incorrectly
classified (False Negative = 8) as follows: 3 data files
incorrectly classified as F1 and 5 data files incorrectly
classified as F2.

• 3 data files have been incorrectly classified as F3 (False
Positive = 3) as follows: 1 data file from F1 and 2 data
files from F4.

All these results can be visualized in Fig. 15. This 2D-latent
space representation shows that most of the false predictions

are located near the conflict area. For example, the two false
positives on the top, are identified by the blue circle number 3.
The three false negatives of the left side are identified by the
blue circle 1, and the two false negatives on the right side are
identified by circle 2. They all are located near the boundaries.
These false predictions are due to a lack of knowledge on this
part of the 2D-latent space representation during the learning
process. It can be supposed that conflict areas between classes
obtained during the learning process are not yet optimized
and could be improved if additional data files close to the
conflict area were added to the training data set. Thus, the new
conflict area between classes could be redefined as shown by
the pink dashed lines in Fig. 15. The data files here are part
of the validation data set. Thus, other files close by should
be identified, labeled and injected in the training data set in
additional training rounds.

A less coherent result concerns the isolated false positive,
identified by the black circle 4 and the three false negatives,
identified by the black circle 5 in Fig. 15. These data files are
very close to other data files used in the learning process and
yet belong to opposite classes as identified by experts. These
false predictions cannot be corrected by boundary refinement.
These data files represent some of the particular cases that
should be thoroughly analyzed by experts to capture new
knowledge currently not included in the input vector. One of
the main reasons of this misclassification could be due to the
expert’s parameters rules (κi, ε, ε and η) used to build the
input feature vector. There could be an additional parameter
to introduce in the input vector. Indeed, it is essential to find
the best setting of these feature parameters to improve the
classification performances. The adjustment of these param-
eters is part of future developments.

Finally, the last criterion evaluated in this section is
the Area Under the Curve (AUC) which is a performance
measurement for classification problem at various decision
thresholds settings. The closer the AUC value is to 1, the bet-
ter will be the classifier. The tables 7 and 8 detail the AUC for
each PD source class Fi. The bold values represent the max-
imum result for each column. The results state that, except
for the PD source F4, in most of the cases, the convolution
encoder classifier outperforms the traditional classifier.

TABLE 7. The AUC values obtained at each round and for each PD
source Fi .

VI. DISCUSSION
In this paper, we have described an innovative method based
on a CVAE to build a PD source classifier. Two major obser-
vations follow:
• The first is the use of the expert rules to build the input
feature vector.
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TABLE 8. The AUC values obtained by the convolution encoder classifier
and the traditional classifier according to several combinations of the
features Fi .

• The second is the use of a CVAE to display a
2D-representation of the feature space, used for visual
analysis by experts.

A. EXPERT KNOWLEDGE FOR TRANSFER LEARNING
The PD sources are often difficult to characterize because
of the ambiguity caused by the overlapping sources (i.e.,
different classes). The class boundary is therefore not easy
to define and often, for complicated cases, disagreement
as well as conflicting diagnoses between experts are not
excluded. Nevertheless, this only represent a small fraction
of all files. The diversity of PD sources to be treated makes
the diagnosis even more difficult when dealing with real
online measurement. As reported in [43], [47], [48], most of
PD source recognition techniques developed in the literature
were mainly trained on artificial defect models in laboratory,
which may not function well when put into practice in PD
online measurement scenarios. In our case, we tested our
method onmore than 33 000 unlabeled PDmeasurement files
collected by Hydro-Québec during the last 30 years.

Another difficulty for characterizing PD sources is that one
measurement can contain different sources in a single file.
In the case of this study, we restricted to a maximum of two
sources present at the same time, but it is not excluded that
one measurement can contain three sources.

The expert in his analysis, takes into account analytical
data based on certain rules defined over time, such as the
ratio between the positive and negative discharges but also
less formal information such as:
• the specific form of the histogram that characterizes each
PD source (as shown in Table 1) to see for example if
the gap PD activity is present (which can lead to special
characteristic of the PD distribution);

• the date of the measurement, to see if it corresponds to
a dry period as during winter because it impacts on a
number of PD sources;

• results from other diagnostic tools and visual
inspections.

All the challenge is then to extract the expert knowledge
and to find the right formalization of the expert rules to
build the input characteristic vector processed by the NN
classifier. Many studies in the literature claim in recent years
that DNNs, particularly the CNNs, are able to extract char-
acteristic features themselves from raw data provided from
a big dataset. However, the results presented in this article
show quite the opposite. Indeed, we have seen that the more
we put knowledge in the input vector, the more the data space
becomes discriminant, thus making the classification easier.
We have seen that the separation between classes is trans-
formed from a non-linear separability with high overlapping
clusters in the space feature S1 (Fig. 11.B), into a pseudo-
linear one in the space feature S1, S2, S3, S4 (Fig. 11.A) with
less overlapping clusters. This reduces the ambiguities and
conflict areas between classes. The training process of the
NN, which is based on the rules extracted from the expert
knowledge, would be even more efficient than the rules
defined as: If x ≥ threshold Then a = y. The main diffi-
culty with these kind of rules is to treat the exceptions cases.
Changing a rule to fit an exception may disrupt other properly
processed cases. Adding new rules can become very compli-
cated. Often for these exceptions, the expert transgresses the
rules, which makes these methods not very suitable for online
diagnosis. The advantage of the NNs is their ability to fit the
boundaries between classes in a non-linear way, supervised
by experts. For the exception’s rules, the NN redefined the
boundary around this exception in a non-linear way, without
modifying the knowledge previously acquired.

It is therefore essential to inject expert knowledge into the
characteristic vector to improve the classification. Results
demonstrate that the use of the expert knowledge, as hand-
crafted input features, is essential for an appropriate cluster-
ing of data belonging to the same PD source. The paradigm
that the NN performs better when trained on big-data is not
always true, the quality of the data being another parameter
to be considered for the training. Therefore, right-data is as
relevant or even more so as big-data.

B. VISUAL DATA ANALYSIS FOR MODEL CONFIDENCE
The different steps to follow when using ANNs (shal-
low or deep) are: (1) model choosing; (2) model building;
(3) model learning; and (4) model checking. In the first step,
one neural architecture must be chosen. In the second step,
the size of the NN must be defined: how many layers? how
many units per layer? how many convolution filters and what
is their size? In the third step, the NN will be trained by
supervised techniques. In the last step, the confidence of the
NN must be validated.

It is usually very hard to build the architecture of a NN. For
example, when using a CNN, it is not obvious for a non-expert
to define the best size of the convolution filters and to choose
the best number of convolution, pooling or fully-connected
layers. A good alternative to this drawback is to consider
the neural architecture as a hyper-parameter evolving during
the learning process. The NN is built step-by-step during the
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learning process, until a convergence criterion is reached.
Recently, several promising studies about the constructive
and pruning algorithms were published (see [49], [50] for a
complete survey).

A more fundamental problem is the model confidence
evaluation and the interpretability of the obtained results.
ANNs learn to associate an output according to a given input,
but they do not learn to give any reason or interpretation
associated to this response. However, the outstanding per-
formance of the classification models does not lead to easy
model interpretations or model confidence, although DNNs
reveal superior performance and have been extensively used
in multiple disciplines. Moreover, in most cases, they are con-
sidered as black-boxes and the interpretation of their internal
working mechanism is usually challenging [14].

In the proposed method, the CVAE is used as a support
for data visualization and PD source classification. However,
after training of the CVAE, the encoder part is used as
a data projection from input features mapping to a latent
2D-representation. The CVAE is trained without using class
labels to learn properties in the data. The power of CVAE
resides in capturing the complicated data features from the
multi-dimensional input space and compressing them into a
smaller 2D-latent space, making it easier for visualization
by a human expert. The CVAE reveals a promising tool to
produce a 2-dimensional embedding of high dimensional data
with the goal of simplifying the identification of clusters
when used jointly with a classifier.

As articulated in the results section, it is quite easy to
understand the diagnosis given by the neural classifier by
visually analyzing the spatial distribution of the classified
samples. The knowledge area of the NN and the boundaries
between the classes are easily perceived by experts. The
conflict regions which are poorly covered by the training data
file are then easily identified. The NN is then less perceived
as a ‘‘black-box’’ in the sense that its knowledge area is
visible, the interpretation of the false predictions and their
understanding become achievable.

C. METRICS DEFINITION FOR MODEL PERFORMANCES
The last condition of the proposed algorithm 3 (i.e., step 4)
is the model evaluation through the testing of a performance
criterion. As stated before, for the tests presented in this
paper, we do not address this condition of the algorithm.
The only criterion used is the reduction of the conflict area,
which is visually perceived by the expert, at each round of the
algorithm. The performances obtained for the PD source F3,
discussed in the previous section, show that this condition is
not sufficient (Fig. 15). Indeed, the classification accuracy of
F3 is the worst in spite of the reduced conflict zone (i.e., a thin
boundary delimiting this class). More training rounds could
be tried. However, it is clear from our study that the expert
assisted CNN only has to process a fraction of the available
data in order to decrease the conflict area. In this example,
only 0.38 % of all available data was used for training; so
even with more rounds, it should stay below 1 %.

To improve the performances of the proposed method,
other metrics than the reduction of the conflict area must be
defined and used to evaluate the performance of such model
during the building process. These metrics should give some
answers to these non-exhaustive questions:
• How to evaluate the quality of the spatial distribution of
an input training dataset?

• How to evaluate the features (expert knowledge) which
are closely related to the quality of the input vector?
We have observed that overlapping of opposite classes
decreases when more expert rules are injected to the
input vector.

• How to evaluate the performances of the CVAE, espe-
cially the encoder function?

• A more fundamental question concerns the minimum
size of the conflict area tolerated by the expert. This is
a real dilemma for safety-critical applications. For some
borderline cases, an ambiguous response from the NN
can be more acceptable than a false prediction. It is then
preferable that the NN, for these critical cases, lets the
expert decide rather than propose a catastrophic false
prediction.

VII. CONCLUSION AND FURTHER WORK
In this paper, the use of a CVAE as a visual support for
the interpretation of PD sources has been investigated. The
starting point of the proposed method was to extract features
which are efficient in characterizing the PD distribution pro-
file. Finding the best features that identify PD sources in order
to pinpoint which failure mechanisms are possibly active is
fundamental for an accurate diagnosis.

Despite their many advantages, results reveal that the
DNNs are not always able to extract the best features. In the
case of the PD sources classification, the most suitable way is
to integrate the expert knowledges into the input vector based
on handcrafted feature extraction. The boundaries between
the different classes become obvious when the expert knowl-
edge is used as a building block of the input vector. Results
demonstrate that the use of the encoder function of the
CVAE does not deteriorate the classification performances.
The method was tested on more than 33 000 unlabeled PD
measurement files collected by Hydro-Québec.

Although promising results were obtained by the proposed
method, the accuracy on the reference data set still should
be improved. A global classification accuracy up to 65% has
been achieved but, for certain PD sources, this accuracy does
not exceed 35%. Future developments will be focused on the
improvement of the extraction of the expert’s rules to define
the best discriminant feature vector characterizing all the PD
with one or more sources. In addition, optimization of the
conflict zones could be improved.
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