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ABSTRACT

Context. Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a
good test case to study the effect of the solar wind and interplanetary magnetic field (IMF) on radio emission driven in the planet
magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets.

Aims. The aim of this study is to quantify the radio emission in the Hermean magnetosphere.

Methods. We use the magnetohydrodynamic code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for
the Hermean magnetic field, to analyze the effect of the IMF orientation and intensity, as well as the hydrodynamic parameters of
the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the
formalism derived by Zarka et al. (2001, Astrophys. Space Sci., 277, 293), Zarka (2007, Planet. Space Sci., 55, 598) to infer the radio
emission level from the net dissipated power. We perform a set of simulations with different hydrodynamic parameters of the solar
wind, IMF orientations and intensities, that allow us to calculate the dissipated power distribution and infer the existence of radio
emission hot spots on the planet day side, and to calculate the integrated radio emission of the Hermean magnetosphere.

Results. The obtained radio emission distribution of dissipated power is determined by the IMF orientation (associated with the
reconnection regions in the magnetosphere), although the radio emission strength is dependent on the IMF intensity and solar wind
hydro parameters. The calculated total radio emission level is in agreement with the one estimated in Zarka et al. (2001, Astrophys.
Space Sci., 277, 293) , between 5 x 10° and 2 x 106 W.

Key words. magnetohydrodynamics (MHD) — plasmas — planets and satellites: magnetic fields — radio continuum: planetary systems

1. Introduction

An obstacle facing a magnetized flow leads to the partial dis-
sipation of the flow energy. Part of the energy is dissipated as
radiation in different ranges of the electromagnetic spectrum, de-
pending on the incoming flow properties and the intrinsic mag-
netic field of the obstacle. This scenario describes the interaction
of the stellar wind with the magnetosphere and atmosphere of
planets or other stars.

The power dissipated in the interaction of a magnetized flow
with an obstacle can be sized as the intercepted flux of the mag-
netic energy ([Pq] ~ B*vnR2, /2u0), with B the magnetic field
intensity perpendicular to the flow velocity in the frame of the
obstacle, y, the magnetic permeability of the vacuum, v the
flow velocity and R,y the radius of the obstacle. See Saur et al.
(2013), Strugarek et al. (2015) for a description of the size and
shape of the intersecting region and location of the maximal
Poynting flux generation.

The planets of the solar system with intrinsic magnetic fields
are emitters of cyclotron MASER emission at radio wavelengths,
generated by energetic electrons (keV) traveling along the mag-
netic field lines, particularly in the auroral regions (Wu 1979).
The source is the reconnection region between the interplane-
tary magnetic field (IMF) and the intrinsic magnetic field of the
planet, although in gaseous planets as Jupiter there are other in-
ternal sources like the plasma released from Io’s torus or the
fast rotation of the planet. The magnetic energy is transferred
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as kinetic and internal energy to the electrons (consequence of
the local balance between Poynting flux, enthalpy and kinetic
fluxes). Most of the power transferred is emitted as aurora emis-
sion in the visible electromagnetic range, but a fraction is in-
vested in cyclotron radio emission (Zarka 1998).

Radiometric Bode’s law links up incident magnetized flow
power and obstacle magnetic field intensity with radio emission
as [Prag] = BI[P4]", with [Py,q] the radio emission and S the ef-
ficiency of dissipated power to radio emission conversion with
n =~ 1 (Zarka et al. 2001; Zarka 2007). Recent studies pointed
out 3 values between 3 x 1073 to 1072 (Zarka 1997).

The power dissipated in the interaction between solar wind
and magnetosphere field is strongly variable. Indeed several fac-
tors influence the nature of the interaction. The topology of the
planet magnetic field is affected by the IMF orientation and in-
tensity, as well as hydrodynamic parameter of the solar wind
(SW) like density, velocity or temperature, leading to differ-
ent distributions of radio emission hot spots and total emis-
sivity. This is the case of Mercury, where the proportion of
IMF and Hermean (Mercury) magnetic field intensity, defined
as @ = By, /By (Baker 2009, 2011), oscillates from 0.3 during
a coronal mass ejection (CME), By, ~ 65 nT, to 0.04 for a pe-
riod of low magnetic activity of the Sun, By, = 8 nT (Anderson
2011; Johnson 2012). IMF orientations can depart further from
Parker Spiral (Parker 1958), leading to different configurations
of the Hermean magnetosphere (Fujimoto 2007) due to the re-
connection with the planet magnetic field (Slavin 1979). At the
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same time, SW hydrodynamic parameters predicted by ENLIL
(time-dependent 3D magnetohydrodynamic, MHD, model of the
heliosphere) + GONG WSA (prediction of background solar
wind speed and IMF polarity) cone models show too a large
range of possible values: between 12—180 cm~3 for density, 200—
500 kms~! for velocity and 2 x 10*~18 x 10* K for temperature
(Odstreil 2003; Pizzo 2011). Consequently, a parameter study is
required to analyze the radio emission from Mercury.

First measurements of the Hermean magnetic field by
Mariner 10 identified a dipolar moment of 195nT *Ri/l (Ry Mer-
cury radius; Slavin 2008), further refined by MESSENGER ob-
servations leading to a more precise description as a multipo-
lar expansion (Anderson 2008a). Electron cyclotron frequency
in the Hermean magnetosphere is smaller than the plasma fre-
quency of the SW, so the radio power in Mercury is expected to
be trapped into the magnetosphere (Zarka 2000).

The aim of this study is to calculate the radio emission driven
in the interaction of the solar wind with the Hermean magneto-
sphere, analyzing the kinetic and magnetic energy flux distribu-
tions as well as the net power dissipated on the planet day and
night side. The analysis is performed for different orientations
of the IMF and SW hydro parameters. The radio emission from
planetary magnetospheres is a source of information to foreseen
the topology and intensity of exoplanets magnetospheres.

The interaction of the SW with the Hermean magneto-
sphere is studied using different numerical frameworks as sin-
gle (Kabin et al. 2008; Jia et al. 2015), multifluid (Kidder et al.
2008) and hydrid codes (Wang et al. 2010; Miiller et al. 2011,
2012; Richeretal. 2012). The simulations show that the
Hermean magnetic field is enhanced or weakened in distinct
locations of the magnetosphere according to the IMF orienta-
tion, modifying its topology (Slavin 1979; Kabin et al. 2000;
Slavin et al. 2009). To perform this study we use the MHD ver-
sion of the single fluid code PLUTO in spherical 3D coordinates
(Mignone 2007). The Northward displacement of the Hermean
magnetic field is represented by a axisymmetric multipolar ex-
pansion (Anderson 2008b). Present study is based in previous
theoretical studies devoted to simulate global structures of the
Hermean magnetosphere using MHD numerical models (Varela
2015, 2016a,b).

This paper is structured as follows. Section 2, description of
the simulation model, boundary and initial conditions. Section 3,
analysis of the radio emission generation for configurations with
different IMF orientations and intensities. Section 4, study of the
radio emission generation for configurations with different SW
hydro parameters. Section 5, conclusions and discussion.

2. Numerical model

We use the ideal MHD version of the open source code PLUTO
in spherical coordinates to simulate a single fluid polytropic
plasma in the non resistive and inviscid limit (Mignone 2007).

The conservative form of the equations are integrated using
a Harten, Lax, Van Leer approximate Riemann solver (hll) asso-
ciated with a diffusive limiter (minmod). The divergence of the
magnetic field is ensured by a mixed hyperbolic/parabolic diver-
gence cleaning technique (Dedner 2002).

The grid is made of 196 radial points, 48 in the polar angle 6
and 96 in the azimuthal angle ¢ (the grid poles correspond to the
magnetic poles). The numerical magnetic Reynolds number of
the simulations due to the grid resolution is Ry, = VL/n = 1350,
with V = 10° m/s and L = 2.44 x 10° m the characteristic veloc-
ity and length of the model, and 7 ~ 1.81 x 10® m?/s the numer-
ical magnetic diffusivity of the code. The numerical magnetic
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Table 1. Multipolar coefficients g,y for Mercury’s internal field.

Coeft | go1(nT)

-182

goa/go1
0.0301

903/ 9o
0.1265

g2/ 9o
0.4096

diffusivity was evaluated in dedicated numerical experiments us-
ing a model with the same grid resolution but a simpler setup.

In order to have a realistic representation of the Hermean
magnetic field we make use of the current best knowledge
of its topology and amplitude based on MESSENGER data.
Anderson et al. (2012) study provides a multipolar expansion of
the field assuming an axisymmetric model, thus we implement in
our setup an axisymmetric multipolar fieldupto/ = 4 and m = 0.
The magnetic potential ¥ is expanded in dipolar, quadrupolar,
octupolar and hexadecapolar terms:

4 Ry I+1
Vr,0) = Ru Y (1) goPi(cos o). )
=1

The current free magnetic field is Byy = —VW. r is the distance to
the planet center, 6 the polar angle and P;(x) the Legendre poly-
nomials. The numerical coefficients g; taken from Anderson
et al. (2012) are summarized in Table 1.

The simulation frame is such that the z-axis is given by the
planetary magnetic axis pointing to the magnetic North pole and
the Sun is located in the XZ plane with xg,, > 0. The y-axis
completes the right-handed system.

The simulation domain is confined within two spherical
shells centered in the planet, representing the inner and outer
boundaries of the system. The shells are at 0.6Ry; and 12Ry;.
Between the inner shell and the planet surface (at radius unity in
the domain) there is a “soft coupling region” where special con-
ditions apply. Adding the soft coupling region improves the de-
scription of the plasmas flows towards the planet surface, isolat-
ing the simulation domain from spurious numerical effects of the
inner boundary conditions (Varela 2016a,b). The outer boundary
is divided in two regions, the upstream part where the solar wind
parameters are fixed and the downstream part where we consider
the null derivative condition (% = 0 for all fields (VX B = 0 con-
dition is conserved because at 12Ry; the IMF is dominant and
constant). At the inner boundary the value of the intrinsic mag-
netic field of Mercury is specified. In the soft coupling region
the velocity is smoothly reduced to zero when approaching the
inner boundary. The magnetic field and the velocity are parallel,
and the density is adjusted to keep the Alfven velocity constant
va = B/\Juop = 25 kms™" with p = nm,, the mass density, n the
particle number, m, the proton mass and o the vacuum magnetic
permeability. In the initial conditions we define a paraboloid in
the night side with the vertex at the center of the planet, defined
as r < 1.5 — 4sin(6) cos(¢)/(sin*(0) sin>(¢) + cos>(6)), where the
velocity is null and the density is two order of magnitude smaller
than in the solar wind. The IMF is also cut off at 2Ry.

We assume a fully ionized proton electron plasma, the sound
speed is defined as vy = +/yp/p (with p the total electron +
proton pressure), the sonic Mach number as Mg = v/vs with v the
velocity.

The radio emission study for different IMF intensities is lim-
ited to the range of 10 to 30 nT. Lower or higher IMF intensities
correspond to a solar magnetic activity below or over the aver-
age, not considered in the present communication. In the radio
emission study with different hydro parameter of the SW and
fixed IMF orientation and intensity, we adopt the maximum and
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Table 2. Hydrodynamic parameters of the SW.

n(cm>3) T (K)
60 58 000

v (kms™)
250

M;
6.25

minimum values expected by ENLIL + GONG WSA cone mod-
els for the SW density, temperature and velocity. The radio emis-
sion for configurations mimicking CME conditions are out of the
scope of this study.

3. Effect of the interplanetary magnetic field

In this section we estimate the radio emission in Mercury for dif-
ferent orientations and intensities of the IMFE. We calculate the
power dissipated by the interaction of the SW with the Hermean
magnetosphere on the planet day side and the reconnection re-
gion of the magnetotail on the planet night side. The effect of the
reconnections on the day side is fully accounted for the study.
The energy flux is calculated as a combination of kinetic Py
(associated with the solar wind dynamic pressure) and magnetic
terms Pg (due to the reconnection between the IMF and the Her-
mean magnetic field):

1
Py = 5pv|02| (2)

_EAB (nJ-vAB)AB
Ho Ho

Pg

3

where E is the electric field and J the current density. The effect
of the numerical magnetic diffusivity 7 is negligible in the cal-
culation of the power dissipation on the planet day side, but it is
considered in the reconnection region.

The net power dissipated is calculated as the volume integral
of Py and Pp:

2
P = [ V~(’$)dv @
\%4
[PB]=IV-EAde. )
1% Ho

On the day side, the volume integrated extends from the bow
shock to the inner magnetosphere (magnetosheath and magne-
topause included). On the night side the integrated volume is
localized around the X point of the magnetotail, covering the re-
gion where the intensity of the planet magnetic field is at least
10% smaller than for a configuration without IMF.

3.1. Orientation of the interplanetary magnetic field

We analyze first the effect of the IMF orientation, fixing the hy-
drodynamic parameters of the SW and the module of the IMF
to 30 nT. The hydrodynamic parameters of the solar wind in the
simulations are summarized in Table 2. Figure 1 shows a 3D
view of the system for a Northward configuration of the IMF,
identifying the region of the BS (color scale of the density dis-
tribution), field lines of the Hermean magnetic field (red lines),
IMF (pink lines) and solar wind stream lines (green lines). The
arrows indicate the orientation of the Hermean and interplane-
tary magnetic fields and the dashed white line the beginning of
the simulation domain.

0 n cm’3 240
HHHH\ II‘IHI

Mercury

Fig. 1. 3D view of the system. Density distribution (color scale), field
lines of the Hermean magnetic field (red lines), IMF (pink lines) and
solar wind stream lines (green lines). The arrows indicate the orientation
of the Hermean and interplanetary magnetic fields (case Bz). Dashed
white line shows the beginning of the simulation domain.

In the following we identify the Mercury-Sun orientation as
Bx simulations, the Sun-Mercury orientation as Bxneg simula-
tions, the Northward orientation respect to Mercury’s magnetic
axis as Bz simulations (shown in Fig. 1 example), the Southward
orientation as Bzneg simulations, the orientation perpendicular
to previous two cases on the planet orbital plane as By (East)
and Byneg (West) simulations. The IMF intensity of the model
is denoted by a number attached to the orientation label, for ex-
ample the simulation Bz3 identifies a Northward orientation of
the IMF with module 30 nT. All the simulations and parameters
are summarized in Appendix A. We include as reference case a
simulation without IMF (BO).

In Fig. 2 we illustrate the interaction of the IMF and magne-
tospheric field for the reference case and Bx3 simulation. Panels
A and C show the Hermean magnetic field lines (magnetic field
lines are color-coded with the magnetic field amplitude), SW
stream lines (green lines), magnetic field intensity at the frontal
plane X = 0.3Ry and inflow/outflow (blue/red) regions on the
planet surface. Reconnection regions are identified as blue col-
ors at the frontal plane, not observed in the reference case and
located in the South of the magnetosphere for the Bx3 simula-
tion. Panels B and D show polar plots of the density distribu-
tion including the magnetic field lines of the planet (red lines)
and SW stream lines (green lines), identifying the regions of
the bow shock, magnetosheath and magnetopause. The dashed
pink line indicates the surface plotted in Figs. 3 and 4 for the
Bx3 simulation.

Figure 3 shows a frontal view of the magnetic energy flux
on the planet day side (Pp(DS)) for different IMF orienta-
tions, observed towards the planet-Sun direction from the planet
night side. There is a strong dependency of Pg(DS) hot spot
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0 80 160 240
—— Bfield lines
—— SW stream lines
= = = Plot surface

Fig. 2. Hermean magnetic field lines with the intensity imprinted on
the field lines by a color scale for the reference case A) and simula-
tion Bx3 C). Magnetic field intensity at the frontal plane X = 0.3Ry.
SW stream lines (green). Inflow/outflow regions on the planet surface
(blue/red). Polar plot of the density distribution (displaced 0.1Ry in
Y direction) for the reference case B) and simulation Bx3 D). Dashed
pink curve indicates the surface plotted in Figs. 3 and 4.

distribution with the IMF orientation. Local minima of the mag-
netic energy flux are correlated with a local decrease of the
Hermean magnetic field intensity, although local maxima are
correlated with a local enhancement of the Hermean magnetic
field. For Bx3 (panel A) and Bxneg3 (panel D) IMF orienta-
tions, Pg(DS) hot stops are located close to the planet. There is
a North-South asymmetry due to the presence of a reconnection
region, located in the South (North) of the magnetosphere for
the Bx3 (Bxneg3) case, identified as a local decrease of Pg(DS).
Bx3 and Bxneg3 orientation weakly affect the Hermean mag-
netosphere topology at low-middle latitudes, only nearby the
poles, reason why both cases appear to be similar. Compared
with other IMF orientations, the local maximum of Pg(DS) is al-
most one order of magnitude smaller. Models with By3 (panel B)
and Byneg3 (panel E) IMF orientations have Pg(DS) hot spots
nearby the poles, showing the same East-West asymmetry than
the magnetosphere, with the reconnection regions located in
the planet sides (local minimum of Pg(DS)). Bz3 (panel C)
and Bzneg2 (panel F) cases show different distributions of the
Pp(DS) hot spots, along the planet sides for Bz3 orientation
(reconnection regions located near the poles) and a quadripolar
structure in the Bzneg2 model (reconnection region at the planet
equator). These results indicate a large variability of the radio
emission distribution on the planet dayside with the IMF ori-
entation. Thus, future radio emission observation from exoplan-
ets must show a strong dependency with the host star magnetic
activity.
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Figure 4 shows a frontal view of the kinetic energy flux on
the planet day side (Px(DS)) for different IMF orientations, ob-
served towards the planet-Sun direction from the planet night
side. There is a local enhancement (decrease) of Py (DS') associ-
ated with a local decrease (enhancement) of the magnetospheric
field. Px(DS) is linked with the dynamic pressure of the SW
although the local enhancements observed for all the IMF orien-
tations is determined by the magnetosphere topology and IMF
orientation. This statement is valid in case of exoplanets as long
as we consider a purely radial outflow of stellar wind between
the star and the exoplanet, condition that could not be fulfilled
for exoplanet with eccentric orbits.

Figure 5 shows the magnetic energy flux (Pg(NS)) on the
planet night side. Pg(NS) distribution shows a local maxima be-
tween the reconnection regions of the magnetotail and magne-
topause for all IMF orientations. If the magnetotail is slender and
stretched, case of By3 (panel B), Byneg3 (panel E) and Bzneg2
(panel F) IMF orientations, the magnetic tension is larger lead-
ing to a more efficient dissipation of the magnetic energy and
larger Pp(NS) values. We don’t include the analysis of the ki-
netic energy flux (P¢(NS)), whose local maxima is located in
the magnetotail reconnection region, because the expected ra-
dio emission associated with [Py] is small compared to [Pg] (see
Table 4). Consequently, we must presume greater radio emission
on the exoplanets night side if the IMF orientation drives slen-
der and stretched magnetotail topologies. At the same time, for
exoplanets with more intense magnetic field hosted by stars with
stronger magnetic activity than the Sun, radio emission on planet
night side should dominate because magnetic and kinetic energy
fluxes in the magnetotail reconnection region are enhanced.

Table 3 shows the magnetic and kinetic net power dissipated
on the planet day side and the reconnection region of the magne-
totail on the planet night side. The net magnetic energy is neg-
ative because the IMF interaction with the Hermean magneto-
sphere leads in all models to a net erosion of the magnetospheric
field, so the system loses locally magnetic energy. The net ki-
netic energy is negative too on planet day side because the solar
wind is decelerated as soon as it reaches the Hermean magneto-
sphere, losing kinetic energy. The opposite scenario is observed
in the magnetotail X point, there is a net gain of kinetic energy
by the plasma because it is accelerated in the reconnection re-
gion. Bz3 orientation is the only case with [Px(NS)] < 0, be-
cause it is the configuration with the magnetotail X point lo-
cated the furthest from the planet, leading to a smaller magnetic
energy flux and plasma acceleration in the reconnection region.
[Pp(DS)] and [Px(DS)] are larger than [Pg(NS)] and [Px(NS)]
for all IMF orientations except Bx3 case. [Pg(DS)] for Bx3 and
Bxneg3 IMF orientations is one order of magnitude smaller than
in other models. [ Py] is larger than [ Pg] on the planet day side al-
though [Pp] is larger than [Py] in the reconnection region of the
magnetotail on the night side for the models By3, Byneg3 and
Bzneg2. The IMF orientation that drives the highest net power
dissipation is Bzneg2 configuration, while Bx3 orientation leads
to the smallest.

In Table 4 we show the expect radio emission calculated
from the net magnetic and kinetic power dissipated on the planet
day side and the reconnection region at planet night side using
radiometric Bode’s law (Zarka et al. 2001; Farrell 1999):

[P(DS)] = a[P(DS)] + b[Pp(DS)] (©)

[P(NS)] = a[P(NS)] + b[Pp(NS)] )

with @ and b efficiency ratios assuming a linear dependency of
[Px] and [Pg] with [P]. Observations of other planets in the solar
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(A) Bx3

(B) By3

z
107 [PV im*) 107 I
M“'?‘mﬂ“m L4 X

(C) Bz3

(F) Bzneg2

1o
IHI\IHW

107 |07 /m*)

Fig. 3. Frontal view of the magnetic energy flux on the planet day side for different IMF orientations. We observe the magnetic energy flux
distribution towards the planet-Sun direction from the night side. 1st color bar is related to A) and D) panels, 2nd color bar to the other 4 cases.
The plotted surface is defined between the bow shock and the magnetopause where the magnetic energy flux reaches its maxima (see Fig. 2,

panels B and D, pink dashed line).

Table 3. Net magnetic and kinetic power dissipated on the planet day side and the reconnection region at planet night side.

Model | [P(DS)] (103 W)  [Pp(DS)] (108 W) | [Px(NS)] (10" W)  [P(NS)] (107 W)

Bx3 —4.60 —-0.13 3.11 -1.61
Bxneg3 -4.71 -0.25 3.48 -0.84

By3 -5.93 -2.81 3.30 —-7.95
Byneg3 -5.94 -2.83 3.50 -8.05

Bz3 -591 -2.95 —-6.19 —4.31
Bzneg2 -11.4 -2.94 7.40 -13.5

Notes. SW hydrodynamic parameters: p = 60 cm™, v = 250 kms™!

energy by the plasma.

system are explained by two possible combination of parameters
(@a=107,b=0)or (a=0,b=2x107%) (Zarka 2007).

[Pg] is similar to [Pg] for all IMF orientations (except Bx3
and Bxneg3 cases with [Pi] one order of magnitude larger than
[Pg]), so the combination of efficiency ratios (a = 1075, b = 0)
is several orders of magnitude smaller than (a = 0, b = 2x 1073),
see Table 4. [P(NS)] for (a = 0, b = 2 x 107%) combination is
almost 5 times smaller than [P(DS)], pointing out that the main
source of radio emission in the Hermean magnetosphere should
be the strong compression of the planet magnetic field lines by
the SW on the planet dayside, as well as local amplifications of
the Hermean magnetic field by the IMF. To determine the com-
bination of efficiency ratios that better fits radio emission from
Mercury, it is required to perform in situ measurements compar-
ing radio emission on the planet day and night side. If the radio
emission on the planet day side is in average 10 times larger than

and 7 = 58000 K. Negative (positive) sign indicates a net lost (gain) of

the radio emission at the night side, (@ = 0, b = 2 X 1073) combi-
nation is the best description, although if the average difference
is closer to 100 times, (a = 10, b = 0) combination is the best
approach. The ratio between radio emission on the planet day
and night side (DS-NS ratio) must change in exoplanets with
more intense magnetic fields, hosted by stars with stronger mag-
netic activity than the Sun. It is mandatory to study the ratio of
DS-NS radio emission in giant planets of the solar system and
determine which combination of efficiency ratios fits better the
observations.

3.2. Intensity of the interplanetary magnetic field

We analyze the influence of the IMF amplitude variation on ra-
dio emission. We perform 13 new simulation using the same SW

A69, page 5 of 10
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(A) Bx3

(B) By3

ZI
—ix

5-107 [B(w/m*) 107
MI IHIUIIW

(C) Bz3

3107 [R|j/m*) 107
MI HH|IHW

Fig. 4. Frontal view of the kinetic energy flux on the planet day side for different IMF orientations. We observe the kinetic energy flux distribution
towards the planet-Sun direction from the night side.Color scale on the left for figures A) and D). The plotted surface is defined between the bow
shock and the magnetopause where the kinetic energy flux reaches its maxima (see Fig. 2, panels B and D, pink dashed line).

Table 4. Expected radio emission on the planet day side and in the reconnection region of the magnetotail on the planet night side for the efficiency

ratios (@ = 0, b = 2 x 1073, second and third columns, and (a = 1 x 107, b = 0), fourth and fifth columns.

Model | [P(NS)] (10° W) [P(DS)] (10° W) | [P(NS)] (10> W) [P(DS)] (10°> W)

Bx3 0.32 0.28 3.11 4.60
Bxneg3 0.17 0.48 3.48 4.71

By3 1.59 5.64 3.30 5.93
Byneg3 1.61 5.68 3.50 5.94

Bz3 0.86 5.92 6.19 591
Bzneg2 2.70 5.88 7.40 11.4

hydro parameters and IMF orientations than in the previous sec-
tion (see Table 2), varying the IMF intensity from 10 to 30 nT.

Figure 6 shows [P(DS)] (panel A) and [P(NS)] (panel B)
(@ = 0and b = 2 x 1073 combination) for models with differ-
ent IMF orientations and modules from 10 to 30 nT. [P(DS)]
and [P(NS)] increase with the IMF module for all orientations
except Bx and Bxneg cases, almost insensitive to the IMF inten-
sity variation. The radio emission enhancement is linked with a
local increase of the magnetospheric field by the IMF, amplifica-
tion not observed in Bx and Bxneg simulations, because in these
configurations the Herman magnetic field and IMF are perpen-
dicular at low and middle latitudes, with the reconnection re-
gion located close to the poles. Bz orientation shows a decrease
of [P(NS)] in the simulations with IMF module 10 and 20 nT,
because the magnetotail is wider and less stretched, leading to
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a decrease of the magnetic field lines tension. The tendency is
inverted in Bz3 simulation due to the induced North-South
stretching of the magnetotail.

4. Effect of the hydro parameters of the solar wind

This section studies the effect of the SW hydrodynamic param-
eters on radio emission generation. We perform 6 new simula-
tions fixing IMF module and orientation, Bsw = (4,1,6) nT.
We choose a IMF configuration with weak module (7.28 nT) to
maximize the effect of the SW hydro parameters, and a mixed
orientation to show a more realistic case. SW parameters of ref-
erence case are the same than in Table 3. The name of the model
is given by the hydro parameter that is modified respect to refer-
ence case (see Table 5).
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Fig. 5. Magnetic energy flux on the planet night side (Pz(NS)). Blue color indicates the reconnection region (iso-surface with magnetic field values

between 0-7 nT). Magnetic field lines of the Hermean and IMF in red.
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Fig. 6. Radio emission on the planet day side (A) and in reconnection region of the magnetotail on the planet night side (B) with radio efficiency
parameters (@ = 0, b = 2 x 107%) for models with different IMF orientation and modules from 10 to 30 nT. The reference case without IMF is
included. Bx orientations (black line), By orientations (red line) and Bz orientation (blue line).

Table 5. Second column indicates the hydrodynamic parameter modified respect to reference case (n = 60 cm™, v = 250kms~! and 7 = 58 000 K).

Model | Mod. parameter | [P(DS)] (108 W)  [Pp(DS)] (108 W) | [P](10° W) | [P] (103 W)
Prmin n=12cm3 ~1.03 -0.50 0.10 1.03
Pmax | n=180cm™ -8.24 -10.30 2.06 8.24
Umin | v=200kms! 242 -0.72 0.14 2.42
Umax | v =500kms! ~18.1 -9.03 1.80 18.1
Twin | T=2x10*K -3.66 ~0.68 0.14 3.66
Toax | T =18 x 104K ~4.78 -0.98 0.20 4.78

Notes. Net magnetic and kinetic power dissipated on the planet day side (second and third columns). Expected radio emission on the planet day
side with radio efficiency parameters (a = 0, b = 2 x 107%), fourth column, and (a = 10~%, b = 0), fifth column.

Figure 7 shows a frontal view of the magnetic energy flux
on the planet dayside for different configurations of SW hydro
parameters, observed towards the planet-Sun direction from the
night side.

Pg(DS) distribution is similar for all simulations, pointing
out that the location of radio emission hot spots is dictated by the
IMF orientation and not by the SW hydro parameters. SW hy-
dro parameters can enhance or weaken the local maxima but the
distribution is only slightly modified. Pg(DS ) local maxima are
enhanced if the SW dynamic pressure (g = pv?/2) is larger, as
in the simulations ppax and vpm,x, compared to low SW dynamic

pressure configurations as Pmin and vpmin. Pp(DS) local maxima
are almost the same for T and Ty, Simulations, because the
temperature doesn’t affect the Hermean magnetic field compres-
sion, only leads to a decompression of the magnetosheath, in-
creasing the SW sound velocity and reducing the sonic Mach
number. In summary, if we follow the evolution of the hot spot
distribution as the SW dynamic pressure increases (panels A, B,
C, F, D and E in this order), hot spot intensity increases but the
distribution remains almost the same.

Table 5 shows [Pg(DS)], [Px(DS)] and [P(DS)] with radio
efficiency parameters (a = 0,5 = 2x1073) and (a = 107, b = 0)

A69, page 7 of 10


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628607&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628607&pdf_id=6

A&A 595, A69 (2016)

(D)p =180cm™

zA )
. 1077 [PJov /m*) 3.107
i

o X

(B)v=200km/s

(E)v =500km/s

(C)T =20000K

(F) T = 180000K

Fig. 7. Frontal view of the magnetic energy flux on the planet day side for simulations with different SW hydro parameters. We observe the
magnetic energy flux distribution towards the planet-Sun direction from the night side. The plotted surface is defined between the bow shock and
the magnetopause where the magnetic energy flux reaches its maxima (see Fig. 2, panels B and D, pink dashed line).

for simulations with different SW hydro parameters. (@ = O,
b = 2 x 10~%) combination leads to a radio emission two orders
of magnitude larger than (@ = 107>, b = 0). The configurations
with the largest [P(DS)] are pmax and vpm,x, more than one or-
der of magnitude larger than configurations with lower dynamic
pressure as Pmin and vpin. Tmin and Ty simulations show sim-
ilar [P(DS)] values, slightly larger in the simulation with less
compressed magnetosheath. [Px(DS)] is 2 to 5 times larger than
[Pp(DS)] for all cases except pmax case. These results demon-
strate that radio emissions are sensitive to the time variation of
the SW hydro parameters.

5. Conclusions and discussion

The analysis of the power dissipation in 3D simulations of the
solar wind interaction with the Hermean magnetosphere shows
that hot spot distribution of the radio emission is determined by
the IMF orientation, although the intensity of the local maxima
is dictated by the IMF intensity and SW hydro parameters. The
orientation of the IMF establishes the location of the reconnec-
tion regions in the Hermean magnetosphere. A local enhance-
ment of the magnetospheric field on the day side is correlated
with a maxima of the magnetic energy flux and a minima of the
kinetic energy flux.

The net dissipated power on the planet day side is larger than
in the reconnection region of the magnetotail on the planet night
side, by almost one order of magnitude larger. This proportion
can be very different in other planets of the solar system with
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more intense magnetic field, facing a SW of lower dynamic pres-
sure, as in the case of the Earth of giant gaseous planets, leading
to configurations with stronger radio emission from the recon-
nection region of the magnetotail and weaker from the planet
dayside.

Radio emission on the planet day side is maximized for
any IMF orientation different than Sun-Mercury or Mercury-Sun
directions. These two cases show a radio emission more than
one order of magnitude smaller. The magnetic field lines of the
IMF and Hermean magnetosphere are almost perpendicular at
low-middle latitudes, avoiding an amplification of the magneto-
spheric field. This result is consistent with the weak dependency
of radio emission and IMF module for these orientations. The
other IMF orientations lead to local enhancements of the mag-
netospheric field on the planet dayside, correlated with hot spots
of radio emission.

The net dissipated power is dominated by the magnetic com-
ponent, pointing out that on the planet night side the main source
of radio emission is the magnetic tension of the magnetotail field
lines. The consequence is a stronger radio emission in such mag-
netosphere configurations with stretched magnetotail and recon-
nection X point located close to the planet, see cases with Bzneg,
By and Byneg IMF orientations.

The combination of efficiency ratios that lead to larger ra-
dio emission is (a = 0, b = 2 x 1073), several order of magni-
tude larger than the expected radio emission for the combination
(a = 107, b = 0). If the radio emission on the planet night side
is around 10% of total radio emission, (a = 0, b = 2 x 1073)
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combination describes better the conversion of dissipated power
on radio emission, but if it is less than 1% the correct formula-
tion must contain the combination (¢ = 1075, b = 0). In situ
observations are required to confirm the correct efficiency ratios
combination.

The results obtained are compatible with the predicted values
by Zarka et al. (2001), expecting a radio emission around 10° W.
This is the case for all the simulations expect configurations with
the IMF oriented in Sun-Mercury of Mercury-Sun directions, or
models with low dynamic pressure and weak IMF intensity. Sim-
ulations with large dynamic pressure and IMF intensities larger
than 10 nT not oriented in Sun-Mercury of Mercury-Sun direc-
tions, show radio emissions from 1 to 2 x 10° W.

Radiometric Bode’s law for Mercury’s magnetosphere con-
sidering a stand off distance of 1.5Ry; predicts a net kinetic en-
ergy dissipation of 6 X 10! W and a net magnetic energy dissi-
pation of 4-40 x 108 W (depending on the IMF intensity). The
net kinetic energy dissipation calculated from the simulations is
smaller than the expected value by Bode’s law, consequence of
the complex flows reproduced in the simulations with regions of
plasma deceleration on the day side and acceleration in the mag-
netotail reconnection region. On the other side, the simulations
and Bode’s law lead to similar results for the net magnetic en-
ergy dissipation, pointing out that the model is able to provide a
reasonable guess of the magnetic energy dissipation on the day
side and magnetotail reconnection regions.

A systematic study of the conversion efficiency between dis-
sipated power and radio emission in the planets of the solar sys-
tem is a key study to calibrate the radio emission from exoplan-
ets. It is expected that radio emission data brings constrains on
the intensity and topology of exoplanets magnetic fields, infor-
mation required to study the potential habitability of exoplan-
ets, directly linked with the presence of permanent and strong
enough magnetic fields to shield the planet surface and atmo-
sphere from the stellar wind erosion. We analyze the effect of
the IMF orientation and module, as well as SW hydro parame-
ters on radio emission generation, showing the large variability
induced by these factors on hot spot distribution and intensity. A
generalization of present study to the specific environment of the
exoplanets, stellar wind of host star and expected IMF intensity
and orientation at exoplanet orbit, is mandatory to reconstruct
the topology and intensity of the intrinsic magnetic field from ra-
dio emission data when available (Hess 2011; Zarka et al. 2015).
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Appendix A: Summary of simulations parameters

Bzneg3 simulation is not included in the text because the mag-
netopause is located on the planet surface. Present model lacks
the physics required to correctly reproduce that scenario.

Table A.1. Summary of simulations parameters.

Model B (nT) n(cm>) T 10°K) v(kms™)
Reference 0,0, 0) 60 0.58 250
Bx (10, 0, 0) 60 0.58 250
Bx2 (20, 0, 0) 60 0.58 250
Bx3 (30,0, 0) 60 0.58 250
Bxneg (=10, 0, 0) 60 0.58 250
Bxneg2 (=20, 0, 0) 60 0.58 250
Bxneg3 (=30, 0, 0) 60 0.58 250
By (0, 10, 0) 60 0.58 250
By2 (0, 20, 0) 60 0.58 250
By3 (0, 30,0) 60 0.58 250
Byneg 0, —10, 0) 60 0.58 250
Byneg2 (0, =20, 0) 60 0.58 250
Byneg3 (0, =30, 0) 60 0.58 250
Bz (0,0, 10) 60 0.58 250
Bz2 (0,0, 20) 60 0.58 250
Bz3 (0, 0, 30) 60 0.58 250
Bzneg 0,0, -10) 60 0.58 250
Bzneg?2 (0, 0, =20) 60 0.58 250
Prmin “4,1,6) 12 0.58 250
Pmax “4,1,6) 180 0.58 250
Umin “4,1,6) 60 0.58 200
Umax “4,1,6) 60 0.58 500
T min “4,1,6) 60 0.20 250
T max 4,1,6) 60 1.80 250
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