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Modélisation Mathématique et Analyse Numérique

VARIOUS CHOICES OF SOURCE TERMS FOR

A CLASS OF TWO-FLUID TWO-VELOCITY MODELS

Olivier Hurisse1

Abstract. The source terms of the Baer-Nunziato model involve highly non-linear return to equi-
librium terms. In order to perform numerical simulations of realistic situations, accounting for this
relaxation effects is mandatory. Unfortunately, with the classical forms retained for these source terms
in the literature, building efficient, robust and accurate numerical schemes is a tricky task. In this
paper, we propose different non-classical forms for these source terms. As for the classical ones, they
all agree with the second law of thermodynamics and they are thus associated with a growth of an
entropy. The great advantage of some of these new forms of source terms is that they are more linear
with respect to the conservative variables. Consequently, this allows to propose more robust, efficient
and accurate numerical schemes, in particular when considering fractional step approaches for which
source terms and convection terms are solved separately.
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Introduction

We consider here the class of the so-called Baer-Nunziato model [1]. In these two-fluid models, each fluid
is described by its own pressure, temperature and velocity. The physical coupling of the two fluids is ensured
by several ingredients. Firstly, the phasic variables (pressure, temperature and velocity) are supplemented by a
fraction. This variable is either a statistical void fraction (see [13,22] for instance) or a volume fraction (see [1]
for instance), depending on the modeling processes used to build the model, and it describes the proportion
of each phase at a given point in space and at a given time. Secondly, several convective terms involving the
fraction appear in the set of partial derivative equations. These terms account for effects that can be seen as
interfacial forces due to the space variations of the fraction. They are expressed as non-conservative terms in
the momentum equations and in the energy equations of each phase. The modeling of these terms has been
widely studied for instance in [6, 8, 11, 12, 14, 18, 21, 22, 25]. Lastly, some source terms are defined in order to
account for all the relaxation processes between the phasic quantities: drag force, mass transfer, heat exchange
and pressure relaxation. The definition of these source terms relies on the second law of thermodynamics and
it thus requires a concave entropy for the mixture of the two-fluids.

These two-fluid models have been used for several years in order to perform numerical simulations of un-
steady two-phase flows involving heat ant mass transfer [3, 9, 16, 17, 22]. The numerical schemes used for this
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kind of simulations are very often based on fractional step approaches [28] that first account for the convec-
tive part of the model and then take into account the source terms. Several efficient and robust numerical
schemes have been proposed for the numerical discretization of the convective part, see [4, 7, 24, 26, 27] among
many others. The second step of these approaches then deals with the numerical computation of the source
terms, which is associated with complex non-linear ordinary time-derivative equation (ODE) systems. Due to
the form of the classical source terms [1, 6, 12], these ODE systems are highly non-linear, even when dealing
with very simple equations of state. Moreover, since the relaxation effects may be very stiff, the numerical
schemes have to be both accurate and robust. In the numerical schemes proposed in the literature, the four
different relaxation effects (for the velocities, the pressures, the temperatures and the Gibbs free enthalpies)
are treated separately [5, 15, 16, 22, 23]. This strategy has two drawbacks. Firstly, the different effects are
numerically decoupled which may lead to predictions with a low accuracy for simulation on coarse meshes.
Secondly, the numerical approximation of each relaxation effect is associated with one non-linear ODE system.
Hence four non-linear ODE systems have to be solved which is CPU consuming. In the sequel, we therefore
propose non-classical forms for these source terms that are more easy to account for in a numerical point of view.

The model and the classical source terms are recalled respectively in sections 1 and 3. The non-classical source
terms are directly inspired from the thermodynamical source terms that are classically used in two-phase flow
homogeneous models, for which it is assumed that both fluids have the same velocity. For the latter, the source
terms are often more linear and they can be discretized using very simple and efficient schemes as proposed
in [19, 20]. All the source terms of the sequel are built in order to fulfill the second law of thermodynamics,
and several concave entropies are thus defined in section 2. Four different set of closures for the source terms
are proposed in section 4 on the basis of these different entropies. The first set of closure laws and the second
set of closure laws (resp. in section 4.1 and in section 4.2) are presented for the sake of completeness, but they
do not seem to be of great interest in a practical point of view for numerical simulations. On the contrary, the
third set of closure laws (section 4.3) and the forth set of closure laws (section 4.4) can provide a way to build
robust and efficient simulation tools for two-fluid two-velocity models.

1. A two-fluid two-velocity model

The two-phase flow model considered here belongs to the so-called class of Baer-Nunziato model [1]. Each
phase, labeled by an under-script k = {l, g}, is described by its own specific volume τk ∈ R+

∗ , specific internal
energy ek ∈ R+

∗ and velocity Uk ∈ R; and one Equation of State (EoS) is defined for each fluid in terms of the
specific entropy sk:

(τk, ek) ∈ R+
∗ × R+

∗ : (τk, ek) 7→ sk(τk, ek).

We assume the following properties for the specific entropy sk.

Definition 1.1. The specific entropy sk:

• belongs to C2 (R+
∗ × R+

∗ ,R);
• is strictly concave with respect to (τk, ek) ∈ R+

∗ × R+
∗ ;

• is such that its derivative with respect to the specific internal energy, (sk),ek , is positive: ∀(τk, ek) ∈
R+
∗ × R+

∗ , (sk),ek > 0.

The following notations are introduced for each phase: the density ρk = 1/τk, the total specific energy
Ek = ek +U2

k/2, and (τk, ek) 7→ Pk(τk, ek) the thermodynamical pressure that will be defined more precisely in
the following. The void fractions αk ∈ R+

∗ fulfill the constraint αg +αl = 1, the partial mass mk of the phase k
is denoted by mk = αkρk, the internal energy per unit of volume εk of phase k is denoted by εk = mkek, and
the total energy per unit of volume Ek is:

Ek = εk +
Q2
k

2mk
,
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where Qk = mkUk is the momentum of phase k and Uk its velocity.

The variable of description of the flow is Xgl = (αg, τg, eg, Ug, τl, el, Ul) and the complete set of equations
that rules the time and space evolution of the variables Xgl is:

∂t (αg) + VI∂x (αg) = S1,g

∂t (αgρg) + ∂x (αgρgUg) = S2,g

∂t (αgρgUg) + ∂x
(
αgρgU

2
g + αgPg

)
− PI∂x (αg) = S3,g

∂t (αgρgEg) + ∂x (αgUg(ρgEg + Pg)) + PI∂t (αg) = S4,g

∂t (αlρl) + ∂x (αlρlUl) = S2,l

∂t (αlρlUl) + ∂x
(
αlρlU

2
l + αlPl

)
− PI∂x (αl) = S3,l

∂t (αlρlEl) + ∂x (αlUl(ρlEl + Pl)) + PI∂t (αl) = S4,l.

(1.1)

In system of equations (1.1) several terms still need to be closed in terms of the variable Xgl. In this section,
we focus on the thermodynamical closure for the pressure Pk and of the temperature Tk; and we recall some
classical closure relations for the velocity VI and the pressure term PI . The modeling choices for the source
terms, Si,k, i = {1, 2, 3, 4}, k = {l, g}, which are the aim of the present work, are discussed in detail in sections
3 and 4. We only mention that, for the sake of simplicity, we assume here that they correspond to mass,
momentum, and energy exchanges between the two phases. Even if the external exchanges between the two-
phase mixture and its surroundings can be taken into account, it is out of the scope of the present work. Hence,
for an isolated system, the mass of the mixture αlρl + αgρg, the momentum of the mixture αlρlUl + αgρgUg
and the total energy of the mixture αlρlEl + αgρgEg must not be modified by these internal exchanges. As a
consequence, and adding the constraint αg + αl = 1, the source terms have to fulfill the relations:

∀i = {2, 3, 4}, Si,l + Si,g = 0 (1.2)

Let us now consider regular solutions of system (1.1). The specific entropy sk is a regular function of τk and
ek, see definition 1.1, so that we have:

(∂t (sk) + Uk∂x (sk)) = (sk),τk (∂t (τk) + Uk∂x (τk)) + (sk),ek (∂t (ek) + Uk∂x (ek)) . (1.3)

Then, thanks to the third property of definition 1.1 for the specific entropy sk, we have (sk),ek > 0 and equation

(1.3) can be turned to: (
(sk),ek

)−1

Dk,t(sk) = Dk,t(ek) +
(

(sk),ek

)−1

(sk),τk Dk,t(τk), (1.4)

where the operator Dk,t(.) corresponds to the total derivative1: Dk,t(.) = ∂t (.) + Uk∂x (.). It is assumed
that the classical Gibbs relation holds for each pure phase, that is we have the following relation between the
thermodynamical pressure Pk, the thermodynamical temperature Tk, and the total derivative of sk, τk and ek:

TkDk,t(sk) = Dk,t(ek) + PkDk,t(τk). (1.5)

By identifying the different terms of equation (1.4) and equation (1.5), we get the thermodynamical definitions
of the temperature:

Tk =
(

(sk),ek

)−1

, (1.6)

1The total derivative gathers the contribution of local derivative of the quantity ∂t (.) and of the convective derivative Uk∂x (.),

it corresponds to the derivative along a streamline.
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and of the pressure

Pk =
(

(sk),ek

)−1

(sk),τk = Tk (sk),τk , (1.7)

inside each pure phase. The pressure law (τk, ek) 7→ Pk(τk, ek) and the temperature law (τk, ek) 7→ Tk(τk, ek) of
each phase are thus directly obtained from the specific entropy (τk, ek) 7→ sk(τk, ek).

The mass equations (i.e. the second equation and the fifth equation) of (1.1) can be written:

mk (∂t (τk) + Uk∂x (τk))− αk∂x (Uk) + (VI − Uk)∂x (αk) = S1,k − τkS2,k. (1.8)

Furthermore, by combining the momentum equations (i.e. the third equation and the sixth equation) and the
mass equations, we obtain from the total energy equations (i.e. the forth equation and the seventh equation)
the following equation for the specific internal energy of phase k:

mk (∂t (ek) + Uk∂x (ek))+αkPk∂x (Uk)+PI(Uk−VI)∂x (αk) = −PIS1,k−
(
ek + U2

k/2
)
S2,k−UkS3,k+S4,k. (1.9)

Then, using equations (1.8) and (1.9), one can easily write from (1.3) the following equation for the specific
entropy:

mk (∂t (sk) + Uk∂x (sk)) = αk

(
(sk),τk − Pk (sk),ek

)
∂x (Uk)

+ (Uk − VI)
(

(sk),τk − PI (sk),ek

)
∂x (αk)

+
(

(sk),τk − PI (sk),ek

)
S1,k

+
(
−τk (sk),τk − (ek + U2

k/2) (sk),ek

)
S2,k

− Uk (sk),ek S3,k

+ (sk),ek S4,k.

(1.10)

Thanks to the definitions of the pressure Pk (1.7) and of the temperature Tk (1.6), equation (1.10) can be
written in conservative form:

∂t (mksk) + ∂x (mkUksk) = (Uk−VI)(Pk−PI)
Tk

∂x (αk)

+ (Pk−PI)
Tk

S1,k +
−µk−U2

k/2
Tk

S2,k − Uk

Tk
S3,k + 1

Tk
S4,k,

(1.11)

where µk = ek + τkPk − skTk is the Gibbs enthalpy of phase k. This equation for the entropy will be useful in
section 3 in order to define admissible source terms Si,k for the model.

We recall now some classical results for the convective part of the model associated with system of equations
(1.1). It can be noted that, as it has been done above for the specific entropy, an equation for the pressure
(τk, ek) 7→ Pk(τk, ek) can be obtained by using equations (1.8) and (1.9). When the source terms are omitted,
Si,k = 0, the equation for the pressure reads:

∂t (Pk) + Uk∂x (Pk) + ρkC
2
k∂x (Uk)− (Uk − VI)

mk

(
(Pk),τk − PI (Pk),ek

)
∂x (αk) = 0, (1.12)

where the sound speed (τk, ek) 7→ Ck(τk, ek) for phase k has been introduced:

C2
k = τ2

k

(
Pk (Pk),ek − (Pk),τk

)
. (1.13)

Thanks to the definitions of the pressure Pk (1.7) and of the temperature Tk (1.6), relation (1.13) can also be
written:

C2
k

Tkτ2
k

= − (−1, Pk) · s′′k ·
(
−1
Pk

)
. (1.14)
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In relation (1.14), the matrix s′′k stands for the Hessian matrix of the phasic entropy (τk, ek) 7→ sk(τk, ek), which
is defined since sk belongs to C2 (R+

∗ × R+
∗ ) (see definition 1.1). The following proposition then holds.

Proposition 1.1. Under the assumptions of definition 1.1, we have: ∀(τk, ek) ∈ R+
∗ × R+

∗ , Ck(τk, ek) ∈ R+
∗ .

Proof. Thanks to the properties of the specific entropy sk (see definition 1.1), Tk > 0 and −s′′k is symmetric
definite strictly positive. Hence, equation (1.14) gives C2

k > 0 for all (τk, ek) ∈ R+
∗ × R+

∗ , and thus Ck is a
positive real quantity�.

Let us introduce now the classical choice proposed in [11] for the velocity VI which reads:

VI = βUl + (1− β)Ug, (1.15)

and for the pressure PI :

PI =
(1− β)((sl),τl) + β((sg),τg )

(1− β)((sl),el) + β((sg),eg )
=

(1− β)Pl/Tl + βPg/Tg
(1− β)/Tl + β/Tg

, (1.16)

where the parameter β has three possible forms:

• β = 0 or β = 1, which corresponds to the classical Baer-Nunziato model [1];
• or β = ml/(ml +mg).

These different choices for β have been studied with the help of numerical simulations in [14,23].

With the help of the closure laws (1.6), (1.7), (1.15), (1.16), the convective part of system (1.1) (i.e. with
Si,k = 0) is closed and several properties can be exhibited.

Proposition 1.2. With the velocity VI defined by (1.15) and the pressure PI defined by (1.16):

• (hyperbolicity) system (1.1) possesses seven real eigenvalues VI , Uk, Uk − Ck, k = {1, 2} and the
associated eigenvectors form a basis of R7, provided that resonance does not occur:

(Uk − VI)2 6= C2
k , k = {1, 2};

• the field αg is associated with the eigenvalue VI which is a linearly degenerate field;
• system (1.1) admits a symmetric form.

Proof. The proof of the items of proposition 1.2 is based on the study of the eigenstructure of the convective
part of system (1.1). For the first item and the second item the detailed proof can be found for instance in [11].
The third item has been shown in [8].�

Remark. It should be noted that αk = 0 or mk = 0 corresponds to single phase situations that can not be
handled properly through the set of PDE’s (1.1). Indeed, for the single phase situations system of equations
(1.1) does not allow to define uniquely all the quantities. We thus consider that these situations are out of the
scope of the two-phase flow model considered here.

The convective part has been closed thanks to relations (1.6), (1.7), (1.15), (1.16). The remaining of the
paper is dedicated to the closure relations for the source terms Si,k, i = {1, 2, 3, 4}, k = {l, g}. For that purpose,
we first define in section 2 several concave entropies for the mixture. These entropies will be used in section 3
and 4 in order to define sources terms that ensure an entropy inequality.
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2. Definition of some entropies

In order to propose some closure laws for the source terms Si,k, i = {1, 2, 3, 4}, k = {l, g}, we proceed here
following a classical approach, see [5,8,11,12,22] among many other references: admissible forms for the source
terms must agree with the second law of thermodynamics associated with a concave mixture entropy. For that
purpose, several entropies can be considered and in this section some of them are investigated. In section 2.1
we focus on mixture entropies that only account for the thermodynamical aspects of the model, that is they
only depend on the thermodynamical quantities and not on the momentums. Whereas in section 2.2, entropies
for the whole model are considered.

2.1. Definition of thermodynamical entropies for the mixture

Let us define the thermodynamical mixture entropy η as the weighted average of the phasic specific entropy:

η :

(
Hη → R
Zgl 7→ mgsg

(
αg

mg
,
εg
mg

)
+mlsl

(
αl

ml
, εlml

) )
, (2.1)

where Zgl = (αg,mg, εg, αl,ml, εl) is a vector of variables belonging to the set: Hη = (R+
∗ × R+

∗ × R+
∗ )

2
. It

should be noticed that the constraint (αg + αl) = 1 on the fraction is not yet accounted for in definition of the
entropy η (2.1). It will be introduced latter. The entropy η inherits from the phasic specific entropies sk several
properties.

Proposition 2.1. Under the assumptions of definition 1.1, the mixture entropy Zgl 7→ η(Zgl) has the following
properties:

• ∀a ∈ R+,∀Z ∈ Hη, η(aZ) = aη(Z);
• η belongs to C2 (Hη,R);
• Zgl 7→ η(Zgl) is concave on Hη, its degeneracy manifold is:

Mη(Zgl) = {a (αg,mg, εg, 0, 0, 0) + b (0, 0, 0, αl,ml, εl), (a, b) ∈ R2}. (2.2)

Proof. The first item of proposition 2.1 is obvious, it simply arises from the definition of η. In order to
prove the second item and the third item, let us introduce two vectors that gather the phasic quantity of Zgl:
Zk = (αk,mk, εk); and the two phasic entropies ηk:

ηk :

(
Hη,k → R
Zk 7→ mksk

(
αk

mk
, εkmk

) )
, (2.3)

where Hη,k = R+
∗ ×R+

∗ ×R+
∗ . It follows from these definitions that the mixture entropy can be written using a

separation of variables:

η :

(
Hη,g ×Hη,l → R
(Zg, Zl) 7→ ηg(Zg) + ηl(Zl)

)
. (2.4)

As a consequence, since the phasic entropy (τk, ek) 7→ sk(τk, ek) belongs to C2 (R+
∗ × R+

∗ ,R) and since mk > 0,
the phasic entropy Zk 7→ ηk(Zk) defined by (2.3) belongs to C2 (Hη,k,R). Thanks to the separation of variables
(2.4) for η, one easily obtains the second item of proposition 2.1. In order to prove the concavity of η, we
compute the Hessian matrix for each phasic entropy ηk. We first begin by computing the first derivatives of ηk:

∂αk
(ηk)|mk,εk

(Zk) = ∂τk (sk)
(
αk

mk
, εkmk

)
(2.5)

∂mk
(ηk)|αk,εk

(Zk) = sk

(
αk

mk
, εkmk

)
− αk

mk
∂τk (sk)

(
αk

mk
, εkmk

)
− εk

mk
∂ek (sk)

(
αk

mk
, εkmk

)
(2.6)
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∂εk (ηk)|αk,mk
(Zk) = ∂ek (sk)

(
αk

mk
, εkmk

)
(2.7)

Then the second derivatives are computed and we find:

∂2
αk,αk

(ηk) = 1
mk
∂2
τk,τk

(sk) (2.8)

∂2
αk,mk

(ηk) = − αk

m2
k
∂2
τk,τk

(sk)− εk
m2

k
∂2
τk,ek

(sk) (2.9)

∂2
αk,εk

(ηk) = 1
mk
∂2
τk,ek

(sk) (2.10)

∂2
εk,εk

(ηk) = 1
mk
∂2
ek,ek

(sk) (2.11)

∂2
mk,εk

(ηk) = − αk

m2
k
∂2
τk,ek

(sk)− εk
m2

k
∂2
ek,ek

(sk) (2.12)

∂2
mk,mk

(ηk) = 1
mk

(
α2

k

m2
k
,
ε2k
m2

k

)
· s′′k ·

 α2
k

m2
k

ε2k
m2

k

 (2.13)

In the second derivative term (2.13), s′′k stands for the Hessian matrix of the phasic entropy (τk, ek) 7→ sk(τk, ek).
It is worth noting that thanks to the strict concavity of sk on Hη,k, ∂2

mk,mk
(ηk) < 0 on Hη,k. As a consequence,

the function: (
R+
∗ → R

mk 7→ ηk (αk,mk, εk)

)
, (2.14)

is strictly concave on R+
∗ . With the second derivatives (2.8)-(2.13), the Hessian matrix η′′k of Zk 7→ ηk(Zk) can

be explicitly written. In particular, we have for any vector (xk, yk, zk) ∈ R3:

(xk, yk, zk) · η′′k ·

 xk
yk
zk

 =
(
xk − yk αk

mk
, zk − yk εkmk

)
· s′′k ·

(
xk − yk αk

mk

zk − yk εkmk

)
. (2.15)

Then thanks to the variable separation (2.4) for η, one can obtain from the Hessian matrix η′′ of Zgl 7→ η(Zgl)
and for any X = (xg, yg, zg, xl, yl, zl) ∈ R6:

X · η′′ · X> =
∑
k

(
xk − yk αk

mk
, zk − yk εkmk

)
· s′′k ·

(
xk − yk αk

mk

zk − yk εkmk

)
. (2.16)

Since the phasic entropies sk are concave, we can conclude that

X · η′′ · X> ≤ 0, (2.17)

and hence that Zgl 7→ η(Zgl) is concave but not strictly concave. Indeed, the degeneracy manifold Mη(Zgl) of
entropy η at a point Zgl ∈ Hη can be found as the set of vectors that are such that

X · η′′ · X> = 0.

Due to the strict concavity of sk, one can obtain from relation (2.16):

Mη(Zgl) = {a (αg,mg, εg, 0, 0, 0) + b (0, 0, 0, αl,ml, εl), (a, b) ∈ R2}.

Since αk > 0, mk > 0 and εk > 0, the degeneracy manifold Mη(Zgl) is a vector subspace of dimension 2 of R6.
This ends the proof of proposition 2.1. �

From the proof of proposition 2.1, one can get an interesting auxillary result for the entropy mk 7→ ηm,k(mk)
defined by (2.14). This result will be used in section 4.4. The properties of the entropy sk leadfs to the following
proposition.
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Proposition 2.2. The function mk 7→ ηm,k(mk) defined for given αk ∈ R+
∗ and εk ∈ R+

∗ by:

ηm,k :

(
R+
∗ → R

mk 7→ ηk(αk,mk, εk)

)
, (2.18)

belongs to C2 (R+
∗ ,R) and it is strictly concave on R+

∗ .

Proof. Since the entropy ηk belongs to C2 (R+
∗ × R+

∗ ,R), mk 7→ ηm,k(mk) obviously belongs to C2 (R+
∗ ,R).

Thanks to equation (2.13), the second derivative of mk 7→ ηm,k(mk) reads:

η′′m,k(mk) = 1
mk

(
α2

k

m2
k
,
ε2k
m2

k

)
· s′′k ·

 α2
k

m2
k

ε2k
m2

k

 . (2.19)

Since the phasic entropies sk are strictly concave, we can conclude that:

∀mk ∈ R+
∗ , η

′′
m,k(mk) < 0.

This ends the proof of proposition 2.2. �

We define now the entropy η̃ that is the restriction of η on H̃η,0, a subset of Hη:

η̃ :

(
H̃η,0 → R
Zgl 7→ η(Zgl)

)
. (2.20)

The domain H̃η,0 is the subset of Hη that corresponds to a given sum for the fractions αg + αl = α0, for the
partial masses mg +ml = m0 and for the total energies Eg + El = E0:

H̃η,0 = {Zgl ∈ Hη; αg + αl = α0, mg +ml = m0, Eg + El = E0} . (2.21)

It can easily be shown that this domain H̃η,0 is a bounded convex subset of (R+)6. With this restriction of the
domain of definition, the entropy η̃ has the following property.

Theorem 2.1. The entropy Zgl 7→ η̃(Zgl) defined by (2.20) and (2.21) is strictly concave on H̃η,0, except at
the points Zgl for which there exists κ ∈ R+

∗ such that: κ αg = αl
κ mg = ml

κ Eg = El.

In such situations, the degeneracy manifold of Zgl 7→ η̃(Zgl) is the sub-space of R6:

Mη(Zgl) ∩ H̃η,0 = {(α0,m0, E0, 0, 0, 0) + b (−αl,−ml,−El, αl,ml, El), b ∈ R} . (2.22)

Proof. From proposition 2.1, we can deduce that Zgl 7→ η̃(Zgl) is concave on H̃η,0 ⊂ Hη. In order to exhibit
the form (2.22) of the manifold, let us define a point which belongs to the degeneracy manifold of η̃ at point

Zgl defined by (2.2) and to H̃η,0:

Zgl = (αg,mg, Eg, αl,ml, El) ∈Mη(Zgl) ∩ H̃η,0.
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By definition of Mη(Zgl) and H̃η,0, there exist (a, b) ∈ R2 such that: αg + αl = aαg + bαl = α0

mg +ml = amg + bml = m0

Eg + El = aEg + bEl = E0.

These equations lead to the system:  (a− 1)αg + (b− 1)αl = 0
(a− 1)mg + (b− 1)ml = 0
(a− 1)Eg + (b− 1)El = 0.

(2.23)

If at least two among the three equations of system (2.23) are linearly independent, there exists a unique
solution (a, b) to system (2.23): a = b = 1. Hence, in such a situation, the intersection of the degeneracy

manifold Mη(Zgl) with the domain H̃η,0 is restricted to a single point:

Mη(Zgl) ∩ H̃η,0 = {Zgl}.

The entropy Zgl 7→ η̃(Zgl) is then strictly concave. On the contrary, when the three equations of (2.23) are
equivalent, the solution (a, b) is not unique. This situation occurs when there exists κ ∈ R+

∗ such that: κ αg = αl
κ mg = ml

κ Eg = El,
(2.24)

and system (2.23) leads to the relation:
a = 1 + (1− b)κ.

In such a situation, the entropy Zgl 7→ η̃(Zgl) is not strictly concave and its degeneracy manifold is the sub-space
of R6:

Mη(Zgl) ∩ H̃η,0 =
{

(α0,m0, E0, 0, 0, 0) + b (−αl,−ml,−El, αl,ml, El), b ∈ R+
∗
}
.

This ends the proof of theorem 2.1. �

The entropy Zgl 7→ η̃(Zgl) is thus not strictly concave. Nonetheless, under additional assumptions on the
phasic entropies sk, a stronger result can be stated. This result is given formally in corollary 2.1. With theorem
2.1, it represents a key point in the non-classical formulation of the source terms of section 4.

Corollary 2.1. If we assume that the two phasic entropies (τk, ek) 7→ sk(τk, ek) are such that for all (τ, e) ∈
R+
∗ × R+

∗ , we have:

sl(τ, e) 6= sg(τ, e) or ∂τl (sl)|el (τ, e) 6= ∂τg (sg)|eg (τ, e) or ∂el (sl)|τl (τ, e) 6= ∂eg (sg)|τg (τ, e), (2.25)

then the mixture entropy Zgl 7→ η̃(Zgl) admits a unique maximum on its domain of definition H̃η,0.

Proof. In order to prove corollary 2.1, the results of theorem 2.1 and some elements of its proof are used. From

the latter, we know that η̃ is concave on the bounded convex set H̃η,0. But η̃ is not strictly concave and its

maximum may a priori be reached for several points in H̃η,0. Since η̃ belongs to C2
(
H̃η,R

)
(see proposition

2.1), the set of these points,

Θη̃ = {Z ′gl ∈ H̃η,0;∀Zgl ∈ H̃η,0, η̃(Z ′gl) ≥ η̃(Zgl)},
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is an open bounded convex subset of H̃η,0 (which is also an open bounded convex set). From (2.20) and (2.21),
we know that the entropy η̃ is defined as the restriction of the entropy η to the domain Hη with the three linear
constraints:  G1(Zgl) = αg + αl − 1 = 0,

G2(Zgl) = mg +ml −m0 = 0,
G3(Zgl) = Eg + El − E0 = 0,

(2.26)

whose gradients with respect to Zgl are independent and read: ∇Zgl
G1 = (1, 0, 0, 1, 0, 0)>,

∇Zgl
G2 = (0, 1, 0, 0, 1, 0)>,

∇Zgl
G3 = (0, 0, 1, 0, 0, 1)>.

(2.27)

Therefore, there exists three Lagrange multipliers a1, a2 and a3 such that for a maximizer Zgl of η̃ we have:

∇Zgl
η̃(Zgl) = a1∇Zgl

G1(Zgl) + a2∇Zgl
G2(Zgl) + a3∇Zgl

G3(Zgl),

and thus the first order conditions for the existence of the maximum Zgl are: ∂αg
(η̃) (Zgl) = a1 = ∂αl

(η̃) (Zgl),
∂mg

(η̃) (Zgl) = a2 = ∂ml
(η̃) (Zgl),

∂Eg (η̃) (Zgl) = a3 = ∂E (η̃) (Zgl).
(2.28)

Relations (2.28) can also be written in terms of the phasic entropies sk, the phasic specific volumes τk and the
phasic specific energies ek:

∂τl (sl)|el (τl, el) = ∂τg (sg)|eg (τg, eg),

∂el (sl)|τl (τl, el) = ∂eg (sg)|τg (τg, eg),

sl(τl, el)− τ∂el (sl)|τl (τl, el)− el∂τl (sl)|el (τl, el) = sg(τg, eg)− τ∂eg (sg)|τg (τg, eg)− eg∂τg (sg)|eg (τg, eg).

(2.29)
Moreover, if the maximizer Zgl belongs to the degeneracy manifold of η̃ condition (2.24) holds. When αk 6= 0
and mk 6= 0, this condition can be expressed in terms of the densities ρk = mk/αk and the internal energies
ek = εl/ml :  κ αg = αl

κ αgρg = αlρl
κ αgρgeg = αlρlel

⇐⇒

 κ αg = αl
ρg = ρl
eg = el

(2.30)

Then, if we introduce in relations (2.29) the equalities τ = τl = τg and e = el = eg arising from (2.30), we get
the relations: 

∂τl (sl)|el (τ, e) = ∂τg (sg)|eg (τ, e),

∂el (sl)|τl (τ, e) = ∂eg (sg)|τg (τ, e),

sl(τ, e) = sg(τ, e).

(2.31)

Hence, if the phasic entropies are chosen so that condition (2.25) holds, relations (2.31) cannot be fulfilled. In
other words, when the first derivatives of η̃ vanish at a given point, the latter does not belong to the degeneracy

manifold. This means that even if the entropy η̃ is not strictly concave, it possesses a unique maximum on H̃η,0.

In order to obtain this result, we have assumed that αk 6= 0 and mk 6= 0. This is the case thanks to the
definition of Hη for which single phase situations have been excluded, see also the remark at the end of section

1. Finally, if single-phase flows situations do not occur, the entropy η̃ has a unique maximum on H̃η,0. This
ends the proof of corollary 2.1. �
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Remark. It should be noticed that the condition (2.25) on the phasic entropies is not too restrictive. In practice,
in order to enforce the system to avoid single-phase flow situations, the entropies could be chosen so that:

∀mk > 0,∀εk > 0, mksk

(
αk

mk
, εkmk

)
−→

αk→0+
−∞,

∀αk > 0,∀εk > 0, mksk

(
αk

mk
, εkmk

)
−→

mk→0+
−∞,

∀αk > 0,∀mk > 0, mksk

(
αk

mk
, εkmk

)
−→
εk→0+

−∞.

(2.32)

The first and third conditions of (2.32) are classical, but in general the second one is not fulfilled (for instance
for perfect gas EOS). There is indeed no physical reason to prevent a phase to vanish when mass transfer is
accounted for. Vanishing phases treatment is a tricky problem for two-fluid models.

2.2. Definition of entropies for the complete model

Let us introduce the vectors of conservative variables Wk = (αk,mk, Ek, Qk) ∈ Hs,k with the domain Hs,k =
(Hη,k × R) and Wgl = (αg,mg, Eg, Qg, αl,ml, El, Ql) ∈ Hs with the domain Hs = (Hη,g × R ×Hη,l × R). We
define the following entropies for the variables Wk and Wgl:

Sk :

(
Hs,k → R
Wk 7→ ηk

(
αk,mk, Ek − Q2

k

2mk

) )
, (2.33)

and

Sgl :

(
Hs → R
Wgl 7→ Sg(αg,mg, Eg, Qg) + Sl(αl,ml, El, Ql)

)
. (2.34)

The entropy Sgl is thus the sum of the phasic entropies Sk and it accounts for the whole set of the conservative
variables Wgl of system (1.1).

Proposition 2.3. The mixture entropy Wgl 7→ S(Wgl) has the following properties.

• ∀a ∈ R+
∗ ,∀W ∈ Hs,S(aW ) = aS(W );

• S belongs to C2 (Hs,R);
• Wgl 7→ S(Wgl) is concave on Hs, its degeneracy manifold is:

MS(Wgl) = {a (αg,mg, Eg, Qg, 0, 0, 0, 0) + b (0, 0, 0, 0, αl,ml, El, Ql), (a, b) ∈ R2}. (2.35)

Proof. We proceed here using a separation of variables as in the proof of proposition 2.1. The first an second
properties are directly inherited from the properties of the phasic entropies ηk. Let us focus on the third
property. For that purpose, we remark that for all (wk, xk, yk, zk) ∈ R4 we can obtain for S ′′k , the Hessian
matrix of Wk 7→ Sk(Wk), the relation:

(wk, xk, yk, zk) · S ′′k ·


wk
xk
yk
zk

 =
(
wk, xk, xk

Q2
k

2m2
k

+ yk − zk Qk

mk

)
· η′′k ·

 wk
xk

xk
Q2

k

2m2
k

+ yk − zk Qk

mk


−

(
xk

Qk
mk
−zk

)2

mk
∂εk (ηk)|αk,mk

(2.36)

For the sake of readability, the details of the derivatives are reported in appendix 6. Thanks to the third item
of definition 1.1 and to relation (2.7), the second term on the right hand side of relation (2.36) is negative.
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Moreover, the property of concavity of ηk reported in proposition 2.1 ensures that the first term on the right
hand side of relation (2.36) is also negative. Hence,

(wk, xk, yk, zk) ∈ R4, (wk, xk, yk, zk) · S ′′k ·


wk
xk
yk
zk

 ≤ 0,

which means that the phasic entropy Wk 7→ Sk(Wk) is concave on Hs,k. Thanks to the separation of variables
in the definition of S, it is easily obtained that for Y = (wg, xg, yg, zg, wl, xl, yl, zl) ∈ R8 the Hessian matrix S ′′
of the entropy Wgl 7→ S(Wgl) fulfills the relation:

Y · S ′′ · Y> =
∑
k

(wk, xk, xk Q2
k

2m2
k

+ yk − zk Qk

mk

)
· η′′k ·

 wk
xk

xk
Q2

k

2m2
k

+ yk − zk Qk

mk




−
∑
k

((
xk

Qk
mk
−zk

)2

mk
∂εk (ηk)|αk,mk

)
,

(2.37)

All the terms on the right hand side of relation (2.37) are negative, we can thus conclude that Wgl 7→ S(Wgl)
is concave on Hs. Moreover, the degeneracy manifold Ms(Wgl) of S at a point Wgl ∈ Hs can be obtained as
the set of vectors Y such that: Y · S ′′ · Y> = 0. Since all the terms on the right hand side of relation (2.37) are
negative, this is equivalent to:

(
wg, xg, xg

Q2
g

2m2
g

+ yg − zg Qg

mg
, wl, xl, xl

Q2
l

2m2
l

+ yl − zl Ql

ml

)
∈Mη

((
αg,mg, Eg −

Q2
g

2mg
, αl,ml, El − Q2

l

2ml

))
and

{
xg

Qg

mg
− zg = 0

xl
Ql

ml
− zl = 0

By using substitutions, this set of eight linear equations leads to:

MS(Wgl) = {a (αg,mg, Eg, Qg, 0, 0, 0, 0) + b (0, 0, 0, 0, αl,ml, El, Ql), (a, b) ∈ R2}.

The degeneracy manifoldMS(Wgl) is thus a subspace of dimension 2 of R8. This ends the proof of proposition
2.3. �

All the first and second derivatives of the entropy Sk are reported in Appendix 6. The second derivative of
Sk with respect to the mass mk is given by equation (6.14). Thanks to the properties of the entropies ηk the
following proposition can be stated.

Proposition 2.4. The function mk 7→ Sm,k(mk) defined for given αk ∈ R+
∗ , Ek ∈ R+

∗ and Qk ∈ R+
∗ by:

Sm,k :

(
R+
∗ → R

mk 7→ Sk(αk,mk, Ek, Qk)

)
, (2.38)

belongs to C2 (R+
∗ ,R) and it is strictly concave on R+

∗ .

Proof. Since the entropy ηk belongs to C2 (Hη,k,R), mk 7→ Sm,k(mk) obviously belongs to C2 (R+
∗ ,R). From

the Appendix 6, the second derivative of mk 7→ Sm,k(mk) is given by equation (6.14). We then have:

S ′′m,k(mk) = −Q2
k

m3
k
∂εk (ηk)|αk,mk

+
(

1,
Q2

k

2mk

)
·
(
∂2
mk,mk

(ηk) ∂2
mk,εk

(ηk)
∂2
mk,εk

(ηk) ∂2
εk,εk

(ηk)

)
·

(
1
Q2

k

2mk

)
. (2.39)
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Thanks to equation (2.7) and to the property of sk (see definition 1.1), we have ∂εk (ηk)|αk,mk
= 1/Tk > 0, and

therefore the first term on the right hand side of relation (2.39) is non-positive. In the other hand, Zk 7→ ηk(Zk)
is concave on Hη,k, hence the function which for a given αk ∈ R+

∗ is defined by (mk, ε) 7→ ηk(αk,mk, ε) is also
concave. As a consequence, the matrix in the second term on the right hand side of equation (2.39) is symmetric
definite negative. This allows to conclude that:

∀mk ∈ R+
∗ , S ′′m,k(mk) < 0.

This ends the proof of proposition 2.4. �

The entropy Wgl 7→ S(Wgl) is concave on Hs but it is not strictly concave since its degeneracy manifold

MS(Wgl) is a vector subspace of dimension 2 of R8. We define now the entropy S̃ that is the restriction of S
on H̃s,0, a subset of Hs:

S̃ :

(
H̃s,0 → R
Wgl 7→ S(Wgl)

)
. (2.40)

The domain H̃s,0 is the subset of Hs that corresponds to a given sum for the fractions αg + αl = α0, for the
partial masses mg +ml = m0, for the total energies Eg + El = E0 and for the momentum Qg +Ql = Q0:

H̃s,0 = {Wgl ∈ Hs; αg + αl = α0, mg +ml = m0, Eg + El = E0, Qg +Ql = Q0} . (2.41)

It can easily been shown that this domain H̃s,0 is a convex subset of ((R+)3 ×R)2. With this restriction of the

domain of definition, the entropy S̃ has the following property.

Theorem 2.2. The entropy Wgl 7→ S̃(Wgl) defined by (2.40) and (2.41) is strictly concave on H̃s,0, except at
the points Wgl for which there exists κ ∈ R+

∗ such that:
κ αg = αl
κ mg = ml

κ Eg = El
κ Qg = Ql.

In such situations, the degeneracy manifold of Wgl 7→ S̃(Wgl) is the sub-space of R8:

MS(Wgl) ∩ H̃s,0 = {(α0,m0, E0, Q0, 0, 0, 0, 0) + b (−αl,−ml,−El,−Ql, αl,ml, El, Ql), b ∈ R} . (2.42)

Proof. From proposition 2.3, we can deduce that Wgl 7→ S̃(Wgl) is concave on H̃s,0 ⊂ Hs. In order to exhibit
the form of the degeneracy manifold (2.42), let us choose a point which belongs to the degeneracy maniflod of

S̃ and to H̃s,0:

Wgl = (αg,mg, Eg, Qg, αl,ml, El, Ql) ∈ H̃s,0

By definition of MS(Wgl) and H̃s,0, there exist (a, b) ∈ R2 such that:
αg + αl = aαg + bαl = α0

mg +ml = amg + bml = m0

Eg + El = aEg + bEl = E0
Qg +Ql = aQg + bQl = m0.
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This system of equations leads to the system:
(a− 1)αg + (b− 1)αl = 0
(a− 1)mg + (b− 1)ml = 0
(a− 1)Eg + (b− 1)El = 0
(a− 1)Qg + (b− 1)Ql = 0.

(2.43)

If at least two among the four equations of system (2.43) are linearly independent, there exists a unique solution
(a, b) to system (2.43): a = b = 1. Hence, in such a situation, the intersection of the degeneracy manifold

MS(Wgl) with the domain H̃s,0 is restricted to a single point:

MS(Wgl) ∩ H̃s,0 = {Wgl}.

The entropy Wgl 7→ S̃(Wgl) is then strictly concave. On the contrary, when the four equations of (2.43) are
equivalent, the solution (a, b) is not unique. This situation occurs when there exists κ ∈ R+

∗ such that:
κ αg = αl
κ mg = ml

κ Eg = El
κ Qg = Ql.

(2.44)

and system (2.43) leads to the relation:
a = 1 + (1− b)κ.

In such a situation, the entropy Wgl 7→ S̃(Wgl) is not strictly concave and its degeneracy manifold is the
sub-space of R8:

MS(Wgl) ∩ H̃s,0 =
{

(α0,m0, E0, Q0, 0, 0, 0, 0) + b (−αl,−ml,−El,−Ql, αl,ml, El, Ql), b ∈ R+
∗
}
.

This ends the proof of theorem 2.2. �

3. Classical closure laws for the source terms

In this section, we recall the classical approach used to build some admissible closure laws for the source
terms. The latter is widely used and several references deal with such source terms, see [1,5,6,12] among many
others. The source terms Si,k, i = {1, 2, 3, 4}, k = {l, g}, are first decomposed into elementary effects. The
momentum exchange source term S3,k is split into a contribution due to the drag force Du,k and a contribution
due to the mass exchange S2,k:

S3,k = Du,k + Ṽ (Wgl)S2,k,

with Du,g = −Du,l. In a similar way, its is assumed that the energy exchange source term S4,k gathers a “pure”
heat exchange term Ψk, a contribution due the exchange of energy associated with the drag force and the heat
exchange due to the mass transfer:

S4,k = Ψk + V (Wgl)Du,k +H(Wgl)S2,k,

with Ψg = −Ψl. The velocity terms (Wgl) 7→ Ṽ (Wgl) and (Wgl) 7→ V (Wgl), and the enthalpy term (Wgl) 7→
H(Wgl) have to be closed. These choices are in agreement with conservation constraint (1.2). Equation (1.11)
for the specific entropy can then be written:

∂t (mksk) + ∂x (mkUksk) = (Uk−VI)(Pk−PI)
Tk

∂x (αk)

+ (Pk−PI)
Tk

S1,k +
−µk+H−UkṼ−U2

k/2
Tk

S2,k + V−Uk

Tk
Du,k + 1

Tk
Ψk

(3.1)



TITLE WILL BE SET BY THE PUBLISHER 15

By summing the two equations (3.1), the terms of equation (3.1) that contain the derivative with respect to the
fraction αk vanish and we obtain:

∂t (mgsg +mlsl) + ∂x (mgUgsg +mlUlsl) =

(Pg−Pl)
(1−β)Tg+βTl

S1,g +

(
µl

Tl
− µg

Tg
+

H−UgṼ−U2
g/2

Tg
− H−UlṼ−U2

l /2
Tl

)
S2,g

+
(
V−Ug

Tg
− V−Ul

Tl

)
Du,g +

(
1
Tg
− 1

Tl

)
Ψg

(3.2)

The classical approach then considers the thermodynamical entropy η = (mgsg + mlsl) and the associated
entropy-flux Fη = (ηgUg + ηlUl) (see definitions (2.1) and (2.3)). Since the entropy η is concave (see section 2),
and in order to agree with the second law of thermodynamics, the admissible closure laws for the source terms
S1,g, S2,g, Du,g and Ψg must fulfill the entropy inequality:

∂t (η) + ∂x (Fη) ≥ 0.

The source terms S1,g, S2,g, Du,g and Ψg are thus not defined in a unique manner, but a classical choice is to
choose closures that ensure the positivity of each terms in the right hand side of (3.2):

(Pg−Pl)
(1−β)Tg+βTl

S1,g ≥ 0(
µl

Tl
− µg

Tg
+

H−UgṼ−U2
g/2

Tg
− H−UlṼ−U2

l /2
Tl

)
S2,g ≥ 0(

V−Ug

Tg
− V−Ul

Tl

)
Du,g ≥ 0(

1
Tg
− 1

Tl

)
Ψg ≥ 0.

(3.3)

A simple manner is then to write the following closure laws:

S1,g = K1(Wgl)(Pg − Pl)

S2,g = K2(Wgl)

(
µl

Tl
− µg

Tg
+

H−UgṼ−U2
g/2

Tg
− H−UlṼ−U2

l /2
Tl

)
Du,g = K3(Wgl)

(
V−Ug

Tg
− V−Ul

Tl

)
Ψg = K4(Wgl)

(
1
Tg
− 1

Tl

)
,

(3.4)

where the functions Wgl 7→ Ki(Wgl), i = {1, 2, 3, 4}, can depend on the variable Wgl but they have to be
positive:

∀i = {1, 2, 3, 4}, ∀Wgl, Ki(Wgl) ≥ 0.

It should be noted that no constraint arises on the terms Ṽ , V and H. Nevertheless, the closure V = (Ug+Ul)/2
allows to retrieve a classical admissible form for the drag force based on the relative velocity:

Du,g = K3(Wgl)

(
1

2Tg
+

1

2Tl

)
(Ul − Ug) = K3,u(Wgl)(Ul − Ug).

It can also be noted that with the choice Ṽ = V = (Ug + Ul)/2 and H = UgUl/2, the mass transfer term S2,g

can be simplified in:

S2,g = K2(Wgl)

(
µl
Tl
− µg
Tg

)
.

Thus the mass transfer does not depend on the velocities of the phases, and is only related to the difference
between the chemical potentials µk/Tk. Obviously, other modeling choices can be considered.
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4. Non-classical closure laws for the source terms

The set of closure laws proposed in this section are based on the approach mainly used in the modeling
of multiphase flows using single-velocity models, as in [2, 10, 19, 20] for instance. In section 2, the different
entropies have been studied regardless of the set of partial derivative equations (1.1) that defines the paths
followed by the different variables. In order to reintroduce this information, let us first write system (1.1) in
slightly different but equivalent form. The time derivative of the fraction αk in the energy equation is replaced
by a space derivative by using first equation of (1.1). This leads to the system of equations:

∂t (αg) + VI∂x (αg) = S′1,g
∂t (αgρg) + ∂x (αgρgUg) = S′2,g
∂t (αgρgUg) + ∂x

(
αgρgU

2
g + αgPg

)
− PI∂x (αg) = S′3,g

∂t (αgρgEg) + ∂x (αgUg(ρgEg + Pg))− PIVI∂x (αg) = S′4,g
∂t (αlρl) + ∂x (αlρlUl) = S2,l

∂t (αlρlUl) + ∂x
(
αlρlU

2
l + αlPl

)
− PI∂x (αl) = S′3,l

∂t (αlρlEl) + ∂x (αlUl(ρlEl + Pl))− PIVI∂x (αl) = S′4,l.

(4.1)

The source terms are for k = {l, g} : S′1,k = S1,k, S′2,k = S2,k, S′3,k = S3,k, but with S′4,k = S4,k − PIS1,k. We
then also get the property conservation for an isolated system:

∀i = {1, 2, 3, 4}, S′i,l + S′i,g = 0 (4.2)

All the properties that have been recalled in section 1 for system (1.1) hold for system (4.1). In fact, system
(4.1) is just a more convenient form of the two-fluid model when considering the source terms of the present
section. Equation (1.11) on the phasic entropy sk becomes for system (4.1):

∂t (mksk) + ∂x (mkUksk) = (Uk−VI)(Pk−PI)
Tk

∂x (αk)

+ Pk

Tk
S′1,k +

−µk−U2
k/2

Tk
S′2,k −

Uk

Tk
S′3,k + 1

Tk
S′4,k

(4.3)

The equation for the mixture entropy S̃ is then obtained by summing the equations (4.3) and by applying the

constraints αl + αg = 1 and S′i,l + S′i,g = 0, which are associated with the domain H̃s,0. If the closures for VI
(1.15) and PI (1.16) are retained, we get:

∂t

(
S̃
)

+ ∂x

(
Ql

ml
Sl +

Qg

mg
Sg
)

=
(
Pg

Tg
− Pl

Tl

)
S′1,g +

(
−µg−U2

g/2

Tg
− −µl−U2

l /2
Tl

)
S′2,g

+
(
Ul

Tl
− Ug

Tg

)
S′3,g +

(
1
Tg
− 1

Tl

)
S′4,g

(4.4)

Let us now express the derivative of Wgl 7→ S̃(Wgl) with respect to αg on H̃s,0, where the fraction α0 in
definition (2.41) is equal to 1:

∂αg

(
S̃
)
|αl+αg=1,mk,Qk,Ek = ∂αg

(Sg) |mg,Qg,Eg + ∂αg
(Sl) |αl+αg=1,ml,Ql,El

= ∂αg
(Sg) |mg,Qg,Eg + ∂αg

(αl) |αl+αg=1 ∂αl
(Sl) |ml,Ql,El

= ∂αg (Sg) |mg,Qg,Eg − ∂αl
(Sl) |ml,Ql,El

=
Pg

Tg
− Pl

Tl

(4.5)

The last formula of the set of relations above is obtained thanks to relation (6.5) of appendix 6. In a similar
way, one can easily show that:

∂mg

(
S̃
)
|ml+mg=m0,αk,Qk,Ek =

−µg−U2
g/2

Tg
− −µl−U2

l /2
Tl

(4.6)
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∂Qg

(
S̃
)
|Ql+Qg=Q0,αk,mk,Ek = Ul

Tl
− Ug

Tg
(4.7)

∂Eg

(
S̃
)
|El+Eg=E0,αk,mk,Qk

= 1
Tg
− 1

Tl
(4.8)

Equation (4.4) can thus be written

∂t

(
S̃
)

+ ∂x

(
Ql

ml
Sl +

Qg

mg
Sg
)

= ∂αg

(
S̃
)
|αl+αg=1,mk,Qk,Ek S

′
1,g + ∂mg

(
S̃
)
|ml+mg=m0,αk,Qk,Ek S

′
2,g

+ ∂Qg

(
S̃
)
|Ql+Qg=Q0,αk,mk,Ek S

′
3,g + ∂Eg

(
S̃
)
|El+Eg=E0,αk,mk,Qk

S′4,g
(4.9)

This form of equation (4.9) is the key point in the definition of the source terms proposed in the following.
Indeed, the concavity of the entropy can be used to propose source terms that are non-classical for a two-fluid
two-velocity approach, but that are classical for homogeneous one-velocity models.

4.1. First set of closure laws

Thanks to the form of equation (4.9), a first form for the source terms S′k,g, k = 1..4 is proposed:

S′1,g =
αg − αg
Λ(Wgl)

, S′2,g =
mg −mg

Λ(Wgl)
, S′3,g =

Qg −Qg
Λ(Wgl)

, S′4,g =
Eg − Eg
Λ(Wgl)

; (4.10)

where (Wgl) 7→ Λ(Wgl) is a positive function that represents a time-scale; and where the quantities Wg =

(αg,mg,Qg, Eg) still have to be defined. With these choices, equation (4.9) reads:

∂t

(
S̃
)

+ ∂x

(
Ql
ml
Sl +

Qg
mg
Sg
)

=
1

Λ(Wgl)
∇Wg

S̃g,0 · (Wg −Wg), (4.11)

where the entropy S̃g,0 is introduced on the basis of the mixture entropy S̃. It is defined on ]0, 1[×]0,m0[×R×]0, E0[⊂
Hs,g, with m0 = ml +mg and E0 = El + Eg by:

S̃g,0 :

(
Wg ∈]0, 1[×]0,m0[×R×]0, E0[→ R
Wg 7→ S̃(Wg,W0 −Wg)

)
, (4.12)

In definition (4.12), the liquid variable Wl is deduced from the gas variables Wg by a conservation relation

Wl + Wg = W0 = (1,m0,Q0, E0). Hence (Wg,W0 −Wg) belongs to H̃s,0. It can easily be shown that S̃g,0
inherits the concavity property from S̃.

Proposition 4.1. The entropy Wg 7→ S̃g,0(Wg) defined by (4.12) is concave on ]0, 1[×]0,m0[×R×]0, E0[.

Proof. Let us choose Wg and W ′g in ]0, 1[×]0,m0[×R×]0, E0[, and let a be in [0, 1]. We then get:

S̃g,0(aWg + (1− a)W ′g) = S̃(aWg + (1− a)W ′g,W0 − aWg − (1− a)W ′g)

= S̃(aWg + (1− a)W ′g, a(W0 −Wg)− (1− a)(W0 −W ′g))

It immediately arises from the concavity property of S̃ that:

S̃g,0(aWg + (1− a)W ′g) ≤ aS̃(Wg,W0 −Wg) + (1− a)S̃(W ′g,W0 −W ′g) = aS̃g,0(Wg) + (1− a)S̃g,0(W ′g);

and thus that S̃g,0 is concave on ]0, 1[×]0,m0[×R×]0, E0[. �
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Thanks to proposition 4.1, we obtain from (4.11) that

∂t

(
S̃
)

+ ∂x

(
Ql
ml
Sl +

Qg
mg
Sg
)
≥ S̃g,0(Wg)− S̃g,0(Wg)

Λ(Wgl)
. (4.13)

Hence, in order to ensure the growth of the entropy S̃ associated to the entropy-flux (Ql/mlSl +Qg/mgSg), it

could be sufficient to choose an equilibrium state Wg ∈]0, 1[×]0,m0[×R×]0, E0[ such that:

∀Wg ∈]0, 1[×]0,m0[×R×]0, E0[, S̃g,0(Wg) ≥ S̃g,0(Wg). (4.14)

Unfortunately, if the entropy Wg 7→ S̃g,0(Wg) is concave with respect to Wg, the momentum component of Wg

can not be signed and the domain of definition ]0, 1[×]0,m0[×R×]0, E0[⊂ Hs,g of Wg 7→ S̃g,0(Wg) is thus not

bounded. As a consequence, the state Wg may itself be not bounded because of the momentum component.
An other treatment of the momentum is then proposed in the next section.

4.2. Second set of closure laws

We propose here to treat the momentum component Qg of the variable Wg differently in order to work with
an entropy whose domain of definition is bounded. For this purpose we define the variable Yg = (αg,mg, Eg) ∈
]0, 1[×]0,m0[×]0, E0[, with m0 = ml +mg and E0 = El + Eg, and we consider the following source terms:

S′1,g =
αg − αg
Λ(Wgl)

, S′2,g =
mg −mg

Λ(Wgl)
, S′3,g = K ′3(Wgl)

(
Ul
Tl
− Ug
Tg

)
, S′4,g =

Eg − Eg
Λ(Wgl)

, (4.15)

where K ′3(Wgl) is a positive function. Equation 4.9 then becomes:

∂t

(
S̃
)

+ ∂x

(
Ql
ml
Sl +

Qg
mg
Sg
)

=
1

Λ(Wgl)
∇Yg
S̃g,Y,0 · (Yg − Y g) +K ′3(Wgl)

(
Ug
Tg
− Ul
Tl

)2

(4.16)

where the entropy S̃g,Y,0 is defined for Yg = (αg,mg, Eg) ∈]0, 1[×]0,m0[×]0, E0[ for fixed phasic momentums:

S̃g,Y,0 :

(
Yg ∈]0, 1[×]0,m0[×]0, E0[→ R
Wg = (αg,mg,Qg,0, Eg) 7→ S̃(Wg,W0 −Wg)

)
, (4.17)

where W0 = (1,m0,Qg,0 + Ql,0, E0). In the definition of S̃g,Y,0, the momentums Qk,0 can take any bounded

value since only the derivatives with respect to Yg play a role. The entropy S̃g,Y,0 inherits from the entropy S̃g,0
the following property.

Proposition 4.2. The entropy Yg 7→ S̃g,Y,0(Yg) defined by (4.17) is concave on ]0, 1[×]0,m0[×]0, E0[.

Proof. The proof mimics the proof of proposition 4.1. �

Using the concavity of Yg 7→ S̃g,Y,0(Yg), on can obtain the following inequality from equation (4.16):

∂t

(
S̃
)

+ ∂x

(
Ql
ml
Sl +

Qg
mg
Sg
)
≥ S̃g,Y,0(Yg)− S̃g,Y,0(Yg)

Λ(Wgl)
+

1

Λu(Wgl)

(
Ug
Tg
− Ul
Tl

)2

, (4.18)

On the contrary to the entropy S̃g,0, the entropy S̃g,Y,0 is concave on a bounded domain. Hence, if we exclude

the single-phase flow situations, there exists at least one equilibrium state Yg ∈ [0, 1]× [0,m0]× [0, E0] such that

∀Yg ∈ [0, 1]× [0,m0]× [0, E0], S̃g,Y,0(Yg) ≥ S̃g,Y,0(Yg). (4.19)



TITLE WILL BE SET BY THE PUBLISHER 19

We can thus conclude that the choice of source terms (4.15) leads to an entropy inequality for the mixture

entropy S̃ when associated with the entropy-flux (Ql/mlSl +Qg/mgSg):

∂t

(
S̃
)

+ ∂x

(
Ql
ml
Sl +

Qg
mg
Sg
)
≥ 0. (4.20)

Since S̃g,Y,0 is not strictly concave, the equilibrium state Yg may be non-unique, but it exists and it is defined
as a state such that:

S̃g,Y,0(Yg) = max
Yg∈[0,1]×[0,m0]×[0,E0],Qg=Qg,0,Ql=Ql,0

(
S̃g,Y,0(Yg)

)
(4.21)

Nevertheless, this proposition (4.15) leads to a drag force S′3,g that is more than a mechanical effect. Indeed,
the classical form for the drag force as introduced in section 3 by definition 3.4 tends to decrease the relative
velocity independently of the thermodynamical quantities. This is not the case with the source terms S′3,g
as proposed above. This is due to the fact that the source terms (4.15) have not been split into elementary
contributions, as in section 3. In fact we have:(

Ug
Tg
− Ul
Tl

)
=

1

Tg
(Ug − Ul) + Ul

(
1

Tl
− 1

Tg

)
In the third proposition, we introduce a splitting of the source terms that mimics the splitting presented in
section 3.

4.3. Third set of closure laws

We modify S′3,g and S′4,g while keeping S′1,g and S′2,g unchanged. These new choices mimic the splitting of

the source terms S3,g and S4,g defined in section 3. We then introduce two velocities Ṽ ′ and an energy Ẽ′, that
will be defined in the following. Moreover, the momentums are not treated together with the thermodynamical
variables. We thus focus in this section on the entropy η and not on the entropy S as in the two previous
sections. The entropy η̃g,0 is then defined for the variable Zg = (αg,mg, εg) on the basis of the mixture entropy
η defined in section 2.1 by definition (2.1):

η̃g,0 :

(
Zg ∈]0, 1[×]0,m0[×]0, ε0[→ R
Zg 7→ η̃(Zg, Z0 − Zg)

)
, (4.22)

with Z0 = (α0,m0, ε0) = (1,ml +mg, εl + εg). We can then state the following property.

Proposition 4.3. The entropy Zg 7→ η̃g,0(Zg) defined by (4.22) is concave on ]0, 1[×]0,m0[×]0, ε0[ and it

possesses a unique maximum Zg = (αg,mg, εg) on ]0, 1[×]0,m0[×]0, ε0[.

Proof. The proof of the concavity of η̃g,0 is based on theorem 2.1 and its proof mimics the proof of proposition
4.1. The uniqueness of the maximum of η̃g,0 is inherited from the corollary 2.1 of the entropy η̃. Obviously, as
for corollary 2.1, we exclude the single-phase flow situations.

We introduce now the following splitting of the source terms:
S′1,g =

αg−αg

Λ(Wgl)
,

S′2,g =
mg−mg

Λ(Wgl)
,

S′3,g = Du,g + Ṽ ′S′2,g,

S′4,g =
εg−εg
Λ(Wgl)

+ V Du,g + Ẽ′S′2,g,

(4.23)
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where the drag force Du,g and the velocity V have been defined in section 3 (through definition 3.4). The

equilibrium state Zg = (αg,mg, εg) corresponds to the maximum of the entropy η̃g,0 on ]0, 1[×]0,m0[×]0, ε0[.
Its is unique and it is defined as a state such that:

η̃g,0(Zg) = max
Zg∈]0,1[×]0,m0[×]0,ε0[

(η̃g,0(Zg)) . (4.24)

The function Wgl 7→ Λ(Wgl) must be positive. When using relations (6.1)-(6.4), equation (4.4) can be written:

∂t

(
S̃
)

+ ∂x

(
Ql

ml
Sl +

Qg

mg
Sg
)

= 1
Λ(Wgl)

∇Zg
η̃g,0 · (Zg − Zg) +

(
Ul

Tl
− Ug

Tg
+ V

(
1
Tg
− 1

Tl

))
Du,g

+
(
U2

g/2

Tg
− U2

l /2
Tl

+ Ṽ ′
(
Ul

Tl
− Ug

Tg

)
+ Ẽ′

(
1
Tg
− 1

Tl

))
S′2,g

(4.25)

In order to get a entropy inequality, the three terms on the right hand side of (4.25) have to be positive. The
first terms is indeed positive since η̃g,0 is concave and thanks to the definition (4.24) of Zg. For the second and

third terms, we adopt the same choices than for the classical closures of section 3: Ṽ ′ = V = (Ul + Ug)/2 and

Ẽ′ = UlUg/2. The third term of the right hand side of the entropy equation (4.25) then vanishes, and we get:

∂t

(
S̃
)

+ ∂x

(
Ql

ml
Sl +

Qg

mg
Sg
)

= 1
Λ(Wgl)

∇Zg
η̃g,0 · (Zg − Zg) +

(
1

2Tl
+ 1

2Tg

)
(Ul − Ug)Du,g. (4.26)

As for the drag force term of section 3, we choose:

Du,g = K3(Wgl)

(
1

2Tg
+

1

2Tl

)
(Ul − Ug) = K3,u(Wgl)(Ul − Ug),

where Wgl 7→ K3,u(Wgl) is a positive function. With all these choices, we recover the entropy inequality (4.20)

for the mixture entropy S̃ when associated with the entropy-flux (Ql/mlSl +Qg/mgSg).

The sources terms proposed in this section involve two parameters, whereas the classical closures involve four
parameters. The first parameter is the parameter K3,u which rules the kinematic equilibrium, and which is the
same than in section 3. Concerning the return to the thermodynamical equilibrium, the source terms of the
present section only involve one time-scale Λ whereas the classical source terms are ruled by three independent
parameters. But the great advantage of the present source terms is that they are far more easy to integrate
when dealing with numerical simulations. Indeed, using a fractional step approach for the discretization of the
whole model, the thermodynamical relaxation towards the equilibrium can be done using simple and robust
schemes, see [19,20] for instance.

4.4. Fourth set of closure laws

We focus now on the entropy mk 7→ ηm,k(mk) introduced in section 2.1. On the contrary to the three previous
sections, we use here system (1.1) as for the classical source terms of section 3. Thanks to proposition 2.4, we
know that mk 7→ ηm,k(mk) is strictly concave. We then define the mixture entropy ηm,0 as:

ηm,0 :

(
mg ∈]0,m0[→ R
mg 7→ ηm,l(m0 −mg) + ηm,g(mg)

)
. (4.27)

For the entropy ηm,0, the fractions and the energies are fixed quantities. Then, proposition 2.2 leads to the
following property for the mixture entropy mg 7→ ηm,0(mg).

Proposition 4.4. The entropy mg 7→ ηm,0(mg) belongs to C2 (]0,m0[,R) and it is strictly concave on ]0,m0[.
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Proof. The entropy mg 7→ ηm,0 directly inherits its regularity property from the phasic entropies ηm,k (see
proposition 2.2). In order to prove the concavity results, formula (6.11) and (6.14) from appendix 6 are used.
We then get the first derivative mg 7→ ηm,0:

η′m,0(mg) = η′m,g(mg)− η′m,l(m0 −mg) =
µl
Tl
− µg
Tg
, (4.28)

and the second derivative of mg 7→ ηm,0;

η′′m,0(mg) = 1
mg

(
α2

g

m2
g
,
ε2g
m2

g

)
· s′′g ·

 α2
g

m2
g

ε2g
m2

g

+ 1
m0−mg

(
α2

l

(m0−mg)2 ,
ε2l

(m0−mg)2

)
· s′′l ·

 α2
l

(m0−mg)2

ε2l
(m0−mg)2

 . (4.29)

Since mg ∈]0,m0[ and since the phasic entropies sk are strictly concave, we finally get that,

∀mg ∈]0,m0[, η′′m,0(mg) < 0,

which prove that mg 7→ ηm,0 is strictly concave on ]0,m0[. This ends the proof of proposition 4.4. �

In order to take advantage of this property, we define the source terms:
S1,g = K1(Wgl)(Pg − Pl),
S2,g =

mg−mg

Λm(Wgl)
,

S3,g = Du,g + Ṽ S′2,g,

S4,g = Ψg + V Du,g +HS′2,g,

(4.30)

where Wgl 7→ Λm(Wgl) is a positive function. For these source terms, only the mass transfer term S2,g differs
from the classical source terms of section 3. The equilibrium mass mg involved in the mass transfer term S2,g is
defined as the point that maximizes the entropy ηm,0, for given fractions αk and for given internal energies εk:

ηm,0(mg) = max
mg∈]0,m0[

(ηm,0(mg)) . (4.31)

As in previous sections, we assume that single-phase flows are not reached. Therefore the maximum for ηm,0 can

not be reached for mg → 0+ or mg → m−0 . If we still retain the closures Ṽ = V = (Ul+Ug)/2 and H = UlUg/2,
the entropy equation (3.2) then becomes:

∂t

(
S̃
)

+ ∂x

(
Ql

ml
Sl +

Qg

mg
Sg
)

=
(Pg−Pl)

(1−β)Tg+βTl
S1,g +

(
µl

Tl
− µg

Tg

)
S2,g

+
(

1
2Tl

+ 1
2Tg

)
(Ul − Ug) Du,g +

(
1
Tg
− 1

Tl

)
Ψg

(4.32)

If the derivative of ηm,0 given by (4.28) is introduced in (4.32), we get:

∂t

(
S̃
)

+ ∂x

(
Ql

ml
Sl +

Qg

mg
Sg
)

= 1
Λm(Wgl)

∇mgηm,0 · (mg −mg) +
(Pg−Pl)

(1−β)Tg+βTl
S1,g

+
(

1
2Tl

+ 1
2Tg

)
(Ul − Ug) Du,g +

(
1
Tg
− 1

Tl

)
Ψg

(4.33)

The first term of he right hand side of (4.33) is non-negative thanks to the concavity of ηm,0 and thanks to the
definition of mg. Therefore, in order to get an entropy inequality from (4.33), we can then choose Ψg and Du,g

as in section 3:

Du,g = K3,u(Wgl)(Ul − Ug), and Ψg = K4(Wgl)

(
1

Tg
− 1

Tl

)
.
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We recover the entropy inequality (4.20) for the mixture entropy S̃ when associated with the entropy-flux
(Ql/mlSl +Qg/mgSg).

As in the previous section, this fourth set of closure laws presents an advantage for the numerical simulation
because it allows to simplify the numerical integration of the mass transfer using fractional step approach. But,
on the contrary to the source terms of the previous section, we keep here four parameters for the definition of
relaxation paths: K1(Wgl), K3,u(Wgl), K4(Wgl) and Λm(Wgl).

Remark. The same idea can be applied to system (4.1), and it would lead to a different source term for the
fraction:

S1,g = K1(Wgl)(Pg/Tg − Pl/Tl).
nevertheless, in this fourth set of closure laws we intend to keep a formulation close to the classical source terms
of section 3, that is why we have preferred system (1.1).

5. Conclusion

Four non-classical sets of source terms have been proposed for the two-fluid two-pressure Baer-Nunziato type
model. It should be quoted that the approach proposed in the sequel is not restricted to two-velocity mod-
els. It can also be applied to a wide range of multi-fluid multi-velocity models, and even to homogeneous models.

The set of closure laws of section 4.3 is very similar to the form of the source terms of the homogeneous
models. From a numerical point of view, efficient numerical schemes for instance based on those proposed
in [19, 20] can thus be used. This kind of source terms and the associated numerical schemes have several
advantages :

• the pressure, temperature and chemical potential relaxation effects are solved simultaneously, whatever
the stiffness of the relaxation effects may be ;

• the numerical integration relies on an almost exact integration, which provides a good accuracy and
robustness of the scheme ;

• there is no restriction on the complexity of the form of the EOS used for each phase ;
• this scheme is rather efficient in terms of CPU-time because it only requires to solve one non-linear

equation (to compute the equilibrium state).

However, when turning to the physical point of view, the pressure, temperature and chemical potential relax-
ations are driven by a unique time-scale, which may sometimes be too restrictive.The set of closure laws of section
4.4 overtakes this limitation, since each relaxation effect is associated with its own time-scale. Nevertheless,
this choice also presents drawbacks:

• in order to discretize the pressure, temperature and chemical potential relaxation in a coupled manner
a complex numerical scheme is required ;

• moreover, if the three relaxation effects are solved separately, each one is associated with at least one
computation of the solution of a non-linear equation, which may be CPU-consuming for complex EOS.

Hence, the set of closure laws of section 4.3 and 4.4 have both drawbacks and advantages. The choice between
these two sets of source terms should be driven by the physical configuration to be simulated and by the
informations that have to be collected with the numerical simulation.
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6. Appendix: Derivative terms of the mixture entropy S
We report here the derivatives of the entropy Wgl 7→ S(Wgl) defined in section 2 by (2.34). The first

derivatives of S are obviously the basis of the computation of the second derivatives, but they also play an
important role in the definition of admissible source terms in section 4. In the following, for the sake of

readability ηk

(
αk,mk, Ek − Q2

k

2mk

)
will be replaced by ηk (we omit the arguments). The first derivative terms

for the phasic entropies Sk read:

∂αk
(Sk)|mk,Ek,Qk

(Wk) = ∂αk
(ηk)|mk,εk (6.1)

∂mk
(Sk)|αk,Ek,Qk

(Wk) = ∂mk
(ηk)|αk,εk

+
Q2

k

2m2
k
∂εk (ηk)|αk,mk

(6.2)

∂Ek (Sk)|αk,mk,Qk
(Wk) = ∂εk (ηk)|αk,mk

(6.3)

∂Qk
(Sk)|αk,mk,Ek (Wk) = −Qk

mk
∂εk (ηk)|αk,mk

(6.4)

If we introduce the first derivatives of ηk with respect to αk, mk and εk, as expressed by equations (2.5)-(2.7),
we have:

∂αk
(Sk)|mk,Ek,Qk

(Wk) = Pk(τk,ek)
Tk(τk,ek) , (6.5)

∂mk
(Sk)|αk,Ek,Qk

(Wk) =

Q2
k

2m2
k

−µk(τk,ek)

Tk(τk,ek) , (6.6)

∂Ek (Sk)|αk,mk,Qk
(Wk) = 1

Tk(τk,ek) , (6.7)

∂Qk
(Sk)|αk,mk,Ek (Wk) = −Qk

mk

1
Tk(τk,ek) , (6.8)

where τk = αk/mk and ek = Ek/mk − Q2
k/(2m

2
k). It can be noticed that the entropy Wk 7→ Sk(Wk) can thus

be written:

Sk(αk,mk, Ek, Qk) = αk ∂αk
(Sk)|mk,Ek,Qk

(Wk) +mk ∂mk
(Sk)|αk,Ek,Qk

(Wk)

+ Ek ∂Ek (Sk)|αk,mk,Qk
(Wk) +Qk ∂Qk

(Sk)|αk,mk,Ek (Wk).
(6.9)

In order to compute the second derivatives of Sk, we use equations (6.1)-(6.4) and we get:

∂2
αk,αk

(Sk) (Wk) = ∂2
αk,αk

(ηk) (6.10)

∂2
αk,mk

(Sk) (Wk) = ∂2
αk,mk

(ηk) +
Q2

k

2mk
∂2
αk,εk

(ηk) (6.11)

∂2
αk,Ek (Sk) (Wk) = ∂2

αk,εk
(ηk) (6.12)

∂2
αk,Qk

(Sk) (Wk) = −Qk

mk
∂2
αk,εk

(ηk) (6.13)

∂2
mk,mk

(Sk) (Wk) = −Q2
k

m3
k
∂εk (ηk)|αk,mk

+
(

1,
Q2

k

2mk

)
·
(
∂2
mk,mk

(ηk) ∂2
mk,εk

(ηk)
∂2
mk,εk

(ηk) ∂2
εk,εk

(ηk)

)
·

(
1
Q2

k

2mk

)
(6.14)

∂2
mk,Ek (Sk) (Wk) = ∂2

mk,εk
(ηk) +

Q2
k

2mk
∂2
εk,εk

(ηk) (6.15)

∂2
mk,Qk

(Sk) (Wk) = Qk

m2
k
∂εk (ηk)|αk,mk

− Qk

mk

(
∂2
mk,εk

(ηk) +
Q2

k

2mk
∂2
εk,εk

(ηk)
)

(6.16)

∂2
Ek,Ek (Sk) (Wk) = ∂2

εk,εk
(ηk) (6.17)

∂2
Ek,Qk

(Sk) (Wk) = −Qk

mk
∂2
εk,εk

(ηk) (6.18)

∂2
Qk,Qk

(Sk) (Wk) = − 1
mk
∂εk (ηk)|αk,mk

+
Q2

k

m2
k
∂2
εk,εk

(ηk) (6.19)

Once the derivatives of the phasic entropies Sk have been written, it is easy to get the derivatives of the mixture
entropy S thanks to the definition (2.34) for S.
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