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Abstract
Aim: Statistical species distribution models (SDMs) are the most common tool to pre‐
dict the impact of climate change on biodiversity. They can be tuned to fit relation‐
ships at various levels of complexity (defined here as parameterization complexity, 
number of predictors, and multicollinearity) that may co‐determine whether projec‐
tions to novel climatic conditions are useful or misleading. Here, we assessed how 
model complexity affects the performance of model extrapolations and influences 
projections of species ranges under future climate change.
Location: Europe.
Taxon: 34 European tree species.
Methods: We sampled three replicates of predictor sets for all combinations of 10 
levels (n = 3–12) of environmental variables (climate, terrain, soil) and 10 levels of 
multicollinearity. We used these sets for each species to fit four SDM algorithms at 
three levels of parameterization complexity. The >100,000 resulting SDM fits were 
then evaluated under environmental block cross‐validation and projected to environ‐
mental conditions for 2061–2080 considering four climate models and two emission 
scenarios. Finally, we investigated the relationships of model design with model per‐
formance and projected distributional changes.
Results: Model complexity affected both model performance and projections of 
species distributional change. Fits of intermediate parameterization complexity 
performed best, and more complex parameterizations were associated with higher 
projected loss of current ranges. Model performance peaked at 10–11 variables but 
increasing number of variables had no consistent effect on distributional change pro‐
jections. Multicollinearity had a low impact on model performance but distinctly in‐
creased projected loss of current ranges.
Main conclusions: SDM‐based climate change impact assessments should be based 
on ensembles of projections, varying SDM algorithms as well as parameterization 
complexity, besides emission scenarios and climate models. The number of predictor 
variables should be kept reasonably small and the classical threshold of maximum 
absolute Pearson correlation of 0.7 restricts collinearity‐driven effects in projections 
of species ranges.
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1  | INTRODUC TION

Efficient mitigation of biodiversity loss from global changes requires 
a thorough understanding of how species’ ranges are organized in 
space, and how they will shift in the future. Two approaches are 
commonly employed to establish such understanding: statistical 
species distribution models (SDMs, Guisan & Zimmermann, 2000) 
and mechanistic models (e.g. Zurell et al., 2016). Projections of spe‐
cies range shifts using mechanistic models are based on explicitly 
formulated processes that are presumably relevant to the ecology of 
the target species, while SDM projections extrapolate relationships 
identified from statistical structures between occurrences and their 
environment. In principle, projections from mechanistic models may 
seem preferable as their careful application may harbour a lower risk 
that relevant processes are insufficiently captured or corrupted by 
erroneously identified associations (Merow et al., 2014). However, 
limited understanding of relevant processes and of the ecology of 
most species, and/or lack of relevant data to describe it sufficiently 
well prevent their use in many cases (Guisan & Zimmermann, 2000; 
Thuiller et al., 2008). Despite their limitations, statistical SDMs are 
therefore likely to remain commonly used to project species re‐
sponses to global change. For this reason, it is imperative to compre‐
hend the implications of the various conceptual decisions taken at 
the different steps of the development of SDM projections.

Implications of decisions in projection design can be quantified 
by comparing the outcomes of alternative setups when projected 
under climate change (aka projection ensembles). Projection en‐
sembles consist of multiple projections generated by systematically 
varying the settings at the different steps of their development, such 
as initial conditions, that is, the presence and (pseudo)absence data 
used for model training, predictor variables, SDM algorithms, pa‐
rameterization complexity, climate models, or emission scenarios. 
Projection ensembles are particularly useful to quantify uncertainty 
and to obtain consensus projections, which are arguably superior 
to single model projections (Araújo & New, 2007, but see Dormann 
et al., 2018). Furthermore, if combined with rigorous model valida‐
tion, projection ensembles can help identifying model designs of 
relatively high quality. Compared to other fields, such as econom‐
ics and climate science, projection ensembles were introduced to 
species distribution modelling relatively recently (Araújo & New, 
2007; Thuiller, 2004), but gained popularity since specialized mod‐
elling platforms became available—such as the R‐package ‘biomod2’ 
(Thuiller, Lafourcade, Engler, & Araújo, 2009). However, not all steps 
in the development of projection ensembles have received the same 
level of attention. A literature study of 125 recent papers employing 
SDM projections revealed that the most frequently varied step was 
the emission scenario (63% of cases), followed by the climate models 

used to estimate future climatic conditions (48% of cases) (Figure 1a, 
for further information see Appendix S1). SDM algorithms and ini‐
tial conditions were also frequently varied (35% and 32% of cases, 
respectively). Implications of decisions revolving around model com‐
plexity, on the other hand, were typically not explored, and either 
left to the defaults of the method applied or taken based on more 
or less well‐grounded heuristics. Yet, the importance of also varying 
model complexity in projection ensembles has recently been empha‐
sized by several authors (Boria, Olson, Goodman, & Anderson, 2014; 
Merow et al., 2014; Werkowska, Márquez, Real, & Acevedo, 2017).

Most SDM algorithms can be tuned to fit models across a sub‐
stantial range of complexity, from ‘under fit’ models that are not 
flexible enough to capture the detailed species response to the envi‐
ronment to ‘over fit’ models that ascribe signal to noise, which is par‐
ticularly risky when projecting (Merow et al., 2014; Moreno‐Amat et 
al., 2015). Even when differences in model performance are minor, 
projections from complex models can strongly differ from those of 
simple models (Beaumont et al., 2016; Gregr, Palacios, Thompson, & 
Chan, 2018; Merow et al., 2014). However, systematically varying 
model complexity across different SDM algorithms is not straight‐
forward, as their different setups do not allow for analogous tuning, 
and universal measures to directly compare complexity are lacking 
(García‐Callejas & Araújo, 2016). Various proxies for model complex‐
ity have therefore been suggested, including the shapes of response 
curves, predictor and parameter numbers, and the computation time 
required for model fitting (Bell & Schlaepfer, 2016; García‐Callejas & 
Araújo, 2016; Merow et al., 2014). We investigate the roles of three 
aspects related to model complexity: parameterization complexity, 
number of variables used, and multicollinearity among variables. 
Parameterization complexity involves modifications of a set of pa‐
rameters, adjusting the level of complexity within SDM algorithms. 
These variations can be based on the flexibility of response curves 
or the inclusion of interaction terms in regression techniques and 
tree complexity in tree‐based methods (Merow et al., 2014). Varying 
parameterization complexity has not been employed routinely in 
the recent literature. Among the 125 papers that we investigated, 
it was varied only twice (Figure 1a). Instead, algorithms were mostly 
run with default parameterizations or else with simplifications of 
the default flexibility (see also Hao, Elith, Guillera‐Arroita, & Lahoz‐
Monfort, 2019).

Model complexity is also affected by the number of predic‐
tor variables considered as well as their multicollinearity. Adding 
more predictors to a model increases the amount of signal and 
noise available to SDM algorithms and typically leads to larger 
numbers of parameters estimated, and thus more complex 
models (Merow et al., 2014; Werkowska et al., 2017). However, 
many algorithms include strategies to eliminate parameters that 
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insufficiently improve model fits, which leads to a saturating 
relationship between number of variables and model complex‐
ity. Particularly many parameters may be eliminated for predic‐
tor sets with high levels of multicollinearity, and thus a limited 
amount of independent information. Multicollinearity may 
therefore lead to somewhat simpler models. But investigating 
the effects of multicollinearity is also of interest because it can 
compromise parameter estimates which are especially problem‐
atic when models are transferred to situations with different 
multicollinearity regimes (Dormann et al., 2013). As ecologically 
important predictors often show significant levels of collinearity, 
knowing the maximum level of tolerable collinearity is critical. 
Among the 125 papers we investigated, the median number of 
variables included was seven, ranging from two to 37 (Figure 1b). 

Yet, within the same analysis the numbers were typically not var‐
ied (only in 6% of cases), and if they were, then mainly as a con‐
sequence of recombining variable groups (e.g. climate vs. climate 
and soil variables) and not to study the impact of numbers of 
variables. Also, multicollinearity levels were only exceptionally 
varied (2% of cases), and the heuristics used to limit multicol‐
linearity varied greatly (Figure 1c).

In this study, we analyzed a comprehensive ensemble of SDM 
projections and compared uncertainty associated with the com‐
monly varied decision steps in ensembles (SDM algorithm, emis‐
sion scenario, and climate models) with uncertainty originating 
from parameterization complexity, number of variables, and mul‐
ticollinearity. Furthermore, we investigated the patterns of model 
performance, projections of distributional change, and disagree‐
ment of projections of distributional change (i.e. variation from 
replicated predictor sets) along model complexity gradients. Using 
survey data for 34 tree species across Europe, we fitted and evalu‐
ated more than 100,000 SDMs with two performance metrics, and 
generated over 800,000 projections of species distribution ranges 
that we summarized with two metrics of distributional change. 
Based on the results of these primary analyses, we addressed the 
following questions:

1. Which are the most important factors affecting the performance 
of model extrapolations to ‘novel’ (non‐analogous) conditions, 
and projections of species distributional change?

2. Are the effects of model complexity on model performance and 
species distributional change in line with the expectations formu‐
lated in Table 1?

2  | MATERIAL S AND METHODS

2.1 | Overview

Our analyses consisted of three steps. First, we prepared a compre‐
hensive set of environmental variable combinations. We established 
a pool of 24 climate variables for both, current and future condi‐
tions, and a pool of 16 soil/terrain variables which we assumed to 
remain constant until 2080. Based on pairwise Pearson correlation 
coefficients, we defined 100 combinations of numbers of variables 
and multicollinearity levels, and screened the realm of possible pre‐
dictor sets with roughly equal numbers of climatic and soil/terrain 
variables for three replicates per combination. Second, we evaluated 
and projected a large number of SDM fits (Figure 2). For each com‐
bination of predictor set and species, we fitted four SDM algorithms 
at three levels of parameterization complexity and evaluated their 
performance. Then, we projected the fitted models to the conditions 
in 2061–2080 as projected by four climate models for two emission 
scenarios and assessed projected species distributional changes. 
Third, we investigated how model complexity affects model perfor‐
mance, projected distributional change, and disagreement between 
projections of distributional change.

F I G U R E  1   Replications and decisions for different steps in 
projection development in 125 recent studies using SDMs to 
project future distributional changes. Number of replicates for 
key steps in the development of SDM projections are shown in 
(a). Central lines represent medians, boxes represent interquartile 
ranges, and whiskers indicate 95% confidence intervals. For the 
labels nvar represents number of variables; 'Para. Complexity' refers 
to parameterization complexity; and ‘initial conditions’ include 
resampling of presence observations and pseudo‐absences. (b) A 
histogram of the number of variables used in SDMs for projecting is 
shown. (c) The most common criteria used to limit multicollinearity 
in predictor sets. |r| represents the Pearson correlation coefficient, 
PCA stands for principal component analysis, and VIF abbreviates 
variance inflation factor; ‘not explicit’ summarizes studies which 
indicate that they reduced multicollinearity without explicitly 
stating the criteria that were employed. For details, see Appendix S1

(a)

(b) (c)
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2.2 | Data

2.2.1 | Species distribution data

Our distribution data originated from the international cooperative 
program on the assessment and monitoring of air pollution effects 
on forests (ICP Forests Level 1). The ICP Forests surveys forest 
conditions in Europe on a grid of roughly 16 km horizontal resolu‐
tion (Lorenz, 1995). From this program, we used presence/absence 
data collected in the years 2005–2007 containing observations 
at 6,146 locations in total. We constrained the study area to the 
European continent and the British Isles, extending to the eastern 
boundary of the European Union, and removed 563 observations, 

mostly originating from Belarus and remote islands south of 36°N 
(Cyprus, Crete, Canaries, see Figure S2.1 in Appendix S2 for a map). 
Furthermore, we focused on 34 tree species with 50 or more pres‐
ence observations and distinguished the seven species with more 
than 300 observations (or presence in a representative area of at 
least 76,800 km2) as the subgroup ‘common’ species. Species names 
and observation are listed in Table S3.2 in Appendix S3.

2.2.2 | Environmental data

All 24 climate and 16 soil/terrain variables described below were 
projected to the standard projection for Europe (EPSG 3035), and 
aggregated to 4 km horizontal resolution.

TA B L E  1   Expected and found relationships of model performance and projected species distributional change with parameterization 
(para.) complexity, number of variables (nvar), and multicollinearity

Factor Expectation Reason Finding

Model performance

Para. complexity Models with too simple parameterizations are not flexible enough to capture the detailed 
species response to the environment whereas models with too complex parameteriza‐
tions ascribe signal to noise, deteriorating the skill of model extrapolations. We expect 
optimal model performance at intermediate parameterization complexity

nvar Too few predictors yield insufficiently informed occurrence‐environment relationships. 
Adding predictors remediates this deficit but also adds noise to the data and thus 
increases the risk of ascribing signal to noise. We expect model performance to peak at 
moderate numbers of variables and to decline if predictor numbers become too high

Muliticol‐linearity Multicollinearity inflates the variance of regression parameters and potentially leads to 
the misidentification of relevant predictors (Dormann et al., 2013). We expect the per‐
formance of model extrapolations to decrease with increasing multicollinearity

Distributional change

Para. complexity We expect models with more complex parameterizations to fit a tighter niche shape 
around conditions of occurrence than models with simpler parameterizations, due to 
their increased flexibility (Warren et al., 2014). From these tighter fits we expect greater 
changes in projected distributions

RL 
RC 

nvar Adding predictor variables provides additional criteria to constrain fits of ecological 
niches, and thus, by tendency, leads to more constrained niche fits. From these more 
constrained fits we expect greater changes in projected distributions

RL 
RC 

Muliticol‐linearity Model fits are optimized conditional to the linear associations between predictors (multi‐
collinearity). Such associations are likely to be different in training and projection data. 
Model fits trained on data with high levels of multicollinearity therefore respond to both 
changing future conditions and changing future associations and thus we expect them 
to show greater changes in projected distributions

RL 
RC 

Distributional change disagreement

Para. complexity The more complex parameterizations are, the more likely they ascribe signal to noise. 
Consequently, we expect higher disagreement between projections to different (repli‐
cated) predictor sets of same size when modelled with more complex parameterizations

RL 
RC 

nvar The more predictor variables are supplied to an algorithm, the more possibilities exist to 
constrain a niche. Consequently, we expect higher disagreement between projections to 
different (replicated) predictor sets of same size when modelled with more predictors

RL 
RC 

Muliticollinearity Changing linear associations between predictors represents an additional source of un‐
certainty in future projections. Consequently, we expect higher disagreement between 
projections to different (replicated) predictor sets of same size when modelled with 
increasing levels of multicollinearity

RL 
RC 

Note: Distributional change represents expectations for both species range loss (RL) and species range change (RC, see Section 2). Distributional 
change disagreement refers variation from replicated predictor sets. Grey indicates weak relationships.
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Climate variables

The climate variables for present and future conditions were taken 
from the CHELSA initiative with an original resolution of 30 arc‐sec 
(Karger et al., 2017, http://chelsa‐clima te.org/, accessed September 
2018). We included annual mean temperature, isothermality, tem‐
perature seasonality, maximum temperature of the warmest month, 
minimum temperature of the coldest month, the annual range of 
temperature, annual precipitation, and precipitation seasonality. 
Furthermore, for each quarter we estimated mean, maximum, and 
minimum temperature and precipitation. For future conditions, we 
considered projections to 2061–2080 from the four available IPCC 
climate models that scored highest in skill and complementarity 
(Sanderson, Knutti, & Caldwell, 2015): CESM1‐BGC, CMCC‐CM, 
MIROC5, and MPI‐ESM‐MR, as well as two emission scenarios, that 
is, the representative concentration pathways 45 and 85 (RCP45 and 
RCP85, IPCC, 2013).

Soil/terrain variables

We considered five terrain variables and eleven soil variables. From 
the European Environment Agency digital elevation model (EU‐DEM, 
accessed November 2017) with 25 m horizontal resolution, we de‐
rived terrain ruggedness (maximum elevation difference in each 
4 × 4 km cell), mean slope, maximum difference of slope in each cell, 
and aspect. In addition, we used the topographic index, that is, the 
tendency of the soil to become saturated with water as a result of the 
topography of the surrounding area, with an original resolution of 15 
arc‐sec (Marthews, Dadson, Lehner, Abele, & Gedney, 2015). Soil vari‐
ables were taken from the European Soil Data Centre. We used water 
content at saturation, water content at field capacity, water content at 
wilting point, and soil hydraulic conductivity from the maps of indica‐
tors of soil hydraulic properties for Europe with 1 km original horizon‐
tal resolution (Tóth et al., 2015, accessed November 2017). Estimates 
of topsoil organic carbon were taken from (Jones, Hiederer, Rusco, 
& Montanarella, 2005, accessed November 2017) with 1 km origi‐
nal horizontal resolution. Finally, from the European Soil Database 
we used the fractions of gravel, sand, silt, and clay, as well as root‐
ing depth and bulk density with 1 km original horizontal resolution 
(Hiederer, 2013, accessed September 2018). Where information was 
available for topsoil and subsoil, we calculated profile averages before 
spatially aggregating by average. In order to have roughly normally 
distributed predictors, we log‐transformed terrain ruggedness, maxi‐
mum difference of slope, and soil organic carbon estimates.

2.3 | Analyses

2.3.1 | Generation of predictor sets

We used two criteria to define 10 levels of multicollinearity 
(Table 2) in order to cover a range of multicollinearity levels, and 
to include current best practice recommendations. We distin‐
guished 10 bins of increasing third quartiles of absolute Pearson 
correlation coefficients (|r|). Varying third quartiles of |r| allows 

F I G U R E  2   Set‐up of primary analyses. Above the grey, dashed 
line are factors (steps in projection development), whose effects on 
model performance were evaluated; below the line are additional 
factors included for investigating drivers of range change. “nvar” are 
numbers of variables

TA B L E  2   Definition of correlation bins used in this study

Third quartile of |r|
Fraction of |r|> 
0.7

Common 
interpretation

[0–0.1) 0 OK

[0.1–0.2) 0 OK

[0.2–0.3) 0 OK

[0.3–0.4) 0 OK

[0.4–0.5) 0 OK

[0.5–0.6) 0–0.33 Critical

[0.6–0.7) 0–0.33 Critical

[0.7–0.8) >0.33 Bad

[0.8–0.9) >0.33 Bad

[0.9–1] >0.33 Bad

Note: |r|: vector of absolute pairwise Pearson correlation coefficients; 
‘common interpretation’ refers to the frequent employment of |r| ≤ 0.7 
as an upper boundary for multicollinearity (see Figure 1).

http://chelsa-climate.org/
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for modifying the multicollinearity structure of the whole predic‐
tor set, rather than just constraining its extremes. Furthermore, 
we linked these bins to a fixed fraction of pairwise combinations 
that have an |r| above 0.7 (Dormann et al., 2013), which facilitates 
the interpretation of multicollinearity levels. Then, we screened 
our variable pool for three replicates of all possible combinations 
between three to 12 variables (i.e. 10 sets of differing variable 
numbers) and the 10 multicollinearity levels (Table 2) under the 
constraint that climate and soil/terrain variables had to be repre‐
sented in similar fractions (Appendix S4). The resulting 300 poten‐
tial predictor set combinations allow a sound assessment of the 
major patterns of model performance and projected distributional 
change in number of variables × multicollinearity space.

2.3.2 | Species distribution modelling

Algorithms

For each combination of species and predictor set we fitted four 
SDM algorithms with a simple, an intermediate, and a complex pa‐
rameterization, each. The algorithms included two regression tech‐
niques, generalized linear models (GLMs, McCullagh & Nelder, 1983) 
and generalized additive models (GAMs, Hastie & Tibshirani, 1990), 
and two tree‐based techniques, random forest (RF, Breiman, 2001) 
and gradient boosting machines (GBM, Friedman, 2001). General set‐
tings independent of parameterization complexity included the fol‐
lowing: for the regression techniques we assumed a binomial error 
distribution, used the logit link function, and up‐weighted presence 
observations to obtain a balanced prevalence of 0.5. RF fits were 
based on 500 trees, and in GBM we fitted trees with a complexity of 
five and a learning rate of 0.005 and also up‐weighted presences to 
obtain a prevalence of 0.5. SDMs were fitted in the R environment 
(version 3.5.1) using the packages ‘gam’ (version 1.16), ‘randomFor‐
est’ (version 4.6‐14), and ‘gbm’ (version 2.1.5) (Greenwell, Boehmke, 
Cunningham, & Developers, 2018; Hastie, 2018; Liaw & Wiener, 2002; 
R Development Core Team, 2008).

Parameterization complexity

Parameterization complexity mainly involved adjusting the flex‐
ibility of the response curves in regression techniques, the termi‐
nal node size in RF, and the number of trees in GBMs. Simple GLMs 
were fitted considering intercept and linear terms; for intermedi‐
ate GLMs we added second order polynomials; and for complex 
GLMs we also included third and fourth order polynomials and 
first order interactions. For GAMs we set the degree of freedom 
in the smooth terms to 1.5, three, and 10 for simple, intermediate, 
and complex parameterizations, respectively. Simple, intermedi‐
ate, and complex GBMs were distinguished by training 100, 300, 
and 10,000 trees, respectively. In a preliminary analysis 10,000 
trees were identified to have a predictive deviance near the mini‐
mum for the chosen learning rate and the data at hand. Finally, 
complexity of RFs was varied by setting the minimum number of 
observations in the terminal nodes to 40, 20 and one in simple, 
intermediate, and complex RFs, respectively.

Model performance

We assessed model performance based on two metrics, True 
Skill Statistic (TSS, Allouche, Tsoar, & Kadmon, 2006), and 
area under the curve (AUC, Swets, 1988) These metrics were 
derived from model projections to ‘novel’ conditions using 
environmental block cross‐validation (Roberts et al., 2017, 
Appendix S2.1 in Appendix S2). Block cross‐validation is a 
comparably tough test enforcing projections to conditions that 
are somewhat more different than our future environmental 
conditions were from present conditions, both in terms of the 
covered ranges and correlation structure (Appendix S2.2 in 
Appendix S2).

Estimating distributional change

We estimated two metrics of distributional change, range loss and 
range change. Species range loss is defined as the percentage of 
currently suitable habitats that are expected to be lost under fu‐
ture conditions. Species range change is defined as the percentage 
of change in the entire range, assuming dispersal to all newly suit‐
able habitats. Both measures were assessed from binary presence/
absence projections that were converted from the continuous model 
outputs using the threshold maximizing TSS. For both measures we 
estimated the disagreement, that is, the variation imposed by repli‐
cated predictor sets, with interquartile ranges.

2.3.3 | Meta‐analyses on model performance and 
distributional change

Our meta‐analyses on model performance and distributional change 
consisted of two parts: (a) We investigated the patterns of model 
performance, distributional change, and distributional change 
disagreement along the gradients of number of variables, multicol‐
linearity and parameterization complexity. (b) We used analysis of 
variance (ANOVAs) to assess the relative contributions of the steps 
in projection development to uncertainty in model performance and 
projections of distributional change. These analyses were based on 
the outputs of the primary analyses plus missing value imputations 
for number of variables × multicollinearity combinations for which 
no predictor sets were available.

Analysis of patterns and missing value imputation

We summarized model performance and distributional change in 
the number of variables × multicollinearity space to investigate their 
patterns and to generate estimates for missing values. For estimat‐
ing missing values, we represented the combinations of number of 
variables and multicollinearity bins in a 10 × 10 pixel space sepa‐
rately for each combination of species, SDM algorithm, and param‐
eterization complexity (plus emission scenario and climate model in 
the case of distributional change). Then, we pixel‐wise summarized 
model performance and projected distributional change estimates 
from the three replicates by median and approximated pixels with 
missing values with bilinear interpolations from neighbouring pix‐
els. To investigate patterns, we combined original data and imputed 
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missing values, and similarly summarized pixels by median and inter‐
quartile range (IQR) but for pooled estimates from all species.

Analysis of variance

We used ANOVA to quantify the relative contributions of the differ‐
ent sources of uncertainty in projection ensembles. We ran ANOVAs 
with model performance metrics (TSS and AUC) and with distribu‐
tional change estimates (range loss, range change) as response. For 
model performance ANOVAs, we compared the contributions of 
number of variables, multicollinearity, parameterization complex‐
ity, and SDM algorithm. For distributional change ANOVAs, we ad‐
ditionally considered the effects of the two different climate models 
and the two different emission scenarios. In order to have compara‐
ble level numbers for the different factors, we aggregated number 
of variables and multicollinearity to two levels: low and high levels 
of multicollinearity were distinguished by a third quartile of |r| of 0.5 
while the group of low numbers of variables included 3–7 and the 
group of high numbers 8–12. This aggregation resulted in 75 poten‐
tial predictor sets for each of the four combinations of aggregated 
nvar and multicollinearity levels. To account for non‐independence 
resulting from the nestedness of SDM algorithm and parameteriza‐
tion complexity, we additionally considered their linear interaction. 
We accounted for species identity through a random intercept. 
ANOVAs were based on Bayesian generalized linear mixed models, 
fitted with the Integrated Nested Laplace Approximations (INLA) ap‐
proach (Rue, Martino, & Chopin, 2009). Instead of p‐values, which 
are not helpful for large sample sizes, we used parameter uncertainty 
in the posterior distributions to assess how distinct mean sums of 
squares of the different factors were. We estimated mean sums of 
squares 1,000 times based on resampled parameter estimates from 
the posterior distributions of the fitted INLA models, and report me‐
dians and 95% confidence intervals. For response variables bounded 
by zero and one (AUC, range loss) we assumed errors to follow a beta 
distribution, otherwise normal error distribution was assumed.

3  | RESULTS

3.1 | Model performance

3.1.1 | Analysis of variance

The number of variables was the most important factor explaining 
variations in TSS (Figure 3). With 0.71, the fraction of total sum of 
squares (fracSST) was six times higher for number of variables than 
for any other factor. Second and third most important factors were 
parameterization complexity and SDM algorithm with similar fracSST 
of 0.13 and 0.12, respectively. Multicollinearity, on the other hand, 
was the least important factor (fracSST < 0.01). For TSS of fits for 
‘common’ species (>300 presence observations), the ranking was 
the same, but parameterization complexity (fracSST = 0.19) was dis‐
tinctly more important than SDM algorithm (fracSST = 0.07, Figure 
S5.3 in Appendix S5). The results of the AUC ANOVA were very 
similar to those of the TSS ANOVA (Figure S5.4 in Appendix S5).

3.1.2 | Analysis of patterns

Overall, TSS measured under environmentally extrapolating block 
cross‐validation was highest for parameterizations of intermedi‐
ate complexity, showed a unimodal relationship with number of 
variables, and no clear relationship with multicollinearity (Figure 4). 
TSS increase was steep for models built with three to five variables, 
started levelling‐off for models built on >5 variables, and typically 
peaked at 10 or 11 variables (Figure 4b). Fits of intermediate and high 
complexity achieved notably higher TSS than those of low complex‐
ity. Their TSS was similar if no more than five variables were included; 
otherwise fits of intermediate parameterization complexity outper‐
formed complex fits (Figure 4b). Interquartile range of TSS tended 
to decrease with parameterization complexity, in particular for GLMs 
and GAMs (Figure S5.5 in Appendix S5), indicating that under these 
conditions the type of predictor variable used had a comparably low 
impact on performance. TSS of fits of ‘common’ species was on av‐
erage slightly lower than overall TSS, but the patterns were gener‐
ally similar (Figure S5.6 in Appendix S5). However, ‘common’ species 
fits showed a weak negative relationship with multicollinearity, and 
among those fits complex parameterizations achieved highest TSS.

Model performance patterns remained similar when assessed by 
AUC, and when relative instead of absolute predictor numbers were 
considered. As TSS, AUC showed a unimodal relationship with num‐
ber of variables with highest scores at 10 or 11 variables, it peaked 
for parameterizations of intermediate complexity, and showed no 
clear relationship with multicollinearity (Figure S5.7 in Appendix S5). 
Relationships with model performance were also mostly unimodal 
when the number of variables per presence observation rather than 
the absolute number of variables was considered (Figure S5.8 in 
Appendix S5): TSS and AUC were typically highest if one predictor was 
used for about 10 presence observations.

F I G U R E  3   Effects of SDM modelling decisions on TSS as 
assessed by ANOVA. Bars represent fractions of total sums 
of squares between levels (fracSST); error bars indicate 95% 
confidence intervals. Steps affecting model complexity are 
highlighted in dark red. The light red bar labeled ‘Para. C.:Algo.’ 
represents the interaction between parameterization complexity 
and SDM algorithm
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3.2 | Species distributional change

3.2.1 | Analysis of variance

Emission scenario was the most important factor explaining vari‐
ations in projected range loss, but parameterization complexity 
was almost as important (Figure 5). In the range loss ANOVA, the 

proportion of total sum of squares of emission scenario and pa‐
rameterization complexity was about one‐third each (0.34 and 
0.32, respectively). Third most important factor was multicolline‐
arity (fracSST = 0.12). The contributions of SDM algorithm, climate 
model and the interaction between parameterization complex‐
ity and SDM algorithm similarly were relatively less important 
(fracSST between 0.06 and 0.08), and number of variables made 
no notable contribution. Range loss projections of ‘common’‐spe‐
cies models, on the other hand, were mainly affected by emission 
scenario (fracSST = 0.49), and parameterization complexity was 
comparably less important: with a fracSST of 0.10, it contributed 
less than multicollinearity (fracSST = 0.11, Figure S6.9 Appendix 
S6). In contrast, variations in projections of range change were 
largely driven by SDM algorithm (fracSST = 0.75, Figure S6.10 in 
Appendix S6).

3.2.2 | Analysis of patterns

Higher fractions of ranges were projected to be lost by fits 
with more complex parameterizations and predictor sets with 
elevated levels of multicollinearity (Figure 6). On average pa‐
rameterizations of intermediate complexity projected a median 
range loss that was 16% higher than that of parameterizations of 
low complexity; fits with parameterizations of high complexity 
projected another 5% increase (Figure 6b,c). These differences 
were driven by projections of GLMs and GAMs which were par‐
ticularly affected by parameterization complexity (Figure S6.11 
in Appendix S6). Median projected range loss also increased by 
10% for predictor sets with a third quartile of |r| larger than 0.5 
(Figure 6b). For ‘common’ species, range loss projections were on 

F I G U R E  4   TSS patterns along gradients of number of variables, 
multicollinearity and parameterization complexity. (a) TSS of 
model fits in the number of variables × multicollinearity space. 
Rows separate SDM algorithms; columns distinguish levels of 
parameterization complexity. Dark red lines illustrate correlation 
thresholds as defined in Table 2; hashed areas represent level 
combinations for which no predictor sets were available. (b, c) 
TSS scores are summarized along multicollinearity (b) and number 
of variables (c) gradients. Relationships for models with low, 
intermediate, and high parameterization complexity are shown 
in green, blue, and purple, respectively. Lines represent medians; 
polygons represent interquartile ranges

(a)

(b) (c)

F I G U R E  5   Effects of SDM modelling decisions on range 
loss as assessed by ANOVA. Bars represent fractions of total 
sums of squares between levels (fracSST); error bars indicate 
95% confidence intervals. Steps affecting model complexity are 
highlighted in dark red. The light red bar labeled ‘Para. C.:Algo.’ 
represents the interaction between parameterization complexity 
and SDM algorithm
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average slightly higher, with similar but weaker patterns (Figures 
S6.12 and S6.13 in Appendix S6). As for range loss, patterns of 
range change responded to parameterization complexity, with 
models fitted with parameterizations of low complexity project‐
ing net range gains, and those fitted with other complexity levels 
projecting net range losses (Figures S6.14 and S6.15 in Appendix 
S6). However, SDM algorithms caused even larger differences in 
projected range change: RF projections estimated notable net 
range gains (33% on average), whereas all other algorithms over‐
all projected little change or net range losses (3%, −5%, and −8% 
on average for GLM, GAM and GBM, respectively). Responses 
of projected distributional change were much more pronounced 
when relative rather than absolute numbers of variables were 
considered (Figure S6.16 in Appendix S6). Range loss showed 
a concave relationship with number of variables per presence 
observation with minima at between 10 and 25 presences per 
variable; range change projections, in contrast, peaked at these 
numbers.

The interquartile range of range loss projections varied consid‐
erably for different combinations of SDM algorithm and parame‐
terization complexity, and showed a weakly positive relationship 
with both number of variables and multicollinearity (Figure 6). 

The IQR of range loss projections was higher for GLMs and GAMs 
than for GBMs and RF (Figure 6 and Figure S6.11 in Appendix 
S6). Relationships with multicollinearity and number of variables 
were both increasing but rather weak, while range loss IQR was 
slightly higher for parameterizations of intermediate complexity 
than for those of high or low complexity. Patterns were similar 
among ‘common’‐species models, although among them simple 
fits were associated with highest range loss IQR (Figures S6.12 
and S6.13 in Appendix S6). IQR of projected range change also 
tended to increase with number of variables and multicollinearity, 
and decreased with parameterization complexity (Figures S6.14 
and S6.15 in Appendix S6). Range change IQR was furthermore 
especially high for RF projections.

4  | DISCUSSION

The findings of our analyses suggest that varying model complexity 
is crucial in the development of SDM projections, to optimize model 
performance and to capture uncertainty in range loss projections. All 
assessed model performance metrics responded by far most strongly 
to the number of variables considered, typically showing a unimodal 

F I G U R E  6   Range loss patterns along gradients of number of variables and multicollinearity. (a) Percent range loss of SDMs with 
parameterizations of intermediate complexity in the number of variables × multicollinearity space. Rows separate SDM algorithms; the 
left column represents the median range loss, the right column represents the range loss interquartile range. Dark red lines illustrate 
correlation thresholds as defined in Table 2; hashed areas represent level combinations for which no predictor sets were available. (b–e) 
Median range loss and its interquartile range along gradients of multicollinearity (b,d) and number of variables (c, e) for models fitted with 
parameterizations of low (green), intermediate (blue), and high (purple) complexity. Lines represent medians; polygons represent interquartile 
ranges. Range loss patterns in the number of variables × multicollinearity space for parameterizations of low and high complexity are shown 
in Figure S6.12 in Appendix S6

(a)

(b) (c)

(d) (e)
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relationship with optimal performance at 10–11 variables (although 
performance declines at high numbers of variables were modest). 
Furthermore, parameterization complexity contributed nearly one 
third to uncertainty in range loss projections, almost as much as that 
from the contrasting scenarios of future emissions. Multicollinearity 
was also important in this context: predictor sets with a third quartile 
of |r| above 0.5 were associated with 10% higher range loss projections.

Parameterization complexity has varying implications on 
model performance, and increases range loss but not range change 
projections. As expected, we found parameterizations of interme‐
diate complexity to yield highest TSS and AUC. These findings 
are in agreement with reported loss in extrapolation performance 
(i.e. transferability) of models fitted from comparably complex 
parameterizations (e.g. Chala et al., 2016; Gregr et al., 2018) and 
of comparably complex SDM algorithms (e.g. Randin et al., 2006). 
Interestingly, this relationship was not consistent across all as‐
sessments: TSS of complex parameterizations was highest when 
considering ‘common’ species (>300 presence observations). Fits 
with complex shapes may be more appropriate for prevalent spe‐
cies when rich and well‐designed data are available, as was the 
case in this study. Furthermore, in line with our expectations fits 
with more complex parameterizations projected higher levels of 
species range loss. Tighter niche fits indeed appear to increase 
expected loss of suitable habitat (Warren, Cardillo, Rosauer, & 
Bolnick, 2014), although ‘common’ species seem relatively robust 
to this artefact (Figure S6.9 in Appendix S6). For real‐world appli‐
cations we would have excluded model fits with simple parameter‐
izations from the projection ensemble as they performed clearly 
worst. But the performance of model fits of intermediate and high 
complexity was similar and thus both of these complexity levels 
contribute relevant information and should be considered.

A minimum number of variables is necessary to allow for 
well‐performing models, but at a certain point adding variables 
no longer improves and even starts deteriorating model perfor‐
mance, and it increases the disagreement among projections of 
distributional change. Performance of model extrapolations typ‐
ically was highest for models trained on 10 or 11 predictors. This 
relationship corresponds to the expected unimodal shape, and it 
is similar to findings of SDM transfers in space, which, however, 
often showed performance maxima for less than five predictors 
(Duque‐Lazo, Gils, Groen, & Navarro‐Cerrillo, 2016; Petitpierre, 
Broennimann, Kueffer, Daehler, & Guisan, 2017). Likely, these 
lower maxima are the consequence of greater changes of environ‐
mental conditions in spatial transfers as compared to projections 
under climate change, in particular when some predictors, such 
as soil variables, are assumed to remain constant over the time 
scales considered (Appendix S2.2 in Appendix S2). Furthermore, 
the optimal number of variables is dataset‐specific. For sam‐
pling designs similar to the one we worked with, one predictor 
per 10 presence observations may be ideal (Harrell et al., 1998). 
However, for less well‐designed survey data such as presence‐
only data, finer grains or steeper environmental gradients, more 
presence observations per predictor may be necessary. For very 

large datasets the ratios may be even lower, as information con‐
tained in predictor variables tends to get increasingly redundant 
when more predictors are added, in particular if only climate vari‐
ables are considered.

Multicollinearity has surprisingly little effect on model perfor‐
mance, but can lead to a distinct increase in range loss projections. 
This lack of clear negative effects on the performance of model ex‐
trapolations is different from our expectation (Table 1) and somewhat 
surprising, but it corresponds with results from previous studies (e.g. 
Petitpierre et al., 2017; Wauchope et al., 2017). Multicollinearity in‐
flates the variance of regression parameters and potentially leads to 
the misidentification of relevant predictors (Dormann et al., 2013). But 
its impact on model performance appears to be modest even for well‐
sampled, prevalent species, which was the most susceptible group in 
this study (Figure S5.6 in Appendix S5). Perhaps, the multicollinear‐
ity gradient within typical environmental predictors is too narrow to 
cause substantial errors in model projections. Nevertheless, the im‐
pact of multicollinearity is large enough to markedly affect range loss 
estimates. Across all species, range loss projections increased steeply 
for predictor sets with a third quartile of |r| larger than 0.5, that is, 
predictor sets including variable pairs with absolute Pearson correla‐
tion coefficients above the commonly used threshold of 0.7 (Dormann 
et al., 2013). The different levels of multicollinearity tested were not 
hypotheses of equivalent relevance but represent increasingly severe 
violations of a central model assumption: independence among pre‐
dictors. Although differences in model performance are low, the in‐
creased range loss for predictor sets with maximum |r|>0.7 therefore 
indicates that multicollinearity starts having notable consequences on 
projections above this threshold which should be avoided.

The architecture of SDM algorithms may be more important 
than parameterization complexity when it comes to model ex‐
trapolations to novel conditions. In our analyses, emission sce‐
narios contributed most to uncertainty in projections of species 
range loss while SDM algorithms dominated uncertainty in range 
change projections. SDM algorithms have also been found to 
be the major drivers of uncertainty in range change projections 
of mammals, birds, amphibians and freshwater fish (Buisson, 
Thuiller, Casajus, Lek, & Grenouillet, 2010; Garcia, Burgess, 
Cabeza, Rahbek, & Araújo, 2012; Thuiller, Guéguen, Renaud, 
Karger, & Zimmermann, 2019), while emission scenarios have 
been shown to contribute most to uncertainty in range loss pro‐
jections (Thuiller et al., 2019). Thuiller et al. (2019) argue that 
these differences may arise from the different extrapolation be‐
haviors of SDM algorithms, which is particularly relevant in newly 
suitable habitats which are considered in range change but not 
in range loss projections. RF models appear to particularly pro‐
mote this uncertainty by projecting range change estimates that 
strongly deviate from those by other algorithms (Figures S6.14–
S6.16 in Appendix S6, Beaumont et al., 2016). Our results indicate 
that differences in extrapolation behaviour may be mainly deter‐
mined by the SDM algorithm and less by the selected parameter‐
ization complexity. With the increasing availability of long‐term 
observational and environmental data it may become possible to 
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constrain the group of SDM algorithms with relevant extrapo‐
lation behaviour based on empirical evidence, leaving decisions 
on model complexity also among the key factors affecting range 
change projections.

Based on our results and the considerations discussed above, we 
formulate three recommendations for including model complexity in 
ensemble simulations of climate change impact on biodiversity using 
SDMs:

1. SDM algorithms and parameterization complexity: SDM algo‐
rithms as well as parameterization complexity have important 
consequences on projected distributional change and thus both 
factors should be varied in ensembles. Appropriate levels of 
parameterization complexity depend on the dataset at hand, 
and can be constrained based on model performance. We 
suggest to run SDM algorithms at least at two levels of 
parameterization complexity. Under computational constraints, 
this may go at the cost of using many SDM algorithms.

2. Predictor numbers in ensembles: The number of predictors 
strongly impacts model performance and can affect disagree‐
ment among range loss projections. Our results suggest that op‐
timal performance may be achieved with around 10 predictors, or 
one predictor per ten presences, if well‐designed survey data and 
diverse predictors are available. For studies using presence‐only 
data and/or exclusively climate predictors, this number may well 
be lower. The strong dependence of model performance on num‐
ber of variables makes it straight‐forward to optimize this factor 
for the dataset at hand using block cross‐validation.

3. Multicollinearity: In this study, multicollinearity did not strongly 
affect the performance of model extrapolations, but it distinctly 
increased projected range loss and the disagreement among 
range change projections. We recommend keeping absolute 
Pearson correlation coefficients below 0.7, a boundary recom‐
mended elsewhere (Dormann et al., 2013), and one above which 
consequences in projections became clearly visible.
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