N

N

Rebooting Computing: The Challenges for Test and
Reliability
Alberto Bosio, lan O’Connor, G. Rodrigues, F. Lima, Elena Ioana Vatajelu,
Giorgio Di Natale, Lorena Anghel, S. Nagarajan, M. R. Fieback, S. Hamdioui

» To cite this version:

Alberto Bosio, Ian O’Connor, G. Rodrigues, F. Lima, Elena Ioana Vatajelu, et al.. Rebooting Com-
puting: The Challenges for Test and Reliability. 2019 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct 2019, Noordwijk, Netherlands.
pp.8138-8143, 10.1109/DFT.2019.8875270 . hal-02462194

HAL Id: hal-02462194
https://hal.science/hal-02462194
Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02462194
https://hal.archives-ouvertes.fr

Rebooting Computing:
The Challenges for Test and Reliability

A. Bosio!, I. O’Connor!, G. S. Rodriguesz, F. K. Lima2, E. L. Vatajelu3, G. Di Natale?,
L. Anghel®, S. Nagarajan*, M. C. R. Fieback*, S. Hamdioui*
UNL - Ecole Centrale de Lyon, France — Email: alberto.bosio@ec-lyon.fr
2nstituto de Informatica, PGMicro - Universidade Federal do Rio Grande do Sul, Brazil — Email: gsrodrigues @inf.ufrgs.br
3Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, France — Email: {firsthame.lastname } @univ-grenoble-alpes.fr
*Computer Engineering Lab, Delft University of Technology, The Netherlands — Email: S.Hamdioui@tudelft.nl

Abstract—Today’s computer architectures and semiconductor
technologies are facing major challenges making them incapable
to deliver the required features (such as computer efficiency)
for emerging applications. Alternative architectures are being
under investigation in order to continue deliver sustainable
benefits for the foreseeable future society at affordable cost. These
architectures are not only changing the traditional computing
paradigm (e.g., in terms of programming models, compilers,
circuit design), but also setting up new challenges and directions
on the way these architectures should be tested to guarantee
the required quality and reliability levels. This paper highlights
the major open questions regarding test and reliability of three
emerging computing paradigms being approximate computing,
computation-in-memory and neuromorphic computing.

Index Terms—Alternative computing architectures, emerging
technology, fault model, test, reliability

I. INTRODUCTION

Energy and computer efficiency is undoubtedly one of the ma-
jor driving forces of current computer industry, which is relevant
not only for supercomputers, but also for small portable personal
electronics and sensors. However, today’s computing architectures
(mainly based on the CMOS technology) are facing major chal-
lenges making them unable to meet the requirements. Such chal-
lenges are: power wall, memory wall and Instruction Level Paral-
lelism wall [1], [2]. For example, the memory wall is due to the
increasing gap between processor and memory speeds, which limits
the data transfer time and leads to significant energy consumption
during the data transfer varying from 70% up to 90% of the
overall energy spent by the computing system [3]. Moreover, even
the dominating CMOS technology (which made manufacturing of
computers feasible) is suffering, especially nodes below 20 nm. At
this level the physical characteristics of such devices are leading to
high static power consumption, reduced reliability; not to mention
increased cost [4]. All of these have led to saturated computer
performance and the slowdown of the traditional device scaling,
making today’s computing systems unable to deliver the required
computing and energy efficiency. For example, artificial intelligence
is ready to provide solutions in many domains; however, the resource
and power demands of the underlying algorithms and implemen-
tations are way too high for the target applications. For instance,
the amazing performance of AlphaGo [5] required 4 to 6 weeks of
training executed on 2000 CPUs and 250 GPUs for a total of about
600kW of power consumption (while the human brain of a go player
requires about 20W). Due to these limitations, many alternative
architectures and technologies (being able to deliver the required

*This work has been partially founded by CNRS PICS07968 project.

demands at affordable cost) are under investigation; examples are
approximate computing [6]-[8], computation-in-memory [9]-[11],
and neuromorphic computing [12]-[14]. These will not only change
the way we used to design and program our computers, but also
the way we used to test them to provide the required quality and
reliability. Providing high-quality testing is a very critical step in
the commercialization of any electronic product responsible for
screening out all the defective chips before they are sold.

Testing and design-for-test for emerging computing paradigms
such as the three mentioned above is still in an infancy stage, and
almost no work is published in this field. Understating the related
challenges and setting up directions toward the development of effi-
cient solutions is of great importance in order to provide appropriate
solutions. This paper addresses the test and reliability related chal-
lenges for three emerging computing paradigms being approximate
computing, computation-in-memory, and neuromorphic computing.
It presents the actual state of the art and aims also at providing some
preliminary results and setting up some research directions.

The paper is structured as follows. Section II covers the design
of low-cost fault tolerant mechanisms exploiting the Approximate
Computing paradigm. Section III presents the Computation-in-
Memory paradigm and its test and reliability challenges and sets
up some directions. Section IV focuses on a comprehensive fault
model dictionary for HW-based Spiking Neural Networks with on-
line learning (during learning and inference) and methodologies test
for such faults. Finally Section V concludes the paper.

II. EXPLOITING APPROXIMATE COMPUTING FOR
IMPLEMENTING LOW-COST FAULT TOLERANT
MECHANISMS

Approximate computing has been proposed to achieve energy
efficient computation at the cost of accuracy reduction [15]. Hard-
ware designs can profit from approximation to generate circuits with
smaller area, thus reducing energy consumption and delay. Software
projects use approximation mainly to reduce memory footprint
and execution time. Approximation also impacts the system fault
tolerance due to its nature [16]. Approximate computing algorithms
already handle small inaccuracies generated by the approximation.
Thus, very small data corruption errors might not even be noticed by
the system as a whole. Some approximation strategies are also inher-
ently fault tolerant. Such is the case of successive approximation: an
approximation method that consists of loop executions generating an
ever-improving output. This approximation method can also work as
a fault tolerance mechanism by itself, given that an error affecting
one iteration of the loop can be corrected on the following ones
[17]. A designer can use loop perforation to balance execution time
and accuracy on successive approximation algorithms, which also
impacts the fault tolerance of the system [17]. Another very common
approximation method is data size reduction [8], which consists of

TMR

Approximate
TMR

l‘il 2 13 t4 5 16 7 Time
I 1

Overhead 1 |

Overhaad 2

Fig. 1. Approximate TMR diagram.

representing data with less bits than usual. This method has little-
to-none impact on software execution time but can highly reduce
memory footprint.

Numerical and mathematical properties can also be used to pro-
vide valid functional approximation. Taylor series, for example, are
used in mathematics to represent a function as a sum of previously
calculated terms. The more terms are used, the more accurate the
approximation. This type of method can be applied both to software
and hardware designs, with different costs [18]. On hardware, the
price to pay for more accuracy is either more hardware area or
a higher delay: a designer might choose an implementation with
pipelines to make it faster (and bigger) or a smaller, loop-execution
circuit with a higher delay. On software, the price to pay for this
type of approximation is always the execution time. Even on parallel
systems, where multiple terms could be executed concurrently, this
execution would take processing resources that could otherwise be
used to improve the system’s performance. Naturally, this approxi-
mation method also has a high impact on the system fault tolerance:
using bigger hardware increases the probability of a fault, due to
a higher number of critical bits. Algorithms with higher execution
times are also known to have a higher susceptibility to errors [19],
given that they are exposed to more faults per second (in a real use-
case scenario of the system execution in a hazardous environment).

Approximate computing can also be used to reduce the costs
of traditional fault tolerance methods. Triple modular redundancy
(TMR) is one of the most studied fault tolerance and error masking
methods in the literature [19]. In its more traditional form, it consists
of triplicating a circuit or software code and implementing a checker
to verify the consistency of the three execution outputs. If one of the
outputs is different from the other two, it shall contain an error that
can be masked by the method by accepting the output from the other
redundancies as the correct one. Triplicating a whole portion of the
system, however, has a high cost (at least 300% area overhead, or
execution time for non-parallel software). Approximate computing
can be used to provide approximate low-cost redundancies, thus
reducing the fault tolerance method costs.

Approximate TMR (ATMR) consists of implementing a TMR
with approximate redundancies. It can be applied to both hardware
and software projects. Nevertheless, ATMR has to deal with the
accuracy loss inherent to approximation. On a traditional TMR
approach, the three output values can be compared and checked for
errors by a simple bitwise operation. However, an ATMR method
needs to handle a possible accuracy difference between the three
redundancies. One way of dealing with approximation on ATMR
is defining design spaces and assuring that, even in the absence
of faults, at least two results will always have the same output
[20]. This technique assures that a possible difference caused by
the approximation will not turn into an error in the absence of
faults. Another way of dealing with the approximation issue on the
ATMR checker is with difference thresholds. In this case, the ATMR
checker shall only consider an error if the difference between the
redundancies outputs is higher than a given threshold. This threshold
is defined by the system inaccuracy acceptance. Fig. 1 depicts an
example of ATMR compared to the TMR. It can be noticed that

(a) (b) Program

Lo o | [
loop1: CIM
Accelerator

loop2:

External Memory loop3:

Fig. 2. (a) CIM as an accelerator (b) Example of a program

ATMR will execute tasks R1’ and R2’ that are approximate version
of the task RO. In this way the overall execution time (t5) will be
lower than the TMR execution time (t7).

Some safety-critical systems, in special real-time systems, might
not need error masking. Real-time systems deal with data freshness
requirements, which define time intervals on which data is consid-
ered to be updated and valid. A navigation system, for example,
might present an error in the data that comes from a radar scan, but
because new data coming from a new scan will be generated soon the
erroneous data will be overwritten (or even become useless) shortly.
In those cases, error masking might be not only unnecessary but
also impracticable due to the short data freshness time interval. It is,
however, important for the user to know if the current data is to be
trusted or not. In an avionics system, for instance, a pilot must know
if the date he sees in a panel is trustworthy or not, and take safety
measures if needed. Approximation can be used to provide cheap
redundancy to mathematically predict if a certain data is inside a
possible window of value, and warn the user in the case where the
data is absurd [21].

III. COMPUTATION-IN-MEMORY: TEST AND RELIABILITY

Computation-in-Memory (CIM) is one of the alternative com-
puting architectures being explored in the light of emerging new
memristive device technologies [3], [22], [23]. CIM aims at elim-
inating the communication bottleneck while supporting massive
parallelism. Although, the ideal would be to fully integrate the
processing units and the memory in the same physical location, it is
not clear if this is technology-wise feasible. One potential realistic
implementation is to use the CIM die as an on-chip accelerator
as shown in Figure 2(a) [24]. The CIM die may consist of: (a) a
very dense crossbar memory array where memristive devices are
fabricated at each junction of the crossbar, and (b) a peripheral
circuitry (realized using CMOS technology) that is responsible for
the communication and control with the crossbar. The philosophy
behind the CIM accelerator is to get the intense memory access part
of an application (e.g., due to bad data locality, or big data sizes)
to be executed within the CIM die rather than by the CPU; this
leads to significant energy saving and performance improvement.
Figure 2(b) illustrates a program that could be executed efficiently
on this architecture; multiple loops can be executed on the CIM
die, while the other parts of the program can be executed on the
conventional core. Each time a loop is invoked, the CPU sends
a “macro-instruction” (complex instruction) to the CIM die which
decodes and executes it locally, before returning the results.

As the name indicates, CIM takes place within the memory core
(CIM die). As the CIM die consists of a memory array and the pe-
ripheral circuits, and depending where the result of the computation
is produced, CIM can be divided into two classes [25]:

e CIM-Array (CIM-A): the computing result is produced within
the memory array. Hence, the output should be stored in a
memristive device in the array in form of a resistance state.

o CIM-Periphery (CIM-P): the computing result is produced
within the peripheral circuitry. Given the fact that memory
periphery is based on CMOS technology, the nature of the
produced output is voltage.

It is worth noting that even though the computational results are pro-
duced in the array/peripheral circuits, the peripheral circuit/memory
array could be a substantial component in the computations. For
example, when multiple rows are activated simultaneously in the
array, different logic and arithmetic operations can be realized in the
periphery [11], [23], [26]. Hence, both CIM-A and CIM-P impact
the design of the memory, although the impact of CIM-A could be
more severe.

A. Test Challenges

CIM accelerators cannot be tested in the same way as traditional
memory structures. This stems from the fact that they operate in two
different configurations: memory and computation.

o Inthe Memory configuration, the CIM accelerator behaves like
a memory. Hence, testing the storage functionality is needed.

o In the Computation configuration, the CIM accelerator is able
to perform operations on the stored data. Hence, testing of the
computing functionality is needed.

The CIM accelerator switches between these configurations by mod-
ifying the way in which some components (e.g. the sense amplifiers,
decoders [26]) perform their function. To maximize fault coverage,
it must be ensured that a test targets both configurations. This
division of configurations directly leads to increased complexity in
the development of test solutions. Note that in theory both functional
and structural testing could be used; however, due to its efficiency
and measurable coverage, structural testing is more suitable. Next,
test challenges for the memory configuration and the computation
configuration are discussed.

Testing CIM as memory: CIM accelerator typically consists of
a crossbar memristive devices where each device could be e.g., a
RRAM, STT-MRAM or a PCM memory device. Although some test
and design-for-testability (DfT) schemes for such memories have
been developed [27]-[30], there are still many open questions. The
most important one arises from the lack of good defect models for
the memristive devices. Traditionally, fault modeling is based on
(linear) resistor injection and (SPICE) circuit simulation. However,
due to the non-linear nature of the memristive device, it becomes
questionable if the traditional approach could be sufficient. Recent
work on RRAM and STT-MRAM [31], [32] has revealed the need
of a new fault modeling approach in order to appropriately and
accurately model the fault behavior of memristive devices. In ad-
dition, it has demonstrated that the traditional approach may lead
to erroneous fault models; hence low quality solutions. Appropriate
defect modeling needs to incorporate the impact of a defect on the
technological parameters as well as on the electrical parameters of
the memristive device in order to derive the way one particular
defect manifest itself at the electrical/functional level. Clearly this
will result in new fault models which will require new test solutions
and Design-for-test (DFT) solutions. Depending on the nature of the
fault model and their detection conditions, different test schemes
may be needed. For example, the detection of a fault resulting into a
non-deterministic or random read value cannot be guaranteed with a
March test and a specific DFT will be needed. Furthermore, it is
worth to note that the most popular defects and their occurrence
probability (or importance) is not clear yet; obviously there is a lack
of industry data in the public domain which make it for researchers
harder to make the right trade-offs.

Testing CIM in the computing configuration: Testing CIM
for memory functionality does not necessarily cover the computing
functionality. For example, the peripheral circuit of the CIM die may
performs logic or arithmetic operations in the computing configura-
tion, while it acts just as a write or a read path in the memory config-
uration. To illustrate the additional complexity computing brings to
the testing of CIM die, let’s consider Scouting logic as an example,
shown in Figure 3 [26]. Figure 3(a) presents a simplified design

M}y 0 1 Input 00 10/01 11 Input
sl Irel ef
Read AND
vi> vl G/R VR to W/R, VR VR
,?) 1 Output 0 1 Output
Sz
V, B 00 10/01 11 Input 00 10/01 11 Input

‘ref ‘IH IVEV lrefl Ir f2
OR XOR
—
%5 Wy | VR VR W/Ry | VR [V,

Vout 0 1 Output 0 1 0 Output
(a) Memory (b) References of Primitive Operations
Fig. 3. Scouting logic

of a crossbar memory with 2 bits (M1 and M2), two wordlines
selectors (presented by S1 and S2), and a common sense amplifier
(SA) used to read the data. Reading a memory cell means selecting
the appropriate wordline and sensing the current through the SA.
By slightly modifying the SA design, Scouting logic enables the
execution of bit-wise OR, AND, and XOR logic functions; this is
done based on reading e.g. two rows simultaneously and activating
the required reference current for the SA in order to distinguish the
right outputs as shown in Figure 3 (b) for AND, OR and XOR. As the
example reveals, realizing the computation configuration requires
the design changes of at least in the address decoder and sense
amplifier; the address decoder (AD) should be able to select multiple
rows (for bits to be operated on) and the SA should be able to be set
in the right configuration to perform the selected logic operations
by choosing the right reference current to be compared to the read
current. Hence, for a CIM die with Scouring logic, additional tests
should be performed to detect potential defects in the ADs and the
SAs.

Testing CIM address decoder (AD): One can assume that fault
models and tests used for ADs in traditional multi-port memories
can be applicable here as well [33]. However, more accurate inves-
tigations to explore the impact of defects in AD on the computing
functionally and how they can be detected are still open questions.

Testing for SAs: Also here one can assume that the fault models
used to for SAs in traditional memories can be applied [34]; the
faults could be static (e.g., stuck-at-fault) or dynamic (e.g., a partial
open causing the SA to be slow). For tests, special algorithms should
be developed; these should be able to cover the faults and guarantee
that the configuration of the SA for different reference currents to
realize different logic operation is fault free.

The above example clearly shows that the development of fault
models and test solutions of CIM in its computing configuration
is quite complex and design dependent; hence it requires special
attention. For instance, if the periphery circuit is performing a
vector matrix multiplication, then the fault models and the test
solutions required may be different from those required by CIM
with Scouting logic. Testing for CIM in its computing configuration
means identifying the peripheral components with more than one
configuration, develop appropriate fault models, and thereafter test
solutions.

B. Reliability Challenges

Emerging memory technologies introduce new reliability chal-
lenges in the devices, that in turn affect the system reliability.
These reliability issues pose a limitation on the scalability of the
circuits, as they can generate read and write errors or have unwanted
device interactions. To achieve high-quality CIM, it is necessary to
understand what these new challenges are and what causes them. We
list the most important ones: endurance, variability, and retention.

1) Endurance: The endurance of a storage element is defined
as the number of switching cycles a device can perform until it
breaks down and becomes unable to switch. Emerging memory tech-
nologies have already shown better endurance than flash memories.
However, their endurance is still rather low in comparison with

SRAM and DRAM (10'° cycles for SRAM vs. 106~12 cycles for
emerging memories) [35]. Because CIM circuits access the storage
elements frequently, the device endurance needs to be increased in
order to have a highly reliable circuit [36].

2) Variability: The stochastic nature of the filament growth and
dissolution in an RRAM device causes cycle-to-cycle variability
[37]. That is, when a filament grows, its shape will differ with respect
to other cycles, and hence have a different resistance. The shape of
the filament depends on many factors. An important one of them is
the current that flows through the device when the filament is formed
[38]. If the variability of a device is too large, soft faults may occur.
For example, a storage element may store an unexpected logical
value. This in turn causes operational faults in the computation
configuration. Therefore, variability needs to be controlled. This can
be done by optimizing the device structure [39], or by applying write
verification schemes [40].

3) Retention: After a certain amount of time, the storage ele-
ment can fail to retain its data, e.g. when the RRAM filament has
dissolved, or the polarization of an Spin Transfer Torque (STT)
device has flipped. The time it takes for the failure to occur depends
on the operating or storing conditions of the device. Temperature
[36] and the applied voltages [41] have the most impact among
them. Higher temperatures and higher voltages lead to a decrease
of retention time. The retention capabilities can be improved by
optimizing the production process [42], but care should be taken to
prevent the loss of data.

IV. NEUROMORPHIC COMPUTING PARADIGMS AND
TEST/RELIABILITY ISSUES

In the post Von Neumann architectures context, neuromorphic
computing paradigm has a huge potential when it makes use of
emerging NV technologies (STT-MRAM, memristors), however,
reliable and testable HW designs enabling the neuromorphic com-
puting are still missing. The Spiking Neural Networks (SNN) are
widely studied nowadays due to the high level of realism they bring
to neural simulation, their energy efficiency and their ability for
on-line learning. The related bio-inspired learning rule is known
as STDP (Spike Based Dependent Plasticity) and is applied on
each synapse independently of the global state of the network.
In return, the synapse must be doted of computation capabilities.
A hardware implementation of an SNN requires architectural co-
localization of the processing and memory (non-Von Neumann ar-
chitecture). The circuits solutions used to implement silicon neurons
are application dependent, but the vast majority are built with a
temporal integration block, a spike generation block, a refractory
period mechanism, and a spike adaptation block [12]. Synapses are
required to exhibit plasticity (i.e., modulation in their efficacy) and
to support online learning algorithms, that manifest in changes in
their strengths. Emerging memory devices can be used as synaptic
elements thanks to their tunable conductivity, compatibility with
advanced CMOS fabrication process, low power consumption, non-
volatility and scalability. The synaptic conductance modulation can
be emulated using: (i) the analog approach (cumulative decrease
and increase of resistance), where multiple resistance states emulate
long-term potentiation and depression; or (ii) the binary approach,
uses two distinct resistance states per device associated with a
probabilistic programming scheme [13]. The strong restrictions on
the size of embedded Spiking Neural Network architectures (limited
silicon area and interconnectivity ability) require minimization of
the network redundancy which in turn reduces its the intrinsic fault
tolerance. We postulate that there is an acute need to evaluate
the reliability and perform manufacturing test of the neuromorphic
hardware architectures to guarantee their correct operation and ro-
bustness. Our preliminary analysis supports this research hypothesis
by showing that fabrication- and environmental-induced parameter

= '
= '
= =

©

Fig. 4. Schematic representation of the SNN architecture under study, with
detailed view of the integrate and fire neuron and the artificial synapse.

variations affect the neuron/synaptic behavior, which in turn affects
the robustness of the SNN [14], [43]. Reliability analysis, post
fabrication test, design-for-test and design-for-reliability are com-
monly used when dealing with traditional computing architectures,
however, they are not common practice when dealing with neuro-
morphic structures. In this context, there are several research works
focusing on the fault tolerance (and how it can be improved) of
artificial neural networks (ANNs) [44], on boosting fault tolerance
of hardware implemented neural accelerators [45], and even on the
effect of fabrication-induced variability of memristive devices on the
behavior of deep networks [46] and SNNs [47]. These papers show
that faulty neurons have stronger impact on the neural network’s
behavior than faulty synapses. In addition, it is shown that the on-
line learning algorithm used in SNNs is efficiently mitigating the
effect of synapse variability on the network robustness. However, to
the best of our knowledge, the effect of continuous learning (i.e.,
updating of synaptic weights) on the network lifespan due to limited
synapse endurance has not yet been studied.

Performing post fabrication test on a hardware implemented
spiking neural network based on emerging memory devices is not
a trivial task. It involves testing the integrity and functionality of
the neurons and of the synaptic arrays. In addition, the emerging
technologies are facing various fundamental research and scientific
challenges that are mostly related to manufacturing yield and reli-
ability. They are built with novel materials and subjected to novel
operation modes. These all result in novel fault models translating
in new dependability issues and a shift in the test paradigm. The
defect rates, fault modeling and test solutions for emerging-memory
based RAM arrays have been (and still are) extensively studied
[48]. Nevertheless, there is no fault modeling, or post-fabrication
test solution provided dedicated to alternate operation modes of
the memory arrays (such as analog data storage in the case of
memristors, or stochastic programming in the case of spintronic
devices).

In this context, our work focuses on a fully-connected SNN, that
learns using the Spike Timing Dependent Plasticity (STDP) method
with lateral inhibition, with integrate-and-fire neuron and resistive
synapses. The considered architecture is illustrated in Fig. 4 and
described in detail in [49]. In order to achieve the ambitious goal of
designing robust and efficient hardware implemented SNNs, one has
to jointly-consider the characteristics of the SNN itself (connectivity,
neuronal activation function, learning rule and synaptic update), the
characteristic of the devices used to implement it (CMOS ON/OFF
current and threshold voltage, conductivity modulation and current-
compliance of the synaptic devices, etc.) and the environment in
which the circuit will be deployed.

In this section we present an overview of fault models pertinent
to an SNN with on-line unsupervised learning and the estimated
severity of fault injection with respect to the recognition error of the

affected neuromorphic architecture. We have defined fault models
to enable fault injection campaigns and to allow us to identify
scenarios of faulty operations, happening before and after the STDP
learning. So far, we have considered only permanent faults caused by
manufacturing defects and aging-related phenomena. Due to the fact
that there are a large number of SNN circuit implementations, and
the number keeps growing, we have defined fault models which do
not take into consideration the micro-architecture of the functional
units, i.e. neuron and synapse, only their behavior. In particular, we
have defined how the inputs and outputs of the functional interface
of the neurons and synapses can be affected by the faults, while
considering the hardware root causes that can lead to those faults.
These faults are similar to, for instance, the stuck-at, where the fault
is defined at the interface of a logic gate, without the knowledge of
the actual transistor-level implementation of the gate, but still being
representative of the majority of physical defects that may appear at
the transistor level. In this way we have defined the following fault
models: DSF (dead synapse fault), DPF (degraded plasticity fault),
SSAOQ, SSA1 (Synaptic stuck-at-0, Synaptic stuck-at-1), DNF (dead
neuron fault), ISLIF, OSLIF (input/output stuck lateral inhibition
fault), IDSF and ODSF (input/output delayed spike fault), IDSAF
and ODSAF (input/output delayed synapse activation fault), IDLIF
and ODLIF (input/output delayed lateral inhibition fault). A com-
plete description of the defined fault models is presented in [50].

Starting from the behavioral model of the SNN under study, we
have evaluated the functional accuracy of the SNN during inference
and learning under different scenarios of fault injection, in our
attempts to answer questions such as: which one is more detrimental
to the functionality of a Neural Network (NN): defective neuron or
defective synapse? How many of these critical components have to
fail such that the entire network fails? In which state does a certain
defect matter the most: learning or inference?

We have implemented a spiking neural network with learning
strategy based on spike-timing dependent plasticity. The network
is designed to solve the MNIST database [51], i.e., to be trained
to recognize hand written digits. This data base has 60000 examples
for the network training and 10000 examples for testing the network.
Each example consists in the image of a hand-written digit. The
hand-written digit is a 28x28 pixels image in grey-scale (256 tones
of grey from white to black). The information carried by each image
is transmitted to network in the form of spikes. The spike encoding is
performed by frequency encoding of each pixel’s tone of grey. With
this encoding, the black pixels carry no information, while the white
pixels carry the maximum amount of information, i.e., maximum
frequency (255 spikes per time unit). Each image is presented to the
network for 10 time units. In order to respond to the requirements of
this data base, the network is designed with 784 input neurons, one
for every image pixel. The input neurons are connected in a one-to-
all fashion (as illustrated in Fig. 4) to the output neurons.

The results of the fault injection campaign are summarized in Fig.
5. It is important to note that different faults have different effects if
they happen during the learning or during the inference stages of a
network operation. Indeed the synaptic faults (DSF, DPF and SSAx)
have a stronger influence during the inference stage of the SNN than
during the learning stage. This is due to the fact that the network
manages to learn around the faulty synapses due to the on-line
learning algorithm (STDP). If the fault occurs during the inference
stage, we observe a fast degradation of the recognition rate, due to
the fact that the network is found in the situation of recognizing
degraded patterns. The location of occurrence of synaptic faults is
also very important as stated in the most-right column of the table in
Fig. 4. Indeed, if a fault (DSF, DPF or SSA0) occurs on a minimum
weight - depressed synapse no effect will be observed on the network
behavior. However, if a fault such as DSF, DPF or SSAOQ occurs on a
maximum weight - excited synapse a strong effect will be observed

Fault model | Learning Inference Location?

B I

Synapse | DPF [} B yes
SSAX | ' yes
DNF -in : = i = |. yes - strong
DNF - out B H B no

Neuron IDSF/ODSF . - yes
iour/oour | D NA no
isursosur | [| A no

Recognition rate .

= -

| Numberimagnitude of faulis
100% 0%

Fig. 5. Summary of SNN accuracy under fault injection.

on the network behavior. The situation is the exact opposite for the
synapses affected by SSA1.

During neuron-related fault injection campaigns (DNFin,
DNFout, IDSF/ODSF, IDLIF/ODLIF and ISLIF/OSLIF) we observe
the opposite effect, i.e., a stronger influence during the learning
stage of the SNN than during the inference stage. This is due to
the fact that at this stage, the computation element is affected, which
means that during learning mode the injected fault leads to wrong
behavior learning, while a fault injected during the inference leads
to less recognition accuracy. Faults affecting the input neurons are
the most critical, since these neurons encode the information. The
effect of DNFin is strongly dependent on the location of the faulty
neuron. Faults affecting the output neurons are less catastrophic
due to the intrinsic redundancy of the SNN networks with STDP,
where a pattern is learned by multiple output neurons. Stuck-at fault
occurring at lateral inhibition stage is the most critical, since even a
single fault can cause full system failure. Indeed, if a OSLIF fault
occur on one neuron, it will prevent all other neurons from firing,
hence only a single pattern will be learned by the network containing
features from multiple patterns, making the network unusable.

This analysis represents a preliminary study of the fault tol-
erance of SNNs. Further evaluations are necessary to be able to
evaluate, with high confidence the reliability of a SNN. Multiple
fault injection scenarios need to be further performed to have a
full picture of the network accuracy: different locations, different
fault magnitudes should be studied as well as plausible clustering
scenarios and combinations between synaptic and neural faults. In
addition, the network should be evaluated under different application
scenarios (or databases with same dimensionalities) to evaluate the
fault effects also independently of the application.

V. CONCLUSION

In this paper we presented the test and reliability challenges for
three emerging computing paradigms being approximate computing,
computation-in-memory, and neuromorphic computing. Despite the
existence of some works, test and reliability for both emerging com-
puting architectures and technologies still needs to be systematically
addressed such as defect modelling, fault modelling, test generation

and test application. REFERENCES

[1]1 B. Hoefflinger, “Chips 2020,” The Frontiers Collection, 2012. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-23096-7

[2] D. A. Patterson, “Future of computer architecture,” in Berkeley EECS
Annual Research Symposium (BEARS), College of Engineering, UC
Berkeley, US, 2006.

[3]1 S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in 2015 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2015, pp. 1718-1725.

[4] S. Hamdioui et al., “Memristor for Computing: Myth or Reality?” in
Proc. Conf. Des. Autom. Test Eur. European Design and Automation
Association, 2017, pp. 722-731.

[5] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, Jan 2016.
[Online]. Available: http://dx.doi.org/10.1038/nature16961

[9]
[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Q. Xu et al., “Approximate computing: A survey,” IEEE Design Test,
vol. 33, no. 1, pp. 8-22, 2016.

L. Anghel et al, “Test and reliability in approximate computing,”
Journal of Electronic Testing, vol. 34, no. 4, pp. 375-387, Aug 2018.
[Online]. Available: https://doi.org/10.1007/s10836-018-5734-9

S. Rehman et al., Heterogeneous Approximate Multipliers: Architectures
and Design Methodologies. Springer International Publishing, 2019,
pp. 45-66.

J. Yu et al., “Memristive devices for computation-in-memory,” in Design,
Automation and Test in Europe DATE, 2018.

J. Borghetti et al., “Memiristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, no. 7290, p. 873, 2010.

S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in DAC. IEEE,
2016.

G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Frontiers
in Neuroscience, vol. 5, p. 73, 2011. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2011.00073

M. Suri et al., “Phase change memory as synapse for ultra-dense neuro-
morphic systems: Application to complex visual pattern extraction,” in
2011 International Electron Devices Meeting, Dec 2011, pp. 4.4.1-4.4.4.
E. I. Vatajelu er al, “Reliability analysis of mtj-based functional
module for neuromorphic computing,” in 2017 IEEE 23rd International
Symposium on On-Line Testing and Robust System Design (IOLTS), July
2017, pp. 126-131.

J. Han et al., “Approximate computing: An emerging paradigm for
energy-efficient design,” in 2013 18th IEEE European Test Symposium
(ETS), May 2013, pp. 1-6.

G. S. Rodrigues et al., “Evaluating the behavior of successive approxi-
mation algorithms under soft errors,” in 2017 18th IEEE Latin American
Test Symposium (LATS), March 2017, pp. 1-6.

G. S. Rodrigues et al., “Exploring the inherent fault tolerance of
successive approximation algorithms under laser fault injection,” in 2018
IEEE 19th Latin-American Test Symposium (LATS), March 2018, pp. 1-
6.

G. S. Rodrigues et al., “Analyzing the use of taylor series approximation
in hardware and embedded software for good cost-accuracy tradeoffs,”
in Applied Reconfigurable Computing. Architectures, Tools, and Appli-
cations, N. Voros et al., Eds. Cham: Springer International Publishing,
2018, pp. 647-658.

——, “Performances vs reliability: how to exploit approximate com-
puting for safety-critical applications,” in 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design (IOLTS), July
2018, pp. 291-294.

I. A. Gomes et al, “Exploring the use of approximate tmr
to mask transient faults in logic with low area overhead,”
Microelectronics Reliability, vol. 55, no. 9, pp. 2072 - 2076,
2015, proceedings of the 26th European Symposium on Reliability of
Electron Devices, Failure Physics and Analysis. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0026271415300676
G. S. Rodrigues et al., “Arft: An approximative redundant technique for
fault tolerance,” in 2018 Conference on Design of Circuits and Integrated
Systems (DCIS), Nov 2018, pp. 1-6.

E. Linn et al., “Beyond von Neumann-logic operations in passive
crossbar arrays alongside memory operations,” Nanotechnology, vol. 23,
2012.

D. Fujiki et al., “In-Memory Data Parallel Processor,” in Proc. Twenty-
Third Int. Conf. Archit. Support Program. Lang. Oper. Syst. - ASPLOS
’18, vol. 53, no. 2. New York, New York, USA: ACM Press, 2018,
pp. 1-14.

S. Hamdioui et al., “Applications of Computation-In-Memory Architec-
tures based on Memristive Devices,” in 2019 Des. Autom. Test Eur. Conf.
Exhib. 1EEE, mar 2019, pp. 486-491.

M. A. Lebdeh et al, “Memristive Device Based Circuits for
Computation-in-Memory Architectures,” in 2019 IEEE Int. Symp. Cir-
cuits Syst. 1EEE, may 2019, pp. 1-5.

L. Xie et al., “Scouting logic: A novel memristor-based logic design
for resistive computing,” in 2017 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), July 2017, pp. 176-181.

N. Z. Haron et al., “DfT schemes for resistive open defects in RRAMs,”
in DATE 2012. 1EEE, mar 2012, pp. 799-804.

C.Y. Chen et al., “RRAM defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Trans. Comput.,
vol. 64, no. 1, pp. 180-190, jan 2015.

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

I. Yoon et al., “Test challenges in embedded stt-mram arrays,” in 2017
18th International Symposium on Quality Electronic Design (ISQED),
March 2017, pp. 35-38.

X. Pan et al., “Modeling and test for parasitic resistance and capacitance
defects in pcm,” in 2012 12th Annual Non-Volatile Memory Technology
Symposium Proceedings, Oct 2013, pp. 73-76.

M. Fieback et al., “Testing resistive memories: Where are we and what
is missing?” in 2018 IEEE International Test Conference (ITC), Oct
2018, pp. 1-9.

L. Wu et al., “Electrical modeling of stt-mram defects,” in 2018 IEEE
International Test Conference (ITC), Oct 2018, pp. 1-10.

S. Hamdioui et al., “Testing Address Decoder Faults in Two-Port
Memories: Fault Models, Tests, Consequences of Port Restrictions, and
Test Strategy,” Journal of Electronic Testing, vol. 16, no. 5, pp. 487-498,
2000. [Online]. Available: http://dx.doi.org/10.1023/A:1008320716847
A. van de Goor et al., “Detecting faults in the peripheral circuits and an
evaluation of SRAM tests,” in International Conference on Test (ITC),
2004, pp. 114-123.

S. Yu et al., “Emerging Memory Technologies: Recent Trends and
Prospects,” IEEE Solid-State Circuits Mag., vol. 8, no. 2, pp. 43-56,
2016.

D. Ielmini, “Resistive switching memories based on metal oxides:
mechanisms, reliability and scaling,” Semicond. Sci. Technol., vol. 31,
no. 6, p. 063002, jun 2016.

D. Garbin et al., “Resistive memory variability: A simplified trap-
assisted tunneling model,” Solid. State. Electron., vol. 115, pp. 126-132,
jan 2016.

A. Fantini et al., “Intrinsic switching variability in HfO2 RRAM,” in
IMW 2013. 1EEE, may 2013, pp. 30-33.

Y. Fang et al., “Improvement of HfOx -Based RRAM Device Variation
by Inserting ALD TiN Buffer Layer,” IEEE Electron Device Lett.,
vol. 39, no. 6, pp. 819-822, jun 2018.

Y. S. Chen et al., “Highly scalable hafnium oxide memory with
improvements of resistive distribution and read disturb immunity,” in
IEDM 2009. 1EEE, dec 2009, pp. 1-4.

C. Wang et al., “Conduction mechanisms, dynamics and stability in
ReRAMSs,” Microelectron. Eng., vol. 187-188, pp. 121-133, feb 2018.
Y. Y. Chen et al., “Improvement of data retention in HfO2/Hf 1T1R
RRAM cell under low operating current,” in JEDM 2013. IEEE, dec
2013, pp. 10.1.1-10.1.4.

E. L. Vatajelu et al., “Fully-connected single-layer stt-mtj-based spiking
neural network under process variability,” in 2017 IEEE/ACM Interna-
tional Symposium on Nanoscale Architectures (NANOARCH), July 2017,
pp- 21-26.

E. B. Tchernev et al., “Investigating the fault tolerance of neural
networks,” Neural Computation, vol. 17, no. 7, pp. 1646-1664, 2005.
[Online]. Available: https://doi.org/10.1162/0899766053723096

S. Kim et al., “Matic: Learning around errors for efficient low-voltage
neural network accelerators,” in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2018, pp. 1-6.

L. Xia et al., “Fault-tolerant training enabled by on-line fault detec-
tion for rram-based neural computing systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1-1,
2018.

D. Querlioz et al., “Immunity to device variations in a spiking neural
network with memristive nanodevices,” IEEE Transactions on Nanotech-
nology, vol. 12, no. 3, pp. 288-295, May 2013.

E. 1. Vatajelu et al., “Challenges and solutions in emerging memory
testing,” IEEE Transactions on Emerging Topics in Computing, pp. 1-1,
2019.

L. Anghel et al., “Neuromorphic computing - from robust hardware
architectures to testing strategies,” in 2018 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), Oct 2018, pp.
176-179.

E. I. Vatajelu et al, “Special session: Reliability of hardware-
implemented spiking neural networks (snn),” in EEE VLSI Test Sym-
posium (VTS), 2019.

Y. Lecun et al., “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov
1998.

