\

IRPF90

Anthony Scemama

» To cite this version:

Anthony Scemama. IRPF90. [Research Report] CNRS; Université Paul Sabatier (Toulouse 3). 2018.
hal-02462160

HAL Id: hal-02462160
https://hal.science/hal-02462160
Submitted on 4 Feb 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02462160
https://hal.archives-ouvertes.fr

irpfo0

Table of Contents

README
Introduction
The Implicit Reference to Parameters method
Introduction to IRPF90
IRPF90 Basics
Automatic documentation
Helping features
Modifying entities outside of providers
Debugging
Makefile configuration
HPC-oriented functionalities
Profiling
Codelet generation
Optimizing branches
Array alignment
Variable substitution
Inlining providers
OpenMP
CoArray Fortran
Examples
A molecular dynamics code
Prepare the working environment
The Lennard-Jones potential
Describing the atoms
Potential for multiple particles
Computing the total energy

Computing the acceleration

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

irpfo0

Implementing the molecular dynamics 5.1.7
Handling files 5.1.8

Using scripts to generate specialized functions 52
CoArray Fortran example 5.3
Templated sort routine 54
Introspection 5.5
Index of command-line options 6

IRPF90

IRPF90 is a Fortran code generator. Schematically, the programmer only writes
computation kernels, and IRPF90 generates the "glue code" that will link all these
kernels together to produce the expected result, handling all the relationships
between the variables. In this way, even large codes can still be under control.

IRPF90 (1.7.5) is free software under the GPL licence available on GitLab.

http://irpf90.ups-tlse.fr
https://gitlab.com/scemama/irpf90

Introduction

Today, large scientific codes in Fortran are difficult to maintain. The complexity of
the programs comes from the dependencies between the different entities of the
code. As the entities become more and more coupled, the program becomes
more and more difficult to maintain and to debug.

If the programmer wants to keep the code under control, he has to be aware of all
the consequences of a modification of the source code on all possible execution
paths. When the code was written by multiple developers and when the code is
large (hundred thousands of lines), this becomes extremely difficult for the
programmer. However, the machine can handle easily such a complexity by
handling all the dependencies between the variables, as in a Makefile.

IRPF90 is a Fortran code generator. Schematically, the programmer only writes
computation kernels, and IRPF90 generates the "glue code" that will link all these
kernels together to produce the expected result, handling all the relationships
between the variables. In this way, even large codes can still be under control.

The Implicit Reference to Parameters
programming strategy

The Implicit Reference to Parameters (IRP) method was first introduced by
Frangois Colonna in the paper IRP programming : an efficient way to reduce inter-
module coupling. Here, we only give a practical overview of the main ideas, but
the reader is encouraged to read the original paper.

A scientific program (or sub-program) is a complicated function of its data. One
can represent the program as a tree whose root is the output and whose leaves
are the data. The nodes are the intermediate variables, and the edges represent
the needs/needed by relationships.

Let us consider a program which computes t(u(di,d2), v(u(d3,d4), w(d5))
) with

u(x) =x+y+1
V(X) =X +y + 2
w(Xx) =X + 3

t(x,y) =x +vy + 4

This program can be represented with the following tree:

http://osp.chickenkiller.com/mediawiki/index.php?title=IRP_programming_:_an_efficient_way_to_reduce_inter-module_coupling

Writing the program in Fortran would require the programmer to have this tree in
mind:

program compute_t
implicit none

integer :: di, d2, d3, d4 d5
integer :: ul, u2, v, w, t

call read_data(di,d2,d3,d4,d5)

call compute_u(di,d2,ul)
call compute_u(d3,d4,u2)
call compute_w(d5,w)
call compute_v(u2,w,Vv)
call compute_t(ul,v,t)

(*’*)’ llt:H, t

end program

This way of programming is imperative, which is the natural way to write Fortran :
the programmer tells the machine how its internal state will change by giving step-
by-step instructions. If the instructions are not given in the proper order, the
program is wrong. Therefore, at each line the programmer has to be aware of the
full state of the program, which results from the needs/needed by relationships of
the variables. Imperative programming explores the tree from the leaves to the
root.

The same program can be written using the functional programming paradigm.
Instead of telling the machine what to do, we can express what we want.
Considering the program this way explores the tree from the root to the leaves.

program compute_t
implicit none

integer :: di, d2, d3, d4 d5
integer, external :: u, u, v, w, t

call read_data(d1,d2,d3,d4,d5)
(*,*), "t=", t(u(d1,d2), v(u(d3,d4), w(ds)))

end program

Now, the needs/needed_by relationships between the entities are expressed by
calling function t . The programmer doesn't handle any more the order in which
the instructions will be executed : we don't known which one u(d3,d4) and

w(d5) will be executed first. However, the global knowledge of the tree is still
required to write this program.

In order to get rid of the global knowledge of the tree, we will transform it into local
knowledge, which is much easier to handle. For each entity, we will only express
the other needed entities:

e t--needs-->ulandv

e ul-- needs -->d1 and d2
e v --needs-->u2andw

e U2 -- needs -->d3 and d4
e W --needs -->db5

It appears now that the arguments of the functions are not variables but
parameters. In that case, we can put the parameters inside the functions, as they
will always be the same.

program compute_t
implicit none
integer, external :: t
(*,*), "t=", t()
end program

integer function t()
implicit none
integer, external :: ul, v
t=ul() + v() +

end

integer function w()
implicit none
integer :: di,d2,d3,d4,d5
call read_data(di,d2,d3,d4,d5)
w = d5+
end

integer function v()
implicit none
integer, external :: u2, w
v =u2() +w() +

end

integer function ul()
implicit none
integer :: di,d2,d3,d4,d5
integer, external :: f_u
call read_data(di,d2,d3,d4,d5)
ul = f_u(di,d2)

end

integer function u2()
implicit none
integer :: di,d2,d3,d4,d5
integer, external :: f_u
call read_data(di,d2,d3,d4,d5)
u2 = f_u(d3,d4)

end

integer function f_u(Xx,Yy)
implicit none
integer, intent(in) :: X,y
f_u = x+y+

end

subroutine read_data(di1,d2,d3,d4,d5)
implicit none
integer, intent(out) :: di,d2,d3,d4,d5
*, 'di,d2,d3,d4,d5 ?'
read (*,*) di,d2,d3,d4,d5
end

Now, the program automatically builds the tree and explores it. The programmer
doesn't have to handle the execution of the code any more. However, there are a
few aspects that can be improved. First, we have to write many empty
parentheses () which make the code less readable. Secondly, we have to
declare the return type of these functions every time we use them. Finally there is
a major drawback: here, the data (d1 ... d5) is read three times because there
is no way to know that it has already been read. These last points can all be easily
addressed. Indeed, if a function is a pure function (with no side effects), calling the
function with the same values as arguments will always return the same value. In
our program, the functions have no arguments, so we only need to build once the
return value and cache it for subsequent calls. This mechanism is known as
memoization.

For each node we write a builder, which is a subroutine that builds a valid value of
an entity (according to the equations given at the beginning of this section).

http://en.wikipedia.org/wiki/Pure_function
http://en.wikipedia.org/wiki/Memoization

subroutine build_t(x,y, result)
implicit none
integer, intent(in) :: X, Yy
integer, intent(out) :: result
result = x +y +

end subroutine build_t

subroutine build_w(x, result)
implicit none
integer, intent(in) :: X
integer, intent(out) :: result
result = x +

end subroutine build_w

subroutine build_v(X,y, result)
implicit none
integer, intent(in) :: X, y
integer, intent(out) :: result
result = x +y +

end subroutine build_v

subroutine build_u(x,y,result)
implicit none
integer, intent(in) :: X, y
integer, intent(out) :: result
result = x +y +

end subroutine build_u

subroutine build_d(d1,d2,d3,d4,d5)
implicit none
integer, intent(out) :: di,d2,d3,d4,d5
read(*,*) di,d2,d3,d4,d5

end

Then, we write a provider for each entity. A provider is a subroutine with no input
arguments whose role is to prepare a valid value of an entity. It calls the providers
of the needed entities, calls the builder of the desired entity, saves the computed

value in a cache and then marks the quantity as built. The next calls to the
provider will return the cached value.

Before writing the providers, we need to create a global variable for each node of
the tree, as well as a flag to mark it as built. For convenience, we shall put all of
them in a Fortran module nodes :

module nodes

integer :: ul

logical :: ul_is_built = .False.
integer :: u2

logical :: u2_is_built = .False.
integer :: v

logical :: v_is_built = .False.
integer :: w

logical :: w_is_built = .False.
integer :: t

logical :: t_is_built = .False.

integer :: di, d2, d3, d4, d5
logical :: d_is_built = .False.

end module

subroutine provide_t

use nodes

implicit none

if (.not.t_is_built) then
call provide_ul
call provide_v
call build_t(ul,v,t)
t_is built = .True.

endif
end subroutine provide_t

subroutine provide_w
use nodes
implicit none
if (.not. w_is_built) then
call provide_d
call build_w(d5,w)
w_is_built = .True.
endif
end subroutine provide_w

subroutine provide_v
use nodes
implicit none
if (.not. v_is_built) then
call provide_u2
call provide_w
call build_v(u2,w,v)
v_is_built = .True.
endif
end subroutine provide_v

subroutine provide_ul
use nodes
implicit none
if (.not. ul_is_built) then
call provide_d
call build_u(di,d2,ul)
ul_is_built = .True.
endif
end subroutine provide_ul

subroutine provide_u2
use nodes
implicit none
if (.not. u2_is_built) then
call provide_d
call build_u(d3,d4,u2)

endif
end subroutine provide_u2

subroutine provide_d
use nodes
implicit none
if (.not. d_is_built) then
call build_d(d1,d2,d3,d4,d5)
d_is_built = .True.
endif
end

And the main program is just

program test
use nodes
implicit none
call provide_t
o "t=", t

end program

The rules are simple:

1. Each entity has only one builder and only one provider
2. The arguments of the builder are the values of the needed entities.
3. Calling a provider always guarantees that the entity of interest is valid after

the provider has been called

Applying rigorously these rules makes the development of large codes as easy as

for smaller codes.

Introduction to IRPF90

As we have seen in the previous section, the IRP method is very powerful, but it
requires a lot of discipline. IRPF90 is a tool that will write all the boilerplate IRP
code for you, keeping your source code clear. It will also write Makefiles,
documentation man pages, introduce compiler directives for code optimization,

etc...

IRPF90 Basics

Let us rewrite the same code as in the previous section, but in the IRPF90
framework.

First, we create a file named uvwt.irp.f :

BEGIN_PROVIDER [integer, t]
t = ul+v+
END_PROVIDER

BEGIN_PROVIDER [integer,w]
w = d5+
END_PROVIDER

BEGIN_PROVIDER [integer, v]
V = u2+w+
END_PROVIDER

BEGIN_PROVIDER [integer, ul]
integer :: fu
ul = fu(di,d2)

END_PROVIDER

BEGIN_PROVIDER [integer, u2]
integer :: fu
u2 = fu(d3,d4)

END_PROVIDER

integer function fu(x,y)
integer :: X,y
fu = x+y+

end function

This file contains usual Fortran statements, as well as new keywords. In Fortran
there are subroutines and functions, and IRPF90 introduces Providers. If an entity
is declared with a BEGIN_PROVIDER ... END_PROVIDER block, thenitis an IRP

entity and it will behave as a global variable in the whole program. All the provided
entities are not supposed to be modified outside of their providers. The main point
is that the provider will always be called automatically before the variable is used.

The programmer doesn't know when and where the provider will be called.

Let us now introduce a provider for coupled data. Here, the input data will be read
from the standard input in a given order, so it is convenient to provide them all at
onceinfile input.irp.f :

BEGIN_PROVIDER
&BEGIN_PROVIDER
&BEGIN_PROVIDER
&BEGIN_PROVIDER
&BEGIN_PROVIDER

integer, di
integer, d2

integer, d4

{ s B m B m BN m B s |

]
]
integer, d3]
]
integer, d5]

* 'd1, d2, d3, d4, d5?°
read(*,*) di, d2, d3, d4, ds

END_PROVIDER

Now, we can write the main function in the irp_examplel.irp.f file:

program irp_examplel
implicit none
*’ lt: I’ t
end

To compile the program, we will have to set up the IRPF90 environment:

$ 1s
input.irp.f irp_examplel.irp.f wuvwt.irp.f

$ irpf90 --init
$ 1s
input.irp.f irp_examplel.irp.f IRPF90_man IRPF90_temp Makefile

j E— 2

The created IRPF90_temp directory contains temporary files for the compiling
step: the generated Fortran files, as well as the corresponding .mod and .o
files. IRPF90_man contains the generated man pages that document the code,
and a Makefile was created :

irpfo9o #-a -d
gfortran -ffree-line-length-none
= -02

include irpf90.make

irpf90.make: $(filter-out IRPF9O_temp/%, $(wildcard */*.irp.f)) \
$(wildcard *.irp.f) $(wildcard *.inc.f) Makefile
$(IRPF90)

(| —

To build the test program, simply run make . The Makefile includes the

irpf90.make file which does not exist, but there is a rule to create it by calling
IRPF90. IRPF90 analyzes the code presentin allthe *.irp.f files of the
current directory. The list of IRP entities is created in a first pass, then a second
pass analyzes the dependencies between the entities. From all this information, it
creates the Fortran code that will call the providers of each entity before it is used.
As the dependencies between the entities are known the irpf90.make file,
containing all the dependencies between the files, can be written.

Once IRPF90 has created the irpf96.make file, it can be included and the
Fortran files can be compiled. As the irpf90.make file depends on all the
*.irp.f files of the current directory, each modification or creation of an
*.irp.f file will force IRPF90 to run before compiling. To summarize, you
almost never need to write anything in the Makefiles. You just need to write

*.irp.f filesand run make .

$ make

Makefile:9: irpf90.make: No such file or directory

irpfoo

IRPF90_temp/irp_examplel.irp.module.F90
IRPF90_temp/irp_examplel.irp.F90

IRPF90_temp/uvwt.irp.module.F90

IRPF90_temp/uvwt.irp.F90

IRPFOO_temp/input.irp.module.F90

IRPFOO_temp/input.irp.F90

Warning: Variable ul is not documented

Warning: Variable u2 is not documented

Warning: Variable t is not documented

Warning: Variable w is not documented

Warning: Variable v is not documented

Warning: Variable di1 is not documented

Warning: Subroutine irp_examplel is not documented

Warning: Subroutine fu is not documented

gfortran -ffree-line-length-none -I IRPF90_temp/ -02 -c IRPF90_ter
gfortran -ffree-line-length-none -I IRPF90_temp/ -02 -c IRPF90_ter
gfortran -ffree-line-length-none -I IRPF90_temp/ -02 -c IRPF90_ter
gfortran -ffree-line-length-none -I IRPF90_temp/ -02 -c IRPF90_ter
gfortran -ffree-line-length-none -I IRPF90_temp/ -02 -c IRPF90_ter
gfortran -ffree-line-length-none -I IRPF90_temp/ -02 -c IRPF90_ter
gfortran -ffree-line-length-none -I IRPF90_temp/ -02 -c IRPF90_ter
gfortran -ffree-line-length-none -I IRPF90_temp/ -02 -c IRPF90_ter
gfortran -ffree-line-length-none -I IRPF90_temp/ -0 irp_examplel :

{] 2]

Array entities

An array is considered valid when all of its values are valid. The dimensions of an
array entity can be IRP entities, constants or intervals.

BEGIN_PROVIDER [integer, fact_max]
fact_max =
END_PROVIDER

BEGIN_PROVIDER [double precision, fact, (0:fact_max)]
implicit none
integer :: 1i
fact(0) =
do i=1, fact_max
fact(i) = fact(i-1)* (1)
end do
END_PROVIDER

In this example, as the array fact depends on its dimensioning variable

fact_max , fact_max is provided first. Then, the fact array is allocated with
the required dimensions, and then the code inside the provider is executed. Note
thatif the fact array is not used in the program, it will never be allocated.

Freeing entities

It is possible to free memory by using the FREE keyword.

BEGIN_PROVIDER [double precision, table2, ((table1, 1))]
implicit none
table2(:) = * tablel(:)

FREE tablel
END_ PROVIDER

When tablel is freed, the entity tablei is marked as non-valid, such that if it
is needed again, it will be reallocated and rebuilt.

When applying the FREE keyword to scalar entities, those are just marked as
non-built.

Forcing to provide entities

The PROVIDE keyword forces to provide an entity, even if it is not needed.

In this example,

subroutine s()
implicit none
PROVIDE u v

end

u and v will be provided before entering in the scope of subroutine s .

This second example forces to re-provide the random_x entity at every loop
cycle (version >= 1.5.0):

do i=1,N
PROVIDE random_x
print *, random_x
FREE random_x

end do

Automatic documentation

Inside each provider, subroutine and function it is recommended to write a few
lines to explain what it does. The documentation is written inside a BEGIN_DOC
. END_DOC block.

BEGIN_ PROVIDER [double precision, fact, (0:fact_max)]
implicit none

integer :: i
fact(0) =
do i=1, fact_max
fact(i) = fact(i-1)* (1)
end do
END_PROVIDER

When irpf90 runs, a warning will be printed if the documentation block is
absent. Afile named irpf90_entities is created, where each line corresponds
to one IRP entity and gives:

e the name of the file in which it is defined
e the Fortran type

e the name of the IRP entity

e the dimensions if the entity is an array

input.irp.f : integer podi

input.irp.f : integer 11 d3

input.irp.f : integer 11 db5

fact.irp.f : integer ::» fact_max
uvwt.irp.f : integer it

uvwt.irp.f : integer 1roul

uvwt.irp.f : integer prou2

uvwt.irp.f : integer row

1 — 2]

This file is very useful for scripting. For instance,

$
$ awk '/:: fact_max/ { print $1 }' irpf90_entities
fact.irp.f

$

$ INTS=$(awk '/integer / { print $5 }' irpf90_entities)
$ $INTS

dl d2 d3 d4 d5 fact_max t ul u2 v w

Another very useful tool is the irpman command:

$ irpman <irp_entity>

This opens a man page for the desired IRP entity containing its description (given
inthe BEGIN_DOC ... END_DOC blocks), the file in which it is defined, which
other entities are needed to build it, and which other entities need the current
entity. It also gives an Instability factor, which is an estimate measure of how
dangerous it can be to modify the IRP entity.

Here is the man page displayed for the v entity:

IRPF90 entities(1l) v IRPF90 entities(1l)

Declaration
integer Y/

Description
V(X) = X+y+2

File

uvwt.irp.f
Needs

u2

w
Needed by

t

Instability factor
25.0 %

IRPF90 entities \Y IRPF90 entities(1l)

To activate tab completion in Bash, you can source the irpman exectuable itself

$ $(irpman)

Now, pressing tab on the command line after irpman gives the list of all IRP
entities:

$ irpman <TAB><TAB>

di d4 fact_max
d2 d5 fu
d3 fact irp_examplel

$ irpman fa<TAB>
$ irpman fact<TAB><TAB>
fact fact_max

irp_example?2
t
ul

uz2
v

Helping features

Assertions

Assertions are boolean expressions that must be true, to check the runtime
behavior of the program. Assertions can be introduced with ASSERT keyword:

BEGIN_PROVIDER [integer, u2]
call compute_u(d3,d4,u2)
ASSERT (u2 < d3)

END_PROVIDER

In this particular example, if u2 < u3 nothing happens. If u2 >= u3 , then the
program fails:

Stack trace: 0
provide_t
provide_v
provide_u2
uz2
u2: Assert failed:
file: uvwt.irp.f, line: 23
(u2 < d3)
uz2 =
d3 = 3

STOP 1

Assertions are activated by using irpf9e -a .Ifthe -a option is not present,
all the assertions are discarded.

Templates

Templates is a very useful feature of many languages. IRPF90 provides a simple
way to write templates to generate similar providers and functions. The template is
defined in the BEGIN_TEMPLATE ... END_TEMPLATE block. The first section of
the block contains the template code, in which template variables are used
prefixed with a dollar sign. Then the SUBST keyword defines the template
variables to substitute, and multiple substitution definition lines are given. The
substitution definitions are separated by two semi-colons (;;), and within a
substitution definition the variable substitutions are separated by one semi-colon

()
BEGIN_TEMPLATE
BEGIN_PROVIDER [$type , $name]
call find_in_input('$name', $name)
END_PROVIDER
logical function $name_is_zero()
$name_is_zero = ($name == 0)

end function

SUBST [type, name]

integer ; size_tab1 ;;
integer ; size_tab2 ;,;
real ; distance ;;
real ; X i
real : y T
real : z 7

END_TEMPLATE

In this example, type and name are the template variables, referenced as
$type and $name in the first block. Six providers and functions will be
generated :

e replacing $type with integer and name with size_tab1l
e replacing $type with integer and name with size_tab2
e replacing $type with real and name with distance

e replacing $type with real and name with x
e replacing $type with real and name with y
e replacing $type with real and name with z

Augmented assignment operators

These patterns are very frequent in scientific applications:

e a=a+b

e a=a?*hb

If a has a very explicit name, this pattern can give:

my_very_explicit_name(dimi1,dim2,dim3) = my_very_explicit_name(dim:
+ b*c - d

| S— >

Such constructs are not optimal:

e The name of the variable is long, so the line has to be split and the code is
less readable

e The programmer is likely to make a typo by typing twice a very long variable
name. This is likely to be caught by the compiler.

e When the programmer modifies a dimension in the left member, he has to
modify it accordingly in the right member. Such errors will not be caught by
the compiler.

Augmented assignment operators cure these problems by allowing the
programmer to write:

my_very_explicit_name(diml,dim2,dim3) += b*c - d

IRPF90 introduces three operators: += , -= ,and *= . Divisions could not be
added since /= already means "not equal”. To divide using an augmented
assignment operator, *= 1. / can be used to multiply by the inverse.

Embedded shell scripts

When a programmer writes code, the input comes from the keyboard. With
IRPF90 it is possible to define sections where the input is not the keyboard but it
comes from the output of script that will be executed at compile time. This is

achieved with BEGIN_SHELL ... END_SHELL blocks. Any scripting language can
be used.

This example will use Bash to generate code that will print the date when the
program was compiled:

program test
BEGIN_SHELL [/bin/bash]
cat << EOF | sed 's/\(.*\)/echo "\1\"/g'
, 'Compiled by "whoami™ on “date’ '
*, "$PWD'
*, '$(hostname)’
EOF
END_SHELL
end

$./test

Compiled by scemama on Wed Feb 4 22:27:46 CET 2015
/tmp/irpf90_test
laptop

Another example generates 100 functions with Python:

BEGIN_SHELL [/usr/bin/python]
for 1 in range():
prlnt min

double precision function times_%d(Xx)

double precision, intent(in) :: X
times_%d = x*%d
end

""%locals()
END_SHELL

Conditional compilation

In IRPF90, the C preprocessor can't really be used, as the produced Fortran files
may not have everything in the same order as the *.irp.f files. Instead,
IRPF90 provides the IRP_IF ... IRP_ELSE ... IRP_ENDIF keywords to
enable conditional compilation.

IRP_IF new_feature

*, 'New feature'
call new_feature()

IRP_ELSE

*, '0ld feature'
call old_feature()

IRP_ENDIF

To generate the program with the old feature, just run irpf9e as usual. If you
want to activate the new feature instead, use irpf9e0 -Dnew_feature . Multiple
-D options can be given in the command line

Integration in Vim

When running irpf9oe , two files are created for the interaction with vim :

e the $HOME/.vim/syntax/irpf90.vim file
e a tags filein the current directory

The first file is a syntax file for syntax highlighting. It extends the standard Fortran
file to color the additional keywords of IRPF90. It also adds two features : hitting

K when the cursor is on the name of an IRP entity displays its man page, and
hitting = on a group lines selected with <Shift>-v auto-indents the code.
However, auto-indentation is to be used outside of BEGIN_SHELL ...
END_SHELL blocks, especially for embedded Python scripts.

http://en.wikipedia.org/wiki/Conditional_compilation

The tags file is similar to the file created with the ctags utility when
programming in C. The presence of this file allows vim to jump automatically on
the definitions of providers, functions and subroutines. For instance, inside vim |,

:tag ul jumps to the provider of u1 . Another option is to place your cursor
on an IRP entity somewhere where it is used and hit <CTRL>-] to jump on its
definition. To come back where you were, hit <CTRL>-T .

Modifying entities outside of providers

Touch

IRPF90 guarantees that an entity will not be re-provided if its value is already
computed and valid. If the value of an entity is modified by a side effect outside of
its provider, all the entities which are parent of the modified entity should be
invalidated. This is done using the TOUCH keyword.

xW » - .
4}/ e { \ O N ,(\ LY
£ox(v ‘f,ifi N # LG 4 x;f}: 2N ®
4 & i IS ;j_’{’j/ / i i 5 { 4 / j ‘\ g
(a) (b) (c)

In this example, all the entities have been provided (figure (a)). If the user
requests the value of z , it will be fetched from the memory. Then, the value of

x is modified by a side effect, so the tree is not valid any more. Using TOUCH
x (figure (b)), all the parents are invalidated, but the value of x is set as valid
(figure (c)). Requesting z now will give the correct value of z taking account
of the modification of x and re-providing only what is necessary between x
and z .

Iterative processes

An iterative process at iteration n is characterized by : A(n+1) needs C(n)
needs B(n) needs A(n) needs C(n-1) etc...

As in IRPF90 the dependence tree is static, we will want to write the iterative
process as: A needs B needs C needs A ...Butthisimplies a cyclic
dependency. In that case, we will violate the rule that an entity is created only by
one provider, and we will allow ¢ to be modified from outside of its provider,
such that it only depends on Co0 , its initial guess value. The provider of ¢ will
then only describe its initialization by copying its initial guess value co .

BEGIN_PROVIDER [double precision, C]
C =2cCo
END_PROVIDER

The converged value A _converged of A will be written as follows:

BEGIN_PROVIDER [double precision, A_converged]
logical :: iteration_condition
do while (iteration_condition)

C = f(A)
TOUCH C
enddo
A_converged = A
END_PROVIDER

Soft touch

When IRPF90 encounters the TOUCH keyword, it produces the following Fortran
code:

call touch_x

if (.not.a_is_built) then
call provide_a
endif

if (.not.b_is_built) then
call provide_b
endif

Aftera TOUCH statement, all the entities in the current variable scope are
provided again to ensure that the program will be correct. This can sometimes
lead to providing entities that will not be needed later, especially in the cases
where the TOUCH statement is the last statement of a provider.

The SOFT_TOUCH statement has the same effect as TOUCH , except that the
entities in the current scope are not re-provided. It can be used as an optimization
of the TOUCH when all the other entities are no more used in the current
subroutine, function or provider. However, it has to be used with caution.

Debugging

Displaying the exploration of the tree

New users of IRPF90 who are experienced Fortran programmers like to display
the exploration of the tree when they execute their first programs. The -d option
of irpf90 prints a message when the program enters or exits a
function/provider/subroutine.

Inthe uvwt example, the output is:

$./irp_examplel
di
1
d2
2
d3
3
d4
4
d5
5
t = 26

Activating the -d option gives the following output:

$./irp_examplel

0 : -> provide_t
O : -> provide_ul
0 : -> provide_di
0 -> di

di
1

d2
2

d3

d4

d5

<- d1 6.889999999999999E-004
<- provide_dl 8.070000000000000E-004
-> ul
-> fu
<- fu 9.999999999996990E-007
<- ul 2.900000000000038E-005
<- provide_ul 8.999999999999998E-004
-> provide_v
-> provide_w
> W
<- w 1.000000000000133E-006
<- provide_w 2.700000000000011E-005
-> provide_u2
-> u2
-> fu
<- fu 1.000000000000133E-006
<- U2 2.015000000000000E-003
<- provide_u2 2.026000000000000E-003
-> v
<- v 0.000000000000000E+000
<- provide_v 2.089000000000000E-003
-> t
<- t 0.00000000000000OE+000O
<- provide_t 3.033000000000000E-003
-> 1irp_examplel
t = 26
0 : <- irp_examplel 0.0000000000000OCE+0GO

©O © © © © © O O O O O O O OO0 O O O O OO O oo o o u

The floating point numbers given in the output are the CPU times, and the integer
on the left of each line is the thread ID.

Compiler errors

When the Fortran compiler fails, it reports an error in the Fortran code. This error
is difficult for us to track because IRPF90 generated the Fortran and we need to
be able to do the mapping from the Fortran compiler's error to the error in the

*.irp.f file. To achieve this goal, the generated Fortran code has comments at
the end of the lines which correspond to the file names and line numbers of the
original *.irp.f file.

Let us introduce an error in the IRPF90 code (a missing closing parenthesis)

BEGIN_PROVIDER [integer, u2]
implicit none

integer :: fu
u2 = fu(d3,d4
END_PROVIDER

The generated Fortran code in the IRPF90_temp/uvwt.irp.F90 fileis

subroutine bld_u2
use uvwt_mod
use input_mod
implicit none
character*(2) :: irp_here = 'u2'
integer :: fu
u2 = fu(d3, d4
end subroutine bld_u2

Running make produces this error (with the Intel Fortran compiler)

ifort -I IRPF90O_temp/ -02 -c IRPF90_temp/uvwt.irp.F90 -0 IRPF90_1
IRPFOO_temp/uvwt.irp.F90(71): error #5082: Syntax error, found END:
u2 = fu(d3s,d4 I uvwt.irp.f: 40

compilation aborted for IRPF90_temp/uvwt.irp.F90 (code 1)
make: *** [IRPF9O_temp/uvwt.irp.o] Error 1

j — 2]

IRP_here

You can remark the presence of the irp_here variable in the generated
bld_u2 generated subroutine. Every subroutine, function or provider has a

string local variable named irp_here , which contains the name of the current

context. This variable is very helpful for users to print debug/error messages:

Tracing memory allocations

When the memory used by a program becomes too large, one would like to find

the IRP entities that may be responsible. The -m option will display a message
in the standard output when an array for an IRP entity is allocated or deallocated
(using the FREE keyword).

Here is a real-world example (taken from the Quantum package IRPF90 code):

10 Allocating ci_electronic_energy(N_states_diag)

10 Allocating ci_eigenvectors(N_det,N_states_diag)

10 Allocating ci_eigenvectors_s2(N_states_diag)
128260 Allocating psi_det(N_int,2,psi_det_size)

Deallocating ci_eigenvectors

30600 Allocating ci_eigenvectors(N_det,N_states_diag)
6120 Allocating det_connections(N_con_int,N_det)

The integer at the beginning of the line is the number of elements in the array.

Debugging an embedded script

Embedded shell scripts may be difficult to debug. The --preprocess option
helps the programmer to check the files IRPF90 will produce after executing the
scripts. For example, consider the file named test.irp.f :

program test
BEGIN_SHELL [/bin/bash]

cat << EOF
*, 'Compiled by "whoami® on “date’'
*, "$PWD'
*, '$(hostname)’
EOF
END_SHELL
end

The following command displays the produced Fortran file:

$ irpf90 --preprocess test.irp.f
program irp_program
call test
call irp_finalize 1624498827()
end program
subroutine test
character*(4) :: irp_here = 'test'
print *, 'Compiled by scemama on Mon Mar 9 18:41:50 CET 2015'
print *, '/dev/shm/tmp'
print *, 'lpqglx139'
end

J i

Debugging TOUCH statements

TOUCH statements are particularly dangerous because they violate the principle
that one IRP entity can only be built by its builder, which can only be called by its
provider. To see what will be invalidated by a TOUCH statement can be useful to
understand the consequences of a dangerous modification. The -t option
displays which IRP entities will be invalidated :

$ irpf90 -t psi_coef
Touching psi_coef invalidates the following entities:
- ci_electronic_energy

- ci_energy

- coef_hf_selector

- exc_degree_per_selectors
- n_det_generators

- n_det_selectors

- one_body_dm_mo

- psi_average_norm_contrib
- psi_det_sorted

- psi_generators

- psi_selectors

- s2_values

Makefile configuration

User configuration

When irpf90 --init is run, a standard Makefile is created:

irpfoe #-a -d
gfortran -ffree-line-length-none
= -02

include irpf90.make

irpf90.make: $(filter-out IRPF9O_temp/%, $(wildcard */*.irp.f)) \
$(wildcard *.irp.f) $(wildcard *.inc.f) Makefile
$(IRPF90)

J I 3

-

The IRPF90 variable contains the IRPF90 invocation. All the options of IRPF90
should be given in this line. To include some additional directories to be read by
IRPF90, the -I option should be used.

The FC variable describes the Fortran compiler to use. As IRPF90 adds
comments at the end of the lines to express the correspondence between the
Fortran generated files and the IRPF90 source files, the lines are too long for the
default options of gfortran. This explains why -ffree-line-length-none is
inserted by default. If the Intel Fortran compiler is used, this option should be
removed. The FC variable should contain the invocation of the Fortran compiler
which is common to compiling Fortran files and to link the project. For example,
the -openmp option of the Intel compiler should be placed on this line as it
should be mentioned to compile the Fortran files, but it is also required at the link
stage.

FCFLAGS contains the flags that should be present at compile time but not at link
time. The code optimization options should appear here.

It is possible to add some files to the project that will not be seen by IRPF90, but
need to be compiled and linked to the project. For example, a Fortran file
containing a "black box" subroutine could be taken from another project, and your
IRPF90 program could call this subroutine. To do that, the names of these Fortran
source files should be added to the SRC variable, and the names of the
corresponding object files to the 0BJ variable. Note that it is also possible to add
some C source files and objects, but then the corresponding compiling rules
would have to be added to the Makefile .

External libraries may be added to the LIB variable.

Auto-generated configuration

The targets are generated by IRPF90 and are written in the irpf90.make file.
The name of each main program is a target. The all target builds all the
programs.

The clean target removes all the object files. The veryclean targetremoves
also the IRPF90_temp/ and IRPF90_man/ directories as well as the
irpfo90.make , irpf90_entities and tags files.

If the USE_IRPF90_A environment variable is set, then an archive irpf90.a
containing everything except the main functions is created. This archive is linked
with every target program. If this environment variable is not set, all object files are
linked to create the executables.

IRPF90 creates Fortran modules that will store the cached data. These modules
only contain data but no subroutines nor functions. This makes them very fast to
compile. All the subroutines and functions are written in other files, and they use
the modules. In this way, all the files containing subroutines and functions depend
only on module files. The greatest advantage is that all of the files containing
subroutines and functions, which are the longest to compile, are independent of
each other. This makes the parallel builds very efficient using make -j <n>
where <n> is the number of threads. Another advantage is that the irpf90.a
library can be linked and used in any other program without requiring any .mod

file. Module .mod files are to be avoided in libraries as they are compiler-
specific (Intel Fortran .mod files are not compatible with gfortran and vice
versa).

HPC-oriented functionalities

Profiling

IRPF90 includes a profiler that will measure the number of CPU cycles spent in all
the providers. At the end of the run, it will display for each entity the total number
of cycles, the average number of cycles (with an error bar), the total time and the

average time for each entity.

Here is an example taken from a real application:

N.Calls

Tot Cycles

ci_energy
coef_hf_selector
davidson_criterion
davidson_sze_max
det_connections
diag_algorithm
do_pt2_end
elec_alpha_num

exc_degree_per_selectors

expected_s2
ezfio_filename

R R NR R ORRRERNO

1662765.
13009101.
1736.
18.
6945057 .
15253.
233928.
751170,
209402.
240961.
386883.

B

277127.
1858443.
1736.
18.
6945057 .
2542,
233928.
/-
29915.
240961.
386883.

751170

+/- 590«
+/- 6056¢
+/-
+/ -
+/ -
+/- 2¢
+/-

+/- 108:
+/-
+/-

Codelet generation

When optimizing for performance, it is common to write a simple codelet that will
just benchmark one provider. IRPF90 can write this codelet for you:

$ irpf90 --codelet <NAME>[:<PRECONDITION>]:<NMAX>

e NAME : Name of the IRP entity whose provider is to test

e PRECONDITION : A space-separated list of other entities to provide before
running the benchmark

e NMAX : Number of repetitions to improve the accuracy.

Here is an example of the uvwt example.

$ irpf90 --codelet v:t:100000

This will generate the codelet_v.irp.f inwhich t is provided before the
benchmark is run, and v will be built 100000 times:

program codelet_v
implicit none
integer :: 1i
double precision :: ticks_0, ticks_1, cpu_0, cpu_1
integer, parameter :: irp_imax =

PROVIDE t
call provide_v
double precision :: irp_rdtsc

call (cpu_0)
ticks_0 = irp_rdtsc()
do i=1,irp_imax

call bld_v
enddo
ticks_1 = irp_rdtsc()

call (cpu_1)
*’ IVI
* L 1
*, 'Cycles:'
*, (ticks_1-ticks_0)/ (irp_imax)

*, 'Seconds:'
*, (cpu_1-cpu_0)/ (irp_imax)
end

Now a new main program has been generated, it can be built using make . When
the run is finished, the number of CPU cycles and the time in seconds is given for
one execution of the provider:

Cycles:
17.6698700000000
Seconds:
7.740000000000000E-009

Optimizing branches

IRPF90 tries to provide the entities as soon as possible to avoid putting
unnecessary if statements inside the loops.

When a branch occurs with an if condition, if an entity is needed in all the
branches it can safely be provided before the if statement. This IRPF90 code

if (condition) then
*, 'True', A
else
*, 'False', A

endif

generates the Fortran code

if (.not. a_is_built) then
call provide_a
endif

if (condition) then
*, 'True', A
else
*, 'False', A

endif

If the IRP entity is not needed in all branches, it will be provided only inside those
branches. The IRPF90 code

if (condition) then
*, 'True'
else
* 'False', A

endif

generates the Fortran code

if (condition) then
*, 'True'
else
if (.not. a_is_built) then
call provide_a
endif
*, 'False', A

endif

This can be avoided by using the PROVIDE statement before entering in the
if statement.

PROVIDE A
if (condition) then
*, 'True'
else
*, 'False', A
endif

generates the Fortran code

if (.not. a_is_built) then
call provide_a
endif

if (condition) then
*, 'True'
else
*, 'False', A
endif

This behavior can generate inefficient code if there is an if statement inside a
loop with some entities provided not in all the branches. A command-line option -
-checkopt will check where there are entities provided inside loops, and print
messages as:

Optimization: test.irp.f line 16
PROVIDE a

Array alignment

Array alignment is necessary to get performance on x86 architectures. Indeed,
vector instructions (SSE,AVX,AVX-512) require the data to be aligned on a 16-,
32- or 64-byte boundary. With the Intel compiler, it is possible to give the compiler
a directive to align an array on a given boundary:

IDIR$ ATTRIBUTES ALIGN : 32 :: X

Doing this will force the first element of array X to have an address which is a
multiple of 256 bits. Using aligned arrays for one-dimensional array will remove
the peeling loops produced by the compiler when producing and auto-vectorized
binary.

For two-dimensional arrays, it is possible to have all columns aligned if the array is
aligned and the length of a column is a multiple of the alignment.

IRPF90 can set the alignment directive for all the IRP entities that are arrays using
a command-line argument:

irpf90 --align=32

will use a 32 byte alignment for every array entity, but it will also replace in the
code all the $IRP_ALIGN patterns with 32 . In this way, it is possible to make a
code which is valid for all kind of array alignments.

Let's create a function that will calculate the length of the leading dimension such
that it is a multiple of the alignment:

integer function align_double(1i)
implicit none
integer, intent(in) :: 1
integer S
J = (1, max($ y4)/4)
if (j==0) then
align_double

1
(R

else

align_double i+4-3
endif

end

We can now create a matrix with all columns aligned, using the !DIR$ VECTOR
ALIGNED directive safely.

BEGIN_PROVIDER [integer, n]
&BEGIN_PROVIDER [integer, n_aligned]

integer :: align_double

n =

n_aligned = align_double(19)
END_PROVIDER

BEGIN_PROVIDER [double precision, Matrix, (n_aligned,n)]

implcit none

integer :: 1i,j

do j=1,n

IDIR$ VECTOR ALIGNED

do i=1,n_aligned

I do stuff to create Matrix(i,j)

enddo

enddo
END_PROVIDER

Variable substitution

It is possible to create a binary executable specifically tuned for one input file. The
option --substitute replaces the variables presentin loop ranges and if
conditions by those given in the command line. Doing this gives much more
information to the Fortran compiler and typically up 5-10% of performance can be
gained with such a strategy.

For example, consider this piece of code:

if (choicel) then

do i=1, lmax
call do_stuff
enddo
else

do i=1, nmax
call do_something_else

enddo
endif

We can replace the variables 1max , nmax and choicel by their input value
using

$ irpf90 -s 1Imax:100 -s nmax:48 -s choicel:.True.

This will generate the following fortran code:

if (.True.) then

do i=1,
call do_stuff
enddo
else

do i=1,
call do_something_else
enddo
endif

The if (.True.) statementcan be interperted by the Fortran compiler. It will
then remove the else branch that will never be taken, and remove the if

test. For the loop which will run, the compiler knows exactly how many loop cycles
will be performed, and it can take the right decisions for loop unrolling and
vectorization strategies.

Inlining providers

For each IRP entity, a provider and a builder function are created. The provider
always calls the builder. The --inline builders forces to inline the builders in

the providers.
When an IRP entity A is used, the following code is generated
if (.not.a_is_built) then

call provide_a
endif

Ifthe --inline providers option is present, there will be a directive in the
generated Fortran code to force the inlining of the call provide statement.

To inline both providers and builders, use ifpr9e --inline all .

OpenMP

OpenMP is straightforward to use with IRPF90 for simple loops. Trouble may
arrive when entities are provided in OpenMP blocks such that two threads may be
providing the same entities simultaneously.

To avoid such situations, an error message is displayed if an entity is not provided
by thread zero. A common solution to this problem is to explicitly provide the
needed entities before entering in the OpenMP section.

Another possibility is to use irpf90 --openmp . In that case, all the providers
become automatically thread-safe using one OpenMP lock per IRP entity.

Coarray Fortran support

When the --coarray option is given, all the entities are co-arrays in the
CoArray Fortran (CAF) language extension, defined as [*] . Therefore, it is
possible for any process image to access the IRP entities of all the other images.

Let us first create convenient providers to cache the values of the num_images
and image_id functions that will be called very often.

BEGIN_PROVIDER [integer, n_images]
&BEGIN_ PROVIDER [integer, image_id]
implicit none

n_images

()
()

image_id
END_PROVIDER

Now, we create an array that will be different on each image:

BEGIN_PROVIDER [real, X, (10)]
implicit none

integer :: 1
do i=1, (X)
X(1i) = real(image_id * 1)
enddo
END_PROVIDER

In the main program, you will want to print the value of X of images 1 and 2.
Only the first image will print, so this will imply an if statement as

http://www.co-array.org/

if (() == 1) then

endif

The problem is that X will need to be provided only if the image_id is equalto

one. Here, we will have to force to provide X , whatever the value of

this_image .

program caf_test
implicit none

PROVIDE X

if (image_id == 1) then
*, 'This image:'
* X
*, 'Image 2:'
*, X[2]

endif

end

In the Makefile , set

irpf90 --coarray

ifort -coarray

Build the program and the output will give:

$./caf_main
This image:

1.000000 2.000000 3.000000 4,000000

6.000000 7.000000 8.000000 9.000000
Image 2:

2.000000 4,000000 6.000000 8.000000

12.00000 14.00000 16.00000 18.00000

J 1

5. 0(
10.(

10.(
20.(

irpf90

CoArray Fortran

59

irpf90

Examples

60

Tutorial : A molecular dynamics code

Molecular dynamics models the movement of atoms according to their initial
positions and velocities. In this tutorial, we will write a molecular dynamics
program to illustrate how to use IRPF90. This program will read the force field
parameters from an input file, as well as the initial positions of the atoms. After
each little displacement of the atoms according to their velocities, the new set of
coordinates will be printed into an output file such that a video animation can
easily be produced with an external tool.

Here is the list of what we will have to code:

e The potential energy of a couple of atoms (Lennard-Jones potential). This will
will be a very simple introduction to IRPF9O0.

e The potential and kinetic energy of system of N atoms. We will have to create
arrays dimensioned by other IRP entities.

e The acceleration of the particles using finite differences for the calculation of
derivatives. This part will introduce the TOUCH keyword.

e The Verlet algorithm to make everything move.

The first thing you will have to do is download IRPF90 from the web site:
http://irpf90.ups-tise.fr

Physical Parameters

For all this tutorial, we will use Argon atoms with the following parameters:

e mass : 39.948 g/mol
e epsilon : 0.0661 j/mol
e sigma: 0.3345 nm

The atom coordinates are given in nanometers.

http://irpf90.ups-tlse.fr

Prepare the working environment

Create a new directory for the project. Inside this directory, initialize the IRPF90
environment using:

$ irpf9e --init

Two directories were created

$ 1s
IRPF90_man IRPF90_temp Makefile

and a Makefile containing default parameters for the gfortran compiler

irpfoe #-a -d
gfortran
-02 -ffree-line-length-none

include irpf90.make

irpf90.make: $(filter-out IRPF90_temp/%, $(wildcard */*.irp.f)) $(v
$(IRPF90)

J S— s

In the Makefile, activate the asserts and the debug options by uncommenting -
a and -d inthe definition of the IRPF90 variable.

The Lennard-Jones potential

Exercise

Write a program which computes the Lennard-Jones potential :

The user will be asked for the values of the Lennard-Jones parameters
sigma_lj and epsilon_1j ,as wellasthe interatomic_distance .

Create the main program in a file named test.irp.f , and the providers in a file
named potential.irp.f . You don't need to modify the Makefile .

To compile the program, run

$ make

Makefile:9: irpf90.make: No such file or directory

irpf9e -a -d

IRPFO0O_temp/potential.irp.module.F90

IRPFO0O_temp/potential.irp.F90

IRPF90O_temp/test.irp.module.F90

IRPF90O_temp/test.irp.F90

gfortran -I IRPF90O_temp/ -02 -ffree-line-length-none -c IRPF90_ter
gfortran -I IRPF90O_temp/ -02 -ffree-line-length-none -c IRPF90_ter
gfortran -I IRPF90O_temp/ -02 -ffree-line-length-none -c IRPF90_ter
gfortran -I IRPF90_temp/ -02 -ffree-line-length-none -c IRPF90_ter
gfortran -I IRPF90_temp/ -02 -ffree-line-length-none -c IRPF90_ter
gfortran -I IRPF90_temp/ -02 -ffree-line-length-none -c IRPF90_ter
gfortran -I IRPF90O_temp/ -0 test IRPF90_temp/test.irp.o IRPF90_ter

{ . 2]

The warning Makefile:9: irpf90.make: No such file or directory can
be ignored: the missing irpf90.make will be created by applying the rule in the
Makefile that calls IRPF9O0.

A binary file named test will be created.

$ 1s
irpf90_entities IRPF90_man Makefile tags test.irp.f
irpf90.make IRPF90_temp potential.irp.f test

Expected Output

$./test
0 -> provide_v_1j
0 -> provide_epsilon_1j
0 -> epsilon_1j
Epsilon?
0.0661
Sigma?
0.3345
0 : <- O="" epsilon_1j="" 3.63000000000000041E-004=""
0 : -> interatomic_distance

Inter-atomic distance?

0.3
0 : <- O@="" interatomic_distance="" 1.704999999999999¢
0 : <-0=""v_1j="" 0.0000000000000000="" :="" <-="" p)
0.46819241808782769
0]
J - o]
Solution

File test.irp.f

program test
implicit none

end

File potential.irp.f

BEGIN PROVIDER [double precision, V_1j]

implicit none

BEGIN_DOC

I Lennard Jones potential energy.

END_DOC

double precision :: sigma_over_r

sigma_over_r = sigma_lj / interatomic_distance

V_1j = 4.do * epsilon_1j * (sigma_over_r**12 - sigma_over_r**6
END_PROVIDER

BEGIN PROVIDER [double precision, epsilon_1lj]
&BEGIN_ PROVIDER [double precision, sigma_lj]

implicit none

BEGIN_DOC

I Parameters of the Lennard-Jones potential
END_DOC

print *, 'Epsilon?'

read(*,*) epsilon_1j

ASSERT (epsilon_1j > 0.)

print *, 'Sigma?'

read(*,*) sigma_l1j

ASSERT (sigma_lj > 0.)
END_PROVIDER

BEGIN_PROVIDER [double precision, interatomic_distance]
implicit none
BEGIN_DOC
I Distance between the atoms
END_DOC
print *, 'Inter-atomic distance?'
read (*,*) interatomic_distance
ASSERT (interatomic_distance >= 0.)
END_PROVIDER

A 1

irpf90

The Lennard-Jones potential

66

Describing the atoms

Exercise

In the same directory, create a program which reads in the standard input:

e The number of atoms
e For each atom: the mass and the x, y, z coordinates

The program will the print the matrix of the distances between atom pairs.

You will have to create :

e A provider for Natoms , the number of atoms

e Aprovider for coord and mass , the atom coordinates and mass. These
are arrays with dimensions (3,Natoms) and (Natoms) respectively.

e Aprovider for distance , the distance matrix. Its dimension is

(Natoms, Natoms) .

You can check that your code is well documented using the irpman command:

$ irpman coord

IRPF90 entities(1l) coord IRPFO(
Declaration

double precision, allocatable :: coord (3,Natoms)

double precision, allocatable :: mass (Natoms)
Description

Atomic data, input in atomic units.

File

atoms.irp.f
Needs

natoms
Needed by

distance

Instability factor
50.0 %

IRPF90 entities coord IRPF9(

j E— o

Expected output

$./test2

© : -> provide_distance
© : -> provide_natoms
0 : -> natoms

Number of atoms?
3
0 : <- 0="" npatoms="" 1.59999999999999986E-004="" ="'
0 : -> coord
For each atom: x, y, z, mass?

0. 0. 0. 40.
1. 2. 3. 10.
-1. 0. 2. 20.
0 : <- 0="" coord="" 2.03999999999999754E-004="" .=""
O : <- O="" distance="" 1.99999999999983177E-006="" :='
0.00000000000000060 3.7416573867739413 2.236067977:
3.7416573867739413 0.000000000000006000 3.000000000(
2.2360679774997898 3.0000000000000000 0.000000000(
0
A ~ o
Solution

File test2.irp.f

program test2
implicit none

integer 1
do i=1,Natoms
*, distance(1:3,1)
enddo
end program

File atoms.irp.f

BEGIN_PROVIDER [integer, Natoms]

implicit none

BEGIN_DOC

' Number of atoms

END_DOC

print *, 'Number of atoms?'

read(*,*) Natoms

ASSERT (Natoms > 0)
END_PROVIDER

BEGIN_PROVIDER [double precision, coord, (3,Natoms)]
&BEGIN_PROVIDER [double precision, mass , (Natoms)]
implicit none

BEGIN_DOC

I Atomic data, input in atomic units.

END_DOC

print *, 'For each atom: X, y, z, mass?'

integer :: 1,j ! <-- Variables can be de«

! anywhere
do i=1,Natoms
read(*,*) (coord(j,1), j=1,3), mass(1i)
ASSERT (mass(i) > 0.d0)
enddo
END_PROVIDER

BEGIN_PROVIDER [double precision, distance, (Natoms,Natoms)]
implicit none
BEGIN_DOC
I distance : Distance matrix
END_DOC
integer i 01,3,k
do i=1,Natoms
do j=1,Natoms
distance(j,1i) = 0.do

do k=1, 3
distance(j,1i) += (coord(k,i)-coord(k,j))**2 | <-- Note the
! operatol
enddo
distance(j,i) = dsgrt(distance(j,1))
enddo

enddo

irpf90

END_PROVIDER

J

Describing the atoms

71

Potential for multiple particles

Exercise

Change the provider of v_1j of the first program. Now, instead of computing the
Lennard-Jones potential of a single inter-atomic distance r, you will compute the
total potential energy which is the sum of the potential energies due to each pair
of atoms:

Katoms Natoms

b1 >_: >_: Viri)
=1

The dependencies have changed now, as your new version of V_1j needs the
previously defined distance matrix distance . You can now run again the first
program.

Expected output

$./test

0 -> provide_v_1j
0 -> provide_epsilon_1j
0] -> epsilon_1j
Epsilon?
0.0661
Sigma?
0.3345
0 : <- O="" epsilon_1j="" 3.06000000000000022E-003=""
0 : -> natoms
Number of atoms?
3
0 : <- 0="" natoms="" 0.0000000000000000="" :="" <-="!
0 : -> provide_coord
0 : -> coord

For each atom: x, y, z, mass?

0O 0 0 106
00 .3 20
.1 .2 -.3 15
0 : <- 0="" coord="" 0.0000000000000000="" :="" <-="'
0 : <- 0="" distance="" 0.0000000000000000="" :="" <-:
0 : <- 0="" v_1j="" 0.0000000000000000="" :="" <-="" p)
0.39685690695535791
0
A — o
Solution

File potential.irp.f

BEGIN_ PROVIDER [double precision, V]
implicit none

V = V_1j
END_PROVIDER

BEGIN_PROVIDER [double precision, V_1j]

implicit none
BEGIN_DOC
I Lennard Jones potential energy.
END_DOC
integer .
double precision :: sigma_over_r
V_1lj = 0.do0
do i=1,Natoms
do j=i+1,Natoms
ASSERT (distance(j,1) > 0.d0) I <-- Avoid a possible divis:
sigma_over_r = sigma_lj / distance(j,1)
V_1j += sigma_over_r**12 - sigma_over_r**6
enddo
enddo
V_1j *= 4.d0 * epsilon_lj ! <-- Note the *= operator
END_PROVIDER

BEGIN PROVIDER [double precision, epsilon_1j]
&BEGIN_PROVIDER [double precision, sigma_lj]

implicit none

BEGIN_DOC

I Parameters of the Lennard-Jones potential
END_DOC

print *, 'Epsilon?'

read(*,*) epsilon_l1j

ASSERT (epsilon_1j > 0.)

print *, 'Sigma?'

read(*,*) sigma_lj

ASSERT (sigma_lj > 0.)
END_PROVIDER

4l E— 2]

Computing the total energy

Exercise

Write a program which prints the total energy of the system.
BTy
VvV is the potential (Lennard-Jones here) and T is the kinetic energy

Natoms

Write the providers for the kinetic energy and for the total energy. All the velocities
will be chosen to be initialized equal to zero in the velocities provider.
Remember you already have the provider for the masses of the atoms.

Expected output

$./test3

0 -> provide_e_tot
0 -> provide_t
0 -> provide_velocity2
0 -> provide_velocity
0 -> provide_natoms
0 -> natoms
Number of atoms?

3
0] <- 0="" natoms="" 1.58999999999999853E-004=""
0] <- 0="" velocity="" 5.99999999999992900E-006=""
0] <- 0="" velocity2="" 5.00000000000022995E-006="""
0 : -> coord

For each atom: x, y, z, mass?

0 0 0 10

0 0 .3 20

.1 .2 -.3 15
0 : <- 0="" coord="" 1.97999999999999825E-004=""" :=""
0] <- O0="" t="" 9.99999999999699046E-007=""" :="" <-='
0 -> provide_v_1j
0 -> provide_epsilon_1j
0 -> epsilon_1j

Epsilon?

0.0661

Sigma?

.3345

<- 0="" epsilon_1j="" 2.07999999999999852E-004="
-> distance
<- 0="" distance="" 2.00000000000026545E-006="""
<- 0="" v_1j="" 1.00000000000013273E-006=""" :=""
<- O="" v="" 1,00000000000013273E-006=""":="" <-='
O : <- 0="" e_tot="" 1.00000000000013273E-006="""":="" «
0.39685690695535791
0

o 0 06 © o

Solution

File test3.irp.f

program test3
implicit none
BEGIN_DOC
I Prints the total energy
END_DOC
print *, E_tot
end program

File energy.irp.f

BEGIN_PROVIDER [double precision, E_tot]
implicit none
BEGIN_DOC
I Total energy of the system
END_DOC
E tot =T+ V
END_PROVIDER

File velocity.irp.f

BEGIN_PROVIDER [double precision, T]
implicit none
BEGIN_DOC
I Kinetic energy per atom
END_DOC
T = 0.do
integer 1
do i=1,Natoms
T += mass(i) * velocity2(1)
enddo
T *= 0.5d0
END_PROVIDER

BEGIN_PROVIDER [double precision, velocity2, (Natoms)]
implicit none
BEGIN_DOC
I Square of the norm of the velocity per atom
END_DOC

integer i1, k

do i=1,Natoms
velocity2(i) = 0.do
do k=1, 3

velocity2(i) += velocity(k,i)*velocity(k,1)

enddo

enddo

END_PROVIDER

BEGIN_PROVIDER [double precision, velocity, (3,Natoms)]
implicit none
BEGIN_DOC
I Velocity vector per atom
END_DOC
integer i, k
do i=1,Natoms
do k=1,3
velocity(k,1i) = 0.do
enddo
enddo
END_PROVIDER

Computing the acceleration

Exercise

The acceleration vector is given by

o {1

where x_iis the x coordinate of atom i (an element of the coord array). Write
the provider for Vv_grad_numeric , the finite-difference approximation of the
derivative of the potential with respect to the coordinates:

VO Vi A — Vi — Ay

e

i, QA
It will be necessary to use the TOUCH keyword.

The computation of the acceleration should not depend directly on the method
used to compute the gradient, so we will use Vv_grad in the provider for the
acceleration . V_grad will be a simple copy of V_grad_numeric .

Expected output

$./test4
®@ : -> provide_acceleration
©@ : -> provide_natoms
0 : -> natoms

Number of atoms?
3
0 : <- 0="" natoms="" 1.68999999999999879E-004=""
0 : -> coord
For each atom: x, y, z, mass?

0 0 010

0 0 .3 20

.1 .2 -.3 15
0 : <- 0="" coord="" 2.26999999999999771E-004="" :=""
0 : -> provide_v_grad_numeric

0 : -> provide_v

0]
0]
0]
Epsilon?
0.0661
Sigma?
.3345
0]
0]
0]
0]
0]
0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
----8<

O 0 06 06 6 6 6

0]

-> provide_v_1j
-> provide_epsilon_1j
-> epsilon_1j

<- O="" epsilon_1j="" 1.60999999999999685E -00-
-> distance
<- 0="" distance="" 2.00000000000026545E-006="
<- O="" v_1j="" 2.00000000000026545E-006=""" :='
<- 0="" v="" 1.00000000000013273E-006="" :="" <.
-> dstep
<- O="" dstep="" 9.99999999999699046E-007="" :='
-> touch_coord
<- 0="" touch_coord="" 1.00000000000013273E-006:
-> provide_v_1j
-> provide_distance
-> distance
<- O="" distance="" 1.00000000000013273E-006:
<- 0="" v_1j="" 9.99999999999265365E-007=""
<- O="" v="" 9,99999999999265365E-007="" :="" «
<- 0="" touch_coord="" 1.00000000000013273E-006:
-> provide_v_1j
-> provide_distance
-> distance
<- O="" distance="" 1.00000000000013273E-006:
<- 0="" v_1j="" 1.00000000000013273E-006="""
<- E="" v="" 1.00000000000013273E-006=""":="" -

-> provide_v_1j
-> provide_distance
-> distance
<- 0="" distance="" 1.00000000000013273E-006-
<- 0="" v_1j="" 1.00000000000013273E-006=""
<- ="" v="" 1.00000000000013273E-006=""":="" «
<- 0="" touch_coord="" 1.00000000000013273E-006:

<- 0="" v_grad="" 1.00000000000013273E-006="":=""

O="" acceleration="" 1.00000000000013273E-006=""

-1.21434697006317371E-003 -2.42873782740904431E-003 -2.885248388¢

3.77225707531847476E-004 7.54451431647651383E-004 1.442182447"
3.06597036647815457E-004 6.13223309409161033E-004 5.8899546116:
(C]

(|] o]

Solution

File test4.irp.f

ratiot4
implicit none
BEGIN_DOC
I Program testing the acceleration
END_DOC
integer .
do i=1,Natoms
*, acceleration(:,1)
enddo
end program

File potential.irp.f , add

BEGIN_PROVIDER [double precision, dstep]
implicit none
BEGIN_DOC
I Finite difference step
END_DOC
dstep =
END_PROVIDER

BEGIN_PROVIDER [double precision, V_grad_numeric, (3,Natoms)]
implicit none

BEGIN_DOC

I Numerical gradient of the potential
END_DOC

integer i1, k

do i=1,Natoms
do k=1,

irpfo0

coord(k,i) += dstep I Move coordinate x_i to x_i + delta
TOUCH coord mass I Tell IRPF90 that coord has been chant
V_grad_numeric(k,i) =V I V is here V(x_i + delta)
coord(k,i) -= 2.do*dstep I Move coordinate x_i to x_i - «
TOUCH coord mass I Tell IRPF90 that coord has been chant
V_grad_numeric(k,i) -=V ' V is here V(x_1i - delta)
V_grad_numeric(k,i) *= .5d0/dstep

coord(k,i) += dstep I Put back x_i to its initial position

I It is not necessary to re-touch coor¢
I - at the next loop iteration it will
I - out of the loop, it is soft-touche
enddo
enddo
SOFT_TOUCH coord mass ! Does not re-provide the current entities
I not be re-computed. This reduced the CPU
I dangerous.
END_PROVIDER

BEGIN_PROVIDER [double precision, V_grad, (3,Natoms)]
implicit none
BEGIN_DOC
I Gradient of the potential
END_DOC
integer o1,k
do i=1,Natoms
do k=1, 3
V_grad(k,i) = V_grad_numeric(k,1)
enddo
enddo
END_PROVIDER

BEGIN_PROVIDER [double precision, acceleration, (3,Natoms)]

implicit none
BEGIN_DOC
I Acceleration = - grad(V)/m
END_DOC
integer i1, k
do i=1,Natoms

do k=1,3

acceleration(k,i) = -V_grad(k,i)/mass(1i)

Computing the acceleration 82

irpf90

enddo
enddo
END_PROVIDER

J

Computing the acceleration

83

Implementing the molecular dynamics

Exercise

The Verlet algorithm is the following

AYE

r'’ r'" + v'AL+a” —
I

v =y Slal —at 1A

where n is the index of the current step, r is the position vector, v is the velocity
vector, a is the acceleration vector and Af is the time step.

Write a subroutine which implements the Verlet algorithm. To do this, at each
iteration :

e Compute the coordinates at step n+1

e Compute the component of the velocity which depends on the position at step
n

e TOUCH the coordinates and the velocities

e Add to the velocities the part which depends on step n+1

e TOUCH the velocities

For this exercise, remove the debug option in the Makefile .

Expected output

$./tests

Number of atoms?

3

For each atom: x, y, z, mass?

0 00 40

0 0 .5 40

.1 .2 -.5 40

0.0000000000000000 0.0000000000000000 0.000000000(
0.0000000000000000 0.0000000000000000 0.5000000000(

0.10000000000000001 0.20000000000000001 -0.5000000000(
Epsilon?

0.0661

Sigma?

0.3345

Nsteps?

1000

Time step?

0.2

-4.85173622655117529E-002 -9.70435723126635286E-002 0.1881931839¢
-1.11022166416810172E-002 -2.22085304763539326E-002 0.6206434510¢
0.15961957890929021 0.31925210279233324 -0.8088366350-

| S— >

Solution

File test5.irp.f

program test5
implicit none

BEGIN_DOC

I Program testing the verlet algorithm
END_DOC

integer .

do i=1,Natoms
print *, coord(1:3,1)
enddo
call verlet
do i=1,Natoms
print *, coord(1:3,1)
enddo
end

File verlet.irp.f

BEGIN_PROVIDER [integer, Nsteps]
implicit none
BEGIN_DOC
I Number of steps for the dynamics
END_DOC
print *, 'Nsteps?'
read(*,*) Nsteps
ASSERT (Nsteps > 0)
END_PROVIDER

BEGIN PROVIDER [double precision, tstep]
&BEGIN_PROVIDER [double precision, tstep2]

implicit none

BEGIN_DOC

I Time step for the dynamics

END_DOC

print *, 'Time step?'

ASSERT (tstep > 0.)

tstep2 = tstep*tstep

END_PROVIDER

subroutine verlet

implicit none
integer :: is, i, k
do is=1,Nsteps
call print_data(is) I A de-commenter pour l'exercice suivant
do i=1,Natoms
do k=1,3
coord(k,i) += tstep*velocity(k,i) + 0.5*tstep2*acceleration(Kk,:
velocity(k,1i) += 0.5*tstep*acceleration(k, i)
enddo
enddo
TOUCH coord velocity mass
do i=1,Natoms
do k=1, 3
velocity(k,1) += 0O.5*tstep*acceleration(k,1)
enddo
enddo
TOUCH velocity
enddo
end subroutine

Using scripts to generate specialized
functions

In this example we write a Python script power.py that will generate specialized
functions to calculate the n -th power of x .

#!1/usr/bin/python
POWER_MAX =

def compute_x_prod

if n ==
d[©®] = None
return d

if n ==
d[1] = None
return d

if n in d:
return d

m=n/

d = compute_x_prod(m,d)
d[n] = None

d[2*m] = None

return d

def print_subroutine
keys = compute_x_prod(n, {}).keys()
keys.sort()
output = []
print "double precision function power_%d(x1)"%n

print " double precision, intent(in) :: x1"
print " BEGIN_DOC"
print "! Fast computation of x**%d"%(n)

print " END_DOC"

for 1 in range(1, len(keys)):
output.append("x%d"%keys[i])

if output != []:

print " double precision :: "+', '.join(output)
for 1 in range(1,len(keys)):
ki = keys[1i]
kil = keys[i-1]
if ki == 2*ki1:
print " x%d"%ki + "
else:
print " x%d"%ki + " x%d * x1"%(kil)
print " power_%d = x%d"%(n,n)
print "end"

x%d * x%d"%(kil, ki1)

for i in range(POWER_MAX):
print_subroutine (i+1)

print

Executing this script gives

double precision function power_1(x1)

double precision, intent(in) :: x1
BEGIN_DOC

' Fast computation of x**1

END_DOC

power_1 = x1
end

double precision function power_2(x1)

double precision, intent(in) :: x1
BEGIN_DOC

I Fast computation of x**2

END_DOC

double precision :: x2

x2 = x1 * x1
power_2 = x2
end

double precision function power_3(x1)
double precision, intent(in) :: x1
BEGIN_DOC

I Fast computation of x**3

double precision :: x2, x3
x2 = x1 * x1

x3 = x2 * x1

power_3 = x3

end

double precision function power_17(x1)
double precision, intent(in) :: x1

double precision :: x2, x4, x8, x16, x17
x2 = x1 * x1

X4 = x2 * x2

X8 = x4 * x4

x16 = x8 * x8

x17 = x16 * x1

power_17 = x17

end

double precision function power_18(x1)
double precision, intent(in) :: x1

double precision :: x2, x4, x8, x9, x18
x2 = x1 * x1

X4 = X2 * x2

X8 = x4 * x4

X9 = x8 * x1

x18 = x9 * x9

power_18 = x18

end

double precision function power_19(x1)
double precision, intent(in) :: x1

double precision :: x2, x4, x8, x9, x18, x19
x2 = x1 * x1

X4 = X2 * x2

X8 = x4 * x4

X9 = x8 * x1

x18 = x9 * x9

x19 = x18 * x1

power_19 = x19

end

double precision function power_20(x1)
double precision, intent(in) :: x1

double precision :: x2, x4, x5, x10, x20
x2 = x1 * x1

X4 = X2 * x2

x5 = x4 * x1

x10 x5 * x5

X20 = x10 * x10

power_20 = x20

end

Then, we create a benchmark.irp.f file that contains provider to compute the
20 first n -th power of x using the traditional x**n , and another provider that
will use our specialized functions

BEGIN_PROVIDER [double precision, x]
implicit none

X =
END_PROVIDER

irpfo0

BEGIN PROVIDER [double precision, x_p, (20)]
implicit none

BEGIN_DOC
I array of x**p for 0 < p < 21 with the standard power functions
END_DOC
integer :: 1i
do i=1,20

X_p(i) = x**1i
enddo

END_PROVIDER

I Put the power.py script here for better inlining of the function:
BEGIN_SHELL [/usr/bin/python]

import power

END_SHELL

BEGIN_PROVIDER [double precision, x_p_fast, (20)]
implicit none
BEGIN_DOC
I array of x**p for @ < p < 21 with the fast power functions
END_DOC
BEGIN_SHELL [/bin/bash]
for 1 in {1..20}

do
echo " double precision, external :: power_$i"
echo " IDIR$ FORCEINLINE"
echo " x_p_fast($i) = power_$i(x)"

done

END_SHELL

END_PROVIDER

4l E—

We now Create a codelet forthe x_p andthe x_p_fast providers using

$ irpf90 -c X_p:100000000
$ irpf90 -c x_p_fast:100000000
$ make

Using scripts to generate specialized functions 92

We easily see that we get a speedup of 12x with the specialized power routines:

$./codelet_x_p
X_p

Seconds:

$./codelet_x_p_fast
x_p_Tfast

Seconds:

CoArray Fortran example

Here, we want to calculate $$\pi$$ with a Monte-Carlo algorithm. Each image will
compute its own Monte Carlo average, and the global average will be computed at
the end.

The area inside a unit circle is $$\pi$$. The red square is the square containing all
points with coordinates in the $$([0,1],[0,1])$$ range. The grey area represents
the set of points that are in the $$([0,1],[0,1])$$ range and which are at a distance
less than one to the center of the circle. For the computation of $$\pi$$ with a
Monte Carlo algorithm, each sample will consist in drawing two uniform random
numbers in the $$[0,1]$$ range (one for the $$x$$ coordinate and one for the
$$y$$ coordinate). Is the distance of the point to the center is less than one, we
increment a counter. Our estimate of $$\pi$$ will be $$4 N{\rm inside} / N{\rm

total}$$.

Single core program

Let us first write a single core program. We write the providers inthe pi.irp.f
file. The N_steps entity defines the number of Monte-Carlo steps to compute
the value of $$\pi$$ in a single process.

BEGIN_PROVIDER [integer*8, N_steps]
implicit none

BEGIN_DOC

I Total number of MC steps

END_DOC

N_steps = 0000000_8
END_PROVIDER

The N_blocks entity is the total number of independent calculations of $$\pi$$
one will do in a single process.

BEGIN_PROVIDER [integer, N_blocks]

implicit none

BEGIN_DOC

I Total number of blocks, each containing N_steps steps.
END_DOC

N_blocks =
END_PROVIDER

One will need to initialize the seed of the Fortran random number generator:

subroutine init_seed(1i)
implicit none

integer, intent(in) :: 1
BEGIN_DOC
I Initializes the random seed with the current this_image()
END_DOC
integer :: seed(12)
seed(:) = 1
call (put=seed)
end

pi_block is the Monte-Carlo evaluation of $$\pi$$ over N_steps .

BEGIN_PROVIDER [double precision, pi_block]
implicit none

BEGIN_DOC

I Value of pi computed over N_steps
END_DOC

integer i: 1_step
integer*8 :: count_in
double precision X,y

count_in = 0_8

do i_step=1,N_steps
call random_number(x)
call random_number(y)
if ((Xx*x + y*y) <= 1.d0) then
count_in += 1_8
endif
enddo
pi_block = 4.d0*dble(count_in)/dble(N_steps)

END_PROVIDER

Let us now write the main program in test_mono.irp.f . It will print the running
average and error bar of $$\pi$$ on the standard output. At the end of each loop
cycle, the pi_block entity is freed, such that it will be freshly provided at the
beginning of the next loop iteration.

program test_mono

implicit none

integer .

double precision :: pi_sum, pi_sum2, n

double precision

call init_seed(1)

pi_sum
pi_sum2

n

do i=1,N_blocks

PROVIDE pi_block

n +=

pi_sum += pi_block

pi_sum2 += pi_block*pi_block

pi_average = pi_sum / n

pi_variance = pi_sum2/n - pi_average**

pi_error = (pi_variance/(n-))
*, pi_average, '+/-', pi_error

FREE pi_block

enddo

end

The output of this program gives:

pi_average, pi_variance, pi_error

$./test_mono

3.14213880000000 +/- NaN
3.14194260000000 +/- 1.961999945451743E-004
3.14176573333333 +/- 2.100316592883950E-004
3.14156600000000 +/- 2.488976753433852E-004
3.14144144000000 +/- 2.295326231094694E-004
3.14160352500000 +/- 5.354283981217712E-005
3.14160270103093 +/- 5.299438256043764E-005
3.14159646938776 +/- 5.281972755126230E-005
3.14160685252525 +/- 5.330451270701332E-005
3.14161012000000 +/- 5.286984052818029E-005

Parallel program

Now, we will write the prallel version of the program. First we will add to the
Makefile the --coarray optionto irpf9e andthe -coarray optionto

ifort .

We can now write the parallel main program. We use a temporary array that will
fetch all the remote values of pi_block . After a synchronization directive (SYNC
ALL), the master process can compute the running average and error bar, and
print the result.

program test_caf
implicit none

integer I B

double precision :: pi_sum, pi_sum2, n

double precision :: pi_average, pi_variance, pi_error

double precision, allocatable :: pi_block_local(:)
(pi_block_local(O)))

call init_seed(11* ()

pi_sum

pi_sum2

n =

do i=1,N_blocks
PROVIDE pi_block

do j=1, ()
pi_block_local(j) = pi_block[j]
enddo
SYNC
if (() == 1) then
do j=1, ()
n +=

pi_sum += pi_block_local(j)

pi_sum2 += pi_block_local(j)*pi_block_local(j)
enddo
pi_average = pi_sum / n
pi_variance = pi_sum2/n - pi_average**

pi_error = (pi_variance/(n-))
*, pi_average, '+/-', pi_error
endif
FREE pi_block
enddo

(pi_block_local)
end

Using 4 processes, the output of the program gives:

$./test_caf

3.14237790000000 +/- 4.966975835348314E-004
3.14234140000000 +/- 2.348424884354168E-004
3.14224363333333 +/- 1.958218077039208E-004
3.14210150000000 +/- 1.786455096347535E-004
3.14193388000000 +/- 1.646706423564424E-004
3.14161792187500 +/- 2.869715284522186E-005
3.14161840309278 +/- 2.842813192882745E-005
3.14161785918367 +/- 2.815996517045344E-005
3.14161942727273 +/- 2.794672232344559E-005
3.14162559000000 +/- 2.785054179473510E-005

One can see that the error bar is twice smaller than in the single core program.
This reflects the fact that there are four times more samples.

Templated sort routine

This example generates 4 routines with the exact same algorithm.

e insertion_sort for real arrays
e insertion_dsort for double precision arrays
e insertion_isort for integer arrays

e insertion_i8sort for integer*8 arrays

BEGIN_TEMPLATE

subroutine insertion_$Xsort (x,iorder,isize)

implicit none
$type,intent(inout)
integer,intent(inout)
integer,intent(in)
$type

integer

do i=1,isize
xtmp = x(1)

10 = iorder(i)
j = i-

do j=i-1,1, -

if (x(j) > xtmp) then

x(j+1) = x(3)

iorder(j+1) = iorder(j)

else

exit

endif
enddo
x(Jj+1) = xtmp
iorder(j+1) = 10
enddo

end

SUBST [X, type]
; real ;;
; double precision ;;
i ,; integer ;;
i8 ; integer*s ;;
i2 ; integer*2 ;;

END_TEMPLATE

x(1isize)
iorder(isize)
isize

Xtmp

i, 10, j, jmax

irpf90

Templated sort routine 103

irpfo0

Introspection

program get_doc

integer :: iargc
character*(32) :: arg
integer :: i, j

| o e e e e - -

I Command : ./get_doc

I Prints the list of IRP entites

if (iargc() == 0) then
print *, 'List of IRP entities'
do j=1,size(entities)
print *, entities(j)
enddo
return
endif

I Command : ./get_doc titi toto momo
I Prints the documentation of IRP entities titi, toto and momo

do i=1,iargc()
call getarg(i,arg)

I Python script executed at compile time that will find the name of
I IRP entities of the current program. If the name of an entity is
I command line, its documentation will be printed.

BEGIN_SHELL [/usr/bin/python]

import os
entities = []
for filename in os.listdir('.'): # Loop over all file names

Introspection 104

if filename.endswith('.irp.f"'): # If the name ends with .irp.f
file = open(filename, 'r") # we open it
for line in file: # For each of its lines
if line.strip().lower().startswith('begin provider'):
If the line starts with

begin_provider (case inser
name = line.split(', ')[1].split(']")[0].strip()
The line is split to extrac
of the IRP entity
entities.append(name) # And it is added to the 'enf
file.close() # We close the file

for e in entities:

" if (arg == '%s') then"%(e,)
" print *, %s_doc"%(e,)
" endif"

END_SHELL

enddo

end

BEGIN_SHELL [/usr/bin/python]

import os
doc = {}
for filename in os.listdir('.'):
if filename.endswith('.irp.f"'):

file = open(filename, 'r'")

inside_doc = False

for line in file:

if line.strip().lower().startswith('begin_provider'):

name = line.split(', ")[1].split(']")[0].strip()

doc[name] = ""
elif line.strip().lower().startswith('begin_doc"'):

1

inside_doc = True
elif line.strip().lower().startswith('end doc'):

inside_doc = False
elif inside_doc:
doc[name] += line[1:].strip()+" "

file.close()

lenmax = 0
for e in doc.keys():
lenmax = max(len(e),lenmax)

We create here the provider of 'entities' which is the array of
all the entities

print "BEGIN_PROVIDER [character*(%d), entities, (%d)]"%(lenmax, .
print " BEGIN_DOC"
print "! List of IRP entities"
print " END_DOC"
for i,e in enumerate(doc.keys()):
print "entities(%d) = '%s'"%(i+1, e)
print "END_PROVIDER"

We create the providers of each entity

for e in doc.keys():
print "BEGIN_PROVIDER [character*(%d), %s_doc]"%(len(doc[e]),e
print " BEGIN_DOC"
print "! Documentation of variable %s"%(e,)
print " END_DOC"
print " %s_doc = '%s'"%(e,doc[e])
print "END_PROVIDER"

END_SHELL

Index of command line options

Usage

irpf90 [OPTION]

Options
-C, --coarray :All providers are coarrays
-D, --define : Defines a variable identified by the IRP_IF statements.

-I, --include : Include directory

-a, --assert : Activates ASSERT statements. If absent, remove ASSERT
statements.

-Cc, --codelet (<entity>:<NMAX>|<entity>:<precondition>:<NMAX>)

Generate a codelet to profile a provider running NMAX times

-d, --debug : Activates debug. The name of the current
subroutine/function/provider will be printed on the standard output when entering
or exiting a routine, as well as the CPU time passed inside the routine.

-g, --profile : Activates the profiling of the code.
-h, --help : Printthis help

-i, --init : Initialize current directory. Creates a default Makefile and the
temporary working directories.

-1, --align <N> : Align arrays using compiler directives and sets the
$IRP_ALIGN variable. For example, --align=32 aligns all arrays on a 32 byte
boundary.

-m, --memory : Prints memory allocations/deallocations.

-n, --inline (all|providers|builders) : Force inlining of providers or
builders

-0, --checkopt : Shows where optimization may be required

-p, --preprocess : Prints a preprocessed file to standard output. Useful for
debugging files containing shell scripts.

-r, --no_directives :Ignoreall 'DEC$ and !DIR$ compiler directives

-s, --substitute : Substitute values in do loops for generating specific
optimized code.

-t, --touch : Display which entities are touched when touching the variable
given as an argument.

-v, --version : Prints version of irpf90

-z, --openmp : Has to be set for OpenMP codes

	README
	Introduction
	The Implicit Reference to Parameters method
	Introduction to IRPF90
	IRPF90 Basics
	Automatic documentation
	Helping features
	Modifying entities outside of providers
	Debugging
	Makefile configuration

	HPC-oriented functionalities
	Profiling
	Codelet generation
	Optimizing branches
	Array alignment
	Variable substitution
	Inlining providers
	OpenMP
	CoArray Fortran

	Examples
	A molecular dynamics code
	Prepare the working environment
	The Lennard-Jones potential
	Describing the atoms
	Potential for multiple particles
	Computing the total energy
	Computing the acceleration
	Implementing the molecular dynamics

	Using scripts to generate specialized functions
	CoArray Fortran example
	Templated sort routine
	Introspection

	Index of command-line options

