Christophe Raffalli

Computational contents of classical logic and extensional choice

Computational contents of classical

INTRODUCTION Context

The Curry-Howard correspondence [START_REF] Howard | The formulae-as-types notion of construction[END_REF] consists in two paradigms:

• proofs-as-programs: a proof of 𝐴 ⇒ 𝐵 is a program building a proof of 𝐴 from a proof of 𝐵.

• propositions-as-types: a proposition is the type of its proof. This is very natural for a constructive logic, surprisingly this can be extended to classical logic [START_REF] Barbanera | A symmetric lambda calculus for classical program extraction[END_REF][START_REF] Coquand | A semantics of evidence for classical arithmetic[END_REF][START_REF] Griffin | A formulae as-as-types notion of control[END_REF][START_REF] Parigot | 𝜆𝜇-calculus an algorithmic interpretation of classical natural deduction[END_REF] and even to the axiom of dependent choice, either using bar recursion [START_REF] Berger | Modified bar recursion and classical dependent choice[END_REF][START_REF] Berardi | On the coputational content of the axiom of choice[END_REF] or Krivines's classical realizability [START_REF] Krivine | Dependent choice, 'quote' and the clock[END_REF][START_REF] Krivine | Realizability in classical logic. Phd Course[END_REF]. Using bar recursion, Krivine was able to give a computational content to the well ordering of reals and as a consequence the continuum hypothesis [START_REF] Krivine | Realizability algebras : a program to well order r[END_REF].

It is important to understand that a proof of ∃𝑥 ∈ N, 𝑃 (𝑥) using classical logic or the dependent choice will not in general be a program computing 𝑥. However, this can be made true if 𝑃 is a decidable property [START_REF] Krivine | Classical logic, storage operators and second-order lambda-calculus[END_REF][START_REF] Raffalli | Getting results from programs extracted from classical proofs[END_REF]. The obtained program is in general more interesting than just an enumeration of all natural numbers. This may have some practical applications to help discover new algorithms hidden in non-constructive proofs. In Krivine's work, this also leads to new model of ZF. So extending Curry-Howard correspondence to stronger axioms in various systems is very interesting.

In fact, using classical realizability, as remarked in [START_REF] Raffalli | Realizability of the axiom of choice in HOL. (an analysis of krivine's work)[END_REF], Krivine does more that the dependent choice: it does non extensional choice. Let us explain this further, using a formalism in HOL as in [START_REF] Raffalli | Realizability of the axiom of choice in HOL. (an analysis of krivine's work)[END_REF].

Consider a unary predicate 𝑃 (𝑋) where 𝑋 is of any type (natural number, functions over naturals, predicates, ...). Then, there is a choice predicate 𝐶𝑃 (𝑋) such that the three following formulas have computational contents:

• ∀𝑃, ∀𝑋, 𝑃 (𝑋) ⇒ ∃𝑌, 𝐶𝑃 (𝑌) (we choose 𝑌)

• ∀𝑃, ∀𝑋, 𝐶𝑃 (𝑋) ⇒ 𝑃 (𝑋) (it has the intended property) not in general need extensionality. For instance, in analysis, to prove that sequential continuity is equivalent to continuity.

The extensional axiom of choice replaces the last property with:

• ∀𝑃, ∀𝑄, (∀𝑋, 𝑃 (𝑋) ⇔ 𝑄(𝑋)) ⇒ ∀𝑋, ∀𝑌, 𝐶𝑃 (𝑋) ⇒ 𝐶𝑄(𝑌) ⇒ 𝑋 = 𝑌

We claim that in HOL, this is the most general axiom of choice if we do not use any function symbol (there is another way of expressing the choice using Hilbert's epsilon).

We have the latter in our system! Unfortunately we do not have it for all possible 𝑋. We only allow 𝑋 to be any arithmetic functional (naturals, function from naturals to naturals, etc ...) but not predicate over naturals. We think this is already a major progress, as this axiom is extensional and not limited to choosing a natural number. Moreover, as we said, we do not think any computational content was given before even for an extensional countable choice.

Toward a solution for extensionality

Our method is very near to Krivine's. But it uses a quite non standard system featuring call-by-value, singleton types and untyped programs as individual of the logic. We will now informally explain why extensionality naturally leads to those ingredients 1 .

First, in all the work using realizability, the axiom of choice is derived from a simpler axiom which is similar to (there are variations, for instance taking the contrapositive):

∃𝑋, 𝑃 (𝑋) ⇒ ∃𝑛 ∈ N, 𝑃 (Φ(𝑃, 𝑛))

Where Φ is a function symbol that recovers an 𝑋 such that 𝑃 (𝑋) from a natural number. In all the previous work, this natural number was a code for a proof of 𝑃 (𝑋) (or a stack which is a counter proof when using the contrapositive). Then, the standard axiom of choice is derived using the minimum principle to choose the least integer such that 𝑃 (Φ(𝑃, 𝑛)) holds. The problem to have extensionality is to deal with equivalent predicates 𝑃 and 𝑄 and transform numbers for 𝑃 (Φ(𝑃, 𝑛)) into numbers for 𝑄(Φ(𝑄, 𝑛)). This is rather complicated, and we did not succeed.

Our main idea is to number 𝑋 itself, which means that we do not have to change the number when changing the predicate for an equivalent one. However, this implies two things:

• 𝑋 should have a type and live in the world of proofs.

• Our proofs should allow to represent higher-order functions not to be limited to the countable choice.

Thus our system will have the proofs-as-objects paradigm, meaning that we will prove properties of proofs i.e. programs thanks to the Curry-Howard correspondence.

This gives the basic ingredient of PML

• An untyped programming language similar to ML in the case of PML and to Gödel's system T in the case of mini PML. Program in this language will be the individual of our logic, containing naturals and functions.

• A language of expressions similar to HOL to express the types (i.e. propositions, thanks to the propositions-as-types paradigm).

• Quantification should be dependent products and sums otherwise we would be limited to a programming language like ML and not a logical system.

There is a last problem with those ideas. As we said, Krivine realizes the axiom ∃𝑋, 𝑃 (𝑋) ⇒ ∃𝑛 ∈ N, 𝑃 (Φ(𝑃, 𝑛)). In this axiom Φ(𝑃, 𝑛) is an 𝑋 such that 𝑡𝑛 : 𝑃 (𝑋) where (𝑡𝑛) 𝑛∈N is an enumeration of all terms. As we want to directly number 𝑋, it must be a program and have some type. Therefore, we will realize a formula like:

∃𝑋 ∈ 𝐴, 𝑃 (𝑋) ⇒ ∃𝑛 ∈ N, Φ(𝑛) ∈ 𝐴 ∧ 𝑃 (Φ(𝑛)) (1)
we could also consider its contrapositive using 𝑄 as the negation of 𝑃 :

∀𝑛 ∈ N, Φ(𝑛) ∈ 𝐴 ⇒ 𝑄(Φ(𝑛)) ⇒ ∀𝑋 ∈ 𝐴, 𝑄(𝑋)
∀𝑋 ∈ 𝐴, 𝑃 (𝑋) is a dependent product and this can be defined in classical realizability ... But was is the formula Φ(𝑛) ∈ 𝐴? We need such a formula to express that Φ(𝑛) as the same type as 𝑋. This has already been considered: it is a singleton type [START_REF] Aspinall | Subtyping with Singleton Types[END_REF][START_REF] Hayashi | Singleton, union and intersection types for program extraction[END_REF]. It can be used to encode dependent product and sum from unbounded quantifications with ∀𝑋 ∈ 𝐴, 𝑃 (𝑋) defined as ∀𝑋, 𝑋 ∈ 𝐴 ⇒ 𝑃 (𝑋) and ∃𝑋 ∈ 𝐴, 𝑃 (𝑋) defined as ∃𝑋, 𝑋 ∈ 𝐴 ∧ 𝑃 (𝑋).

But now we have a problem! How to define the semantic of singleton types in classical realizability? It must justify the following three rules:

⊢ t : A ⊢ t : t ∈ A ⊢ t : u ∈ A ⊢ t : A ⊢ t : u ∈ A ⊢ t = u |𝑡 ∈ 𝐴|
should be a set of stacks which only accept 𝑡 or terms equivalent to 𝑡 in some sense. A possible definition will be all stacks orthogonal to 𝑡, but it does not even use 𝐴 and would hardly justify the second rule... The author of this paper does not know how to fix this ... unless we move to bi-orthogonals and call-by-value.

When we do this, formula have three levels of semantic:

• |𝐴| 𝑜 a set of values (i.e. evaluated programs in some sense),

• |𝐴| ⊥ the orthogonal of |𝐴| 𝑜 , a set of stacks and

• ||𝐴|| the orthogonal of |𝐴| ⊥ a set of terms.
The adequacy theorem states that if ⊢ 𝑡 : 𝐴 then we have 𝑡 ∈ ||𝐴|| but if 𝑡 is a value we also must have 𝑡 ∈ |𝐴| 𝑜 . This is stronger in general as |𝐴| 𝑜 ⊂ ||𝐴|| but not the opposite.

Unfortunately, this requires the so called value restriction which was considered for ML in [START_REF]Simple Imperative Polymorphism[END_REF] and for call-by-value and classical proofs in [START_REF] Etsu | Polymorphic call-by-value calculus based on classical proofs[END_REF]. It is needed because bi-orthogonals and intersection or union do not commute2 . Thus for each quantifier, one of the two rules must be restricted to value (the ∀-introduction and the ∃-elimination). This is also the case for the first of the three rules for singleton type.

The problem is that value restriction makes dependent product almost unusable: we can only deduce 𝑃 (𝑣) from ∀𝑥 ∈ 𝐴, 𝑃 (𝑥) and 𝑣 ∈ 𝐴 when 𝑣 is syntactically a value. So no way to deduce 𝑃 (𝑛 + 𝑚). The solution is to allow replacing terms by values and vice-versa, when they are equal, with two rules like:

⊢ t : A ⊢ t = v ⊢ v : A ⊢ v : A ⊢ t = v ⊢ t : A
The second rule is easy to justify from |𝐴| 𝑜 ⊂ ||𝐴||. But not the first one which requires 𝑣 ∈ ||𝐴|| implies 𝑣 ∈ |𝐴| for any value 𝑣. Fortunately a model with this property is available in Lepigre's work [START_REF] Lepigre | A Classical Realizability Model for a Semantical Value Restriction[END_REF][START_REF] Lepigre | Semantics and Implementation of an Extension of ML for Proving Programs[END_REF].

All this means that if we move to a system with proofs-as-individuals, reduction in call-by-value and singleton types, we can solve the problem of extensionality. In fact mini PML, introduced in this paper, is somehow the minimal system with all these ingredients.

Contents

We first present (section 1) the untyped calculus, its reduction and observational equivalence. Next (section 2) we give the syntax of types and their semantic. The section 3.1 gives the typing rules, the adequacy (theorem 3.1) of the realizability semantic and a theorem 3.2 and a corollary 3.3 explaining when and how we can safely run a program to get a useful result.

The axiom of choice is introduced in section 4. We first show how to realize the small axiom (1) above and then derive the extensional choice from it using the rule of mini PML. Finally (section 5), as an application, we give a construction of quotient types by choosing an element in each equivalent class. Except the realization of (1), all proofs in these two sections have been machine checked with the latest version of PML.

Note about PML: It started in 2007 [START_REF] Raffalli | Pml: a new proof assistant[END_REF] and was developed further with Rodolphe Lepigre lately [START_REF] Lepigre | A Classical Realizability Model for a Semantical Value Restriction[END_REF][START_REF] Lepigre | Semantics and Implementation of an Extension of ML for Proving Programs[END_REF].

it is a large system, available from github (https://github.com/rlepigre/pml), featuring inductive and co-inductive types, subtyping, using the size change principle to prove program termination, ... The full theory of PML is under redaction. For this paper we decided not to use full PML and designed mini PML which we fully present with the complete construction of his semantic. Therefore, this paper should be self-content.

TERMS, REDUCTION AND EQUIVALENCE

The set Λ of terms, Λ𝜄 of values and Π of stacks are defined by the following BNF, using natural numbers, value variables in Λ 𝑣 𝜄 , term variables in Λ 𝑣 , stack variables in Π 𝑣 and a set 𝐹 of total functions from natural numbers to natural numbers of various arities. 𝐹 must remain countable as we need Λ𝜄 to be countable. Application and composition of substitution will be written with juxtaposition: 𝑡𝜎 denotes the application of the substitution 𝜎 to 𝑡 and 𝜎𝜏 is the composition of substitution, with 𝑡(𝜎𝜏) = (𝑡𝜎)𝜏 . We do not use simultaneous substitution in this paper. We will use the same conventions for quantifiers in expression in the next section.

We assume that 𝐹 contains at least the function 𝑆 for successor, a function 𝑛𝑜𝑡 exchanging 0 and 1 and two tests 𝑛 ≤ 𝑝. We define 𝑛 < 𝑝 as 𝑛𝑜𝑡(𝑝 ≤ 𝑛).

The fact that we restrict to values in many cases simplifies a few things, because only application and abstraction interact with the stack. This does not restrict the expressive power as we can use 𝛽-expansion.

For instance if 𝐹 contains addition, we can write (𝜆𝑥.𝜆𝑦.(𝑥 + 𝑦))𝑡𝑢 for 𝑡 + 𝑢 when 𝑡 and 𝑢 are terms.

The term constructors 𝛿(𝑣, 𝑤, 𝑡), 𝜑(𝑣, 𝑡), 𝜌(𝑣, 𝑡), 𝜈(𝑛, 𝑡) and 𝜁𝑎.𝑡 will not have any typing rule, they are just added to have a strong enough observational equivalence to have the desired properties of reduction and equivalence. In an implementation, these constants would not even need to be present.

The symbols Λ 𝑐 , Λ 𝑐 𝜄 and Π 𝑐 denote respectively the set of closed terms, values and stacks. Reduction is a binary relation on Λ 𝑐 × Π 𝑐 . Reduction (t1 * 𝜋1 ≻ t2 * 𝜋2), term equivalence (t ≡ u) and convergence (t↓) are defined by induction below. We write ≻ * and ≻ * 𝑛 for the transitive and reflexive closure of ≻ and ≻𝑛. The idea of this induction to get the proper reduction rule for 𝛿 in lemma 1.1 is due to Rodolphe Lepigre [START_REF] Lepigre | A Classical Realizability Model for a Semantical Value Restriction[END_REF][START_REF] Lepigre | Semantics and Implementation of an Extension of ML for Proving Programs[END_REF].

All these definitions are parameterised by a pole ⊥ which is a non empty set of closed values. We will need to make the pole precise only to prove the correctness theorem 3.2. We also fix an enumeration of all closed values (𝑣𝑛) 𝑛∈N to reduce the 𝜒 instruction.

𝑡𝑢 * 𝜋 ≻𝑛 𝑢 * [𝑡-]𝜋 𝑣 * [𝑡-]𝜋 ≻𝑛 𝑡 * [-𝑣]𝜋 𝜆𝑥.𝑡 * [-𝑣]𝜋 ≻𝑛 𝑡[𝑥 := 𝑣] * 𝜋 (𝑣1, . . . , 𝑣𝑛).𝑘 * 𝜋 ≻𝑛 𝑣 𝑘 * 𝜋 𝑌 𝑎.𝑡 * 𝜋 ≻𝑛 𝑡[𝑎 := 𝑌 𝑎.𝑡] * 𝜋 𝑛[𝑡, 𝑢] * 𝜋 ≻𝑛 𝑡 * 𝜋 if 𝑛 = 1 𝑛[𝑡, 𝑢] * 𝜋 ≻𝑛 𝑢 * 𝜋 if 𝑛 = 0 𝑓 (𝑚1, . . . , 𝑚𝑛) * 𝜋 ≻𝑛 𝑚 * 𝜋 if 𝑓 (𝑚1, . . . , 𝑚𝑛) = 𝑚 𝜇𝛼.𝑡 * 𝜋 ≻𝑛 𝑡[𝛼 := 𝜋] * 𝜋 (𝑡 * 𝜋) * 𝜋 ′ ≻𝑛 𝑡 * 𝜋 𝜒(𝑣, 𝑤) * 𝜋 ≻𝑛 (𝑛, 𝑣, 𝑤) * 𝜋 if 𝑣, 𝑤 closed values s.t. 𝑣 = 𝑣𝑛 𝜑(𝜆𝑥.𝑡, 𝑢) * 𝜋 ≻𝑛 𝑢 * 𝜀 𝜌((𝑣1, . . . , 𝑣𝑛), 𝑢) * 𝜋 ≻𝑛 𝑢 * 𝜀 𝜈(𝑛, 𝑢) * 𝜋 ≻𝑛 𝑢 * 𝜀 if 𝑛 ∈ N 𝑢 * [𝜁𝑎.𝑡-]𝜋 ≻𝑛 𝑡[𝑎 := 𝑢] * 𝜀 𝛿(𝑣, 𝑤, 𝑡) * 𝜋 ≻𝑛+1 𝑡 * 𝜋 if 𝑣 ̸ ≡𝑛 𝑤 𝑡 * 𝜋 ↓𝑛 if 𝑡 * 𝜋 ≻ * 𝑛 𝑣 * 𝜀 with 𝑣 ∈ ⊥ 𝑡 ≡𝑛 𝑢 if ∀𝑝 ≤ 𝑛, ∀𝜋 ∈ Π 𝑐 , 𝑡 * 𝜋 ↓𝑝⇔ 𝑢 * 𝜋 ↓𝑝 𝑡 * 𝜋 ≻ 𝑡 ′ * 𝜋 ′ if ∃𝑛 ∈ N, 𝑡 * 𝜋 ≻𝑛 𝑡 ′ * 𝜋 ′ 𝑡 * 𝜋 ↓ if ∃𝑛 ∈ N, 𝑡 ↓𝑛 𝑡 ≡ 𝑢 if ∀𝑛 ∈ N, 𝑡 ≡𝑛 𝑢
The three first lines implement call-by-value 𝛽-reduction. Next come the rule for projection of tuples, the fixpoint rule and the three rules for natural numbers.

The two rules for 𝜇𝛼.𝑡 and 𝑡 * 𝜋 correspond to the computational content of classical logic.

As in [START_REF] Krivine | Dependent choice, 'quote' and the clock[END_REF], the rule for 𝜒 corresponds to the axiom of choice and can be implementedation as a clock, because the enumeration does not need to be injective. To do so, we add to the state of the machine an integer that we read and increment by 2 in the 𝜒 rule. Then, when we use the correctness theorem 3.2, we must first run the program, build the beginning of the enumeration from this run, even it it loops. Then, we complete the enumeration using the places left by the increment by 2. This is not fully satisfactory as we have to change a parameter of the model every time we use it. But it is actually the same for the pole ⊥.

The clock implementation can be made more elegant with Krivines's thread model [START_REF] Krivine | Dependent choice, 'quote' and the clock[END_REF][START_REF] Krivine | Realizability in classical logic. Phd Course[END_REF].

The constants 𝜑, 𝜌 and 𝜈 allow to recognise 𝜆-abstractions, tuples and natural numbers. The rule for 𝜁𝑎.𝑡 is in fact a rule for call-by-name reduction and it allows substitution of a term in a term. It will give an easier proof of extensionality (see theorem 1.2). In [START_REF] Lepigre | A Classical Realizability Model for a Semantical Value Restriction[END_REF][START_REF] Lepigre | Semantics and Implementation of an Extension of ML for Proving Programs[END_REF] a longer proof is given without this constant, but adding the constant gives a result which is less likely to be lost by a change in the calculus.

Equivalence is extended to open terms and values by 𝑡 ≡ 𝑢 (resp. 𝑣 ≡ 𝑤) if and only if for all substitution 𝜎 closing both terms, 𝑡𝜎 ≡ 𝑢𝜎 (resp. 𝑣𝜎 ≡ 𝑤𝜎).

By definition, all one step reduction for ≻𝑛 are immediatly valid for ≻, except for the constant 𝛿 which need the following lemma, which also give a few general properties of our relations:

Lemma 1.1.

(The last part of the proof shows that 𝑡 ≡ 𝑢 is a bit more precise than observational equivalence for the relation ≻ as it can observe the level of convergence.

We will write 𝑡 ↑ for the negation of 𝑡 ↓. This system is an extension of HOL, a.k.a. Church's simple theory of type [START_REF] Church | A formulation of the simple theory of types[END_REF]. In HOL existentials and products can be encoded, thus the essential extensions are singleton types 𝑣 ∈ 𝑒 and restriction 𝑒 | 𝑡 ≡ 𝑢 together with the use of terms as individual. Ψ is a constant function symbol used for the axiom of choice.

It is interpreted below as our enumeration of terms. We also use usual natural numbers as values rather than some encoding, but this is mainly to simplify the presentation of the system. In PML, we have full inductive and co-inductive types as in ML.

An essential difference of PML compared to HOL is the way we formalise mathematics, especially functions.

In HOL, functions from natural numbers to natural numbers will be represented by expressions of sort 𝜄 → 𝜄.

In PML we will use expression of sort 𝜄 and of type N ⇒ N. We can express properties of elements of sort 𝜄 thanks to singleton type and restriction. Our main point is that mathematics can be developed within the sort 𝜄 in PML, including real numbers and much more as we have classical logic and the axiom of choice.

We will begin to see this in the section 5.

We use a few syntactic sugars and priority rules:

• Quantifier have the largest possible scope: ∀𝜉 𝑠 , 𝐴 ⇒ 𝐵 means ∀𝜉 𝑠 , (𝐴 ⇒ 𝐵)

• Implication is right associative for for expression and sorts: 𝐴 ⇒ 𝐵 ⇒ 𝐶 means 𝐴 ⇒ (𝐵 ⇒ 𝐶).

• Membership and restriction have a greater priority that implication and product.

• We can write 𝑡 ≡ 𝑢 for U | 𝑡 ≡ 𝑢 to use equivalences as formulas.

• We can write 𝑡 ↓ for U | 𝑡 ↓ to use convergence as a formula.

• The semantic of closed expressions with parameters in the model follows:

|𝑖| 𝑠 = 𝑖 if 𝑖 ∈ |𝑠| (this includes |𝑡| 𝜄 = 𝑡 and |N| 𝑜 = N) |𝜆𝜉.𝑒| 𝑠 1 →𝑠 2 = {𝑔 ∈ |𝑠1 → 𝑠2|, ∀𝑖 ∈ |𝑠1|, 𝑔(𝑖) = |𝑒[𝜉 := 𝑖]| 𝑠 2 } |𝑒𝑓 | 𝑠 2 = |𝑒| 𝑠 1 →𝑠 2 |𝑒| 𝑠 1 |𝑒 ⇒ 𝑓 | 𝑜 = {𝜆𝑥.𝑡 | ∀𝑣 ∈ |𝑒| 𝑜 , 𝑡[𝑥 := 𝑣] ∈ ||𝑓 ||} |∀𝜉 𝑠 , 𝑒| 𝑜 = ⋂︀ 𝑖∈|𝑠| |𝑒[𝜉 := 𝑖]| 𝑜 |∃𝜉 𝑠 , 𝑒| 𝑜 = ⋃︀ 𝑖∈|𝑠| |𝑒[𝜉 := 𝑖]| 𝑜 |𝑒1 × . . . × 𝑒𝑛| 𝑜 = {(𝑣1, . . . , 𝑣𝑛) | ∀1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑖 ∈ |𝑒𝑖| 𝑜 } |𝑡 ∈ 𝑒| 𝑜 = {𝑣 ∈ |𝑒| 𝑜 | 𝑣 ≡ 𝑡} |𝑒 | 𝑡 ≡ 𝑢| 𝑜 = |𝑒| 𝑜 if 𝑡 ≡ 𝑢 and ∅ otherwise |𝑒 | 𝑡 ↓ | 𝑜 = |𝑒| 𝑜 if ∃𝑣 ∈ Λ 𝑐 𝜄 , 𝑡 ≡ 𝑣 and ∅ otherwise |𝑒| ⊥ = {𝜋 ∈ Π 𝑐 | ∀𝑣 ∈ |𝑒| 𝑜 , 𝑣 * 𝜋 ↓} ||𝑒|| = {𝑡 ∈ Λ 𝑐 | ∀𝜋 ∈ |𝑒| ⊥ , 𝑡 * 𝜋 ↓} |Ψ| 𝜄→𝜄 = {𝑔 ∈ |𝜄 → 𝜄|, 𝑔(𝑛) = 𝑣𝑛, if 𝑛 ∈ N, 𝑔(𝑣) = () otherwise
= 𝑓]| 𝑠1 = |𝑒[𝜉 := |𝑓 | 𝑠 2]| 𝑠 1
which means we can compute the semantic before of after performing a substitution.

If 𝑒 is an expression with only one free variable 𝑎 of sort 𝜄, and if

𝑡 ≡ 𝑢, then |𝑒[𝑥 := 𝑡]| 𝑠 = |𝑒[𝑥 := 𝑢]| 𝑠 .
Proof. Easy induction on the construction of 𝑒, using extensionality (lemma 1.2) form the sort 𝜄 and the type constructors 𝑡 ∈ 𝑒, 𝑒 | 𝑡 ≡ 𝑢 and 𝑒 | 𝑡 ↓. □

ADEQUACY OF THE TYPING RULES

The typing rules of our system are given in figure 1. The sequent have the form 𝛾; Γ ⊢ 𝑡 : 𝐴 with:

• 𝛾 a set of equations 𝑡 ≡ 𝑢. Remark: an equation of the form 𝑥 ≡ 𝑢 implies that 𝑢 is equivalent to some The notation 𝐴 ⊥ is not part of the syntax of formula, but is here to recall that an hypothesis of the form 𝛼 : 𝐴 ⊥ means that we assume the negation of 𝐴, not 𝐴 itself.

In premises, when we write 𝛾 ⊢ 𝑡 ≡ 𝑢 we mean that it is true that 𝑡𝜎 ≡ 𝑢𝜎 for all substitution such that all equations in 𝛾𝜎 holds. In our implementation, we have a partial decision procedure for this, but for a theoretical paper, truth is enough there.

In the rules, in quite a few places, we impose a value restriction. For some rules (products, natural numbers) this is not important as a 𝛽-expansion is easily typable.

However, in the two rules introducing quantifiers and in the right rule for singleton type, this is really important. Remark: all left rules automatically have value restriction as we are only declaring value variables in the context.

The substitution rule, which allow substitution on both sides of the column, allows to relax value restriction when a term is known to be equivalent to a value. We can replace the term by a value, apply the rule with the value restriction and put back the term. This is very important as value restriction would make the system mostly useless otherwise.

It is also important to notice that replacing a value by a term often require two steps: to replace 𝑣 by 𝑡 in 𝑣.1, we first replace 𝑣.1 by (𝜆𝑥. 𝑥.1)𝑣 and then we can replace 𝑣 by 𝑡. This is possible because ⊢ (𝜆𝑥. 𝑥.1)𝑣 ≡ 𝑣.1.

Our system allows encoding of dependent product and pairs as ∀𝑥 𝜄 , 𝑥 ∈ 𝐴 → 𝐵 𝑥 and ∃𝑥 𝜄 , (𝑥 ∈ 𝐴 × 𝐵 𝑥).

This encoding appears in the rule for the fixpoint. Let us derive the elimination rule for dependant product to see how value restriction is important here:

𝛾, Γ ⊢ 𝑡 : ∀𝑥 𝜄 , 𝑥 ∈ 𝐴 → 𝐵 𝑥 𝛾, Γ ⊢ 𝑡 : 𝑢 ∈ 𝐴 → 𝐵𝑢 𝛾, Γ ⊢ 𝑢 : 𝐴 𝛾 ⊢ 𝑢 ≡ 𝑣 𝛾, Γ ⊢ 𝑣 : 𝐴 𝛾, Γ ⊢ 𝑣 : 𝑣 ∈ 𝐴 𝛾 ⊢ 𝑢 ≡ 𝑣 𝛾, Γ ⊢ 𝑢 : 𝑢 ∈ 𝐴 𝛾, Γ ⊢ 𝑡𝑢 : 𝐵𝑢 Hence the derived rule is 𝛾 ⊢ 𝑢 ≡ 𝑣 𝛾, Γ ⊢ 𝑡 : ∀𝑥 𝜄 , 𝑥 ∈ 𝐴 → 𝐵 𝑥 𝛾, Γ ⊢ 𝑢 ∈ 𝐴 𝛾, Γ ⊢ 𝑡𝑢 : 𝐵𝑢
This semantical value restriction and the above derivation is due to Rodolphe Lepigre [START_REF] Lepigre | A Classical Realizability Model for a Semantical Value Restriction[END_REF][START_REF] Lepigre | Semantics and Implementation of an Extension of ML for Proving Programs[END_REF].

We say that a substitution 𝜎 validates a context 𝛾; Γ if it makes terms and types in the context closed and if for all 𝑡 ≡ 𝑢 in 𝛾, 𝑡𝜎 ≡ 𝑢𝜎 is true, for all 𝑥 : 𝐴 in Γ, 𝑥𝜎 ∈ |𝐴𝜎| 𝑜 and for all 𝛼 : 𝐴 ⊥ , 𝛼𝜎 ∈ |𝐴𝜎| ⊥ . Proof. We proceed by induction considering each rule. In each case, we take 𝜎 validating the context of the conclusion.

Axiom rule 𝑥𝜎 ∈ |𝐴𝜎| 𝜎 as 𝜎 validates 𝛾, Γ, 𝑥 : 𝐴. This more explicitly shows that if we use classical logic (and in the next section the axiom of choice) to establish the existence of a natural number with some given properties, then this natural can be computed by reduction.

Introduction of implication

DERIVATION OF THE AXIOM OF CHOICE

First, we prove the following lemma to type the 𝜒(𝑣) term construction. This lemma is very similar to the lemma for the quote instruction in [START_REF] Krivine | Dependent choice, 'quote' and the clock[END_REF]. The main difference is that we give a number to the parameter of 𝑓 which is accessible in the semantic thanks to singleton type and not to the proof of 𝑓 (Ψ𝑛). This will make it possible to replace 𝑓 by an equivalent predicate without changing the number. Theorem 4.2 (AC). From the above axiom we can define a predicate 𝐶 : 𝑜 → (𝜄 → 𝑜) → 𝜄 → 𝑜 and a proof of the following axiom of choice which consists in 3 propositions:

Proof

𝑀 : ∀𝑎 𝑜 , ∀𝑓 𝜄→𝑜 , (∃𝑥 𝜄 , (𝑥 ∈ 𝑎) × 𝑓 𝑥) ⇒ (∃𝑥 𝜄 , 𝐶 𝑎 𝑓 𝑥) 𝐾 : ∀𝑎 𝑜 , ∀𝑓 𝜄→𝑜 , ∀𝑥 𝜄 , 𝐶 𝑎 𝑓 𝑥 ⇒ 𝑥 ∈ 𝑎 × 𝑓 𝑥 𝑈 : ∀𝑎 𝑜 , ∀𝑓 𝜄→𝑜 , ∀𝑔 𝜄→𝑜 , ∀𝑥 𝜄 , ∀𝑦 𝜄 , 𝑓 ⇔𝑎 𝑔 ⇒ 𝐶 𝑎 𝑓 𝑥 ⇒ 𝐶 𝑎 𝑔 𝑦 → 𝑥 ≡ 𝑦 with 𝑓 ⇔𝑎 𝑔 = (∀𝑥 𝜄 , 𝑥 ∈ 𝑎 ⇒ 𝑓 𝑥 ⇒ 𝑔 𝑥) × (∀𝑥 𝜄 , 𝑥 ∈ 𝑎 ⇒ 𝑔 𝑥 ⇒ 𝑓 𝑥)
This theorem will be proved using the system rules and the above axiom throughout the rest of this section. Let us first see that this is indeed the extensional axiom of choice over any type. The predicate 𝐶 𝑎 𝑓 𝑥 must be read as "𝑥 is the chosen element in 𝑎 such 𝑓 𝑥 holds". The first proposition ensures that the choice is possible if a candidate exists. The second one ensures that the choice is correct and the last ensures extensionality as the choice would be the same for any predicate equivalent to 𝑓 . This is the fact that we allow for equivalence that makes this the general axiom of choice. What this axiom can not do is to choose a predicate of sort 𝜄 → 𝑜. But it can still choose a function in N ⇒ N or a functional in (N ⇒ N) ⇒ N. With PML, we have been able to formalise classical real numbers (as opposite to constructive reals). As we have a type of real numbers, we can choose a real or a function from the reals to the reals.

As an application, we construct quotient types in the next section.

The proof from here to the end of the paper have been machine checked in the current implementation of PML.

First, we derive a lemma: Lemma 4.3. We define two predicates:

𝐵 𝑎 𝑓 𝑔 𝑛 = 𝑛 ∈ N × (𝑓 ⇔𝑎 𝑔) × 𝜓𝑛 ∈ 𝑎 × 𝑔(𝜓𝑛) × 𝑀 𝑎𝑓 𝑛 𝑀 𝑎 𝑓 𝑛 = ∀ℎ, ∀𝑝 : 𝜄, 𝑝 ∈ N → (𝑓 ⇔𝑎 ℎ) → 𝜓𝑝 ∈ 𝑎 → ℎ(𝜓𝑝) → 𝑛 ≤ 𝑝
and we find a term 𝐶 : ∀𝑎 𝑜 , ∀𝑓 𝜄→𝑜 , (∃𝑥 𝜄 , 𝑥 ∈ 𝑎 × 𝑓 𝑥) → ∃𝑔 𝜄→𝑜 , ∃𝑛 𝜄 , 𝐵 𝑎 𝑓 𝑔 𝑛 The predicate 𝐵 𝑎 𝑓 𝑔 𝑛 means that 𝑛 a the least integer such that Ψ𝑛 is a good choice for 𝑎 and 𝑔, meaning that we have 𝜓𝑛 ∈ 𝑎 × 𝑔(𝜓𝑛) with 𝑔 equivalent to 𝑓 on 𝑎. The fact that 𝑛 is minimum is expressed by the predicate 𝑀 𝑎 𝑓 𝑛.

For this proof, we use ≤ and < in 𝐹 and moreover that 𝑝 < 𝑛 is defined as 𝑛𝑜𝑡(𝑛 ≤ 𝑝). As a consequence, we have (𝑛 ≤ 𝑝) ≡ 0 ⊢ (𝑝 < 𝑛) ≡ 1. Moreover, we must have a proof that 𝑛 ≤ 𝑝 is a value, that is a proof that ∀𝑛 𝜄 , ∀𝑝 𝜄 , 𝑛 ∈ 𝑁 ⇒ 𝑝 ∈ 𝑁 ⇒ 𝑛 ≤ 𝑝 ↓. This can be proved in general by induction on 𝑛 and 𝑝. This is necessary because when we do a test on 𝑛 ≤ 𝑝 we must write with a redex (𝜆𝑥.𝑥[𝑡, 𝑢])(𝑛 ≤ 𝑝). Then, when typing this redex, if 𝑛 ≤ 𝑝 is not known to be a value, we can not use the strong application. It is a value, when we typecheck 𝑥[𝑡, 𝑢], we will have 𝑥 ≡ 𝑛 ≤ 𝑝 in the context and therefore (𝑛 ≤ 𝑝) ≡ 1 (resp. 0) when typing 𝑡 (resp. 𝑢).

In the typing of 𝑈 , similarly we get 𝑥 ≡ Ψ𝑛, 𝑐1.1 : 𝑛 ∈ N, 𝑐1.2 : 𝑥 ∈ 𝑎, 𝑐1. The typing are easy.

A PROOFS IN PML

We now give the formalisation of the proof in section 4 and 5 that are type-checked by PML. val eq symm : ∀a , ∀ f g , e q u i v ⟨a , f , g⟩ → e q u i v ⟨a , g , f ⟩

= fun e { (e . 2 , e . 1) } val e q t r a n : ∀a , ∀ f g h , e q u i v ⟨a , f , g⟩ → e q u i v ⟨a , g , h⟩ → e q u i v ⟨a , f , h⟩

=

 Λ𝜄 ::= 𝑥 | 𝜆𝑥.𝑡 | (𝑣1, . . . , 𝑣𝑛) | 𝑛 Λ ::= 𝑎 | 𝑣 | 𝑡 𝑢 | 𝑣.𝑛 | 𝜇𝛼.𝑡 | 𝑡 * 𝜋 | 𝑌 𝑎.𝑡 | 𝑣[𝑡, 𝑢] | 𝑓 (𝑣1, . . . , 𝑣𝑛) | 𝜒(𝑣, 𝑤) | 𝛿(𝑣, 𝑤, 𝑡) | 𝜑(𝑣, 𝑡) | 𝜌(𝑣, 𝑡) | 𝜈(𝑣, 𝑡) | 𝜁𝑎.𝑡 Π ::= 𝜀 | 𝛼 | [𝑡-] | [-𝑣]𝜋 with the following convention used throughout this paper (with possible added subscript or apostrophe): • 𝑥, 𝑦, 𝑧 are value variables in Λ 𝑣 𝜄 , • 𝑎, 𝑏, 𝑐 are term variables in Λ 𝑣 , • 𝛼, 𝛽, 𝛾 are stack variables in Π 𝑣 , • 𝑣, 𝑤 are values in Λ𝜄, • 𝑟, 𝑠, 𝑡, 𝑢 are terms in Λ, • 𝜋, 𝜋 ′ are stacks in Π, • 𝑛, 𝑝, 𝑞 are natural numbers in N and • 𝑓 is a function from N 𝑛 to N in th set 𝐹 , always used with the correct number of arguments. The construction 𝜆𝑥.𝑡, 𝜇𝛼.𝑡, 𝑌 𝑎.𝑡, 𝜁𝑎.𝑡 bind respectively value, stack and term variables in values or terms. As usual, we work up to 𝛼-equivalence and we use capture free substitutions written [𝑥 := 𝑣][𝑎 := 𝑡].

Lemma 1 . 2 (

 12 extensionality). Let 𝑡 be a term and 𝑣1 and 𝑣2 be two values. If 𝑣1 ≡ 𝑣2 then 𝑡[𝑥 := 𝑣1] ≡ 𝑡[𝑥 := 𝑣2]. Let 𝑡 be a term and 𝑢1 and 𝑢2 be two terms. If 𝑢1 ≡ 𝑢2 then 𝑡[𝑎 := 𝑢1] ≡ 𝑡[𝑎 := 𝑢2]. Proof. Let us assume that 𝑡[𝑎 := 𝑢1] ̸ ≡ 𝑡[𝑎 := 𝑢2]. This means we can find a substitution 𝜎 and a stack 𝜋 such that (𝑡[𝑎 := 𝑢1])𝜎 * 𝜋 ↓ and (𝑡[𝑎 := 𝑢2])𝜎 * 𝜋 ↑ or the inverse. Let us assume the former. Up to a renaming of 𝑎, we have (𝑡[𝑎 := 𝑢𝑖])𝜎 = 𝑡𝜎[𝑎 := 𝑢𝑖𝜎] for 𝑖 = 1, 2. As we have 𝑢𝑖𝜎 * [𝜌𝑎.𝑡-]𝜋 ≻ 𝑡[𝑎 := 𝑢𝑖𝜎] * 𝜋 for 𝑖 = 1, 2, the stack [𝜁𝑎.𝑡-]𝜋 and the subsitution 𝜎 establishes 𝑢1 ̸ ≡ 𝑢2 leading to a contradiction.

 We can write 𝑓 (𝑛1, . . . , 𝑛𝑚) for 𝑓 (𝑛1, . . . , 𝑛𝑚) ≡ 1 typically, this allows to write N | 𝑝 < 𝑛 forN | (𝑝 < 𝑛) ≡ 1 or even 𝑝 < 𝑛 for U | (𝑝 < 𝑛) ≡ 1 .The semantic of an expression of sort 𝑠 lives in a set |𝑠| defined by: |𝜄| = Λ 𝑐 /≡ the set of closed terms quotiented by equivalence|𝑜| = 𝒫(Λ 𝑐 𝜄) the set of set of closed values |𝑠1 → 𝑠2| = |𝑠2| |𝑠 1 | set of all functions from |𝑠1| to |𝑠2|We did not define |𝑜| as the powerset of Λ 𝑐 𝑖 /≡ to have a better control of the elements of |𝑒| 𝑜 . We now define the semantic |𝑒| 𝑠 ∈ |𝑠| for closed expressions of sort 𝑠. In the particular case of 𝑜 we define three sets: |𝑒| 𝑜 ∈ |𝑜| a set of closed values, |𝑒| ⊥ a set of closed stacks and ||𝑒|| a set of closed terms. To simplify the presentation, we allow elements in |𝑠| to be used directly as expressions of sort 𝑠, so called expressions with parameters in the model. This allows writing |𝑒[𝜉 := 𝑖]| 𝑠 to give the interpretation of the variable 𝜉 if sorts agree. This is expressed by the first line below.

 value. 𝛾; Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 𝛾; Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 𝛾; Γ ⊢ 𝜆𝑥.𝑡 : 𝐴 ⇒ 𝐵 𝛾; Γ ⊢ 𝑡 : 𝐴 ⇒ 𝐵 𝛾; Γ ⊢ 𝑢 : 𝐴 𝛾; Γ ⊢ 𝑡𝑢 : 𝐵 𝛾; Γ, 𝛼 : 𝐴 ⊥ ⊢ 𝑡 : 𝐴 𝛾; Γ ⊢ 𝜇𝛼.𝑡 : 𝐴 𝛾; Γ, 𝛼 : 𝐴 ⊥ ⊢ 𝑡 : 𝐴 𝛾; Γ, 𝛼 : 𝐴 ⊥ ⊢ 𝑡 * 𝛼 : 𝐵 𝛾; Γ ⊢ 𝑣 : 𝐴 * 𝛾; Γ ⊢ 𝑣 : ∀𝜉 𝑠 , 𝐴 𝛾; Γ ⊢ 𝑡 : ∀𝜉 𝑠 , 𝐴 𝑒 : 𝑠 𝛾; Γ ⊢ 𝑡 : 𝐴[𝜉 := 𝑒] 𝛾; Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 * 𝛾; Γ, 𝑥 : ∃𝜉 𝑠 , 𝐴 ⊢ 𝑡 : 𝐵 𝛾; Γ ⊢ 𝑡 : 𝐴[𝜉 := 𝑒] 𝑒 : 𝑠 𝛾; Γ ⊢ 𝑡 : ∃𝜉 𝑠 , 𝐴 𝛾; Γ ⊢ 𝑣1 : 𝐴1 . . . 𝛾; Γ ⊢ 𝑣𝑛 : 𝐴𝑛 𝛾; Γ ⊢ (𝑣1, . . . , 𝑣𝑛) : 𝐴1 × . . . × 𝐴𝑛 𝛾; Γ ⊢ 𝑣 : 𝐴1 × . . . × 𝐴𝑛 1 ≤ 𝑖 ≤ 𝑛 𝛾; Γ ⊢ 𝑣.𝑖 : 𝐴𝑖 𝛾, 𝑥 ≡ 𝑢; 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 𝛾, 𝑥 : 𝑢 ∈ 𝐴 ⊢ 𝑡 : 𝐵 𝛾; Γ ⊢ 𝑣 : 𝐴 𝛾; Γ ⊢ 𝑣 : 𝑣 ∈ 𝐴 𝛾, 𝑢1 ≡ 𝑢2; Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 𝛾, Γ, 𝑥 : 𝐴 | 𝑢1 ≡ 𝑢2 ⊢ 𝑡 : 𝐵 𝛾; Γ ⊢ 𝑡 : 𝐴 𝛾 ⊢ 𝑢1 ≡ 𝑢2 𝛾; Γ ⊢ 𝑡 : 𝐴 | 𝑢1 ≡ 𝑢2 𝛾, 𝑢 ≡ 𝑦; Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 * 𝛾, Γ, 𝑥 : 𝐴 | 𝑢 ↓⊢ 𝑡 : 𝐵 𝛾; Γ ⊢ 𝑡 : 𝐴 𝛾 ⊢ 𝑢 ≡ 𝑣 𝛾; Γ ⊢ 𝑡 : 𝐴 | 𝑢 ↓ 𝛾, Γ ⊢ 𝑡[𝑎 := 𝑢1] : 𝐵[𝑎 := 𝑢1] 𝛾 ⊢ 𝑢1 ≡ 𝑢2 𝛾, Γ ⊢ 𝑡[𝑎 := 𝑢2] : 𝐵[𝑎 := 𝑢2] 𝛾; Γ, 𝑧 : ∀𝑦 𝜄 , (𝑦 ∈ N | 𝑦 < 𝑥) ⇒ 𝐴 𝑦, 𝑥 : N ⊢ 𝑡[𝑎 := 𝑧] : 𝐴 𝑥 𝛾; Γ ⊢ 𝑌 𝑎.𝜆𝑥.𝑡 : ∀𝑥 𝜄 , 𝑥 ∈ N ⇒ 𝐴 𝑥 n ∈ N 𝛾; Γ ⊢ 𝑛 : N 𝛾; Γ ⊢ 𝑣1; N . . . 𝛾; Γ ⊢ 𝑣𝑛 : N 𝛾; Γ ⊢ 𝑓 (𝑣1, . . . , 𝑣𝑛) : N 𝛾; Γ ⊢ 𝑣 : N | 𝑣 ≤ 1 𝛾, 𝑣 ≡ 1; Γ ⊢ 𝑡 : 𝐴 𝛾, 𝑣 ≡ 0; Γ ⊢ 𝑢 : 𝐴 𝛾; Γ ⊢ 𝑣[𝑡, 𝑢] : 𝐴 𝛾, 0 ≡ 𝑆𝑥; Γ, 𝑥 : N ⊢ () : ∀𝐴 𝑜 , 𝐴 𝛾, 𝑆𝑥 ≡ 𝑆𝑦; Γ, 𝑥 ∈ N, 𝑦 ∈ N ⊢ () : 𝑥 ≡ 𝑦 In the rule marked with *, the variable 𝜉 and 𝑦 must not be free in the conclusion of the rule. The rules for fixpoint and case analysis assume ≤ and < in 𝐹 as function returning 0 or 1.

Fig. 1 .

 1 Fig. 1. Rules of mini PML

Theorem 3 . 1 (

 31 adequacy). If 𝛾, Γ ⊢ 𝑣 : 𝐴 and if 𝜎 validates the context, then 𝑣𝜎 ∈ |𝐴𝜎| 𝑜 . If 𝛾, Γ ⊢ 𝑡 : 𝐴 and if 𝜎 validates the context, then 𝑡𝜎 ∈ ||𝐴𝜎||.

4 .Corollary 3 . 3 .

 433 We take 𝑣 ∈ |𝐴𝜎| 𝑜 and have to show 𝑡𝜎[𝑥 := 𝑣] ∈ ||𝐵𝜎||. As 𝜎 only produces closed terms, up to a renaming of 𝑥, we have 𝜎[𝑥 := 𝑣] = [𝑥 := 𝑣]𝜎 and this substitution validates the context of the premise. Hence we have 𝑡[𝑥 := 𝑣]𝜎 ∈ ||𝐵𝜎|| by induction hypothesis. Elimination of implication By induction hypothesis, we have 𝑡𝜎 ∈ ||𝐴𝜎 ⇒ 𝐵𝜎|| and 𝑢𝜎 ∈ ||𝐴𝜎||. Let us take 𝜋 ∈ |𝐵𝜎| ⊥ . We have 𝑡𝜎𝑢𝜎 * 𝜋 ≻ 𝑢𝜎 * [𝑡𝜎-]𝜋. Thus it is enough to prove [𝑡𝜎-]𝜋 ∈ |𝐴𝜎| ⊥ . For this we take a value 𝑣 ∈ |𝐴𝜎|. We have 𝑣 * [𝑡𝜎-]𝜋 ≻ 𝑡𝜎 * [-𝑣]𝜋 thus it sufficies to prove [-𝑣]𝜋 ∈ |𝜎𝐴 ⇒ 𝐵𝜎| ⊥ . For this, we take 𝜆𝑥.𝑢 ∈ |𝐴𝜎 ⇒ 𝐵𝜎| 𝑜 . We have 𝜆𝑥.𝑢 * [-𝑣]𝜋 ≻ 𝑢[𝑥 := 𝑣] * 𝜋 ↓ because 𝜆𝑥.𝑢 ∈ |𝐴𝜎 ⇒ 𝐵𝜎| 𝑜 implies 𝑢[𝑥 := 𝑣] ∈ ||𝐵𝜎|| by definition. Classical logic (rule typing 𝜇) Take a stack 𝜋 ∈ |𝐴𝜎| ⊥ . We have 𝜇𝛼.𝑡𝜎 * 𝜋 ≻ 𝑡𝜎[𝛼 := 𝜋] * 𝜋. The induction hypothesis allows to conclude as 𝜎[𝛼 := 𝜋] validates the context of the premise. Contradiction (rule typing 𝑡 * 𝛼) Take 𝜋 ∈ |𝐵𝜎| ⊥ . We have 𝛼𝜎 ∈ |𝐴𝜎| ⊥ and 𝑡𝜎 ∈ ||𝐴𝜎|| by induction hypothesis. Hence (𝑡𝜎 * 𝛼𝜎) * 𝜋 ≻ 𝑡𝜎 * 𝛼𝜎 ↓. For all introduction To prove 𝑣𝜎 ∈ |∀𝜉 𝑠 , 𝐴𝜎| 𝑜 , we take any 𝑖 ∈ |𝑠|. As 𝜉 is not free in the conclusion 𝜎[𝜉 := 𝑖] validates the context of the premise. Hence we have 𝑣𝜎 ∈ |𝐴𝜎[𝜉 := 𝑖]| 𝑜 by induction hypothesis. We may need a renaming of 𝜉 to have (∀𝜉 𝑠 , 𝐴)𝜎 = ∀𝜉 𝑠 , 𝐴𝜎. For all elimination From lemma 2.5, we have |∀𝜉 𝑠 , 𝐴𝜎| 𝑜 ⊂ |𝐴𝜎[𝜉 := |𝑒𝜎| 𝑠]| 𝑜 = |𝐴[𝜉 := 𝑒]𝜎| 𝑜 . We get |𝐴[𝜉 := 𝑒]𝜎| ⊥ ⊂ |∀𝜉 𝑠 , 𝐴𝜎| ⊥ and then ||∀𝜉 𝑠 , 𝐴𝜎|| ⊂ ||𝐴[𝜉 := 𝑒]𝜎||. Existential left introduction We have 𝑥𝜎 ∈ |∃𝜉 𝑠 , 𝐴𝜎| 𝑜 hence we find 𝑖 ∈ |𝑠| such that 𝑥𝜎 ∈ |𝐴𝜎[𝜉 := 𝑖]| 𝑜 . Hence, 𝜎[𝜉 := 𝑖] validates the context of the premise and we can conclude by induction hypothesis. Existential right introduction From lemma 2.5, we get |𝐴𝜎[𝜉 := 𝑒]| 𝑜 = |𝐴𝜎[𝜉 := |𝑒𝜎| 𝑠]| 𝑜 ⊂ |∃𝜉 𝑠 , 𝐴𝜎| 𝑜 , we have |∃𝜉 𝑠 , 𝐴𝜎| ⊥ ⊂ |𝐴𝜎[𝜉 := 𝑒]| ⊥ and then ||𝐴𝜎[𝜉 := 𝑒]|| ⊂ ||∃𝜉 𝑠 , 𝐴𝜎||. Product introduction By induction hypothesis Product elimination From 𝑣𝜎 ∈ |𝐴1𝜎, . . . , 𝐴𝑛𝜎| 𝑜 , we know that 𝑣𝜎 = (𝑣1, . . . , 𝑣𝑛) with 𝑣𝑖 ∈ |𝐴𝑖| 𝑜 . Take 𝜋 ∈ |𝐴𝑖| ⊥ , we have 𝑣.𝑖 * 𝜋 ≻ 𝑣𝑖 * 𝜋 ↓. Singleton left introduction From 𝑥𝜎 ∈ |𝑢𝜎 ∈ 𝐴𝜎| 𝑜 , we have that 𝑥𝜎 ≡ 𝑢𝜎 and 𝑥𝜎 ∈ |𝐴𝜎| 𝑜 . Hence 𝜎 validates the context of the premise and we conclude by induction hypothesis. Singleton right introduction Immediate by reflexivity of ≡. Restriction left introduction From 𝑥𝜎 ∈ |𝐴𝜎|𝑢1𝜎 ≡ 𝑢2𝜎| 𝑜 , we have 𝑢1𝜎 ≡ 𝑢2𝜎 and 𝑥𝜎 ∈ |𝐴𝜎| 𝑜 . Hence 𝜎 validates the context of the premise and we conclude by induction hypothesis. Restriction right introduction The right premise gives 𝑢1𝜎 ≡ 𝑢2𝜎 and therefore |𝐴𝜎|𝑢1𝜎 ≡ 𝑢2𝜎| 𝑜 = |𝐴𝜎| 𝑜 which implies ||𝐴𝜎|𝑢1𝜎 ≡ 𝑢2𝜎|| = ||𝐴𝜎||. Convergence left introduction From 𝑥𝜎 ∈ |𝐴𝜎|𝑢𝜎 ↓ | 𝑜 , we have 𝑢𝜎 ≡ 𝑣 for some value and 𝑥𝜎 ∈ |𝐴𝜎| 𝑜 . Hence 𝜎[𝑦 := 𝑣] validates the context of the premise and we conclude by induction hypothesis. Convergence right introduction The right premise gives 𝑢𝜎 ≡ 𝑣𝜎 and therefore |𝐴𝜎|𝑢𝜎 ↓ | 𝑜 = |𝐴𝜎| 𝑜 which implies ||𝐴𝜎|𝑢1𝜎 ↓ || = ||𝐴𝜎||. Substitution rule When 𝑡[𝑎 := 𝑢1]𝜎 and 𝑡[𝑎 := 𝑢2]𝜎 are both terms, we conclude using lemma 2.5. When they are both values, we also need lemma 2.2. When 𝑡[𝑎 := 𝑢1]𝜎 is a value and 𝑡[𝑎 := 𝑢2]𝜎 is a term, we need |𝐴| 𝑜 ⊂ ||𝐴||. Finally, when 𝑡[𝑎 := 𝑢1]𝜎 is a term and 𝑡[𝑎 := 𝑢2]𝜎 is a value we need theorem 2.Introduction of natural numbers Immediate Fixpoint rule For all stack 𝜋, we have 𝑌 𝑎.𝜆𝑥.𝑡 * 𝜋 ≻ 𝜆𝑥.𝑡[𝑎 := 𝑌 𝑎.𝜆𝑥.𝑡] * 𝜋. This implies 𝑌 𝑎.𝜆𝑥.𝑡 ≡ 𝜆𝑥.𝑡[𝑎 := 𝑌 𝑎.𝜆𝑥.𝑡]. Let us define 𝑣 = 𝜆𝑥.𝑡[𝑎 := 𝑌 𝑎.𝜆𝑥.𝑡]. Then, it is enough to show that 𝑣𝜎 ∈ |∀𝑥 𝜄 , 𝑥 ∈ N ⇒ 𝐴 𝑥| 𝑜 . For a value 𝑤 which is not a natural number, |𝑤 ∈ N| 𝑜 is empty and therefore |𝑤 ∈ N ⇒ 𝐴 𝑤| 𝑜 contains all 𝜆-abstractions. To finish, we show by induction on 𝑛 that 𝑣𝜎 ∈ |𝑛 ∈ N ⇒ 𝐴 𝑛| 𝑜 . For this, we have to show 𝑡𝜎[𝑎 := 𝑌 𝑎.𝜆𝑥.𝑡𝜎][𝑥 := 𝑛] ∈ ||𝐴 𝑛|| which using extensionality is a consequence of 𝑡𝜎[𝑎 := 𝑣𝜎][𝑥 := 𝑛] = 𝑡[𝑎 := 𝑧]𝜎[𝑧 := 𝑣𝜎][𝑥 := 𝑛] ∈ ||𝐴 𝑛||. The induction hypothesis 𝑣𝜎 ∈ |𝑝 ∈ N ⇒ 𝐴 𝑝| 𝑜 for all 𝑝 < 𝑛 means 𝑣𝜎 ∈ |(𝑝 ∈ N | 𝑝 < 𝑛) ⇒ 𝐴 𝑝| 𝑜 for all 𝑝 ∈ N. Hence, we have 𝑣𝜎 ∈ |∀𝑦 𝑠 , (𝑦 ∈ N | 𝑦 < 𝑛) ⇒ 𝐴 𝑦| 𝑜 . This means that the substitution 𝜎[𝑧 := 𝑣𝜎][𝑥 := 𝑛] satisfies the context of the premise. Hence we get 𝑡[𝑎 := 𝑧]𝜎[𝑧 := 𝑣𝜎][𝑥 := 𝑛] ∈ ||𝐴𝑛|| by the main induction hypothesis. Rule to introduce function symbol By induction hypothesis, we know that 𝑣1𝜎, . . . , 𝑣𝑛𝜎 are natural numbers. We can conclude 𝑓 being assumed total using |N| 𝑜 ⊂ ||N||. Case analysis By induction hypothesis, 𝑣𝜎 is a natural number and (𝑣𝜎 ≤ 1) ≡ 1 Hence, 𝑣𝜎 is 0 or 1. If it is 1 then 𝑣𝜎[𝑡𝜎, 𝑢𝜎] ≡ 𝑡𝜎 otherwise 𝑣𝜎[𝑡𝜎, 𝑢𝜎] ≡ 𝑢𝜎. In both cases we can conclude using the induction hypothesis. First arithmetic axiom There are no substitution satisfying 𝑥𝜎 ∈ N and 0 ≡ 𝑆𝑥 if 𝑆 is interpreted by the successor function. Second arithmetic axiom All substitution satisfying 𝑥𝜎 ∈ N, 𝑦𝜎 ∈ N and 𝑆𝑥𝜎 ≡ 𝑆𝑦𝜎 also satisfy 𝑥𝜎 ≡ 𝑦𝜎, hence we have () ∈ |U | 𝑥𝜎 ≡ 𝑦𝜎| 𝑜 . □ The next theorem is our safety/correctness theorem. It establishes that terms evaluates to values in the intended type (semantically) when the type is simple enough: Theorem 3.2 (correctness). If for a term 𝑡 and a closed type 𝐴 not using ⇒ we can derive ⊢ 𝑡 : 𝐴, then 𝑡 * 𝜀 ≻ 𝑣 * 𝜀 for some value 𝑣 ∈ |𝐴| 𝑜 . Proof. First we remark that if 𝐴 does not use the symbol ⇒, the definition of 𝐴 does not use nor depend upon the pole ⊥. Therefore, we can take ⊥ = |𝐴|. Then, by definition, we have that 𝜀 ∈ |𝐴| ⊥ . Hence, we know that 𝑡 * 𝜀 ≻ 𝑣 * 𝜀 with 𝑣 ∈ ⊥ = |𝐴|. □ This theorem with the definition of |𝐴| 𝑜 gives the following (and similar results for pairs of naturals, ...). If ⊢ 𝑡 : ∃𝑥 𝜄 , 𝑥 ∈ N|𝑓 (𝑥) ≡ 0, then 𝑡 * 𝜀 ≻ 𝑛 * 𝜀 for some 𝑛 ∈ N such that 𝑓 (𝑛) = 0.

Lemma 4 . 1 .

 41 𝜆𝑥.𝜒(𝑥) ∈ |∀𝑎 𝑜 , ∀𝑓 𝜄→𝑜 , (∃𝑥 𝜄 .𝑥 ∈ 𝑎 × 𝑓 𝑥) ⇒ (∃𝑛 𝜄 .𝑛 ∈ N, Ψ𝑛 ∈ 𝑎 × 𝑓 (Ψ𝑛))| 𝑜

.

 Let us take 𝑎 ∈ |𝑜|, 𝑓 ∈ |𝜄 → 𝑜|, 𝑣0 ∈ |∃𝑥 𝜄 .𝑥 ∈ 𝑎 × 𝑓 𝑥| 𝑜 and prove 𝜒(𝑣0) ∈ ||∃𝑛 𝜄 .𝑛 ∈ N, Ψ𝑛 ∈ 𝑎 ∧ 𝑓 (Ψ𝑛))||. By definition, we have 𝑣0 = (𝑣, 𝑤) with 𝑣 ∈ |𝑎| 𝑜 and 𝑤 ∈ |𝑓 𝑣| 𝑜 . Hence for any stack 𝜋 ∈ |∃𝑛 𝜄 .𝑛 ∈ N, Ψ𝑛 ∈ 𝑎∧𝑓 (Ψ𝑛))| ⊥ , we have: 𝜒(𝑣0)*𝜋 ≻ (𝑛, 𝑣, 𝑤)*𝜋 with 𝑣 = 𝑣𝑛 the value numbered 𝑛 in our enumeration. Recall that by definition 𝑣𝑛 = |Ψ𝑛| 𝜄 hence we do have (𝑛, 𝑣, 𝑤) ∈ |∃𝑛 𝜄 .𝑛 ∈ N, Ψ𝑛 ∈ 𝑎×𝑓 (Ψ𝑛))| 𝑜 . This gives 𝜒(𝑣0) * 𝜋 ↓. □ This lemma justifies the following typing rules: Γ ⊢𝜄 𝜆𝑥.𝜒(𝑥) : ∀𝑎 𝑜 , ∀𝑓 𝜄→𝑜 , (∃𝑥 𝜄 .𝑥 ∈ 𝑎 × 𝑓 𝑥) ⇒ (∃𝑛 𝜄 .𝑛 ∈ N, Ψ𝑛 ∈ 𝑎 × 𝑓 (Ψ𝑛))

3 :

 3 𝑓 𝑥, 𝑐1.4 : 𝑀 𝑎 𝑓 𝑛, 𝑦 ≡ Ψ𝑝, 𝑐2.1 : 𝑝 ∈ N, 𝑐2.2 : 𝑦 ∈ 𝑎, 𝑐2.3 : 𝑔𝑦, 𝑐2.4 : 𝑀 𝑎 𝑔 𝑝 and 𝑒 : 𝑓 ⇔𝑎 𝑔. Thus we get 𝐼 = 𝑐1.4 𝑐2.1 𝑒 𝑐2.2 𝑐2.3 : 𝑛 ≤ 𝑝, 𝑆 𝑒 : 𝑔 ⇔𝑎 𝑓 , and 𝐽 = 𝑐2.4 𝑐1.1 (𝑆 𝑒) 𝑐1.2 𝑐1.3 : 𝑝 ≤ 𝑛. Finally, we get 𝐴 𝑐1.1 𝑐2.1 𝐼 𝐽 : 𝑛 ≡ 𝑝, which implies 𝑥 ≡ Ψ𝑛 ≡ Ψ𝑝 ≡ 𝑦. □ 5 APPLICATION: QUOTIENT TYPE To encode quotient, we first define a type 𝐸 𝑎 𝑟 (for 𝑎 : 𝜄 → 𝑜 and 𝑟 : 𝜄 → 𝜄 → 𝑜) saying that 𝑟 is an equivalence relation over 𝑎:𝐸 𝑎 𝑟 = (∀𝑥 𝜄 , 𝑥 ∈ 𝑎 ⇒ 𝑟 𝑥 𝑥) × (∀𝑥 𝜄 , ∀𝑦 𝜄 𝑥 ∈ 𝑎 ⇒ 𝑦 ∈ 𝑎 ⇒ 𝑟 𝑥 𝑦 ⇒ 𝑟 𝑦 𝑥) × (∀𝑥 𝜄 , ∀𝑦 𝜄 , ∀𝑧 𝜄 𝑥 ∈ 𝑎 ⇒ 𝑦 ∈ 𝑎 ⇒ 𝑧 ∈ 𝑎 ⇒ 𝑟 𝑥 𝑦 ⇒ 𝑟 𝑦 𝑧 ⇒ 𝑟 𝑥 𝑧)Then, we define a type 𝑅 𝑎 𝑟 𝑥 𝑦 expressing that 𝑦 is the chosen represent of the equivalence class of 𝑥 for the relation 𝑟 over the type 𝑎: 𝑅 𝑎 𝑟 𝑥 𝑦 = 𝐶 𝑎 (𝜆𝑦.𝑟 𝑥 𝑦) 𝑦 From this, we get the following three terms: 𝜆𝑟.𝜆𝑥. 𝑀 (𝑥, 𝑟.1 𝑥) : ∀𝑎 𝜄→𝑜 , ∀𝑟 𝜄→𝜄→𝑜 , 𝐸 𝑎 𝑟 ⇒ 𝑥 ∈ 𝑎 ⇒ ∃𝑦 𝜄 , 𝑅 𝑎 𝑟 𝑥 𝑦 𝜆𝑟.𝜆𝑥.𝜆𝑐. (𝑐.2, 𝑐.3) : ∀𝑎 𝜄→𝑜 , ∀𝑟 𝜄→𝜄→𝑜 , ∀𝑥 𝜄 , ∀𝑦 𝜄 , 𝑅 𝑎 𝑟 𝑥 𝑦 ⇒ 𝑦 ∈ 𝑎 × 𝑟 𝑥 𝑦 𝜆𝑟.𝜆𝑥1.𝜆𝑥2.𝜆𝑐1.𝜆𝑐2.𝜆𝑒.𝑈 𝑐1 𝑐2 (𝜆𝑧.𝜆𝑝. 𝑟.3 𝑥2 𝑥1 𝑧 (𝑟.2 𝑥1 𝑥2 𝑒) 𝑝, 𝜆𝑧.𝜆𝑝. 𝑟.3 𝑥1 𝑥2 𝑧 𝑒 𝑝): ∀𝑎 𝜄→𝑜 , ∀𝑟 𝜄→𝜄→𝑜 , ∀𝑥 𝜄 1 , ∀𝑥 𝜄 2 , ∀𝑦 𝜄 1 , ∀𝑦 𝜄 2 , 𝐸 𝑎 𝑟 ⇒ 𝑥1 ∈ 𝑎 ⇒ 𝑥2 ∈ 𝑎 ⇒ 𝑅 𝑎 𝑟 𝑥1 𝑦1 ⇒ 𝑅 𝑎 𝑟 𝑥2 𝑦2 ⇒ 𝑟 𝑥1 𝑥2 ⇒ 𝑦1 ≡ 𝑦2The first term establishes the existence of a representent. The second term the fact that this represent is in 𝑎 and equivalent to the original object. Finally the last terms shows that representent are equal if the original objects where equivalent.

 include l i b . e i t h e r include l i b . n a t include l i b . n a t p r o o f s // d e f i n i t i o n and theorem f o r e q u i v a l e n c e o f unary p r e d i c a t e s d e f e q u i v ⟨a , f , g⟩ = (∀x : 𝜄 , x∈a → f ⟨x⟩ → g⟨x⟩) × (∀x : 𝜄 , x∈a → g⟨x⟩ → f ⟨x⟩) d e f i d t : 𝜄 = fun x {x} val e q r e f l : ∀a , ∀ f , e q u i v ⟨a , f , f ⟩ = (fun { i d t } , fun { i d t })

 fun e1 e2 { (fun x p { e2 . 1 x (e1 . 1 x p) } , fun x p { e1 . 2 x (e2 . 2 x p) }) }// t e s t t h a t r e d u c e t h e type s i z e when we know n<m t o p l e a s e t h e t e r m i n a t i o n c h e c k e rval rec l e q s i z e : ∀o , ∀m∈ n a t ^(o +1) , ∀n∈nat , e i t h e r ⟨ l e q m n , n∈ n a t ^o⟩ =fun m n { case m { Z e r o → case n { Z e r o → InL S [n] → InL } S [m] → case n {

 Proof. The monotonicity of our definitions is immediate from the definition and imply (2),[START_REF] Barbanera | A symmetric lambda calculus for classical program extraction[END_REF] and (4). 𝛿(𝑣, 𝑤, 𝑡) * 𝜋 ≻ 𝑡 * 𝜋 holds if and only if ∃𝑛 ∈ N, s.t. 𝛿(𝑣, 𝑤, 𝑡) * 𝜋 ≻𝑛 𝑡 * 𝜋 holds which is by definition

1) ≡𝑛 is a decreasing relation and ≻𝑛 and ↓𝑛 are increasing. Therefore, (2) 𝑡 ≡𝑛 𝑢 iff ∀𝑝 ≤ 𝑛, 𝑡 ≡𝑝 𝑢, (3) 𝑡 ≻𝑛 𝑢 iff ∀𝑝 ≥ 𝑛, 𝑡 ≻𝑝 𝑢 and (4) 𝑡 ↓𝑛 iff ∀𝑝 ≥ 𝑛, 𝑡 ↓𝑝. (5) For 𝑣, 𝑤 values, 𝑡 a term and 𝜋 a stack, 𝛿(𝑣, 𝑤, 𝑡) * 𝜋 ≻ 𝑡 * 𝜋 iff 𝑣 ̸ ≡ 𝑤. (6) For 𝑡, 𝑢 terms, 𝑡 ≡ 𝑢 implies 𝑡 ↓⇔ 𝑢 ↓. equivalent to ∃𝑛 ∈ N, 𝑣 ̸ ≡𝑛 𝑤, which is the definition of 𝑣 ̸ ≡ 𝑤.

𝑡 ≡ 𝑢 means that ∀𝑛 ∈ N, (𝑡 ↓𝑛⇔ 𝑢 ↓𝑛). But as the relation 𝑡 ↓𝑛 is increasing, this means that either 𝑡 and 𝑢 never converge or start converging at the same level 𝑛. This implies 𝑡 ↓⇔ 𝑢 ↓ but is in general not equivalent.

□

 The proof for values is similar using the stack [𝜆𝑥.𝑡-]𝜋.

□ 2 TYPES AND REALIZABILITY SEMANTIC Expressions are simply typed 𝜆-terms using the base type 𝜄 for individual and 𝑜 for proposition. Here are the rules to form expressions which are quotiented by 𝛼𝛽-equivalence: : 𝜆𝜉.𝑒 : 𝑠1 → 𝑠2 if 𝑒 : 𝑠2 assuming 𝜉 : 𝑠1 𝑒𝑓 : 𝑠2 if 𝑒 : 𝑠1 → 𝑠2 and 𝑓 : 𝑠1 𝑡 : 𝜄 if 𝑡 ∈ Λ 𝑒 ⇒ 𝑓 : 𝑜 if 𝑒, 𝑓 : 𝑜 ∀𝜉 𝑠 , 𝑒 : 𝑜 if 𝑒 : 𝑜 assuming 𝜉 : 𝑠 ∃𝜉 𝑠 , 𝑒 : 𝑜 if 𝑒 : 𝑜 assuming 𝜉 : 𝑠 𝑒1 × . . . × 𝑒𝑛 : 𝑜 if 𝑒1 : 𝑜, . . . , 𝑒𝑛 : 𝑜 U will denote the empty product type 𝑡 ∈ 𝑒 : 𝑜 if 𝑡 ∈ Λ and 𝑒 : 𝑜 𝑒 | 𝑡 ≡ 𝑢 : 𝑜 if 𝑒 : 𝑜 and 𝑡, 𝑢 ∈ Λ 𝑒 | 𝑡 ↓ : 𝑜 if 𝑒 : 𝑜 and 𝑡 ∈ Λ N : 𝑜 Ψ : 𝜄 → 𝜄 We call sorts the types of expressions to avoid confusion with the types of our system, i.e. expressions of sort 𝑜. It is important to notice that individuals, expressions of sort 𝜄 contains all terms, not only natural numbers.

}

 Remark: Ψ is interpreted as our enumeration of all closed values. Lemma 2.1. The definition is correct and we indeed have |𝑒| 𝑠 ∈ |𝑠|. We also have ||𝑒|| closed by equivalence for 𝑒 : 𝑜.Proof.The set of terms ||𝑒|| is closed by equivalence immediatly from the definition. The property |𝑒| 𝑠 ∈ |𝑠| is also immediate by induction on the construction. □ Now comes a lemma expressing that equivalence does not equalise to much values and we have the control over values in |𝑒| 𝑜 . Without this, the correctness theorem 3.2 would be mostly useless. Lemma 2.2. The interpretation |𝑒| 𝑜 is closed for equivalence restricted to closed values. For product, take 𝑣 = (𝑣1, . . . , 𝑣𝑛) with 𝑣1 ∈ |𝑒1| 𝑜 , . . . , 𝑣𝑛 ∈ |𝑒𝑛| 𝑜 and 𝑤 ≡ 𝑣. First we use the stack [[-]𝜆𝑥.𝜌(𝑥, 𝑣0)] * 𝜀 with 𝑣0 ∈ ⊥ to establish that 𝑤 = (𝑤1, . . . , 𝑤𝑚). Then, using the stack [𝜆𝑥.𝑥.𝑖-][𝜆𝑦.𝑣0-]𝜀 for 1 ≤ 𝑖 ≤ max 𝑛 𝑚 we get 𝑛 = 𝑚, next if 𝜋 is a stack establishing 𝑣𝑖 ̸ ≡ 𝑤𝑖, the stack [𝜆𝑥.𝑥.𝑖-]𝜋 gives 𝑣 ̸ ≡ 𝑤, so we must have 𝑣𝑖 ≡ 𝑤𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. Finally we conclude by induction. For N, the proof is similar using the stack 𝜈(𝑛, 𝑣0) * 𝜀 with 𝑣0 ∈ ⊥. □ Remark: we only need 𝜌 to distinguish the unit tuple () from other kind of values, 𝜑 for the case when |𝑒| 𝑜 is empty. Lemma 2.3. For any set of value 𝑉 closed by equivalence, 𝑉 ⊂ ||𝑉 ||. If for a closed value 𝑣, we have 𝑣 ∈ ||𝑉 ||, then 𝑣 ∈ 𝑉 . Thanks to our convention for using formula with parameter in the model, we can write ||𝑉 || and do not need a syntax for orthogonality. The relation 𝑉 ⊂ ||𝑉 || is standard in classical realizability. The second property is less usual and essential. This was the purpose of adding the constant 𝛿 and defining reduction and equivalence by induction. Proof. The relation 𝑉 ⊂ ||𝑉 || is easy to prove from the definition. Let us assume that 𝑣 ∈ ||𝑉 ||, 𝑣 /

Proof. We prove this by induction on 𝑒. The only non trivial case are the following: For function type 𝑒 ⇒ 𝑓 , assume that 𝑣 ≡ 𝜆𝑥.𝑡 with ∀𝑤 ∈ |𝑒| 𝑜 , 𝑡[𝑥 := 𝑤] ∈ ||𝑓 ||. If 𝑣 is not an abstraction, the stack [𝜆𝑥.𝜑(𝑥, 𝑣0)-]𝜀 with 𝑣0 ∈ ⊥ yields a contradiction. So we know 𝑣 = 𝜆𝑥.𝑢 for some 𝑢. Now let us take 𝑤 ∈ |𝑒| 𝑜 , we have to show that 𝑢[𝑥 := 𝑤] ∈ ||𝑓 ||. For this, it is enough to show 𝑢[𝑥 := 𝑤] ≡ 𝑡[𝑥 := 𝑤] as we have ||𝑓 || closed by equivalence. We assume 𝑢[𝑥 := 𝑤] ̸ ≡ 𝑡[𝑥 := 𝑤] and take 𝜋 witnessing that. The stack [-𝑤]𝜋 contradicts 𝑣 ≡ 𝜆𝑥.𝑡. ∈ 𝑉 . Consider the stack 𝜋 = [𝜆𝑥.𝛿(𝑥, 𝑣, 𝑣0)-] * 𝜀 with 𝑣0 ∈ ⊥. As 𝑣 ̸ ∈ 𝑉 , for any 𝑤 in 𝑉 , we have 𝑣 ̸ ≡ 𝑤 and therefore 𝑤 * 𝜋 ≻ 𝑣0 * 𝜀. Therefore 𝜋 ∈ |𝑉 | ⊥ and as 𝑣 ∈ ||𝑉 || we should

have 𝑣 * 𝜋 ≻ 𝑤0 * 𝜀 for some 𝑤0 ∈ ⊥, and this is obviously not the case as 𝑣 ≡ 𝑣 implies that the rule for 𝛿 does not apply and the process 𝛿(𝑣, 𝑣, 𝑣0) * 𝜀 can not be further reduced. □

The next theorem is really essential as it validates the substitution rule which is required to use dependent products with terms that are equivalent to values and not only equal values. This is important because otherwise we can not deduce from ∀𝑎 𝜄 , 𝑎 ∈ N ⇒ 𝐴 𝑎 that 𝐴(𝑛 + 𝑚) as 𝑛 + 𝑚 is not a value. In PML, we can prove by induction that 𝑛 + 𝑚 is always equivalent to some values which can be expressed as

∀𝑎 𝜄 , 𝑎 ∈ N ⇒ ∀𝑏 𝜄 , 𝑏 ∈ N ⇒ (𝑎 + 𝑏) ↓

Theorem

2.4. If 𝑣 ∈ ||𝐴||, then 𝑣 ∈ |𝐴| 𝑜 . Proof. Direct from lemma 2.2 and 2.3. □ Lemma 2.5. The semantic as the following property regarding subsitution: If 𝑒 : 𝑠1 and 𝑓 : 𝑠2 are expressions, if 𝑒 has only one free variable 𝜉 of sort 𝑠2 and if 𝑓 is closed, then |𝑒[𝜉 :

PML was developed without the extensional choice in mind, it is rather surprising that the same ingredient works for that problem.

However, the orthogonal of a union is the intersection of the orthogonals, which makes universal quantification work in call-by-name realizability.

To do the typing, we take 𝑎 : 𝑜 and 𝑓 : 𝜄 → 𝑜 and assume ℎ : ∃𝑥 𝜄 , 𝑥 ∈ 𝑎 × 𝑓 𝑥. We have 𝜒(ℎ) : ∃𝑛 𝜄 .𝑛 ∈ N, Ψ𝑛 ∈ 𝑎 × 𝑓 (Ψ𝑛). So we write a redex and assume 𝑐 : ∃𝑛 𝜄 .𝑛 ∈ N, Ψ𝑛 ∈ 𝑎 × 𝑓 (Ψ𝑛). We need to write a redex to apply the left existential rule or be able to write the projection. We define 𝐹 = ∃𝑔 𝜄→𝑜 , ∃𝑛 𝜄 , 𝐵 𝑎 𝑓 𝑔 𝑛 and find a term of that type. We use classical logic and therefore we assume 𝛼 : 𝐹 ⊥ .

To prove 𝐹 , we first prove ∀𝑛 : 𝜄, 𝑛 ∈ N → 𝑃 𝑛 by induction on 𝑛 with:

Using the rule for 𝑌 , We assume 𝑛 : N, 𝑟 : ∀𝑝 : 𝜄, 𝑝 ∈ N | 𝑝 < 𝑛 → 𝑃 𝑝 and we must prove 𝑃 𝑛. Unrolling the definition of 𝑃 , we assume 𝑒 : (𝑓 ⇔𝑎 𝑔), 𝑥 : 𝜓𝑛 ∈ 𝑎, 𝑡 : 𝑔(𝜓𝑛) and we must prove

Taking 𝑛 for the existential, we can use the tuple (𝑛, 𝑒, 𝑥, 𝑡, 𝑇) provided we find 𝑇 : 𝑀 𝑎 𝑓 𝑛.

To contruct 𝑇 , we take ℎ : 𝜄 → 𝑜, assume 𝑝 : N, 𝑒 ′ : (𝑓 ⇔𝑎 ℎ), 𝑦 : 𝜓𝑝 ∈ 𝑎 and 𝑢 : ℎ(𝜓𝑝) and we must prove 𝑛 ≤ 𝑝. So we actually test for 𝑛 ≤ 𝑝. As this function is total, we can actually use 𝑛 ≤ 𝑝 is the first case and provide () : 𝑛 ≤ 𝑝. In the second case, we have (𝑛 ≤ 𝑝) ≡ 0 ⊢ (𝑝 < 𝑛) ≡ 1. Hence we can use the induction hypothesis with 𝑝, 𝑒 ′ , 𝑦 and 𝑢 to get a contradiction with 𝛼 : 𝐹 ⊥ . Now that we have proved ∀𝑛 : 𝜄, 𝑛 ∈ N → 𝑃 𝑛, we use it with 𝑐.1, 𝑅, 𝑐.

Above we wrote 𝑐.2.2 as an abbreviation for (𝜆𝑥. 𝑥.2)𝑐.2.

To type 𝑀 , we use the previous lemma and therefore, using left rule for existential,we have 𝑐 : 𝐵 𝑎 𝑓 𝑔 𝑛.