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Abstract

This paper deals with the optimal pattern that can be used to retrieve displacement
fields by minimizing the optical residual calculated over small regions of contrasted im-
ages. This minimization is generally performed in the spatial domain by processing
speckle patterns with DIC. Another option is also considered here. It consists in switch-
ing this minimization to the Fourier domain. The benefit is that periodic patterns can
be processed, which is generally not possible with DIC. It turns out that the opti-
mal pattern in terms of sensor noise propagation is theoretically the checkerboard if
it is correctly sampled, and this pattern is periodic. The reason why checkerboard is
optimal is that the image gradient is maximum in this case. In addition, the minimiza-
tion of the image residual in this case has a quasi-direct solution, which considerably
speeds up the calculations. We first recall the basics of the different techniques used
in the paper, namely classic subset-based DIC, and a spectral method called Localized
Spectrum Analysis (LSA). A recent deconvolution procedure introduced to enhance
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the metrological performance of DIC and LSA is also briefly recalled and used in this
study. Synthetic images are considered to assess in different cases the displacement
resolution, as well as other sources of spurious spatial fluctuations observed in the dis-
placement fields such as the pattern-induced bias with DIC. The main conclusion is
that using checkerboards instead of random speckles leads to measurements featuring
a better compromise between spatial resolution and measurement resolution.

Keywords: checkerboard, deconvolution, digital image correlation, grid method, heteroscedastic

noise, localized spectrum analysis, metrology, pattern-induced bias, pattern optimization, speckle,

windowed Fourier transform

1 Introduction

Digital Image Correlation (DIC), whose basic version only requires minimal surface prepa-
ration, is a versatile technique which is now routinely employed in experimental mechanics.
There is an active community involved in the improvement of the metrological performance
of this measuring technique. A prerequisite to reach this goal is that all the parameters
influencing the quality of the final results are clearly identified, and their effect quantified.
Most of the papers tackling this topical issue deal with the influence, on the displacement
and strain fields, of the various options which can be employed when processing images
of the deformed surface. The influence of various settings is also studied in these papers.
Studying the nature of the matching function used to represent the displacement within
the subsets [1, 2], examining the influence of the corresponding settings such as the size
of the subsets [3], quantifying the impact of the interpolant used when processing the im-
ages of the deformed and/or undeformed specimen to get them in the same coordinate
system [4, 5], or analyzing how noise in images affects the final result [6, 7], are typical
examples. On the other hand, studying the influence of the pattern on the quality of the
results remains a relatively understudied topic, but recent papers on this subject show
that this situation progressively changes. Indeed, the very nature of the pattern really
constitutes an influencing parameter [8, 9, 10, 11], and the need for standards on full-field
measurement techniques requires that reproducible patterns (or at least patterns featuring
similar properties) can be obtained and deposited on specimens, which raises the question
of the definition of optimized patterns.

A recent overview on the procedures, which are available to define the best pattern
for DIC, has led to combine various existing quality metrics to propose, realize and test
different solutions [12]. In this reference, the main point raised by the authors is that
preexisting metrics on speckle quality assessment may lead to opposite conclusions when
estimating the quality of a given pattern. This justifies combining various metrics to
obtain solutions constituting a tradeoff between contradictory constraints. For instance
noise propagation to the final displacement maps is minimized if, on average, the norm of

2



the gradient of the gray level distributions in the images is maximized. The reason is that
predictive formulas for this noise show that it is inversely proportional to the norm of this
gradient, [13] for instance. The sum of the square of the subset intensity gradient (SSSIG)
over the subset is generally used to globally assess this norm [10, 12, 14]. In this regard,
a checkerboard constitutes the best pattern if it is correctly sampled in the images [12].
However the periodicity of this pattern makes it difficult, if not impossible in practice, to
find the absolute minimum of the optical residual to deduce the actual displacement by DIC
if the true displacement is greater than the period of the periodic pattern. The consequence
is that checkerboards are not used in DIC applications, other patterns combining various
criteria being considered as optimal [8, 9, 10, 11, 12, 15, 16, 17]. Recently and as illustrated
in Figure 1, it has been shown in [18] that thanks to the Parseval’s theorem and some mild
assumptions, minimizing the optical residual over small regions to find the displacement at
the center of these regions, as local DIC does on speckles in the spatial domain, could be
switched advantageously to the Fourier domain in case of a periodic pattern. This led to
propose subsequently in [19] a Fourier-based method named Localized Spectrum Analysis
(LSA) to process images of checkerboard patterns to retrieve displacement fields. In this
reference, it is experimentally evidenced that the noise level in displacement and strain
maps obtained with a checkerboard pattern is actually significantly lower than the noise
level observed in similar maps obtained from classic grid patterns.

Optical Residual Optical Residual

Mild assumptions

+ Parseval’s theorem

Minimization in the Minimization in the

Fourier domain

u u

with DIC with LSA

spatial domain

Figure 1: Schematic view of the minimisation of the optical residual in the spatial domain
with DIC, and in the Fourier domain with LSA, after the demonstration given in [18].
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In this context, the objective of the present paper is to compare the quality of the
in-plane displacement fields returned by DIC applied on speckles on the one hand, with
that observed in displacement fields obtained by using checkerboards and LSA on the other
hand. The underlying idea is to check whether checkerboard is really the best pattern to
determine displacement and strain fields by minimizing the optical residual, this minimiza-
tion being performed iteratively with DIC in the spatial domain, and quasi-directly with
LSA in the Fourier domain.

The paper is organized as follows. The three metrological parameters considered here
to compare DIC and LSA are recalled in Section 2. The tools and the methodology used
to compare these two techniques are presented in Section 3. We discuss in Section 4 the
results obtained in terms of noise level in the displacement maps, and which is due to sensor
noise propagation. Residual bias such as the pattern-induced bias observed in addition to
the so-called matching bias in DIC is considered in Section 5. The computing times for
DIC and LSA are briefly compared in Section 6. Some experimental results are finally
discussed in Section 7.

2 Definitions and techniques used in the present study

The definition of the main metrological parameters discussed here is first recalled in this
section.

Three metrological parameters are used in this paper. They are defined as follows:
Measurement resolution: in Ref. [20], the measurement resolution is denoted by σu

and defined by the smallest change in a quantity being measured that causes a perceptible
change in the corresponding indication. More precisely, it is proposed in [21] to define it as
the change in quantity being measured that causes a change in the corresponding indication
greater than one standard deviation of the measurement noise, which enables us to quantify
the measurement resolution. This definition is quite arbitrary, any other (reasonable)
multiple of the standard deviation being also potentially acceptable, but the idea is that the
resolution quantifies the smallest change not likely to be caused by measurement noise [21].

Spatial resolution: the spatial resolution denoted by d is defined here by the lowest
period of a sinusoidal deformation that the technique is able to reproduce before losing a
certain percentage of amplitude, this quantity being chosen a priori [22]. The advantage of
this definition is that it is not based on an arbitrary value of the subset size in DIC, or of the
window used while processing a periodic pattern with LSA (see Section 3.2 below). This
makes it possible to compare the spatial resolution between these two techniques, whose
principle is totally different. With LSA, this definition of the spatial resolution holds for
the phase, and consequently for the displacement. For both techniques, this definition also
holds for the strain components if no smoothing is performed before differentiating the
displacements. Otherwise the spatial resolution is all the more impaired as the width of
the filter is large.
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Bias: a systematic error generally occurs when a given technique returns actual details
in displacement and strain maps. It is due to the fact that the amplitude of such apparent
details is generally lower than the amplitude of the actual details. This apparent “damping”
is a bias, which can be quantified by considering a sinusoidal reference displacement field,
and measuring the relative loss of amplitude exhibited by the displacement field returned
by the technique under study, as suggested in Refs. [3, 23, 22, 24] for DIC or in [25, 26]
for LSA. Of course, this relative loss of amplitude, denoted here by λ. depends on the
frequency f of the sine function. In this context, the spatial resolution d is defined for a
given bias λ, the relation between d and λ being that d is the smallest value such that
the relative loss of amplitude is equal to λ. In the remainder of this paper, we call λ the
bias of the method. This is a slight abuse of language since fixing λ does not mean that
the damping of any displacement or strain field is actually equal to this value of λ. Note
finally that for DIC, the effect quantified here by λ is often referred to as the “matching
bias”, because it occurs when there is a mismatch between the actual displacement and
the matching function used to describe this displacement within subsets

3 Methods

We propose here to briefly recall the main features of the procedures and tools used in this
paper.

3.1 Digital image correlation

The classic local version of DIC has been implemented and used in this study [27]. The
subset is a square. Its dimension lies between 9×9 and 41×41 pixels. The well-known sum
of squared differences SSD criterion is chosen for the minimization of the optical residual
in the spatial domain. First- and second-order matching functions are used to represent
the displacement within the subsets. The usual modified Gauss-Newton scheme [28] is
implemented to solve the optimization problem, with a convergence criterion defined with
the value of the residual calculated for each iteration. The step between two consecutive
subsets is equal to one pixel. This enables us to employ deconvolution as an enhancement
tool for the results obtained by classic DIC, as explained in Section 3.3 below in the case of
first-order matching functions, because DIC returns the true displacement convolved by a
Savitzky-Golay (SG) filter [1]. This value of one pixel also ensures a fair comparison with
LSA because displacements and strains are calculated pixelwise with this latter technique,
as justified in the following section. Finally, this small value enables us to rely on the
ultimate metrological performances of DIC to perform this comparison since no extra
interpolation is required to elaborate the displacement map from values available at the
center of the subsets only.
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3.2 Localized Spectrum Analysis applied to checkerboards

We present here the fundamentals of LSA with more details than in the reminder on DIC
above, LSA being less popular than DIC. LSA consists first in calculating the Windowed
Fourier Transform (WFT) of the image of a periodic pattern for a given frequency. This
is the nominal frequency of the periodic pattern. For a checkerboard aligned with the
x1 and x2 axes, it is shown that the periodic pattern which must be considered is that
defined by the two lines of diamonds that can be seen along the bisectors of the x1 and x2
directions [19] (see Figure 2).
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Figure 2: Schematic view of a checkerboard aligned with the x1-x2 axes.

The spatial frequency f of the pattern along these directions is f =

√
2

p
. In this case,

the WFT can be written as follows

ŝw(x1, x2, θ) =

∫ +∞

−∞

∫ +∞

−∞
s(η1, η2)w(x1 − η1, x2 − η2)e−2iπf(η1cosθ+η2sinθ)dη1dη2 (1)

where s is the gray level distribution of the image. w is a window centered at the pixel
of coordinates x1, x2 where ŝw(x1, x2, θ) is calculated. A Gaussian window constitutes the
best tradeoff between various constraints [29]. The function defining this Gaussian window
is given by the following equation:

w(x1, x2) =
1

2π`2
e

−x21 + x22
2`2


(2)

where ` is the standard deviation of the Gaussian function. Similarly to 2M + 1 for the
subset size in DIC, ` can be considered as a handy parameter which governs the apparent
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width of the window used in LSA, this quantity being equal to 6` according to the so-
called “3 − σ rule” [30]. The difference is that 2M + 1 is an integer whereas ` is a real
number. ŝw is calculated for two perpendicular directions of the periodic pattern. Hence
θ = ±45 degrees since we deal with a checkerboard [19]. The calculation of the WFT
for these two directions provides two distributions of complex numbers. The arguments
of these complex numbers are considered, after unwrapping, to be equal to the two phase
distributions of the signal along the bisectors of the checkerboard. These two phases are
unwrapped and a mere change of basis finally provides the phases along the x1 and x2-
directions. These two phases are the two components of a vector denoted by Φref for the
reference image and Φcur for the current (or deformed) one. In the (x1, x2) coordinate
system, the displacement is finally related to these phases Φref and Φcur by using the
following equation:

u(x1, x2) = − p

2π

(
Φcur(x1 + u1(x1, x2), x2 + u2(x1, x2))− Φref (x1, x2)

)
(3)

u is involved in both parts of this equation. It is retrieved by using the fixed-point
algorithm, which rapidly converges here, one iteration being generally sufficient [31]. The
last remark is that the phases obtained with this approach are not exactly equal, regardless
of noise, to the true phases. Indeed they are equal, at first approximation, to the latter
convolved by a kernel which is the window w used in Equation 1 above. This result,
demonstrated in [32], is similar to the one obtained for displacement in DIC, the only
difference being the nature of the kernel [19]. It also means that deconvolution can be used
as an enhancement tool for the results obtained with LSA, as briefly recalled below.

3.3 Deconvolution

Deconvolution is an efficient numerical tool widely used in image processing. It has been
recently shown in [33] that a specific deconvolution algorithm can be used to enhance
displacement and strain maps obtained with local DIC or LSA. The enhancement is due
to the fact that the spatial resolution decreases (thus is improved) while the displacement
resolution (thus the noise level) does not increase in the same proportion. This leads the
total error (= random error + systematic error) to be lower after deconvolution. This
technique is recent for displacement and strain maps, so its influence on the metrological
performance will be studied in various cases considered in this study. As recalled above, the
quantities obtained with local DIC and LSA are equal to their true counterparts convolved
by a kernel known a priori. The deconvolution procedure used here relies on a Taylor
expansion of the convolution product between a quantity q, which is either the displacement
for DIC or the phase for LSA, and the filter corresponding to the technique used, namely
the Savitzky-Golay (SG) filter for DIC [1], or a Gaussian function for LSA [32]. The Taylor
expansion is carried out up to the second order. This gives the following link between the
true value denoted by qtrue, and its counterpart q provided by the measurement technique
under consideration.
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qtrue = q − δq (4)

δq is a corrective term obtained with the second-order terms of the Taylor expansion.
Indeed, it is shown in [33] that the first derivatives do not play any role in the procedure,
contrary to the second-order ones. The deconvolution algorithm consists in iteratively
updating the corrective term δq between qtrue and q defined in Equation 4. Since the
corrective term is not rigorously equal to δq with this iterative approach, we do not retrieve
exactly qtrue at the end of the procedure, but a quantity close to qtrue, which is denoted
by q̃. The approximation of the corrective term used during the deconvolution algorithm
is denoted by δq̃. This gives

q̃0 = q

q̃it+1 = q̃ − δq̃it

with δq̃it =
1

2

∑
i={u,v}

2∑
k,l=1

q̃iti,kl Ikl ei

, (5)

where q̃iti,kl is the second derivative of q̃it with respect to xk and xl at iteration “it”. It is
estimated in practice by convolution of the map q with a second-order derivative kernel,
chosen here as a classic “Mexican hat”. u and v are the directions along which q̃ is
determined. For DIC, these directions are directly the x1 and x2 axes along which the
displacement is given. For LSA applied on checkerboard, these directions are the two
bisectors of the x1 and x2 directions defined in Figure 2 [19]. Ikl is the second moment of
the kernel w involved in each technique (a SG filter for local DIC, and a Gaussian function
for LSA), thus

Ikl =

∫∫
(η1,η2)∈<2

w(η1, η2)ηkηl dη1 dη2 (6)

The flowchart in Figure 3 sums up the deconvolution procedure.
Finally, it is worth remembering from [33] that deconvolution can be applied for a cer-

tain frequency range only in order to avoid amplifying the effect of the highest frequencies
involved in the signal. For instance, beyond a certain subset size 2M + 1, the transfer
function of the first-order SG filter is negative above a certain cutoff frequency observed to

be equal to the inverse of the subset size
1

2M + 1
. It means that the amplitude of a sine

displacement returned by local DIC is not only lower than the actual value beyond this
threshold frequency, but that it has a wrong sign. In order that the deconvolution algo-
rithm converges, it is shown in [33] that it is relevant to limit this effect by deconvolving q̃
only for the frequencies lower than this threshold value, which is possible by considering a
notch filter in the Fourier domain while calculating the second-order derivatives involved
in the corrective term δq̃it. For LSA, no sign change occurs in the transfer function of the
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begin

it = 0

Âq0
true

Ω q

”Âqit = 1
2

q
i={u,v}

q2
k,l=1 Âqit
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Âqit+1 = Âq ≠ ”Âqit

Âq Ω Âqit+1

Criterion satisfied ?

it Ω it + 1

end

no
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1

Figure 3: Flowchart of the deconvolution algorithm. q̃ is the displacement u when the
minimization of the optical residual is performed on random speckles in the spatial domain
(DIC), and the phase Φ when the minimization of the optical residual is performed on
checkerboards in the Fourier domain (LSA). In practice the criterion used to stop the
iterative calculation of the corrective term is the number of iterations, equal to 10 in the
present study.
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Gaussian window used in the windowed Fourier transform since the Fourier transform of a
Gaussian function is also a Gaussian function. It has been observed in [33] that for LSA,
choosing a threshold value equal to 0.1 pixel−1 leads to a reduction of the noise in the maps
obtained after deconvolution. In conclusion, only the frequencies lower than a threshold

value equal to
1

2M + 1
for DIC and 0.1 pixel−1 for LSA will be impacted by deconvolution

in the results given in this study.
Applying deconvolution as described above leads the systematic error induced by con-

volution to be canceled out up to a certain cutoff frequency. A consequence is that the
spatial resolution of the technique under consideration is significantly improved, whereas
the measurement resolution (thus the noise level) does not increase in proportion. This
causes the compromise between these two quantities to be dramatically improved. There
are however two main limitations for this approach:

1. the subset size for DIC and the size of the Gaussian window for LSA shall be limited.
Otherwise, the deconvolution procedure does not converge. For LSA applied on
checkerboards, the maximum value of the standard deviation of the Gaussian function
` that defines the kernel has been observed to be equal to the size of the pitch of the
checkerboard, thus ` = p. For DIC, it was not possible to find a clear threshold value
since it seems to be dependent of the random speckle pattern itself. 2M + 1=21 was
observed to be the maximum subset size for the particular pattern used in [33].

2. the second moment Ikl of w defined in Equation 6 is null when a second-order SG
filter is used, thus when second-degree polynomials are employed to describe the
displacement within the subsets in DIC. It means that the deconvolution procedure
described here will only be applied in the case of first-order matching functions. It is
worth noting that DIC results obtained with second-order matching functions could
theoretically be deconvolved by considering a Taylor expansion of the convolution
product up to the fourth order (the influence of the third order is null), which is
however beyond the scope of the present paper. In particular, correctly estimating
the fourth derivatives of the signal to be deconvolved is challenging, if not impossible
from a practical point of view.

3.4 Procedure used to compare sensor noise propagation for DIC and
LSA

3.4.1 Link between bias, spatial resolution and measurement resolution

The objective here is to propose a route for a fair comparison of the metrological perfor-
mance of the different techniques considered here by relying on the metrological parameters
recalled in Section 2. A problem is however that the size of the subset used in DIC and the
size of the window used in LSA are quantities which are arbitrarily and independently cho-
sen by the user within certain limits, and this choice influences the metrological parameters.
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Inspired from recent studies on the metrological performance of various full-field measure-
ment techniques [18, 34], the procedure employed here consists in fixing the bias λ to the
same value for both techniques, and then in examining how the measurement resolution
σu evolves as the spatial resolution d progressively changes. This latter quantity increases
with the subset size 2M + 1 (DIC), and with ` (LSA). It is rigorously demonstrated in [31]
and experimentally verified in [18] that the product defined by σu × d is constant for LSA
without deconvolution. The same property is experimentally observed in [18] for local DIC
without deconvolution. The idea here is to sweep a range of subset sizes 2M + 1 for DIC,
and a range of standard deviations ` for LSA, in such a way that the spatial resolution d
progressively changes, and to collect the corresponding displacement resolution σu in each
case. The set of subset sizes 2M + 1 investigated here is {9, 11, · · · , 39, 41}, and the set of
standard deviations ` is {6/

√
2, 5, 6, · · · , 11, 12}. The first value of the latter set is justified

by the fact that the minimum value of ` that can be used is p/
√

2 [19], where p is the pitch
of the checkerboard (see Figure 2), with p = 6 pixels in the present study, so that each
square of the checkerboard is sampled with 3 pixels [35].

3.4.2 Artificial images

DIC and LSA were applied on various synthetic images. Synthetic speckles were consid-
ered for DIC. They were obtained by using the speckle generator defined in [36]. They
also correspond to the images proposed by the DIC Challenge 2.0 [37, 23]. No interpola-
tion is performed while rendering the deformed speckle patterns with this procedure, so
interpolation errors that could potentially occur while generating the deformed patterns
are avoided. The parameters driving the speckle pattern generator program are chosen to
mimic at best a real speckle [36].

A set of reference/deformed checkerboard images was also generated. Such patterns can
easily be obtained by using closed-form expressions, but the same procedure as that used for
speckles was employed here for the sake of consistency. In particular, both the checkerboard
and the speckle images have the same contrast in this study. This is important here since
contrast directly governs image gradient, thus noise propagation to the final displacement
and strain maps, as can be checked in various paper on sensor noise propagation available in
the literature [38, 27, 39, 6, 7] for instance. The gray depth in all speckle and checkerboard
images is equal to 8 bit. The natural axes of symmetry of the checkerboard were rotated
by 10 degrees in order to avoid aliasing in the checkerboard images, as suggested in [40].
It means that the phases are first calculated in this rotated basis by using the procedure
described in Section 3.2. The phases are then expressed in the x1-x2 basis aligned with
the raws of pixels of the camera by using a change of basis. Closeup views of an artificial
speckle and an artificial checkerboard are shown in Figure 4.

The synthetic patterns were deformed by using a specific displacement field proposed
in [26] and used in recent studies [31, 19], among which the DIC Challenge 2.0 [37, 23].
It is such that the horizontal displacement is null whereas the vertical one is a mere sine
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Figure 4: Closeup views of the synthetic patterns used in this study.

function with a period linearly varying from the left to the right of the image. The mid-
height also forms a horizontal axis of symmetry along which the displacement is constant
and equal to its maximum value, which is here (uref2 )max = 0.5 pixel. This setting will turn
out to be useful below for DIC since the interpolation bias is null for this displacement
whatever the nature of the interpolant. Thus

uref2 (x1, x2) = 0.5 cos

(
2π

pwave(x1)
(x2 −H/2)

)
, (7)

where H is the height of the image. The period pwave is modeled by:

pwave = pminiwave +
pmaxiwave − pminiwave

L
x1, (8)

where L is the length of the image. pminiwave and pmaxiwave are the minimum and maximum values
of the period of the sinusoidal displacement, respectively. The different parameters chosen
here are L = 2000 pixels, H=501 pixels, pminiwave=10 pixels and pmaxiwave=150 pixels. Figure 5
shows the distribution of this reference vertical displacement uref2 .

We will see below that plotting the cross-section of the vertical displacement retrieved by
the different techniques under study provides meaningful information on their metrological
performance.

Finally, noise was added to these synthetic checkerboard and speckle images when
image noise propagation was studied. In real cameras, sensor noise is heteroscedastic. It
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Figure 5: Vertical reference displacement uref2 .

means that its standard deviation σimage(x1, x2) depends on the gray level s(x1, x2). This
phenomenon is modeled by considering that the variance linearly depends on the gray
level [41], so the standard deviation can be written as follows:

σimage(x1, x2) =
√
as(x1, x2) + b, (9)

where a and b are parameters which depend of the camera. In the DIC-challenge, a =
0.0342, b = 0.2679, so these values were also used here to add noise in the checkerboard
and speckle images.

3.4.3 Cases considered in the calculations

The procedure described above has been applied in different cases which are briefly de-
scribed below:

• local DIC was applied on the synthetic speckle images deformed with the reference
displacement field. Matching functions of degree 1 and 2 were successively considered.
The former is frequently implemented in commercial DIC packages, but the latter
is expected to more reliably return complex displacement fields. Deconvolution was
also applied, but in the former case only. Indeed, results obtained with second-degree
matching are not impacted by deconvolution as considered here [33];

• LSA was applied on the synthetic checkerboard images. Deconvolution was also
applied to improve the metrological performance of this technique, so results obtained
with and without applying deconvolution are presented below;

• DIC is not suited to process periodic patterns, mainly because of convergence issues.
They are due to the fact that many local minima appear in the cost function to be
minimized. However, if DIC is initialized at a point close to the solution, it is ex-
pected to successfully converge. Since we are here in a very particular case for which
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the amplitude of the displacement is not greater than 0.5 pixel, thus lower than half
the period of the checkerboard, initiating DIC with a null displacement automatically
leads the optimization program to converge toward the correct solution. This would
certainly not be possible with real checkerboard images since the displacement ob-
tained during a test is often greater than half the period of the checkerboard, at least
at some points. However considering this particular case in the present study enables
us to obtain the upper bound of what DIC can offer in terms of sensor noise propa-
gation, checkerboard being the optimal pattern in this regard [12]. This is important
because the random speckle pattern considered here is somewhat arbitrary. Because
of the random nature of the speckle patterns, any other pattern would potentially
lead to results different from the ones found in the particular case here, even by keep-
ing the same setting in the speckle generator. Using here a set of images proposed
by the DIC Challenge 2.0 enables us to discuss results obtained with typical speckle
images [23]. Refs [8, 9, 10, 11, 12, 15, 16] propose various speckles which can each
be considered as optimal with respect to various criteria, but considering all of them
is beyond the scope of the present paper. Ref. [12] claims however that any random
speckle can not be better than a checkerboard. In the present study, the underlying
idea is therefore to estimate to which extent a checkerboard leads to better results
than a typical random speckle, and also to observe how DIC performs compared to
LSA when applied on exactly the same pattern.

Table 1 sums up the different cases considered here.

4 Comparison of the techniques and patterns in terms of
displacement resolution

4.1 Displacement resolution as a function of 2M + 1 and `

The displacement resolution is first assessed in the different cases given in Table 1. It is
calculated in each case by considering noisy and noiseless pairs of reference and deformed
images, and subtracting the displacement maps obtained in the noisy and noiseless cases,
which gives a maps reflecting the noise in the displacement field due to the propagation of
the noise affecting the images. “Noise” corresponds here to the random spatial fluctuations
of the displacement, which are caused by sensor noise propagation. As expected from
Ref. [38, 27, 39, 6, 7], it is observed that the frequency of the underlying displacement does
not influence this distribution. This is illustrated in a typical example in Figure 6. Some
spots can be seen in this noise map because the displacement field is affected by a spatially
correlated noise for both LSA and DIC, which means that the typical size of the spots is
much greater than one pixel.

The displacement resolution σu is considered to be equal to the standard deviation of
this noise estimated over the whole map (excluding the border), as in previous studies, [31]
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case # technique used degree of the pattern deconvolution

matching function

1 DIC 1 SPKL N

2 DIC 1 SPKL Y

3 DIC 2 SPKL N

4 DIC 1 CKB N

5 DIC 1 CKB Y

6 DIC 2 CKB N

7 LSA n.a. CKB N

8 LSA n.a. CKB Y

Table 1: Cases under study. SPKL: speckle, CKB: checkerboard.
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Figure 6: Typical difference between displacement maps obtained with noisy and noiseless
pairs of images (in pixel). DIC, subset size 2M + 1 = 21 pixels in this example.

15



for instance. Figure 7-a shows σu estimated with DIC as a function of the subset size in
cases 1, 2 and 3 of Table 1, as well as σu for LSA, as a function of the standard deviation `
of the Gaussian function in cases 7 and 8. Figure 7-b also compares the results obtained for
DIC and LSA, but DIC is applied here on checkerboards, see cases 4, 5 and 6 of Table 1.
The results obtained for both techniques are plotted in the same figure. However, at this
stage, there is not yet any matching between the subset size 2M + 1 for DIC on the one
hand, and the standard deviation ` used in LSA on the other hand. This issue will be
discussed in the next section. The following comments can be drawn from these curves:

• without deconvolution, σu decreases as the size of the subset and the size of the
Gaussian function increase, which is logical, sensor noise being averaged over a larger
domain while extracting the displacement from the images;

• when deconvolution is applied, σu is slightly higher than in the preceding case for
the lowest values of 2M + 1 and σu. The procedure clearly diverges beyond a certain
threshold value equal to the pitch of the checkerboard for LSA, which is consistent
with the results found in [33]. Deconvolution is also expected to be unstable for
DIC, but the threshold value for the subset size 2M + 1 beyond which the procedure
diverges is not as clear as for LSA. This phenomenon is discussed in [33];

• it can be seen that for a given subset size 2M + 1, the noise level in the displacement
maps is higher for a second-degree matching function than for a first-degree one,
which is consistent with the conclusion of [27];

• by comparing the curves found for DIC in Figures 7-a and 7-b concerning DIC, it is
also worth noting that the noise level is much higher for DIC applied on speckle than
for DIC applied on checkerboard. The ratio between these two quantities, plotted in
Figure 8, is quite significant since it lies approximately between 2.3 and 3.3. This
ratio is observed to be the lowest for the largest subset sizes. This result is consistent
with the conclusion given in [12]. It is worth mentioning that DIC is applied here on
checkerboard by initiating the iterative minimization of the optical residual with a
displacement equal to zero, which is possible because the amplitude of the reference
displacement deforming the pattern is lower than half its period;

• it can be seen in Figure 7-b that LSA applied on checkerboard leads to values of the
displacement resolution, which are similar to the ones obtained with DIC applied on
checkerboard. By extension, it means that the ratio between the displacement resolu-
tions obtained with DIC applied on speckle, and with LSA applied on checkerboard,
has the same order of magnitude as that shown in Figure 8 for DIC only.
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(a) DIC on speckle and LSA on checkerboard
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(b) DIC and LSA on checkerboard

Figure 7: Displacement resolution σu as a function of the subset size 2M + 1 for DIC, or
of the apparent size of the Gaussian function 6× ` for LSA.17
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Figure 8: Ratio between displacement resolutions obtained with DIC on speckle and DIC
on checkerboard, as a function of the subset size 2M + 1.

4.2 Displacement resolution as a function of the spatial resolution d

It is difficult to fairly compare the results given by DIC and LSA from the preceding results
because they are given as a function of the subset size 2M + 1 on the one hand, and on the
standard deviation ` of the Gaussian window w on the other hand, and because these two
quantities are not directly comparable. The apparent size of a Gaussian window can be
estimated as 6` according to the “3− σ rule” [30] but this definition is quite arbitrary. In
addition, the influence on the final result of the pixels lying in this zone is not uniform. This
is the reason why we relied here of an objective quantity, which is the spatial resolution
d as defined in [22] and recalled in Section 2. This quantity is estimated in each case
from the displacement map returned by the technique used with an image deformed with
the reference displacement defined in Figure 5. Maps obtained with noiseless images are
used for this determination. The bias λ is first fixed to a given (and acceptable) quantity,
the period of the sine displacement for which the amplitude returned by the technique
is equal to (1 − λ) times the reference displacement is deduced. λ is set here to 10%.
In practice, the cross-section of the map along the axis of symmetry is plotted, and the
intersection with the horizontal line defined by u2 = (uref2 )max(1 − λ) = 0.5(1 − λ) is
determined. The curves being often affected by high-frequency fluctuations due to image
noise or to the pattern-induced bias (this phenomenon is discussed in Section 5 below), they
are smoothed with an averaging filter of width 200 pixels, in order to find an intersecting
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point less dependent on these fluctuations. This procedure is applied in each case, which
gives for each technique and pattern a set of points in the plane defined by the spatial
resolution d and the displacement resolution σu. The link between the two quantities (σu
and d ) can be represented by a curve obtained from the calculations carried out with
the different values of 2M + 1 and ` given above. This curve can be considered as an
intrinsic signature of a given technique when applied to a pair of reference and deformed
images. In addition, if, as expected, the product σu × d is really constant [18], considering
a logarithmic scale for both quantities, as in [34], should lead to a straight line of slope
-1 in the σu-d plane. This enables us to easily visually observe whether this property (the
fact that σu × d is constant) is satisfied or not. We start first with the results obtained
with DIC applied on the speckle and checkerboard images. The corresponding curves are
depicted in Figure 9 (the points corresponding to the cases for which d ≥ 150 pixels are
not represented in this figure)
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Figure 9: Displacement resolution σu as a function of the spatial resolution d for DIC
applied on speckle and on checkerboard.

The first striking point is that nearly the same sets of curves are obtained in both
cases, but they are shifted toward the bottom for the checkerboard, which means that the
displacement resolution (and thus the noise level) is lower in the second case. In theory, we
should find exactly the same spatial resolution for a given subset size whatever the pattern
encoding the actual displacement (random speckle or checkerboard). Hence, when assessing
d by determining the abscissa of the intersection between the cross-section of the map along
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the axis of symmetry on the one hand, and the horizontal line defined by u2 = 0.5(1− λ)
on the other hand, we should find the same result for the checkerboard and for the speckle,
which is not rigorously the case. This slight difference is due to the fact that the curves are
smoothed with an averaging filter of width 200 pixels while finding numerically the spatial
resolution in order to reduce the influence of the apparent high-frequency fluctuations
impacting the curves. Figure 10-a shows the curves used in a the particular case “DIC
with first-order matching functions”, with λ = 0.1 and 2M + 1=21 pixels. Speckle and
checkerboard images are considered in turn. It can be seen that the results obtained for
the two types of patterns are nearly the same, apart from the aforementioned fluctuations
which affect the curve obtained for the speckle. A closeup view of the same curves near their
crossing points with the horizontal line of equation u2 = 0.5(1−λ), is given in Figure 10-b.
It can be seen that the intersection points with the smoothed curves are not exactly the
same. This leads the points characterizing the two types of patterns not to be perfectly
aligned along the vertical direction in Figure 9.

Additional comments can also be drawn from the curves shown in Figure 9:

• when no deconvolution is applied, the points line up very well along different inclined
straight lines, except some points located at the very left of the figure which are
aligned along a vertical line (see Region A). These points correspond to the lowest
values of 2M+1 used with second-degree matching functions. This local non-linearity
of the response is certainly due to the fact that the size of the speckles is not suf-
ficiently small compared to the size of the subset. It means that beyond a certain
value, reducing the size of the subset does not bring any added value in terms of
improvement of the spatial resolution. The slopes of the curves considered in their
linear portion is reported in Table 2. They were calculated with the robustfit function
of Matlab. It can be seen that the values of this slope are close to -1, which illustrates
the fact that displacement resolution and spatial resolution are nearly inversely pro-
portional. Note that a similar result is obtained in [42] in the case of DIC, but with
another definition of the spatial resolution.

• considering second-degree matching functions in DIC causes the spatial resolution to
be improved, the representative curves being more toward the left of the diagram (see
the blue dot-dashed lines) than the curves of the first-degree matching functions;

• the positive effect of deconvolution is clearly illustrated by the fact that the corre-
sponding curves are markedly shifted toward the left (see the dashed lines). It means
that the spatial resolution significantly decreases, and thus that it is improved. For
the lowest values of the subset size, the points are approximately aligned, which is
no longer the case for the highest values (see Region B). This phenomenon illustrates
the fact that deconvolution progressively diverges for the highest values of the subset
size.
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Figure 10: Determination of the spatial resolution in a typical case (λ = 0.1 and 2M + 1 =
21 pixels). DIC on speckle (SPKL) and checkerboard (CKB) with first-order matching
functions are considered here. a- cross-section of the displacement field u2 along the midline.
b- closeup view near the crossing point with the horizontal line u2 = 0.5(1−λ) = 0.45 pixel.
The curves for CKB before and after smoothing are difficult to distinguish, the fluctuations
before smoothing being small.
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case # technique used degree of the pattern slope

matching function

1 DIC 1 SPKL -1.10

3 DIC 2 SPKL -1.14

4 DIC 1 CKB -0.99

6 DIC 2 CKB -1.07

7 LSA n.a. CKB -0.98

Table 2: Slopes of the σu − d curves (with logarithmic scale) in their linear portion.

The results obtained with LSA are now added to the previous ones. This gives the
curves shown in Figure 11.

• interestingly, DIC applied on checkerboard with first-degree matching functions is
equivalent to LSA, the representative curves being superimposed in these two cases
(see Region C). However, DIC enables us to reach lower spatial resolutions than LSA,
the minimum acceptable value of ` leading to a higher spatial resolution than the
lowest value of the subset size considered here with DIC;

• the preceding remark is no longer valid after deconvolution, the bright blue dashed
curve being located less toward the left than the pink dashed line (see Region D);

• in the curves which are discussed here, both the subset size 2M + 1 for DIC and the
standard deviation of the Gaussian function ` for LSA increase when going toward
the right. There is however an exception. This is the case for which deconvolution is
applied on LSA. This case corresponds to the pink dashed curve in Figure 11. In this
case, the procedure converges only if ` ≤ p, namely only if the standard deviation of
the Gaussian window is lower than the pitch of the checkerboard. As a consequence,
only the points corresponding to the lowest values of ` (` ≤ 7 pixels) are plotted in
this figure. Counterintuitively, the spatial resolution is better for ` = p, which is the

highest value of p for which deconvolution converges, than for ` = p

√
2

2
, which is the

lowest reasonable value of ` suggested in [33]. Consequently, the standard deviation
` of the Gaussian window used with LSA increases when going toward the left on the
a pink dashed curve.
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Figure 11: Displacement resolution σu as a function of the spatial resolution d in the
different cases studied in Figure 7. The size of the subset size 2M + 1 or the Gaussian
window ` increases for each curve when going from the left to the right, apart from the
case “LSA, CKB, with deconv” denoted by D, for which the contrary holds true, see the
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In conclusion, it is confirmed that at iso-spatial resolution, the displacement resolution
obtained with a checkerboard is significantly lower than that found with a speckle. DIC
could be performed here on checkerboard because the displacement remains lower than
0.5 pixels throughout the deformed images, so lower than half the period of the checker-
board, and it is found that DIC and LSA have a similar performance when applied on this
pattern.

5 Pattern-induced bias and other biases remaining after sub-
tracting the effect of convolution

5.1 Introduction

As recalled in Sections 3.1 and 3.2, the quantities returned by DIC and LSA, namely the
displacement and the phases, are equal to their true counterparts convolved by a kernel,
which is clearly identified. This kernel is a Savitzky-Golay filter [1, 43] for local DIC, and
the window w used in the WFT for LSA [32], here a Gaussian function. This property
is however satisfied at the first order only. Regardless of noise, other phenomena also
induce spurious fluctuations in the displacement fields. For instance, it is well-known that
interpolation induces an error in DIC calculations [4]. Pattern itself also causes some spatial
spurious fluctuations called pattern-induced bias to appear in the displacement fields, but
this phenomenon has only been recently addressed in the DIC literature [44, 45, 46, 47].
Finally, it is also worth remembering that the true signal is quantized. This also causes
an irreversible loss of information, which propagates up to the final displacement maps.
The idea here is to investigate these effects by considering the quantity returned by each
technique, and by subtracting from them the quantity convolved by the corresponding
kernel. An SG filter is considered with DIC and the quantity to be convolved is directly
the displacement. A Gaussian window is considered with LSA and the quantity to be
convolved in this case is the phase of the periodic pattern, the displacement being then
deduced from the convolved phases by using Equation 3. Images deformed by a given
displacement field are required to serve as a reference. The reference displacement field
defined in Section 3.4.2 is used here. Then we consider the residual displacement field
δuDIC and δuLSA defined by the following equations{

δuDIC = uDIC − uref ∗ wSG
δuLSA = uLSA − u(Φref ∗ wLSA)

, (10)

where uDIC is the displacement field returned by DIC by using a pair of synthetic noise-
less images, and uLSA is the same quantity obtained by LSA. Symbol “∗” represents the
convolution product of two functions. uref is the reference displacement defined in Equa-
tion 7. u(Φref ∗ wLSA) is the displacement obtained by solving Equation 3, in which the
phases are convolved by the same Gaussian window as that used when calculating uLSA.

24



u(Φref ∗wLSA) is not rigorously equal to uref ∗wLSA because of the fixed-point algorithm
used to deduce the displacement from the phases with LSA if it is used with more than
one iteration. δuDIC and δuLSA are expected to represent, as least for the representative
displacement field considered in this study, the deviation of DIC and LSA from the the-
oretical predictions given in [1] for DIC and [32] for LSA. These predictions claim that
both these techniques return at the first order the actual quantity (displacement or phase)
convolved by a kernel perfectly identified. In other words, δuDIC and δuLSA represent
a residual bias, which shall be added to the bias in the displacement field reflected by
the quantity λ discussed in the preceding sections. The objective here is to compare this
residual bias observed for both techniques by considering again the reference displacement
field. It is clear that we assume here that the images deformed by the reference displace-
ment are reliable enough so that they do not induce, during the image generation step,
any significant additional error compared to the ones which are expected to be character-
ized. In this regard, it is worth remembering that the image rendering procedure does not
rely on any interpolation for the speckle images processed by DIC [36]. A variant of the
program available in [36] has been specifically written and used here to rely exactly on the
same procedure to render the deformed images in both cases (random speckle or periodic
checkerboard).

5.2 Typical maps of δuDIC and δuLSA at iso-bias λ and iso-spatial resolu-
tion d

5.2.1 Procedure to find ` equivalent to 2M + 1

To start this discussion, we propose first to show some typical examples of δuDIC and
δuLSA maps. It is preferable to show these examples in a case for which the settings
chosen by the user, namely the subset size 2M + 1 for DIC and the standard deviation `
of the Gaussian window for LSA, lead to the same spatial resolution d and the same bias
λ. In the case of first-order matching functions, a closed-form expression demonstrated
in the Appendix gives the value of ` used in LSA, which can be considered as equivalent
to the value of 2M + 1 used in DIC. “Equivalent” means here that both techniques lead
to the same spatial resolution d and bias λ. Hence only the value of δuDIC and δuLSA

is expected to change from one technique to another, the artificial images being noiseless.
Since M is necessarily an integer whereas ` is a real, the latter shall be governed by the
former. As discussed in the Appendix, the following closed-form expression gives the link
between these quantities for first-degree matching functions:

` =

√
M(M + 1)

3
. (11)

However, no similar equation is available for higher-degree matching functions, so a
numerical procedure will be used to find the value of ` equivalent to M . It consists in
performing the following calculations:
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1. d is first determined for DIC for a given value of the subset size 2M+1. The approach
based on curve fitting discussed in Section 4.2 is used for this purpose;

2. d is also tabulated for LSA for a set of values of ` spanning the range over which

this latter value is expected to be found. [p

√
2

2
, p] was used in this study. The same

procedure as for DIC, which is based on curve fitting, is used to obtain d as a function
of ` for LSA;

3. the value of ` corresponding 2M + 1 is finally found in the table by seeking the value
of d for LSA, which is the closest to its counterpart obtained during step 1 for DIC.

Compared to the values obtained with Equation 11, approximate values for ` are found
with this procedure, the error made depending on the sampling of the interval defined
in step 2. Figure 12 shows that the difference between the value of ` found by using
Equation 11 and the numerical procedure above is negligible. For instance, for 2M + 1 =
19 pixels, applying the closed-form solution given in Equation 11 leads to ` = 5.48 pixels,
while ` is found to be equal to 5.32 pixels with the numerical procedure. The result obtained
after deconvolution is also reported in Figure 12 to highlight the benefit of deconvolution
in terms of spatial resolution since this quantity is significantly reduced, see [33] for more
details.

5.2.2 Typical maps without deconvolution

Figures 13-a, -b and -e show typical δuDIC2 and δuLSA2 maps obtained in the cases ”DIC
applied on speckle and checkerboard, first-order matching function”, and ”LSA applied
on checkerboard”. Deconvolution is not considered here. Figures 13-c, -d show the maps
obtained with DIC and second-order matching functions. The values of the subset size
2M + 1 (19 pixels) and the standard deviation of the Gaussian window ` (5.32 pixels)
are such that the spatial resolution d is nearly the same for the three cases shown in
Figures 13-a, -b and -e. The difference between the value of d in cases a- and b- (72.79
and 75.80, respectively) is due to the procedure illustrated in Figure 10. The values of d in
a- and e- (72.79 and 72.93, respectively) are slightly different because ` corresponding to
2M+1 = 19 pixels is found approximately, as explained just above. The particular value of
2M + 1 considered here, namely 19 pixels, is chosen because this is the greatest subset size
corresponding to a value of ` that leads to a convergence of the deconvolution procedure
for LSA. 2M + 1 = 21 pixels corresponds to a value of ` slightly greater than 6 according
to Table 3 in the Appendix, but ` = p = 6 pixels is the highest value of ` for which the
deconvolution procedure converges [33]. Two vertical dashed lines are superimposed to all
maps. The abscissa of the red one corresponds to the subset size for DIC and to 6× ` for
LSA. Indeed the latter quantity is the apparent size of the Gaussian window. This gives an
idea of the size of the support used to get a measurement at a given pixel, and this size can
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then easily be compared with the period of the sine wave modeling the displacement since
the horizontal axis is graduated in period of the sine displacement wave. The abscissa of
the blue dashed line is equal to the spatial resolution d as defined above. It can be checked
that, as expected, the latter is nearly the same for the three maps shown in subfigures a,
b and e. Only some slight fluctuations are visible from one case to another. They are due
to the procedure used to determine the spatial resolution.

Spurious random fluctuations decorrelated with the displacement encoded in the de-
formed image are clearly visible on the left-hand side of Figure 13-a and -c. These random
fluctuations correspond to the pattern-induced bias described in [44, 46], and modeled in
detail in [47]. In [45, 46, 47], it is shown that this bias is much more pronounced when
random speckles instead of regular patterns are used, which is confirmed here by comparing
Figure 13-a and -c on the one hand, and Figure 13-b and -d on the other hand. It is worth
emphasizing that these spurious random fluctuations are still visible on the right-hand side
of the vertical blue line whatever the degree of the matching function (see Figure 13-a and
-c). It means that actual details in displacement maps having a size of the same order of
magnitude as 2M + 1 are impacted by these spurious fluctuations. It can be observed that
the amplitude of δuDIC2 is more pronounced in the case of second-order matching functions
than in the case of first-order ones. This remark holds for the same subset size in both
cases, but not for the same spatial resolution, which is lower (thus better) in the second
case.

Another phenomenon can be observed in Figure 13-b, -d and -e. Indeed a slight fluc-
tuation correlated with the displacement (and not with the pattern) is visible in these
cases. For LSA, (Figure 13-e) and after close inspection (not detailed here), it has been
observed that it was due to a slight shift in the phase maps returned by the windowed
Fourier transform. Indeed, the phases are theoretically systematically returned with an

additive constant equal to −π
2

[32] but this constant disappears while subtracting the

phases obtained for the deformed and reference images. In the present case, this constant

is not exactly equal to −π
2

, and the difference between the two changes with an ampli-

tude which is related to the frequency of the sine displacement. A consequence is that a
residual appears when subtracting current and reference phase distributions to obtain the
displacement. Similar fluctuations related to the displacement are observed with DIC on
checkerboard, but no clear explanation was found in this case.

5.2.3 Impact of deconvolution

Deconvolution leads these spurious displacements to be enhanced below the cutoff fre-
quency for which this procedure is applied (thus on the right-hand side of the maps), as
can be observed in Figure 14, which shows the maps δuDIC2 and δuLSA2 after deconvolu-
tion of the displacement maps corresponding to the cases shown in Figure 13-a, b and -e.
Indeed this spurious displacement is not accounted for in the model used to elaborate the
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(a) DIC, speckle, first degree, 2M + 1 = 19 pixels, (b) DIC, checkerboard, first degree, 2M + 1 = 19 pixels,

d = 72.79 pixels d = 75.80 pixels
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(c) DIC, speckle, second degree, 2M + 1 = 19 pixels (d) DIC, checkerboard, second degree, 2M + 1 = 19 pixels,

d = 26.10 pixels d = 25.82 pixels
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(e) LSA, ` = 5.32 pixels,

d = 72.93 pixels

Figure 13: δuDIC2 and δuLSA2 in a particular case. First-degree matching functions are
used in (a) and (b), and second-degree ones in (c) and (d). The values of the subset size
2M+1 = 19 pixels and standard deviation of the Gaussian window ` = 5.32 pixels are such
that the same bias λ = 10% and the same spatial resolution d = 72.79 pixels is obtained
in cases (a), (b) and (e). No deconvolution is applied. Abscissa of the vertical red dashed
line: 2M + 1 for DIC and 6` for LSA. Abscissa of the vertical blue dashed line: d.
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deconvolution procedure [33]. As recalled in Section 3.3, this cutoff frequency is equal to
the inverse of the subset size in DIC ( 1

2M+1) and to 1
10 pixel−1 for LSA, as justified in [33].
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(a) DIC, speckle, first degree with deconvolution, (b) DIC, checkerboard, first degree with deconvolution,

d = 31.98 pixels d = 34.64 pixels
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(c) LSA, checkerboard with deconvolution,

d = 26.73 pixels

Figure 14: δuDIC2 and δuLSA2 in the same cases as in Figure 13, but after deconvolution.
Abscissa of the vertical red dashed line: 2M + 1 for DIC and 6` for LSA. Abscissa of the
vertical blue dashed line: d.

By comparing the maps shown in Figures 13-a -b -e, and 14-a -b -c, respectively, it
can be seen that the amplitude of δuDIC2 and δuLSA2 is higher in the second case. The
improvement of the spatial resolution is also visible since the vertical dashed blue line is
more toward the left after deconvolution. The new location of this line is approximately the
same for DIC applied on speckle and on checkerboard images, which is logical since in the-
ory, this location only depends on the kernel involved in deconvolution. However, for LSA
after deconvolution, it is even more toward the left, which means that the deconvolution
procedure is more efficient for LSA than for DIC in this case.

5.2.4 Influence of the frequency

The figures above show that δuDIC2 and δuLSA2 depend on the frequency of the displacement.
This effect can be quantified by calculating the standard deviation of these quantities
column-wise in these maps. Figure 15 shows the results obtained with the same settings as
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above, namely 2M+1 = 19 pixels and `=5.32 pixels. The standard deviation of δuDIC2 and
δuLSA2 is plotted as a function of the period pwave of the sine wave modeling the vertical
displacement.
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Figure 15: Standard deviation of δuDIC2 and δuLSA2 as a function of the period of the wave
modeling the displacement. 2M + 1 = 19 pixels with DIC and ` = 5.32 pixels with LSA.

Some trends are clearly visible in Figure 15:

• std(δuDIC2 ) and std(δuLSA2 ) globally decrease as pwave increases, thus as the frequency
of the displacement decreases. The only exceptions are at the far left of the curves
representing the results for LSA and DIC on checkerboard;

• apart from for the highest frequencies (on the left in the figure), second-degree match-
ing functions lead to a lower standard deviation than first-degree ones in the case of
DIC, which is logical, undermatching being one of the main causes of pattern-induced
bias, [46, 47];

• as for the displacement resolution σu discussed in the preceding section, std(δuDIC2 )
is lower for the checkerboard than for the speckle. The same remark holds for
std(δuLSA2 ). The difference is significant since the ratio between the two is greater
than 2 whatever the frequency of the displacement, as illustrated in Figure 16.

• as expected, deconvolution causes std(δuDIC2 ) and std(δuLSA2 ) to become higher.
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Figure 16: Ratio between the standard deviation of δuDIC2 and δuLSA2 calculated column-
wise vs. the period of the imposed displacement. The subset size for DIC is equal to
2M + 1 = 19 pixels and first-degree matching functions are used. ` = 5.32 pixels for LSA,
which leads to the same spatial resolution as for DIC.
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5.3 Equivalent standard deviation of δuDIC2 and δuLSA2 as a function of d

In the same spirit as for the displacement resolution discussed in the preceding section, we
represent in Figure 17 the equivalent standard deviation calculated over the whole maps of
δuDIC2 and δuLSA2 in the different cases considered in the simulations in terms of values of
2M + 1 and `. These quantities are denoted by stde(δu

DIC
2 ) and stde(δu

LSA
2 ), respectively.

The remarks are similar to those drawn for the displacement resolution:

• stde(δu
DIC
2 ) is greater for the speckle pattern than for the checkerboard, which is

consistent with the maps represented in Figures 13-14;

• deconvolution shifts the curves toward the left, thus improves the spatial resolution.
stde(δu

DIC
2 ) only increases after deconvolution for DIC on speckle. This quantity

remains nearly the same after deconvolution for the other cases;

• the divergence of the deconvolution procedure beyond a certain threshold value of
the subset size is illustrated by the set of points which presents an abrupt increase
of stde(δu

DIC
2 ) on the blue dashed curve. The same phenomenon is observed with

LSA and checkerboard but with a much higher amplitude. The corresponding points
being, however, out of the zone considered with the scale of the vertical axis, they
are not represented in the figure;

• stde(δu
LSA
2 ) is lower than stde(δu

DIC
2 ), even when DIC is applied to process checker-

board images.

The values of stde(δu
DIC
2 ) and stde(δu

LSA
2 ) used in the results shown in Figure 17

were calculated over the whole maps. This clearly disadvantages DIC used on speckles
because the highest fluctuations are observed for the highest frequencies, whose weight
in real displacement and strain maps is generally not as pronounced as for the synthetic
reference displacement considered in this study. In particular, it is generally clear for DIC
users that the subset size is such that the actual information characterized by fluctuations
with a spatial period lower than the subset size cannot be reliably represented in the maps
returned by DIC. The same calculations as those performed above to obtain the results
shown in Figure 17 were therefore carried out, but this time by considering only the region
of the maps for which the period of the sinusoidal displacement is lower than the spatial
resolution of the technique, thus on the right of the blue vertical dashed line plotted in the
maps shown in Figures 13-14. Figure 18 shows the results obtained in this case. Compared
to the results shown in Figure 17, the curves are now tightened but they exhibit nearly
the same shape as above. The results order is also the same as above, which means that
minimizing the optical residual in the Fourier domain with checkerboard images globally
leads to lower values of stde(δu

DIC
2 ) and stde(δu

LSA
2 ) than minimizing the optical residual

in the spatial domain on random speckle images.
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Figure 17: stde(δu
DIC
2 ) and stde(δu

LSA
2 ) as a function of the spatial resolution d in the

different cases studied in Figure 7.

6 Computing time

The objective here is to give a brief idea on the computing time needed for each technique
to provide displacement fields. The computer used for these calculations is equipped with
an Intel 8-core Intel Xeon E5-2620 v4 @ 2.1Ghz CPU and 64 Gb memory, and the number
of iterations is set to 10 in the iterative deconvolution procedure for both DIC and LSA,
which is conservative according to [33]. It is worth noting that the Matlab programs used
in this program are not optimized, so the results provided here only give an idea of the
order of magnitude of the computational cost in each case. We consider here all the cases
discussed in Figure 11. Noiseless images are processed to estimate these computing times.
The obtained results are shown in Figure 19. The number of points in the displacement
maps obtained by DIC and LSA being not exactly the same, these computing times are
normalized by dividing the total computing time obtained for each map by the number of
measuring points in the corresponding displacement map. The most striking point is that
the computing time for LSA is much lower than that observed for DIC (about one order
of magnitude). The main reason is that DIC is iterative by essence, whereas LSA is quasi-
direct. It is quasi-direct and not direct because of the fixed-point algorithm used to retrieve
the displacement field by subtracting the phases expressed in the same coordinate system
in Equation 3. It is observed that only one iteration is sufficient in practice to converge, and
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Figure 18: stde(δu
DIC
2 ) and stde(δu

LSA
2 ) as a function of the spatial resolution d in the

different cases studied in Figure 7. Only the values of stde(δu
DIC
2 ) and stde(δu

LSA
2 ) at

pixels corresponding of a displacement whose period is lower than the spatial resolution
are considered in the calculation.

this iteration does not involve any heavy calculation. For DIC, interpolation is performed
for each iteration at all the pixels of the subsets, which also notably increases the computing
time. Another point is that the computing time increases while increasing 2M + 1, thus
while increasing the size of the subset in DIC, which is logical. Concerning LSA, we do not
observe the same phenomenon when ` increases. This is due to the fact that the WFT used
to extract the phase is a convolution, and this convolution becomes a mere multiplication
in the Fourier domain. The Fourier transform of a Gaussian window is also a Gaussian
window, but its size decreases as ` increases. However, this only marginally impacts the
computing time. Finally, it is worth remembering that two maps are deconvolved with
DIC for a pair of reference and currant images (the two in-plane displacement u1 and u2)
but this number is equal to four with LSA (the two phases in both these images), see
Section 3.3. It also means that if a whole series of images captured during a given test is
deconvolved, the computing time needed to get each displacement map after the first of
the series is divided by two compared to the values given in Figure 19-b, the two reference
phases being deconvolved only once to get all the set of deconvolved displacement maps.
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Figure 19: computing time to obtain the noiseless maps used to plot the curves in Figure 11.
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7 Experiment

Before closing the paper, we briefly present the results given by an experiment in order to
support some of the conclusions found above with synthetic images.

7.1 Method

We consider a translation test performed on two metallic square specimens (dimensions:
37×31×2 mm3). Each of them was marked with a different pattern. The first specimen was
thoroughly spray-painted in white. Black droplets were then deposited to form the random
pattern. A checkerboard of pitch p=0.2 mm was transferred on the second specimen by
using the technique proposed in [48]. The experimental setup used for this experiment
is described in a recent paper [19], so the reader is referred to this reference for further
details, in particular concerning the camera used for this experiment, the type of lighting,
the device used to apply the translation and the support on which this device rests during
the experiment. For the checkerboard, the magnification of the lens was adjusted in such
a way that the pitch of the checkerboard was sampled over a number of pixels as close
as possible to 6 pixels, which is the number of pixels used for the synthetic checkerboard
above. The actual value for the pitch obtained in the experiment was 5.88 pixels, so this
value is used when processing the images. The actual inclination of the checkerboard was
11.2 deg. The contrast in the images was optimized in such a way that the widest histogram
of the gray level distribution was obtained in each case, and that the maximum value for
the gray level was just under saturation. Compared to the simulations presented above,
for which the contrast was set to 0.6 (thus meaning that 60% of the gray depth was used
to encode the signal), the contrast is higher for the images of the real patterns. Figure 20
shows a closeup of each pattern.

With this experiment, the idea is to compare the noise level reached in the displacement
map obtained with each technique. Deconvolution is not considered since no strain gradient
occurs for a translation test. A set of 200 images was taken before and after applying the
displacement. 200 displacement fields were then deduced for each type of pattern. The
average displacement obtained for each of these displacement fields were then subtracted
to get rid of potential micromovements than may corrupt the results, and the standard
deviation of the displacement obtained at each pixel was deduced. The displacement
resolution σu was finally obtained by calculating the equivalent standard deviation over
the whole field, which is defined by

σu =

√√√√ 1

N

N∑
k=1

std2(uj(x
(k)
1 , x

(k)
2 )) j = x1 or j = x2 (12)

whereN is the number of pixels in the experimental displacement maps, and std(uj(x
(k)
1 , x

(k)
2 )), j =

x1, x2 is the standard deviation of the distribution of the displacement uj at any pixel of
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(a) Speckle
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(b) Checkerboard

Figure 20: Closeup views of the real patterns used in this study.

coordinates (x(k), y(k)). The contrast in the images was the same for the two types of
images, merely by adjusting the aperture of the lens and the shooting time of the cam-
era. Typical results are presented here. The subset size 2M + 1 is equal to 21 pixels and
first-order matching functions are used. The standard deviation ` of the Gaussian window
used to process the checkerboard images is thus set to ` = 6.06 pixels according to Equa-
tion 11, which gives the same bias λ and the same spatial resolution d for both techniques
and patterns. The noise level in the displacement map can therefore be fairly compared
between the two techniques. Note that changing the value of the subset size 2M + 1 would
automatically change the value of ` and thus the noise level in the displacement fields, but
the ranking of the techniques would remain unchanged.

7.2 Results

The normalized histograms of std(ux1) and std(ux2) are displayed in Figure 21. For these
experiment, σu = 5.11 10−3 and 5.90 10−3 along the x1- and x2-directions, respectively,
while σu = 7.52 10−3 with the artificial speckle. σu is greater for the simulated patterns
because the contrast is lower in the artificial images than in the images taken during the
experiment. Another remark is that the distributions are wider for the speckle pattern
than for the checkerboard. Indeed, speckle patterns are by definition of random nature,
which means that std(u1) and std(u2), more largely fluctuate, depending on the spatially
changing value of the mean image gradient calculated over the subsets.
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Figure 21: Normalized histogram of the noise in the displacement maps obtained with
speckle and DIC (first line), and checkerboard and LSA (second line). The scale along the
horizontal axis is the same for the four histograms.

The main point is that the ratio between σu obtained with speckle and DIC on the one
hand, and checkerboard and LSA on the other hand, is equal to 2.49 with the artificial
images discussed in Section 4, while with the experimental results, this ratio is equal to
3.45 and 3.91 along the x1- and x2-directions, respectively. The trend in the simulated and
the experimental results is however the same since it is observed in both cases that σu is
much lower with checkerboards than with speckles. The difference in this ratio between
results obtained with simulated and experimental patterns cannot be commented further,
the random nature of the speckles automatically inducing fluctuating results with this type
of pattern.

8 Conclusion

The effect of the pattern on the quality of the displacement field obtained by minimiza-
tion of the optical residual was investigated in this paper. DIC was considered for the
minimization of the optical residual over small regions in the spatial domain, and LSA for
the minimization of the same quantity in the Fourier domain. Two different patterns were
considered, namely a speckle typically used with DIC, and a checkerboard for LSA. The
latter pattern leads to the highest possible image gradient if it is correctly sampled, so
it is expected to lead to the lowest displacement resolution according to previous studies
available in the literature. This was really observed in the numerical simulations performed
in this paper. The residual obtained by subtracting the quantities returned by both tech-
niques on the one hand, and the actual quantity convolved by kernel characterized for each
technique in the literature on the other hand, was also considered in this comparison. This
quantity is expected to reflect the influence of various effects which impair the results in
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addition to convolution which causes the amplitude of the frequencies involved in the true
displacement and strain maps to be damped, with an intensity which increases with the
frequency. The influence of the pattern, the interpolation error and the quantization of the
signal are the most noticeable phenomena. Again, it was observed that the minimization
of the optical residual in the Fourier domain on a checkerboard led to the best results. The
price to pay to obtain displacement and strain fields by using checkerboard and LSA is the
fact that depositing a regular pattern onto the specimen is more challenging than merely
spraying a speckle.
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measuring displacement fields with moiré and grid methods. Experimental Techniques,
28(4):23–26, 2004.

Appendix

The aim of this section is to show how to determine the value of ` used in LSA, which is
equivalent to the value of 2M + 1 used in DIC. ”Equivalent” means here that DIC used
with a subset size equal to 2M + 1 features the same bias and spatial resolution as LSA
used with a standard deviation equal to `. As mentioned earlier, it does not mean that
the outputs of DIC and LSA with these equivalent parameters give the same estimates of
a real displacement field featuring strain gradients.

Predicting the bias for given values of 2M + 1 and ` can be made as follows. Assuming
the real (and sought) displacement is a sine function of amplitude A, the bias as defined in
Section 2 can be directly estimated with the transfer function of the filter characterizing
the measuring technique. This filter is the Savitzky-Golay filter for DIC [1] and a Gaussian
filter for LSA [18]. By definition, the transfer function of the filter is equal to its Fourier
transform. Indeed, in linear translation-invariant signal processing, the transfer function
of any linear filter is defined as the Fourier transform of its impulse response.

Case of DIC

With DIC, we deal by definition with the discrete form of the transfer function, which can
be written as follows as a function of the frequency f of the prescribed displacement

ĥDIC(f) = h(0) + 2

M∑
i=1

h(i) cos (2iπf) (13)

Since we deal with images, we have sampled signals. Hence f lies in this equation
between 0 and the Nyquist frequency, equal here to 0.5 pixel−1. The h(i) coefficients,
i ∈ [0 M ], are the Savitzky-Golay coefficients defined in [43] for DIC, as explained in [1] and
demonstrated in [47]. These coefficients depend on M and on the degree of the matching
function used to express the displacement field within the subset. In the common case,
for which the matching function is linear, the Savitzky-Golay coefficients are all equal to

1

2M + 1
[43].
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Case of LSA

With LSA, the same discrete form could be chosen for the Fourier transform, but a con-
tinuous form of the Fourier transform is also available, which is not the case for DIC. This
continuous form can therefore be used for the sake of convenience. Since a Gaussian win-
dow of standard deviation ` is used here in the WFT, the Fourier transform of the filter
used with LSA is also a Gaussian function. Indeed, the Fourier transform of a Gaussian
function is also a Gaussian function, which is a classic result in signal processing. This
transfer function can be written as follows [31]:

ĥLSA(f) = e−2π
2`2f2 (14)

Equivalence between 2M + 1 and ` for a given value of λ

As a consequence of the two preceding equations, finding the standard deviation of a
Gaussian window used in LSA, which is equivalent, in terms of bias and spatial resolution,
to a subset size 2M + 1 used in DIC, consists of the following steps:

1. choosing the same value for the bias λ for both DIC and LSA, which gives:

ĥDIC(f) = ĥLSA(f) = 1− λ (15)

2. for a given subset size 2M+1, finding numerically (no analytical solution is available)
the highest frequency f , which is the solution of Equation 13. Thus

h(0) + 2
M∑
i=1

h(i) cos (2iπf) = 1− λ (16)

3. inverting Equation 14 in order to deduce the corresponding standard deviation ` for

the Gaussian window used in the WFT. Since d =
1

f
, we have

` =
d

π

√
− log (1− λ)

2
, with 0 < λ < 1 (17)

Influence of λ

Choosing a bias λ = 10% for both techniques is somewhat arbitrary. Changing the value of
the bias, for instance by considering λ = 5% and λ = 20% instead of λ = 10%, has a great
impact on the spatial resolution d but does not really influence the standard deviation ` of
the Gaussian window used in the WFT, as illustrated in the examples shown in Table 3 in
a particular (but representative) case, namely 2M+1=21 pixels. d and ` are calculated for
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various values of λ fixed a priori. It can be seen that the value of ` equivalent to 2M + 1
is nearly unaffected when the bias λ changes. This makes the results nearly independent
of this arbitrary choice.

bias λ spatial resolution d ` used in LSA
for DIC and LSA for DIC and LSA corresponding to 2M + 1=21 pixels

for the subset size used in DIC
[-] [pixel] [pixel]

5% 165.08 6.09
10% 83.74 6.12
20% 58.24 6.19

Table 3: Values of ` used in LSA leading to the same spatial resolution and the same bias
as those obtained in DIC with a subset size equal to 2M + 1 = 21 pixels.

Particular case of small values of λ and DIC used with linear matching
functions

We demonstrate here that if linear matching functions are considered in DIC, a closed-
form expression giving ` as a function of M is available. In addition, ` does not depend, at
first approximation, on the bias λ when λ is small. We consider first again Equation 16.
Assuming that 2Mπf is small enough, the cosines involved in this equation can be replaced
by their third-order approximation. Thus Equation 16 becomes

h(0) + 2
M∑
i=1

h(i)

(
1− (2iπf)2

2

)
= 1− λ (18)

Since h(0) + 2
M∑
i=1

h(i) = 1 [43], we have

4π2f2
M∑
i=1

i2h(i) = λ (19)

Let us now focus on linear matching functions. In this case the Savitzky-Golay coeffi-

cients are all equal to h(i) =
1

2M + 1
, ∀i ∈ {1 . . .M} [43]. Hence

M∑
i=1

i2h(i) =
1

2M + 1

M∑
i=1

i2 (20)
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According to the Faulhaber’s formula, we have
M∑
i=1

i2 =
2M3 + 3M2 +M

6
, so after

simplification, we can deduce from Equation 19

f =
1

2π

√
6λ

M(M + 1)
(21)

It can be checked that the third-order approximation of the cosines made in Equation 18
still remains acceptable for significant values of M . For instance, with M = 10, which is
the case considered in the examples discussed in this paper, the error made by substituting
the quantity corresponding to the greatest value of the index i of the sum is equal to 11%.
The error made on the other terms of this approximated sum is automatically lower. In
addition, the weight of these terms in the sum is higher than the weight of the last term,
the cosine being a decreasing function just after 0.

Plugging Equation 21 into Equation 17, where f =
1

d
, leads to

` =

√
M(M + 1)

3
×
√
−log (1− λ)

λ
, with 0 < λ < 1 (22)

If λ is small, then
−log (1− λ)

λ
' 1 and Equation 22 reduces to

` =

√
M(M + 1)

3
(23)

For instance, in the case 2M + 1 considered in Table 3 above, Equation 23 gives ` =
6.05 pixels, which is very close to the values given in this table for various values of λ. This
result shows that in the particular case of DIC used with linear matching functions, ` does
not really depend on λ when λ is small. ` and thus the width of the Gaussian window used
in LSA only depend on the size of the subset 2M + 1 used in DIC.
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