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Scatter correction for spectral CT using a
primary modulator mask

Odran Pivot, Clarisse Fournier, Joachim Tabary, Jean Michel Létang and Simon Rit

Abstract— The problem of scattered radiation correction
in computed tomography (CT) is well known because scat-
ter induces a bias, a loss of contrast and artifacts. Nu-
merous strategies have been proposed in conventional CT
(using energy-integrating detectors) but the problem is still
open in the field of spectral CT, a new imaging technique
based on energy-selective photon counting detectors. The
aim of the present study is to introduce a scatter correction
method adapted to multi-energy imaging and based on the
use of a primary modulator mask. The main contributions
are a correction matrix, which compensates for the effect
of the mask, a scatter model based on B-splines and a cost
function based on the mask structures and robust to the
object structures. The performances of the method have
been evaluated on both simulated and experimental data.
The mean relative error was reduced from 20% in the lower
energy-bins without correction to 4% with the proposed
technique, which is close to the error caused by statistical
noise.

Index Terms— Photon counting detectors, Primary mod-
ulator mask, Scatter correction, Spectral CT

I. INTRODUCTION

Photon counting detectors (PCD) classify photons according
to their energy. Their emergence has triggered the development
of energy-resolved computed tomography (or spectral CT).
This new modality gives the possibility to retrieve information
about the chemical composition of the inspected object [1].
When considering flat-panel detectors, the scattered radiation,
which induces a bias on the detected images and leads to a
loss of contrast and artifacts in CT, cannot be neglected [2].
In order to fully benefit from the spectral information, scatter-
corrected images are required.

Since the early developments of x-ray imaging with
integration-mode detectors, the problem of scattered radiation
correction gave rise to various methods [3]. These methods can
be classified into two groups: hardware-based and software-
based methods.
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The group of hardware-based methods includes approaches
based on geometry modifications or the use of additional
devices to reduce the part of scattered photons reaching the
detector. The most common approach consists in collimating
the pixels of the detector by using anti-scatter grids, the
disadvantage of which is to increase the dose while not reject-
ing totally the scatter [4]. The amount of scattered radiation
reaching the detector can also be lowered by increasing the
air-gap [5] [6] or by limiting the field-of-view with additional
collimation [7] [8].

The second group, software-based methods, covers tech-
niques aiming at estimating the scattered radiation map and
using it to correct the measured images [9]. This group
can again be divided into two sub-families: model-based and
measurement-based methods. Model-based methods estimate
the scatter map from the measured data, by modelling the
physics of the acquisition. The models used in the literature
are based on scatter-kernels [10] [11] [12] or more complex
Monte-Carlo approaches [13] [14] [15]. Measurement-based
methods seek to estimate the scatter distribution with the aid
of a physical beam modifier. Methods using static or moving
fully-attenuating beam-blockers directly estimate scatter in
beam-blocked regions of the detector [16] [17] [18] [19].
Several years ago, an approach consisting in using a semi-
transparent modulator mask with a perfectly uniform high-
frequency pattern between the source and the object has
been introduced [20] [21]. Assuming that the primary map is
modulated in the high-frequencies and the scatter mostly has
low-frequencies, the corrected primary map is recovered after
low-pass filtering in the Fourier domain and demodulation.
This method is hard to implement in practice, due to the
difficulty to manufacture such a primary modulator. More
recently, a promising alternative has been proposed which
allows the use of a mask with a non uniform pattern. Instead
of removing the scatter components by filtration in the Fourier
domain, the scatter map is estimated by solving a patch-based
local optimization problem in the projection domain [22] [23]
[24], under the assumptions that the scatter map is smooth
and the primary map is locally smooth [25]. Alternatively,
a global formulation of the optimization problem has been
proposed, as well as an edge-preserving weighting which
increases the robustness when the primary map contains some
discontinuities [25].

The previously described scatter correction methods were
designed for integration mode detectors and do not exploit
the spectral information provided by energy-resolved PCD. A
modified version of the beam-stop method, adapted to multi-
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energy imaging, has been proposed [26] and shows a very
good accuracy in practice [27]. However, it needs an extra
acquisition which increases the dose and the exposure.

This study aims at presenting a method inspired by [23] and
[25] and adapted to spectral CT. Our main contributions are
a correction matrix which compensates for the effect of the
modulator mask taking into account the spectral information,
a scatter model based on B-spline basis functions and a novel
cost function.

II. MATERIALS AND METHODS

The first section (II-A.1) presents the basic theory of scatter
estimation using a primary modulator mask as introduced in
[23], but adapted to spectral CT imaging. We then detail our
contributions: a model-based correction matrix which uses the
spectral information to compensate for the mask attenuation
(II-A.2), a B-spline model for the representation of the scatter
map (II-A.3), specific weighting matrices aiming at improving
the method accuracy (II-A.4), the complete cost function (II-
A.5) and the optimization algorithm (II-A.6).

A. Scatter correction method
1) Principle: Throughout this paper, the energy dimension

is discretized and we note

au,v,θ =

∫
l∈Lu,v,θ

µ(λθ + lζu,v,θ) dl (1)

the vector (length: NE) of integrals of the energy-dependent
linear attenuation coefficient (LAC) map µ of the object,
along line Lu,v,θ going through the 3D source position λθ
in direction ζu,v,θ of pixel with coordinates (u, v). Each
element of the vector au,v,θ corresponds to a sample of the
energy dimension. The total x-ray spectrum N t

u,v,θ (number
of photons, length: NE) reaching the detector at pixel (u, v)
and projection angle θ can be decomposed as the sum of the
scatter spectrumN s′

u,v,θ and the primary oneNp
u,v,θ. The latter

follows the Beer-Lambert law:

Np
u,v,θ = N0

u,v � exp(−au,v,θ), (2)

N0
u,v being the x-ray spectrum incident on the detector at

pixel position (u, v) without object.

We consider a spectral CT scanner with a flat panel photon
counting detector of NB energy bins (NB is typically smaller
than NE). The total transmission spectrum tu,v,θ (dimension-
less, length: NB) detected in pixel (u, v) and at projection
angle θ is computed as the raw data normalized by the ones
without object (both in detected number of photons, length:
NB):

tu,v,θ = (Du,vN
t
u,v,θ)� (Du,vN

0
u,v) (3)

= diag
(
Du,vN

0
u,v)
−1Du,vN

t
u,v,θ, (4)

where Du,v ∈ RNB×NE denotes the pixel-dependent detector
response matrix (DRM) which columns give the probability
distribution for a photon at a given energy to be detected
in an energy-bin and � the Hadamard division operator. It
can be further decomposed as the sum of the primary and

the scatter components (pu,v,θ and s′u,v,θ respectively, each of
length NB):

tu,v,θ = pu,v,θ + s′u,v,θ, (5)

where the primary transmission spectrum pu,v,θ is given by
the following expression:

pu,v,θ = diag
(
Du,vN

0
u,v)
−1Du,vN

p
u,v,θ. (6)

When a primary modulator mask made with an homoge-
neous material m is placed between the source and the object
(as shown in Figure 1), the primary map is modulated and
becomes:

p̂u,v,θ = diag
(
Du,vN

0
u,v)
−1Du,vN

p̂
u,v,θ, (7)

with

N p̂
u,v,θ = N0

u,v � exp(−au,v,θ − µmlmu,v) (8)

= diag
(

exp(−µmlmu,v)
)
Np
u,v,θ (9)

where lmu,v is the length of modulator mask crossed by the
lines Lu,v,θ and µm the LAC of the material constituting
the primary modulator. Note that some rays do not intersect
the mask since it has holes and lmu,v = 0 for those rays. An
example of such primary modulator mask is shown in Figure 2.
Furthermore, the mask modifies the x-ray beam and we note
su,v,θ the scatter transmission spectrum obtained with a beam
modulated by the mask. The measured transmission map t̂u,v,θ
is then:

t̂u,v = p̂u,v + su,v. (10)

Rotation
axis

Object
Detector

Primary
modulator

mask

Source

θu

v

λθ

ζu,v,θ

Lu,v,θ

Fig. 1. Top: schematic of the CT scanner geometry ; bottom: experi-
mental set-up.

The objective of the proposed method is to retrieve the de-
modulated primary, and it is necessary to provide a correction
scheme allowing to recover it given the measurement t̂u,v,θ
and the scatter su,v,θ. If the detector response matrices Du,v
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Fig. 2. Left: picture of the primary modulator mask; right: details of the
mask geometry.

were invertible, one could recover pu,v,θ from Equations 9
and 10 with the knowledge of the scatter spectrum:

pu,v,θ = Cu,v(t̂u,v,θ − su,v,θ), (11)

where Cu,v ∈ RNB×NB is the correction matrix associated
with the pixel (u, v), which expression is:

Cu,v = diag
(
Du,vN

0
u,v)
−1Du,vdiag(exp(µmlmu,v))

D−1
u,vdiag

(
Du,vN

0
u,v). (12)

This matrix therefore transforms a measured spectrum with
mask to the spectrum which would have been measured
without mask. One can verify that the correction matrix is
the identity matrix when lmu,v = 0. In practice, Du,v is not
square and therefore not invertible, and we discuss its practical
computation in section II-A.2.

The measured, primary and scatter spectral sinograms can
be flattened into vectors denoted t̂, p and s, respectively. For
example, t̂ is defined as follows:

t̂ = [t̂Tu0,v0,θ0 , t̂
T
u1,v0,θ0 , . . . , t̂

T
uNU ,vNV ,θNΘ

]T , (13)

with T the transpose operator and NU , NV and NΘ the
numbers of pixels in the two directions of the detector and
projection angles acquired, respectively. Similarly, the correc-
tion matrix C ∈ RNBNUNVNΘ×NBNUNVNΘ is constructed by
concatenating the matrices Cu,v such that

p = C(t̂− s). (14)

As in [23], we now consider an estimation of the scatter
map s̃ with an error ε given by ε = s − s̃. By developing
Equation 14, we obtain the estimated primary map p̃:

p̃ = C(t̂− s̃) = C(t̂− s+ ε) = p+Cε. (15)

One can observe that an error ε on the estimated scatter map
induces an error Cε on the estimated primary map. Assuming
that both the scatter map and its estimate are smooth (this point
is explained in section II-A.3), the error ε is also smooth
and therefore the error Cε on the estimated primary map
contains the same discontinuities as the correction matrix C.
In other words, the modulation pattern of the mask remains
visible in the estimated primary map as long as ε is not null.
Considering a primary modulator with sharp edges, one can
say that the presence of the modulation pattern increases the
spatial gradient of the estimated primary. A direct adaptation
of [23] to spectral CT is to estimate the smooth scatter map

by minimizing the weighted gradient of the scatter-corrected
primary:

s̃ ∈ arg min
s∈RNBNUNV NΘ

s smooth

∥∥W∇C(t̂− s)
∥∥

1
, (16)

where W ∈ R2NBNUNVNΘ×2NBNUNVNΘ is a diagonal
weighting matrix and ∇ ∈ R2NBNUNVNΘ×NBNUNVNΘ is
the numerical spatial gradient of the image along the two
dimensions u and v of the detector.

After detailing the correction matrix in section II-A.2, sev-
eral additions to this simple cost function are proposed in the
following sections. First, in section II-A.3, a B-spline model
of the scatter map is proposed to reduce the dimensionality of
the scatter estimation problem. Then, in section II-A.4, specific
weighting matrices W are introduced to improve the validity
of Equation 16. The complete cost function (Equation 25)
with a regularization term and specific weights is presented
in section II-A.5.

2) Correction matrix: The correction matrix Cu,v associated
with the pixel (u, v) cannot be computed from Equation 12
because the DRM is not invertible and generally not known.
We propose instead a model-based estimation using an empir-
ical model for the rows of the correction matrix Cu,v defined
as:

cb,u,v(b
′) = h(b′−b)

(
c0b,u,vδ(b

′−b)−c1b,u,v exp(−c2b,u,v(b′−b))
)
,

(17)
with cb,u,v ∈ RNB the row of Cu,v corresponding to energy
bin b, [c0b,u,v, c

1
b,u,v, c

2
b,u,v] a triplet of scalar parameters and

h and δ the Heaviside and Dirac functions.

The parameters of the proposed empirical model for each
pixel and energy bin are then estimated through an offline
calibration procedure using a scatter-free dataset of N cal pairs
of spectral transmission images with various attenuation levels,
both with and without primary modulator mask (p̂k and pk
respectively):

[c̃0b,u,v, c̃
1
b,u,v, c̃

2
b,u,v] ∈ arg min

c0b,u,v∈R
∗+

c1b,u,v∈R
∗+

c2b,u,v∈R
∗+

Ncal∑
k=1

(pk,b,u,v−cTb,u,vp̂k,u,v)2.

(18)
In this work, the minimization is performed independently for
each pixel with Nelder-Mead’s downhill simplex algorithm.
An example of such a correction matrix with NB = 8, for
a pixel corresponding to an x-ray attenuated by the mask, is
presented in Figure 3. The estimation of the correction matrix
is object independent and therefore performed only once in
an offline calibration step, before the acquisition of the object
images.

3) Scatter model: It is well known that high frequencies of
x-ray scatter maps are negligible in the two spatial directions
of the flat-panel detector and in the angular direction of
the projections [28]. Aiming at an accurate representation of
the scatter map with a minimal number of parameters, we
chose to represent it using B-spline basis functions, which are
commonly used for modelling smooth maps [29]. In this paper,
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Fig. 3. Left: example of a correction matrix for a pixel attenuated by
the primary modulator mask; right: second row’s profile ([c̃0, c̃1, c̃2] =
[1.35, 0.0952, 1.71]).

we used three dimensional quadratic B-spline basis functions
(two dimensions along the flat detector and one along the
projection angles), and we recover the scatter map knowing
the NK parameters xe,k for each energy bin with the following
expression:

sb,u,v,θ =

NK∑
k=1

βk(u, v, θ)xb,k, (19)

with βk(u, v, θ) the k-th B-spline basis function evaluated at
pixel (u, v) and projection θ. The definition of the B-spline
basis function is

βk(u, v, θ) = β2

(
u− uk

∆u

)
β2

(
v − vk

∆v

)
β2

(
θ − θk

∆θ

)
,

(20)
where (uk, vk, θk) and (∆u,∆v,∆θ) are the B-splines knots
positions and spacings respectively. β2(z) is the quadratic B-
spline basis function which expression is given by:

β2(z) =


1
2 (z2 + 3z + 9

4 ), ∀z ∈ [− 3
2 ,−

1
2 [,

3
4 − z

2, ∀z ∈ [− 1
2 ,

1
2 [,

1
2 (z2 − 3z + 9

4 ), ∀z ∈ [ 1
2 ,

3
2 [,

0, ∀z ∈]−∞,− 3
2 [∪[ 3

2 ,+∞[.
(21)

The number of parameters NK needed to represent the
scatter map in one energy bin corresponds to the number of
B-spline knots chosen, and depends on the spacing between
two knots in each of the three dimensions. The choice of the
optimal steps is discussed in section IV.

We denoteB ∈ RNBNUNVNΘ×NBNK the matrix containing
the B-spline basis functions and x the vector of the model
parameters xb,k. The scatter map is then obtained from x with

s = Bx. (22)

4) Weights: As explained in II-A.1, the scatter can be
estimated by minimizing the primary gradient. However, it
is not desirable to estimate a scatter which would compensate
for the spatial gradient of the primary map. The use of novel
specific weighting matrices in the cost function tackles this
issue.

The primary gradient evaluated in pixels out of the mod-
ulator mask edges (either in the holes or in regions with
constant thickness) contains only information about the object
structures, and nothing about the persistence of the mask
footprint in the primary map. As a consequence, we only need

to evaluate the spatial gradient of the primary map on the mask
edges. This can be done by weighting the spatial gradient of
the primary map by the spatial gradient of the mask image,
which can be achieved using the following weighting matrix:

W1 = diag(∇p̂0). (23)

However, object structures may also overlap with the modula-
tor mask edges and the cost function should account less for
the spatial gradient at these locations. We reused the weighting
introduced in [25] to solve the same issue:

W2 = diag (exp(−η∇p̃)) , (24)

with η a scalar parameter and ∇p̃ ∈ R2NBNUNVNΘ an
estimation of the primary gradient map from the measured
sinogram m. In our work, ∇p̃ was directly estimated from
∇Ct̂ in pixels where there is no mask structure (i.e. where
∇p̂0 = 0), thus neglecting the spatial gradient of the scatter
map, and it was linearly interpolated between those pixels.

5) Cost function: Following the B-spline model detailed
in section II-A.3, the scatter estimation comes down to the
estimation of the B-spline coefficients at each energy bin. We
stabilize the estimation by adding a Tikhonov regularization,
on the parameters directly as spatial smoothness is inherently
constrained by the B-spline model. We obtain the following
estimation of the scatter map parameters:

x̃ ∈ arg min
x∈RNBNK

∥∥W1W2∇C(t̂−Bx)
∥∥

1,σ
+ ‖Tx‖22 , (25)

where
• W1 and W2 are the weighting matrices described above

and ‖ ·‖1,σ is a smooth approximation of the `1 norm for
this data-fidelity term [30] defined as

‖y‖1,σ =
∑
n

√
y2
n + σ2 − σ, (26)

with σ a strictly positive smoothing scalar parameter;
• T is the diagonal matrix which energy-dependent ele-

ments τb control the strength of Tikhonov’s regularization
in each energy bin.

From the estimate of the scatter map parameters x̃, the
primary map is deduced by incorporating Equation 22 into
Equation 14:

p̃ = C(t̂−Bx̃). (27)

6) Optimization: We propose to solve Equation 25 using
Newton’s method, starting with an initial guess x(0) = 0 and
building new estimates with the following update rule:

x(n+1) = x(n) + δ(n)
x , (28)

where δ(n)
x ∈ RNBNK denotes Newton’s step at iteration (n).

Newton’s step is obtained solving(
H[F ](x(n)) + T TT

)
δ(n)
x = −∇[F ](x(n))− T TTx(n),

(29)
with ∇[F ](x(n)) and H[F ](x(n)) the gradient and the Hes-
sian of the data-fidelity term at iteration (n), respectively.
Their expressions are given by{

∇[F ](x(n)) = ATM (n)(d−Ax(n))
H[F ](x(n)) = AT (M (n) −N (n))A

(30)
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where
d = W1W2∇Ct̂
A = W1W2∇CB
M (n) = diag

((
(d−Ax(n))2 + σ2

)− 1
2

)
N (n) = diag

(
(d−Ax(n))2

(
(d−Ax(n))2 + σ2

)− 3
2

)
.

(31)
In practice, one iteration of Equation 28 was sufficient to

recover the scatter map in our experiments which indicates
that the cost function is nearly quadratic.

B. Reconstruction

For CT reconstruction, the transmission sinograms (t, p and
p̃) are converted to attenuation sinograms (gt, gp and gp̃ re-
spectively) by computing their negative natural logarithm. For
example, the attenuation sinogram of the estimated primary
map is given by

gp̃ = − ln(p̃). (32)

The attenuation sinograms at each energy bin are then re-
constructed with the Reconstruction Toolkit (RTK) [31] us-
ing Feldkamp’s filtered backprojection algorithm [32]. For
the parallel fan-beam geometry (section II-C.2), each slice
is reconstructed separately using the same implementation.
The reconstructed volumes of total, reference and estimated
primary are denoted f t, fp and f p̃, respectively.

C. Test cases

Both simulations and acquisitions were realized to evaluate
the proposed method. The corresponding setups are described
in II-C.1 and II-C.2, respectively.

1) Simulations: The medical CT scanner simulated, which
geometry is described in Figure 1 and Table I, had a tungsten
x-ray tube with an anode angle of 30◦ operated at 120 kV
and 0.2 mAs. A 1024×1024 pixels flat-panel energy-resolved
photon counting detector with a pitch of 400 µm and a
3 mm thick CdTe sensor has been simulated using an internal
software, imitating an existing energy-resolved detector [33].
The same simulated DRM was used for all pixels, which
has been binned in the energy domain in 8 energy bins as
a compromise between the number of bins and the noise
level within each bin. The DRM is shown in Figure 4.
The pixels were also binned such that one projection pixel
regroups 16 detector pixels (4× 4). Pile-up effects were not

TABLE I
DISTANCES OF THE CT SCANNER FOR CASE 1 (SIMULATION STUDY),

CASE 2 (EXPERIMENTAL STUDY ON CIRS PHANTOM) AND CASE 3
(EXPERIMENTAL STUDY ON RANDO PHANTOM) IN MM.

Case 1 Case 2 Case 3
Source-to-detector distance (mm) 1500 1500 1500
Source-to-isocenter distance (mm) 1000 1075 985

Source-to-mask distance (mm) 150 310 320

simulated. Poisson noise was simulated from the images of
the expected number of photons, except the images without
object which were assumed to be noise free since they are
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Fig. 4. Left: simulated detector response matrix (DRM); right: source
spectrum.

acquired offline without object and large doses can therefore
be used. We simulated a CT scan of the head of the ICRP
realistic anthropomorphic phantom [34] with 360 deterministic
primary projections and 36 scatter projections (to limit the
computation burden) using fixed-forced detection [14] with
one million particles per projection, both with Gate [35]. The
scatter maps were then interpolated with quadratic B-splines
in order to obtain the 360 projections corresponding to the
simulated primary maps. The primary modulator mask consists
of a 5 mm thick graphite slab, drilled by 3 mm wide square
holes every 5 mm.

The various attenuation levels taken for the calibration
dataset (used to estimate the correction matrix) correspond to
the combination of nine 2 cm thick polymethyl methacrylate
slabs and a 1 mm aluminum slab.

Second order B-splines, with 128 pixels (≈ 20 cm) between
two knots in the two directions of the detector and 15◦ in the
angular direction were set. The choice of the spacings between
B-spline knots and the scalar parameters is discussed later in
section IV. The scalar parameters η and σ were also tuned
manually, as well as the regularization parameters τb. Their
values are given in table II.

TABLE II
SCALAR PARAMETERS FOR CASE 1 (SIMULATION STUDY), CASE 2

(EXPERIMENTAL STUDY ON CIRS PHANTOM) AND CASE 3
(EXPERIMENTAL STUDY ON RANDO PHANTOM).

Parameter Case 1 Case 2 Case 3
η 2 × 100 1 × 101 1 × 101

σ 3 × 10−3 1 × 10−4 1 × 10−4

τ1 5 × 100 1 × 10−6 1 × 10−6

τ2 2 × 10−1 1 × 10−5 6 × 10−7

τ3 1 × 10−1 4 × 10−5 4 × 10−7

τ4 8 × 10−2 7 × 10−5 2 × 10−7

τ5 5 × 10−2 8 × 10−5 8 × 10−8

τ6 2 × 10−2 2 × 10−4 6 × 10−8

τ7 1 × 10−2 5 × 10−4 2 × 10−8

τ8 1 × 10−2 5 × 10−4 1 × 10−8

∆u 128 pixels 64 pixels 128 pixels
∆v 128 pixels 64 pixels 128 pixels
∆θ 15◦ 10◦ 10◦

2) Physical experiments: The physical experiments were
performed using a parallel fan-beam set-up. The system is
made of a tungsten x-ray source, powered with 120 kV. The
detector is a line-detector without anti-scatter grid composed
of 5 commercial detectors (Detection Technology ME100)
for a total of 640 pixels with a pitch of 0.8 mm. 16 fan-
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beam acquisitions were stacked such that each projection had
640 × 16 isotropic pixels. The ME100 has 64 energy-bins
of about 2 keV width, which are binned into 8 energy-bins
described in Table III. The primary modulator mask is a 5 mm

TABLE III
RELATION BETWEEN ENERGY-BIN AND PHOTON ENERGY IN PHYSICAL

EXPERIMENTS.

Bin # Energy range (keV)
1 30.8 - 41.8
2 41.8 - 52.8
3 52.8 - 63.8
4 63.8 - 74.8
5 74.8 - 85.8
6 85.8 - 96.8
7 96.8 - 107.8
8 107.8 - 121

thick graphite slab drilled with 3 mm diameter holes each
5 mm (see Figure 2). The design of the mask is discussed
later in section IV. The phantom is placed on a vertical
translation table (allowing us to acquire various slices). The
support of the mask is attached to the translation table. The
system contains three collimators: the detector case and two
additional collimators placed at the level of the source and
just before the object. Unlike the detector case, the additional
collimators are removable. The two imaged phantoms are a
33 × 27 cm2 water-equivalent plastic ellipsoid (mimicking a
pelvis) with tissue-equivalent plastic inserts of 3 cm diameter
(CIRS phantom, model 062MQA, stoichiometry available in
[36]) and a realistic human head phantom (RANDO phantom).
Pictures of the two phantoms are shown in Figure 5. The
calibration dataset was acquired with the combination of three
5 cm thick polypropylene slabs and two 5 mm thick aluminum
slabs. The image without object, the mask image p̂0 and the
calibration images were acquired with 20 mAs while the 180
projections of the tomographic acquisitions of the phantoms
were acquired with 2 mAs. For each phantom, three CT scans
were acquired: two without collimation (with and without the
modulator mask) and one without mask and with fan-beam
source collimation to irradiate only the one-line detector. The
latter will be considered as a scatter-free reference acquisition
for the rest of this paper following, e.g., [23], [25].

  

Fig. 5. Left: Picture of the CIRS phantom; right: picture of the RANDO
phantom.

The scalar parameters used in the method are listed in
Table II. The spacings between two knots on the detector were
set to 64 pixels for the CIRS case (≈ 5 cm) and 128 pixels

in the RANDO case (≈ 10 cm). In both cases, the spacing
between two knots in the angular dimension of the projections
was set to 10◦ and second order B-splines were used.

D. Evaluation

The quantitative evaluation in the projection domain was
performed on simulations with the mean relative error (MRE)
on the transmission sinograms. For example, the mean relative
error associated with the estimated primary at energy bin b is
computed as follows:

MREp̃b = 100× 1

NUNVNΘ

NU∑
u=1

NV∑
v=1

NΘ∑
θ=1

|pb,u,v,θ − p̃b,u,v,θ|
pb,u,v,θ

,

(33)
where p is the noise-free primary transmission sinogram.
The errors MREpb and MREtb associated with the reference
primary and the total sinograms are computed by replacing p̃
by p and t in Equation 33, respectively.

III. RESULTS

A. Simulations

Figure 6 shows the results in the projection domain. The top-
left sub-figure is divided into two parts: the left one represents
the simulated total attenuation while the right part shows the
estimated primary. In the same way, the left part of the top-
right sub-figure shows a projection of the simulated scatter
map and the right part the estimated scatter map. The two
bottom sub-figures show the spectra of the two pixels of
interest (POI) shown on the top-left sub-figure. Blue curves
represent the total attenuation, while the orange and green ones
represent the simulated and estimated primary, respectively.
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Fig. 6. Top: attenuation image (left) and scatter image (right) for one
projection angle; both images represent the second energy bin. Each
image is subdivided in two: the simulation (resp. total or scatter) on the
left against the estimation (resp. primary or scatter) on the right. Bottom
graphs share the same color code: total (blue), reference (orange) and
estimated (green) spectra of the two pixels of interest (POI).
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The transmission profiles of total, simulated primary, es-
timated primary, simulated scatter and estimated scatter at
energy bins 2 and 6 are plotted on Figure 7. The profiles
location is shown on the top-left sub-figure of Figure 6.
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Fig. 7. Profiles of total (blue), reference primary (orange), estimated
primary (green), scatter (red) and estimated scatter (magenta) with the
same color code in each graph. Left: bin 2, right: bin 6 (profile location
on Figure 6).

Table IV shows the mean relative error on simulated data
for each one of the 8 energy bins. The first column shows
the error on the simulated total map, the second one on the
simulated primary map and the third one on the estimated
primary map.

TABLE IV
MEAN RELATIVE ERRORS ON SIMULATED DATA (%).

Bin # MREtb MREpb MREp̃b
1 18.55 2.64 4.08
2 21.27 2.06 3.45
3 12.95 1.37 2.70
4 9.26 1.24 2.36
5 7.42 1.43 2.46
6 6.21 1.63 2.56
7 5.30 2.05 3.23
8 4.81 3.21 4.02

The results in the object domain, for the simulation case, are
presented in Figure 8. The top-left sub-figure shows a CT slice
and is divided into two parts: the simulated total map on the
left and the estimated primary map on the right. The top-right
sub-figure shows the profiles at energy bin 2, which location
is shown on the top-left sub-figure. The bottom sub-figures
show the mean spectra in voxels of two tissues of interest
(TOI) corresponding to human tissues: the brain (TOI1) and
the cranium spongiosa (TOI2). The blue, green and red curves
represent the simulated total map, simulated primary map and
estimated primary map, respectively.

B. Physical experiments
The results on the CIRS phantom are shown in Figure 9,

where the first, second and third rows correspond to the
total map, reference primary map and estimated primary map,
respectively. The first column shows attenuation sinograms
and the second the corresponding CT slices. Each column is
divided in two, where the left part is the second energy bin
and the right part the sixth one.

Figure 10 shows the mean spectra of three regions of
interest (ROI) of the CIRS phantom which locations are shown
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Fig. 8. Top left: CT slice at bin 2 of the simulated total map on the left
and the estimated primary map on the right; top right: profiles at bin 2;
bottom left: mean spectra of TOI 1 (brain); bottom right: mean spectral of
TOI 2 (cranium spongiosa); the color code is the same for all graphs, i.e.,
simulated total map in blue, reference primary map in orange, estimated
primary map in green.

on the top-left figure. The three ROIs are tissue-like inserts
representing lung (ROI1), soft tissue (ROI2) and bone (ROI3).
Blue, orange and green curves are the total, reference primary
map and estimated primary map respectively.

Finally, the results on the RANDO anthropomorphic phan-
tom are presented in Figure 11, where the top-right sub-figure
shows a CT slice of the total (left) and estimated primary
(right) maps. The top-right sub-figure shows the mean spectra
of a cranium region of interest which location is shown on
the top-left sub-figure. The two bottom sub-figures show the
profiles (see location on top-left sub-figure) at bin 2 (bottom-
left) and bin 6 (bottom right). The blue curves represent
the total map, while the orange and green ones represent
respectively the reference and estimated primary maps.

IV. DISCUSSION

This paper presents a scatter correction method adapted to
spectral CT which uses a primary modulator mask. It has
been tested on simulated and experimental data, and shows
a good qualitative accuracy in terms of contrast enhancement
and scatter artifacts removal. In addition, the analysis of the
mean relative error in the simulated case reveals a good
quantitative accuracy since the error after correction is close
to the error induced by the statistical noise (third vs second
column of Table IV). Furthermore, we have observed a good
correspondence between the reference and estimated primary
in the experimental cases.

The following section aims at discussing the design of the
primary modulator mask, noise and ring artifacts increase
induced by the method and the choice of the parameters for
the B-spline scatter model and the cost function.
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a) Primary modulator design: The choice of the mask
material for such scatter correction methods has been studied
in [37] considering energy-integrating detectors. It states that
to compensate the beam-hardening effect, the material must
be chosen such that its K-edge is near the mean energy of
the source spectrum. We have chosen a mask material which
LAC is slowly-variant along the energy range of the source
spectrum because a K-edge would require having a different
model for the correction matrix for the rows affected by the
K-edge. Low-Z materials such as carbon or aluminum are the
best choice for the mask material because their LAC is quite
smooth over the considered energy range (30-120 keV).

Having selected the material of the primary modulator mask,
the choice of its thickness follows a trade-off between the
requirements to be thin enough to limit the parallax effect,
which tends to lower the sharpness of the mask edges seen in
the images, and sufficiently thick to induce a visible footprint
on the estimated primary map when the estimation of the
scatter map is wrong.

Finally, the mask must have as many edges as possible
in order to have enough pixels carrying information about
the presence of the mask footprint. As a consequence, the
pattern should be as small as possible given the mechanical
constraints of the mask material for the selected thickness. In
our physical experiments, the pattern of the primary modulator
mask was the smallest possible for the 5 mm thick graphite
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Fig. 10. Top left: location of regions of interest (ROI); Top right, bottom
left, bottom right: mean spectra of ROI 1, ROI 2 and ROI 3 respectively.
The color code is the same for all graphs: total map (blue), reference
primary map (orange) and estimated primary map (green).

slab according to its manufacturer.
In the presented method, the correction matrix is calibrated

for given source, mask and detector positions. In practice,
they may be each subject to different small movements during
the rotation due to, e.g., vibrations and gravity, which would
compromise the calibration of the correction matrix. This will
strongly depend on the design of the cone-beam CT scanner
which was out of the scope of this study.

b) Noise and ring artifacts: The method does not induce
ring artifacts but it increases them as well as the noise level
on the images. Due to the smooth behavior of the proposed
scatter model, by subtracting it to scatter-corrupted images,
the absolute noise level in the transmission sinograms is
unchanged, but its relative level increases, particularly after
taking the logarithm. As a result, the noise and the vertical
stripes are more visible in the estimated primary attenuation
sinograms than in the total ones. This is also the case in CT
images where the vertical stripes are replaced by ring artifacts.

The observed ring artifacts were more severe without colli-
mation than with collimation, even before scatter correction
and without modulation mask (Figure 9, top vs middle).
Scatter correction further increases the contrast of those rings.
These rings are mostly visible at the edges of the detector
crystals (four per Detection Technology ME100 detector) but
we do not have an explanation for this physical effect probably
due to having a larger part of the detector irradiated.

The scatter-corrected spectral projection may be used in
a material decomposition algorithm [38]. Material decompo-
sition is known to be an ill-conditioned problem on which
scatter has a strong impact [39]. Residual noise and rings
after scatter correction may also be a problem, in which
case the acquisition parameters can be adjusted and denoising
algorithms used prior to the material decomposition.
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c) Choice of the parameters: The spacing between two B-
spline knots has to be the largest one allowing recovery of
a scatter map which fits well with the real (or simulated)
one to minimize the number of parameters. In this work,
we performed a grid-search with the objective of minimizing
the squared difference between the reference and estimated
primary images. The variations of the scatter map (in the
two directions of the detector) is highly dependent on the
acquisition geometry as it lowers when the air-gap between the
object and the detector increases. Highly-attenuating objects
also increase the high frequencies of the scatter map, and the
spacing between two knots on the detector should be smaller
when the attenuation of the object increases. This justifies the
smaller spacing between B-spline knots of the CIRS pelvis
phantom which is much more attenuating than the RANDO
head phantom.

Aiming at a smooth representation of the scatter map, the
B-splines should be at least quadratic and no improvement
has been observed using cubic B-splines. Note that the zero-
th order case induces a piece-wise constant representation of
the scatter map, as proposed in [23] and [25]. Therefore, the
representation of scatter with B-spline basis functions can be
seen as a generalization of previous works.

The cost function presented in this paper in Equation 25
depends on scalar parameters which have to be tuned. The
strengths of the structure weighting and the `1 norm smoothing
are controlled by η and σ respectively, and their optimal values
may be found with a grid-search. It was done in this work
using the simulated primary map and the reference primary
map (for simulated and experimental cases respectively). Then,
the parameters of the Tikhonov regularization (one for each
energy bin) were tuned manually. As the problem is poorly
conditioned, the optimal solution might have too high magni-

tude and lead to negative transmission values on the estimated
primary. The selected regularization penalizes large scatter
estimates to avoid such negative values.

In this work, the spatial gradient of the primary map was
visually preserved (e.g. in Figure 7) using a dedicated weight-
ing in the cost function (Equation 24). Since it is exponential,
small variations of the parameter η induce great variations
of dynamics in the weighting matrix W2 and its value has
therefore to be tuned quite precisely. On the contrary, the
influence of the smoothing parameter σ is not very sensitive
and small variations of its value does not visually affect the
results provided by the method. The sensitivity of the method
to the Tikhonov regularization parameters depends on the
condtionning of the method which is related to the statistical
noise, the mask attenuation, and the ratio between the number
of pixels at mask edges and the number of knots in the B-
spline scatter model. Indeed, as explained in section II-A, an
error ε = s− s̃ induces an error Cε on the estimated primary.
The scatter can therefore be detected if ∇Cε is larger than the
gradient of the statistical noise and the weight associated with
a given B-spline knot can be estimated precisely if the mask
attenuation and the number of edge pixels in the area of this
knot are large enough. Since the impact of the scatter bias on
the attenuation images depends on the SPR, one can conclude
that the method is sensitive to the Tikhonov parameters in
high SPR regions and where the statistical noise is large. In
our experiments, these parameters had to be tuned precisely in
the lower energy-bins, where the SPR and the statistical noise
are larger.

V. CONCLUSION

In this paper, we presented a scatter reduction technique for
spectral CT using a primary modulator mask. The accuracy
of the technique has been demonstrated on simulated and
experimental spectral CT datasets, both in the projection and
in the object domains. The initial mean relative error of around
20% in the lower energy-bins has been reduced to around 4%,
which is close to the error induced by the statistical noise.
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[10] J. Rinkel, L. Gerfault, F. Estève, and J. M. Dinten. A new method for x-
ray scatter correction: first assessment on a cone-beam CT experimental
setup. Physics in Medicine and Biology, 52(15):4633–4652, 2007.

[11] J. S. Maltz, B. Gangadharan, S. Bose, D. H. Hristov, B. A. Faddegon,
A. Paidi, and A. R. Bani-Hashemi. Algorithm for X-ray Scatter, Beam-
Hardening, and Beam Profile Correction in Diagnostic (Kilovoltage)
and Treatment (Megavoltage) Cone Beam CT. IEEE Transactions on
Medical Imaging, 27(12):1791–1810, 2008.

[12] M. Sun and J. M. Star-Lack. Improved scatter correction using
adaptive scatter kernel superposition. Physics in Medicine and Biology,
55(22):6695–6720, 2010.

[13] G. Jarry, S. A. Graham, D. A. Jaffray, D. J. Moseley, and F. Verhaegen.
Scatter correction for kilovoltage cone-beam computed tomography
(CBCT) images using Monte Carlo simulations. In Medical Imaging
2006: Physics of Medical Imaging, volume 6142, page 614254. Inter-
national Society for Optics and Photonics, 2006.

[14] G. Poludniowski, P. M. Evans, V. N. Hansen, and S. Webb. An efficient
Monte Carlo-based algorithm for scatter correction in keV cone-beam
CT. Physics in Medicine and Biology, 54(12):3847–3864, 2009.

[15] G. J. Bootsma, F. Verhaegen, and D. A. Jaffray. Efficient scatter
distribution estimation and correction in CBCT using concurrent Monte
Carlo fitting. Medical Physics, 42(1):54–68, 2015.

[16] R. Ning, X. Tang, and D. Conover. X-ray scatter correction algorithm
for cone beam CT imaging. Medical Physics, 31(5):1195–1202, 2004.

[17] H. Yan, X. Mou, S. Tang, Q. Xu, and M. Zankl. Projection correlation
based view interpolation for cone beam CT: primary fluence restoration
in scatter measurement with a moving beam stop array. Physics in
medicine and biology, 55:6353–6375, November 2010.

[18] J. H. Siewerdsen, M. J. Daly, B. Bakhtiar, D. J. Moseley, S. Richard,
H. Keller, and D. A. Jaffray. A simple, direct method for x-ray scatter
estimation and correction in digital radiography and cone-beam CT.
Medical Physics, 33(1):187–197, 2006.

[19] L. Ouyang, K. Song, and J. Wang. A moving blocker system for
cone-beam computed tomography scatter correction. Medical Physics,
40(7):071903, 2013.

[20] J. S. Maltz, W. Blanz, D. Hristov, and A. Bani-Hashemi. Cone beam
X-ray scatter removal via image frequency modulation and filtering.
In 2005 IEEE Engineering in Medicine and Biology 27th Annual
Conference, pages 1854–1857, 2005.

[21] L. Zhu, N. R. Bennett, and R. Fahrig. Scatter Correction Method for
X-Ray CT Using Primary Modulation: Theory and Preliminary Results.
IEEE Transactions on Medical Imaging, 25(12):1573–1587, 2006.

[22] H. Yan, X. Mou, S. Tang, and Xi Chen. Iterative scatter correction
for x-ray cone-beam CT with semi-transparent beam stop array. In
Ehsan Samei and Jiang Hsieh, editors, Medical Imaging 2009: Physics
of Medical Imaging, volume 7258, pages 1018 – 1025. International
Society for Optics and Photonics, SPIE, 2009.

[23] L Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß. Robust
primary modulation-based scatter estimation for cone-beam CT. Medical
Physics, 42(1):469–478, 2015.

[24] B. Bier, M. Berger, A. Maier, M. Kachelrieß, L. Ritschl, K. Müller, J.H.
Choi, and R. Fahrig. Scatter correction using a primary modulator on a
clinical angiography C-arm CT system. Medical Physics, 44(9):e125–
e137, 2017.

[25] Y. Chen, Y. Song, J. Ma, and J. Zhao. Optimization-based scatter
estimation using primary modulation for computed tomography. Medical
Physics, 43(8Part1):4753–4767, 2016.

[26] A. Sossin, V. Rebuffel, J. Tabary, J. M. Létang, N. Freud, and L. Verger.
A novel scatter separation method for multi-energy x-ray imaging.
Physics in Medicine and Biology, 61(12):4711–4728, 2016.

[27] A. Sossin, V. Rebuffel, J. Tabary, J. M. Létang, N. Freud, and L. Verger.
Experimental validation of a multi-energy x-ray adapted scatter separa-
tion method. Physics in Medicine and Biology, 61(24):8625–8639, 2016.

[28] G. J. Bootsma, F. Verhaegen, and D. A. Jaffray. Spatial frequency
spectrum of the x-ray scatter distribution in CBCT projections. Medical
Physics, 40(11):111901, 2013.

[29] M. Unser, A. Aldroubi, and M. Eden. B-spline signal processing. I.
Theory. IEEE Transactions on Signal Processing, 41(2):821–833, 1993.

[30] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. Deter-
ministic edge-preserving regularization in computed imaging. IEEE
Transactions on Image Processing, 6(2):298–311, 1997.

[31] S. Rit, M. V. Oliva, S. Brousmiche, R. Labarbe, D. Sarrut, and G. C.
Sharp. The Reconstruction Toolkit (RTK), an open-source cone-beam
CT reconstruction toolkit based on the Insight Toolkit (ITK). Journal
of Physics: Conference Series, 489:012079, 2014.

[32] L. A. Feldkamp, L. C. Davis, and J. W. Kress. Practical cone-beam
algorithm. JOSA A, 1(6):612–619, 1984.

[33] A. Brambilla, P. Ouvrier-Buffer, J. Rinkel, G. Gonon, C. Boudou, and
L. Verger. CdTe linear pixel X-ray detector with enhanced spectrometric
performance for high flux X-ray imaging. In IEEE Nuclear Science
Symposium Conference Record, pages 4825–4828, 2011.

[34] H. G. Menzel, C. Clement, and P. DeLuca. ICRP Publication 110.
Realistic reference phantoms: an ICRP/ICRU joint effort. A report of
adult reference computational phantoms. Annals of the ICRP, 39(2):1–
164, 2009.

[35] S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt,
T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot,
N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis,
N. Zahra, and I. Buvat. GATE V6: a major enhancement of the GATE
simulation platform enabling modelling of CT and radiotherapy. Physics
in Medicine and Biology, 56(4):881–901, 2011.

[36] N. Hudobivnik, F. Schwarz, T. Johnson, L. Agolli, G. Dedes, T. Tes-
sonnier, F. Verhaegen, C. Thieke, C. Belka, W.H. Sommer, K. Parodi,
and G. Landry. Comparison of proton therapy treatment planning for
head tumors with a pencil beam algorithm on dual and single energy
CT images. Med Phys, 43(1):495, Jan 2016.

[37] H. Gao, L. Zhu, and R. Fahrig. Modulator design for x-ray scatter
correction using primary modulation: Material selection. Medical
Physics, 37(8):4029–4037, 2010.

[38] R.E. Alvarez and A. Macovski. Energy-selective reconstructions in
X-ray computerized tomography. Physics in medicine and biology,
21(5):733–744, Sep 1976.

[39] A. Sossin, V. Rebuffel, J. Tabary, J. M. Létang, N. Freud, and L. Verger.
Influence of scattering on material quantification using multi-energy x-
ray imaging. In Proc. IEEE Nuclear Science Symp. and Medical Imaging
Conf. (NSS/MIC), pages 1–5, November 2014.


	Introduction
	Materials and methods
	Scatter correction method
	Principle
	Correction matrix
	Scatter model
	Weights
	Cost function
	Optimization

	Reconstruction
	Test cases
	Simulations
	Physical experiments

	Evaluation

	Results
	Simulations
	Physical experiments

	Discussion
	Conclusion
	References

