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Abstract 29 

Knowledge of spatial genetic variability patterns allows improving conservation actions, 30 

translocation regulations, and farming productivity. However, these genetic variability 31 

patterns are often considered after issues are observed, long after the beginning of production. 32 

By taking into account lessons from other species, we investigate the genetic variability of 33 

Perca fluviatilis, a species at a nascent stage of production. The genetic variability has been 34 

previously studied but, due to discrepancies between conclusions and methodological limits, 35 

the spatial distribution of genetic variability in P. fluviatilis has not been demonstrated 36 

conclusively. Here, we characterise the genetic variability across 84 West-Palaearctic 37 

sampling sites using mitochondrial and microsatellite markers. We aim to provide (i) a 38 

genetically-based population structure that could act as an impetus for further production 39 

improvement and (ii) guidelines for translocation regulations. Our analyses show an uneven 40 

distribution of genetic variability. Based on inter-populational genetic differentiation, we 41 

identify five large geographic scale clusters which are further divided into several subgroups. 42 

Local genetic diversity mapping highlights a spatial pattern with several hotspots, which has 43 

serious implications in the development of appropriate regulations of translocations. 44 

Moreover, we here report an association between genetic differentiations and previously 45 

reported zootechnical performances. We ultimately propose guidelines for further 46 

investigations of population-specific performances in aquaculture and potentially efficient 47 

regulations for policy-makers. 48 

Keywords: Geographic differentiation - Genetic diversity - Perca fluviatilis - Management – 49 

Production 50 
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1. Introduction 58 

During the Quaternary, most inland species went through several climatic cycles (Andersen 59 

and Borns, 1994). The alternation of Ice Ages and interglacial periods resulted in range shifts 60 

which depended on eco-climatic requirements and tolerances of taxa. Temperate-adapted taxa 61 

underwent range shrinking during Ice Ages and distribution expansions to at least portions of 62 

their initial distribution range during interglacial periods (Avise, 2000; Hewitt, 2004a; Stewart 63 

et al., 2010), while cold-adapted taxa went through the opposite pattern (Fedorov et al., 2008; 64 

Magnuson et al., 1979; Martinet et al., 2018; Quinzin et al., 2017). Such movements have 65 

shaped the current distribution and genetic variability patterns of species (Hewitt, 2004b; 66 

Stewart et al., 2010). First, the distribution of many species was fragmented into different 67 

isolated refugia during range shrinking times (Avise, 2000; Hewitt, 2004b). This led to a 68 

decrease of gene flow between populations and, potentially, to geographic genetic 69 

differentiations (Hewitt, 2000; Stewart et al., 2010). Second, post-glacial re-colonisations of 70 

non-refuge areas led to a loss of genetic diversity through founder events occurring at the 71 

expanding front while ancestral genetic diversity was often maintained in refuge regions 72 

(Avise, 2000; Hewitt, 2004b). Finally, the mixing of individuals from different refugia in 73 

newly colonised areas created regions of high genetic diversity (i.e. suture zones; Avise, 74 

2000; Hewitt, 2004b). Moreover, species intrinsic features (e.g. limited dispersal, (partial) 75 

post-zygotic reproduction isolation) can also contribute to shape local genetic specificities of 76 

populations (Behrmann-Godel, 2004; Lecocq et al., 2018, 2017). This has resulted in an 77 

uneven distribution of the genetic variability (i.e. genetic diversity and genetic differentiation) 78 

across species ranges (Avise, 2000; Hewitt, 2004b). 79 

Meeting human nutritional needs has often required the domestication (sensu Lecocq 2019) 80 

and trade of wild animal species (Salo et al., 2014; Teletchea and Fontaine, 2014; Velthuis 81 

and van Doorn, 2006). However, this development is characterised by challenges which can 82 

impede the sustainability of animal production. Successfully domesticating a novel species is 83 

a long-term and difficult task since it implies mastering species life cycle in a human-84 

controlled environment (see production development pathways in Teletchea and Fontaine, 85 

2014). Furthermore, translocation of individuals within and outside the species native range 86 

can occur when the production and subsequent trade begin. This can lead to many 87 

conservation concerns (e.g. biological invasion, pathogen spillover, genetic homogenisation; 88 

Lecocq et al., 2016a; Mack et al., 2000; Perrings et al., 2010). Knowledge of spatial genetic 89 

variability patterns provides key information to enhance animal production development as 90 
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well as to mitigate its potential negative impacts on wild populations (Danancher and Garcia-91 

Vazquez, 2011). 92 

For animal producers, understanding spatial patterns of genetic variability is potentially 93 

valuable in order to optimise the exploitation of a particular species in controlled conditions. 94 

Indeed, genetically differentiated populations underwent specific evolutionary histories and 95 

could have acquired phenotypic specificities (i.e. geographic differentiation; Blanck and 96 

Lamouroux, 2007; Forschler and Kalko, 2007; Youngson et al., 2003) through genetic 97 

adaptations to local environments (Losos and Ricklefs, 2009). Some of these specificities (i.e. 98 

characteristics which are particular to a specific population) can concern biological traits of 99 

interest for production, trade, and profit (e.g. improved provision of ecosystem services, 100 

higher resilience, higher acceptability by stakeholders; Imsland et al., 2002; Janhunen et al., 101 

2009; Lecocq et al., 2016a, 2016b; Stort, 1974). This leads to different potentials between 102 

populations for production. Ultimately, considering these population potentials can foster 103 

successful animal production development (e.g. Velthuis and van Doorn, 2006).  104 

Globalisation of species production and trade (for agriculture, pets, model organisms for 105 

scientific purposes, game, restocking, or biological control agents) leads to translocations that 106 

can threaten local species and population(s). While risks related to invasions of non-native 107 

species have been widely studied (Mooney and Cleland, 2001; Simberloff et al., 2013), 108 

translocations within the distribution range of a particular species have received far less 109 

attention (Lecocq et al., 2016a). Yet, they have been shown in some cases to be more 110 

detrimental (Buoro et al., 2016). Translocations of genetically differentiated individuals 111 

within a species range can lead to outbreeding, genetic homogenisation, or competition issues 112 

threatening genetic intraspecific variability (Champagnon et al., 2012; Cross, 2000; 113 

Danancher and Garcia-Vazquez, 2011; Rhymer and Simberloff, 1996). This genetic 114 

variability (i.e. the combination of local genetic diversity and inter-population genetic 115 

differentiation) is seen as one of the key factors to species conservation and survival (Booy et 116 

al., 2000; Frankham et al., 2010). Indeed, local genetic diversity and inter-populational 117 

genetic differentiation contribute to the species ability to adapt to future challenges (Laikre et 118 

al., 2005; Sgrò et al., 2011) and to global biodiversity that maximizes species long-term 119 

survival chances (Conner and Hartl, 2004; Lecocq et al., 2015; Phillimore and Owens, 2006), 120 

respectively. Therefore, preserving genetic variability is an important focus in conservation 121 

programs (Laikre et al., 2005; Mankiewicz-Boczek et al., 2013; Sgrò et al., 2011). Given the 122 

important advantages of many produced/traded species for human livelihood, health, or 123 
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economy, a complete interdiction of translocations is not feasible. Therefore, pragmatic 124 

translocation regulations are needed. Finding spatial patterns of genetic variability allows 125 

developing relevant regulations to preserve population specificities and guidelines for 126 

translocations (e.g. Lecocq et al., 2016a, 2015). 127 

Despite their potentially valuable integration in incipient species domestication and trade, 128 

intraspecific genetic variability patterns often begin to be considered long after the beginning 129 

of production (Fleming et al., 2000; Lecocq et al., 2016a; Lemer and Planes, 2012). Indeed,  130 

new candidate species often start to be produced without due consideration to issues already 131 

encountered with other fish species when spatial patterns of intraspecific variability when not 132 

considered early in the domestication process (Fleming et al., 2000; Lemer and Planes, 2012; 133 

McGinnity et al., 2003). In this study, we focus our attention on the European perch (Perca 134 

fluviatilis L.), an inland fish species at a nascent stage of its aquaculture production. Perca 135 

fluviatilis is a temperate freshwater and brackish water fish species distributed across the 136 

Palaearctic realm (except in most of the Mediterranean Sea coast regions; Stepien and 137 

Haponski, 2015). This species, traditionally used in both commercial and recreational 138 

fisheries, is the focus of an increasing interest in aquaculture since the 90s in western Europe 139 

(Fontaine, 2004; Kestemont et al., 2015; Kestemont and Mélard, 2000). Although several 140 

major bottlenecks are still observed in aquaculture (Kestemont et al., 2015; Policar et al., 141 

2019), further development of P. fluviatilis production can be expected because this species 142 

has an increasingly impressive market potential (i.e. current production is largely inferior to 143 

European demand; Kestemont et al., 2015). Since the species displays a significant invasive 144 

potential (Kestemont et al., 2015) as well as documented intraspecific genetic (e.g. Bergek 145 

and Björklund, 2009; Nesbø et al., 1999) and phenotypic (Blanck and Lamouroux, 2007; 146 

Pimakhin, 2012; Roch et al., 2015) differentiations, it is likely that (i) production potential 147 

may vary between populations and (ii) unregulated translocations could lead to dramatic 148 

consequences. This suggests that production and translocations of the European perch should 149 

be optimised and regulated, respectively, at the nascent stage of its production. 150 

The demographic history of the European perch was investigated in previous studies. 151 

However, most of these studies focused on limited geographic areas (e.g. Bergek and 152 

Björklund, 2009; Butkauskas et al., 2012). Only one study investigated the species genetic 153 

variability at large geographic scale and identified four genetic groups and three refugia 154 

(suggesting a plausible fourth one, not contributing to re-colonisation) during the last glacial 155 

maximum (25,000 to 15,000 before present; Nesbø et al., 1999). However, tremendous 156 
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developments in analytical and statistical approaches occurred since these previous 157 

publications. The former large-scale phylogeographic study (Nesbø et al., 1999) was only 158 

based on a small part of the mitochondrial genome as well as a few Random Amplification of 159 

Polymorphic DNA (RAPD) markers but limitations of such approaches have now been 160 

highlighted. First, phylogeographic and population genetic studies based on only a small part 161 

of genome, in this case mitochondrial genome, remain controversial because (i) the part of 162 

genome analysed is often chosen arbitrarily (Cruaud et al., 2014) and (ii) population 163 

differentiations are not always characterised by the accumulation of many genetic differences, 164 

making their detection by using small genome part unlikely (Arif and Khan, 2009; 165 

Patwardhan et al., 2014). Second, multilocus nuclear markers such as RAPD markers have 166 

been replaced by more powerful multi-allelic markers such as microsatellites because RAPD 167 

approach presents a low reproducibility and a limited usefulness for meta-analysis (Arif and 168 

Khan, 2009; Sunnucks, 2000). Beside potential limitations due to the state of scientific and 169 

technical knowledge at the time of previous investigations, an overview of phylogeographic 170 

studies investigating specific geographic areas shows discrepancies in conclusions (see for 171 

instance Gyllensten et al., 1985 and Olsson et al., 2011). Therefore, due to analytical 172 

limitations and discrepancies between conclusions, previous studies have not demonstrated 173 

conclusively the spatial distribution of genetic variability in P. fluviatilis. 174 

In the present study, we establish the spatial genetic variability patterns and the population 175 

structure of the European perch through the analysis of four mitochondrial regions and eight 176 

nuclear microsatellite markers. By considering these spatial patterns, we aim to provide (i) a 177 

genetically-based population structure that could act as an impetus for further improvement of 178 

P. fluviatilis production and (ii) guidelines for efficient regulations of the species 179 

translocations within its natural range to preserve wild intraspecific variability. 180 

2. Material and Methods 181 

2.1 Sampling 182 

We collected 409 European perch tissue samples from 84 sampling sites (five individuals per 183 

sampling site, except for six sites for which less individuals were collected) from different 184 

drainage basins (estuaries, rivers, and lakes) across the species native range in western Eurasia 185 

and Siberia (Table S1, Fig. 1, and Fig. S1). Sample providers dissected a small piece of caudal 186 

or dorsal fins or scales from field captured individuals. Samples were stored in 99% ethanol at 187 

– 20 °C. We included samples of P. schrenkii Kessler 1874 (seven samples from two sites, 188 
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Table S1) and P. flavescens Mitchill 1814 (sequences from GenBank), the two sister species 189 

of P. fluviatilis, as outgroups for mitochondrial analyses. All samples were collected 190 

respecting both European and national sampling regulations. We isolated genomic DNA using 191 

DNeasy® Blood and Tissue kit (QIAGEN France SAS®) (18-h incubation in proteinase K at 192 

56 °C). Voucher specimens used in molecular investigations were deposited at the University 193 

of Lorraine (Nancy, France). 194 

a. Genetic analyses 195 

We selected four mitochondrial regions, commonly used to evaluate phylogeographic patterns 196 

of fish species (Costedoat and Gilles, 2009; Makhrov and Bolotov, 2006): cytochrome b 197 

(Cytb), D-loop or control region (D-loop), 16S rRNA (16S), and cytochrome oxidase I (COI). 198 

Polymerase chain reaction amplifications of Cytb, D-loop, 16S, and COI were carried out 199 

using primers L14724F / H15918R (Song et al., 1998), HV2 / CSBD (Nesbø et al., 1998), 200 

16Sar / 16Sbr (Palumbi et al., 1991), and jgLCO1490 / jgHCO2198 (Geller et al., 2013), 201 

respectively. The reaction components were 10 pmol primers, PPP MasterMix (Top Bio®), 202 

DNA (100 - 200 ng/µL), and water. An initial step of five minutes at 95 °C was followed by 203 

38 cycles of denaturation at 94 °C for 40 s, 50 s at annealing temperature (55.8 °C for 16S, 49 204 

°C for COI, 55 °C for Cytb and D-loop), and one minute extension at 72 °C, and a 10 min 205 

final extension at 72 °C. We purified PCR products with E.Z.N.A.® Gel Extraction Kit 206 

(Omega Bio-tek®) and single read sequencing was performed by Macrogen Europe 207 

(Amsterdam, Netherlands) on a 3730XL (Applied Biosystems) using primers H15918R, 208 

CSBD, 16Sbr, and jgLCO1490. We edited sequences of mitochondrial markers using 209 

CodonCode Aligner 7.1.2 (CodonCode Corporation, Dedham, Massachusetts, USA). The P. 210 

fluviatilis origin of each sequence was checked in NCBI using BLAST (Zhang et al., 2000). 211 

We aligned all sequences using MAFFT (default parameters; Katoh et al., 2017). Translation 212 

to proteins for partial COI and Cytb sequences was performed in Mesquite using vertebrate 213 

mitochondrial code. We deposited sequences in GenBank (GenBank accession numbers: 214 

MG969725 to MG969793; Table S1). Mitochondrial regions were ultimately concatenated 215 

into a single  216 

alignment for the different analyses using Mesquite 3.20 (Maddison and Maddison, 2001). 217 

 218 

 219 
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Figure 1: Sampling map for Perca fluviatilis. Sampling sites are represented by black circles and 229 

juxtaposed numbers indicate the number of individuals sampled at each site. 230 

We selected eight microsatellite markers previously used for P. fluviatilis (Ben Khadher et al., 231 

2015): PflaL1, PflaL2, PflaL4, PflaL6 (developed in Perca flavescens; Leclerc et al., 2000), 232 

SviL7 (developed in Stizostedion vitreum; Wirth et al., 1999), SVi17 (developed in 233 

Stizostedion vitreum; Borer et al., 1999), YP60, and YP111 (developed in Perca flavescens; 234 

Li et al., 2007). We performed amplifications through the use of two multiplexes using 235 

fluorescently labelled primers. A first multiplex (A) contained PflaL2 (FAM), PflaL4 (PET), 236 

SviL7 (VIC), Svi17 (FAM), and YP111 (PET). The second multiplex (B) contained YP60 237 

(FAM), PflaL1 (VIC), and PflaL6 (FAM). Polymerase chain reaction was carried out using 238 

Multiplex TEMPase 2X MasterMix (VWR®), 10 pmol fluorescent primer mix, water, and 239 

DNA (100 - 200 ng/µL). PCR conditions for multiplex A were: 95 °C for five minutes, 28 240 

cycles at 95 °C for 30 s, 55 °C for 90 s, and 72 °C for 30 s, and a final extension of 45 s at 60 241 

°C. For multiplex B, PCR conditions were: 95 °C for five minutes, six cycles at 95 °C for 30 242 

s, 48 °C for 90 s, and 72 °C for 30 s, 22 cycles at 95 °C for 30 s, 50 °C for 90 s, and 72 °C for 243 

30 s, and a final extension at 60 °C for 45 s. We diluted PCR products (1:151) with deionised 244 

water and added Hi-Di™ Formamide (Applied Biosystems®) and GeneScan™ 600 LIZ® 245 

Size Standard (Applied Biosystems®). We performed fragment analysis on a 3500 Genetic 246 

Analyser (Applied Biosystems HITACHI®). We scored alleles in Geneious 11.0.2 (Kearse et 247 

al., 2012). 248 
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2.3 Spatial distribution of genetic variability 249 

Analyses hereby presented were performed on the concatenated mitochondrial alignment (but 250 

see Table S2 and Fig S2 for locus specific results). We calculated haplotype diversities and 251 

nucleotide diversities (Nei and Li, 1979) in DnaSP (Librado and Rozas, 2009). We 252 

constructed haplotype networks using the median-joining algorithm (Bandelt et al., 1999) 253 

implemented in Network 5.0.0.1 (available at http://www.fluxus-254 

engineering.com/sharenet.htm), treating insertion-deletion (indel) events as a fifth state.  255 

We performed phylogenetic analyses using maximum likelihood (ML) and Bayesian (BA) 256 

methods. We partitioned coding genes, COI and Cytb, by base position (1
st
, 2

nd
 and 3

rd
) to 257 

identify the best-fitting substitution model with jModeltest 2.1.10 (Darriba et al., 2012) with 258 

the Akaike information criteria corrected for small sample sizes. Best models are reported in 259 

Table S3. We conducted BA in MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003). Selected 260 

models unimplemented in MrBayes were replaced by the closest overparameterised model 261 

available (Huelsenbeck and Rannala, 2004). All analyses were performed on concatenated 262 

and individual markers. We ran five independent analyses in MrBayes (20 million 263 

generations) and the first 380,000 generations were discarded as burn-in. We performed ML 264 

analyses in Garli 2.0 (Zwickl, 2006). We carried out five independent runs and evaluated 265 

statistical confidence in nodes using 1,000 non-parametric bootstrap replicates.  266 

In addition, we generated maps displaying the geographic distribution of local genetic 267 

diversity. For this purpose, we first used a sliding window approach to estimate the nucleotide 268 

diversity π (Nei and Li, 1979) associated with each cell of a template raster grid covering the 269 

study area (spatial resolution: 12.5 arcmin). This method attributes, to each grid cell, a value 270 

of nucleotide diversity estimated from sequences sampled within a circle centred on the 271 

considered cell. Nucleotide diversity is corrected for unequal sample size and is based on both 272 

allelic frequencies and genetic distances between sequences, which are complementary 273 

aspects when studying distribution of genetic variability. The sliding window is implemented 274 

in a R script available with the toolbox SPADS (Dellicour and Mardulyn, 2014). We tested 275 

several values for the radius r (25, 50, 100, and 200 km) used to define the sliding window. 276 

Several radius values were tested in order to evaluate the impact of the sliding window extent 277 

on the genetic diversity distribution. Starting from the raster files obtained by the sliding 278 

window approach, we then performed an inverse distance interpolation with the R function 279 

“GDivPAL” also available with the toolbox SPADS (distance weighting parameter a = 5). As 280 
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a third step, we drew a convex hull around fictive circles of 100 km radius centred on 281 

sampling locations for each generated interpolation surface in order to define the different 282 

“study areas” by cropping the surfaces and thus avoiding excessive extrapolation. Only results 283 

with a radius of 50 km are presented and maps with other radius are available in Fig. S3. The 284 

use of the sliding window approach allows to avoid the arbitrary “population” delimitation 285 

and to minimize the effect of small sampling sizes (Lecocq et al., 2018). Indeed, through this 286 

approach, the genetic diversity is estimated within a circle radius. For a particular location, the 287 

genetic diversity can thus be estimated from a large number of individuals even though few 288 

individuals were sampled per site (except in the case of isolated sampling sites). 289 

For the microsatellite dataset, potential errors (allelic dropouts, stuttering, and null 290 

alleles) were assessed using the MICRO-CHECKER software (Van Oosterhout et al., 2004). 291 

We conducted a factorial correspondence analysis (FCA) as implemented in the program 292 

GENETIX 4.02 (Belkhir et al., 2004) in order to get a graphical representation of genetic 293 

variation among individuals. We estimated global locus genetic diversity through the 294 

computation of two coefficients in HP-RARE 1.1 program (Kalinowski, 2005): number of 295 

alleles per locus (A) and allelic richness (Ar). Number of private alleles was assessed in 296 

GenAIEx 6.5 (Peakall and Smouse, 2006) and observed (Ho) and expected (He) 297 

heterozygosities were calculated in GENETIX. As for the analysis of mitochondrial 298 

sequences, we generated a map representing the geographic distribution of genetic variability. 299 

For this purpose, we estimated and averaged the Bray-Curtis dissimilarity (Bray and Curtis, 300 

1957) within a sliding window using the same interpolation protocol detailed above for 301 

mitochondrial sequences. 302 

2.4 Population structure 303 

For mitochondrial sequences, we first assessed population structure by estimating ΦST statistic 304 

on sampling sites through an Analysis of MOlecular VAriance (AMOVA; i.e. when 305 

considering only one group of sampling sites; Excoffier et al., 1992) performed in Arlequin 306 

3.5 (Excoffier and Lischer, 2010) with 10,000 permutations. We then used SPADS to estimate 307 

the phylogeographic structure as measured by NST – GST (Pons and Petit, 1996), and its 308 

statistical significance was tested by recalculating them with 10,000 random permutations of 309 

haplotypes in the original data sets. As the global ΦST estimate was significant, patterns of 310 

genetic variation were assessed by Spatial Analysis of MOlecular VAriance (SAMOVA; K=2 311 

to K=10; 10,000 iterations, ten repetitions; Dupanloup et al., 2002) as implemented in 312 
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SPADS. The SAMOVA algorithm assigns sampling sites to groups (or “clusters”) based on 313 

geographic vicinity and sequence similarity. The number of clusters reflecting the most-likely 314 

genetic structure was chosen based on the maximized among-group variation (ΦCT). Among 315 

the ten repetitions performed for a given K (number of clusters) to identify, we systematically 316 

kept the run associated with the highest value of ΦCT. 317 

For microsatellites data, we first assessed global differentiation by estimating FST statistic on 318 

sampling sites (i.e. when considering only one group of sampling sites) through an AMOVA 319 

performed in Arlequin 3.5 (Excoffier and Lischer, 2010) with 10,000 permutations. Genetic 320 

population structure was assessed with the Bayesian clustering method implemented in 321 

STRUCTURE 2.3.4 (Pritchard et al., 2000) that aims to identify population clusters 322 

respecting Hardy-Weinberg and linkage equilibriums. We performed ten independent 323 

STRUCTURE runs for each tested value of K ranging from one to 50. Each run was made of 324 

10
 
million Markov chain Monte Carlo iterations, discarding the first one

 
million iterations as 325 

burn-in. We used the model with correlated allele frequencies and assuming admixture. The 326 

most probable K was identified based on the consensus of the ΔK method (Evanno et al., 327 

2005) and of log-likelihood values associated with each K (“log(P(K)) method”) using 328 

STRUCTURE HARVESTER 0.9.94 (Earl and VonHoldt, 2012). We conducted another 329 

analysis with the most probable K using the software CLUMPP 1.1.2 (Jakobsson and 330 

Rosenberg, 2007) to calculate individual ancestry values (one Q-value per cluster) averaged 331 

over ten runs using the “Greedy” algorithm. 332 

3. Results 333 

3.1 Sequence and microsatellite variation 334 

The concatenated mitochondrial alignment resulted in 1,893 aligned nucleotides: 541 base 335 

pairs (bp) from 16S (10 variable sites), 641 bp from COI (23 variable sites), 399 bp from Cytb 336 

(18 variable sites), and 312 bp from D-Loop (seven variable sites; see descriptive indicators in 337 

Table S2). Our median-joining network results showed a star-like structure with one 338 

dominating haplotype surrounded by several haplotypes (distant from the main haplotype by 339 

one or two mutations) as well as other less frequent haplotypes (Fig. 2A). For the 340 

microsatellite dataset based on eight markers, there was no significant evidence for the 341 

presence of scoring errors across populations. Number of alleles varied from 14 (Yp111) to 40 342 

(Svi17) between loci across samples and descriptive indicators are available in Table S4.  343 
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3.2 Geographic distribution of genetic variability  344 

Overall, our median-joining network (64 different haplotypes) based on mitochondrial 345 

concatenated alignment supported the geographic genetic differentiation between five major 346 

groups of haplotypes (Fig. 2A): (i) the current European Plain (i.e. ranges from the Pyrenees 347 

Mountains across northern Europe to the Ural Mountains in Russia), (ii) the Danube drainage 348 

system and Alpine Foreland (i.e. from Lake Constance in the west to Linz in the east), (iii) the 349 

Balkans, (iv) western and northern Fennoscandia, and (v) eastern Europe (i.e. between 20°E 350 

and 40°E and between 45°N and 70°N). ML and BA phylogenetic analyses led to similar tree 351 

topologies, thus here we present only results obtained with the concatenated matrix with 352 

Bayesian analyses. The overall geographic pattern for each marker is similar to network 353 

analyses, except for the delineation between western and northern Fennoscandia and eastern 354 

Europe (Fig. S4). However, there was no lineage sorting within P. fluviatilis and intraspecific 355 

lineages were not well supported (Fig. S4). Nonetheless, with all markers and different 356 

analyses, Danube individuals formed a monophyletic group. Regarding microsatellites, the 357 

FCA showed that Balkans, Danube and Alpine Foreland tended to be slightly separated from 358 

other sampling sites (Fig. S5).  359 

Mapping of local genetic diversity based on mitochondrial sequences and microsatellites 360 

showed that this genetic diversity was unevenly distributed (Fig. 2B-C). The mitochondrial 361 

nucleotide diversity was higher in Fennoscandia, surrounding the Danube and along an 362 

eastern diagonal (i.e. from Baltic countries to the north of the Black Sea; Fig. 2B). On the 363 

contrary, lower diversity was highlighted in western Europe. Genetic diversity estimated with 364 

microsatellites was quite homogeneous across the sampling range with lower genetic diversity 365 

spots in western and central Europe as well as in southern and northern Finland (Fig. 2C). 366 

 367 
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 368 

Figure 2: Mitochondrial haplotype network, distribution of genetic diversity and population 369 

structure of Perca fluviatilis. (A) Mitochondrial median-joining haplotype network and spatial 370 

distribution of haplotype frequencies based on the concatenated alignment. In the network, each 371 

haplotype is represented by a circle, circle sizes are relative to haplotype frequencies and numbers 372 

correspond to the number of mutations that differentiates haplotypes (absence of number 373 

corresponding to a single mutation). Red squares on lines represent undetected/extinct intermediate 374 
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haplotype states. Black circles correspond to P. fluviatilis sequences, empty red circles to Perca 375 

flavescens sequences, and empty blue circles to Perca schrenkii sequences. The adjacent map reports 376 

the haplotype frequencies in each sampling site and corresponding pie chart colours refer to the 377 

corresponding haplotype colour of the network. Pie chart sizes are relative to the number of 378 

individuals analysed for each sampling site. (B) Interpolation of genetic diversity (nucleotide diversity 379 

π) estimated with the concatenated alignment of mitochondrial sequences (r =50 km). (C) Interpolation 380 

of genetic diversity (Bray-Curtis dissimilarity “BCD”) estimated with the eight microsatellite markers 381 

(r = 50 km). (D) Results of genetic clustering based on the concatenated alignment of mitochondrial 382 

sequences (spatial analysis of molecular variance). (E) Results of genetic clustering based on 383 

microsatellites (STRUCTURE). For clustering analyses (D-E), we only report the clusters identified 384 

for the best-supported partition, i.e. K = 5 clusters for SAMOVA (based on the concatenated 385 

mitochondrial sequences alignment) and K = 18 clusters for STRUCTURE (based on microsatellites). 386 

On these maps, pie charts sizes indicate the number of samples collected from a sampling site. (For 387 

interpretation of the references to colour in this figure legend, the reader is referred to the web version 388 

of this article). 389 

3.3 Population structure 390 

Geographic structuring was significantly supported by analysis of AMOVA which indicated a 391 

differentiation over all sampling sites (ΦST = 0.58, p-value < 0.05). We also found a 392 

significant phylogeographic signal (NST - GST = 0.14, p-value < 0.05). In SAMOVA, ΦCT 393 

decreased until K = 6 clusters before increasing with higher number of clusters, levelling out 394 

at K = 8 (ΦCT = 0.64, ΦST = 0.70, ΦSC = 0.17; Table S5). Two levels of structure were 395 

distinguished to fit our results: K = 2 and K = 5. At K = 2, the clustering split sampling 396 

locations belonging to the Danube drainage basin along with one sampling location of the 397 

Alpine Foreland versus all other sampling locations. With increasing number of clusters, the 398 

clustering split sampling locations from the (i) Balkans, (ii) eastern Europe, (iii) western and 399 

northern Fennoscandia, and (iv) the European Plain. Above K = 5, additional clusters 400 

corresponded to single sampling sites which made little biological sense. Therefore, structure 401 

at K = 5 (ΦCT = 0.63, ΦST = 0.70, ΦSC = 0.19) was considered (Fig. 2D). The K = 5 geographic 402 

clusters were congruent with results obtained in haplotype networks. 403 

Overall AMOVA based on microsatellites revealed a significant genetic differentiation 404 

(FST=0.21, p-value < 0.05). STRUCTURE analyses based on this dataset identified a best 405 

supported value for K = 18 clusters (Fig. S6). Overall, these 18 clusters were consistent with 406 

SAMOVA clusters identified with mitochondrial sequences since they appeared as 407 
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subdivisions of the five SAMOVA clusters: (i) European Plain cluster is subdivided into 408 

eleven subgroups, (ii) western and northern Fennoscandia cluster matches with microsatellite 409 

subgroups except for the Norwegian sampling site, (iii) eastern Europe cluster is split into 410 

three subgroups, (iv) Danube cluster is divided into two subgroups, and (v) Balkans cluster is 411 

identical to the mitochondrial one. There were few mismatches with mitochondrial clusters 412 

(i.e. in the border areas in southern Fennoscandia, north of the Danube, and in eastern Europe; 413 

Fig. 2E). 414 

4. Discussion 415 

Although similar sampling size is used in several other phylogeographic studies (e.g. 416 

Fontanella et al., 2008; Lougheed et al., 2013; for fishes: Cook et al., 2017; Santos et al., 417 

2009), our results for regions associated with lower sampling effort (i.e. Scandinavia, South-418 

East Europe, and Russia) should be considered with caution. Indeed, lower sampling efforts 419 

could impact the accuracy of genetic diversity estimates or the relevance of population 420 

structure analysis. Therefore, we cannot rule out potential artefactual conclusions in these 421 

areas. However, we argue that the observed global phylogeographic patterns are likely since a 422 

previous study with higher sampling effort in these areas obtained similar results (Nesbø et 423 

al., 1999; i.e. specific haplotypes[s] in Scandinavia and southern Europe corresponding to 424 

haplotypes found in this study). 425 

4.1 Spatial distribution of genetic variability in Perca fluviatilis 426 

Mitochondrial DNA-based analyses show an uneven distribution of the genetic variability 427 

(Fig. 2A-B). The observed strong genetic structure between populations (Fig. 2A) shapes five 428 

major clusters occurring in different geographic regions of the P. fluviatilis range (Fig. 2D): 429 

(i) the European Plain, (ii) west-northern Fennoscandia, (iii) eastern Europe, (iv) the Danube 430 

and the Alpine Foreland (hereafter called Danube), and (v) the Balkans. Mapping of spatial 431 

distribution of genetic diversity shows some hotspots across the species range (Fig. 2B): (i) in 432 

the eastern diagonal which reflects the suture zone between the European Plain and eastern 433 

Europe clusters, (ii) in northern Finland where west-northern Fennoscandia and eastern 434 

Europe clusters co-occur, and (iii) in the Alpine Foreland, north of the Danube basin, and in 435 

Slovenia where European Plain and Danube clusters meet. Microsatellites-based analyses 436 

highlight a similar uneven distribution of the genetic variability. Although more genetic 437 

diversity hotspots occur in western Europe, the population structure is overall a subdivision of 438 

mitochondrial clusters (Fig. 2C-D). Microsatellites-based results should be carefully 439 



16 

 

considered since they are based on a limited sampling size but their congruence with 440 

mitochondrial DNA-based analyses tends to support their relevance (Fig. 2). The differences 441 

between the two types of genetic information are most likely due to nuclear genome 442 

specificities in effective population size and mutation rates (Arif and Khan, 2009; Johnson et 443 

al., 2003; Selkoe and Toonen, 2006) that increase the variability of microsatellite dataset 444 

making short-range differentiation more likely (as observed in other species; e.g. Wirth and 445 

Bernatchez, 2001).  446 

The geographic pattern of genetic variability identified in the present study slightly differs 447 

from previous studies on the European perch (e.g. Christensen et al., 2016; Nesbø et al., 448 

1999). Firstly, we detect genetic difference between populations from Danube region and 449 

from south-east Europe, which belong to different clusters, while previous studies regarded 450 

them as a single unit (Nesbø et al., 1999). Secondly, we highlight the larger geographic range 451 

of the European Plain cluster in south-east Europe and Siberia which were previously 452 

assigned to the eastern Europe group (Nesbø et al., 1999). These differences are most likely 453 

due to the use of different sampling efforts and genetic information. Indeed, current analyses 454 

are based on sampling including more populations from Danube and Black Sea regions along 455 

with a larger amount of genetic information (i.e. compared to Nesbø et al., 1999).  456 

Observed geographic pattern of genetic variability is similar to other European freshwater 457 

species (e.g. Durand et al., 1999; Gum et al., 2005; Østbye et al., 2005). However, P. 458 

fluviatilis displays high genetic variability in eastern Europe, Fennoscandia, and central 459 

Europe while most European freshwater fish species have their genetic variability hotspots in 460 

southern Europe (e.g. Durand et al., 1999; Gum et al., 2005 but see Kotlík and Berrebi, 2001). 461 

4.2 Potential shaping factors of the geographic patterns of genetic variability 462 

The observed genetic variability pattern of the European perch can be poorly explained by 463 

current barriers to gene flow (e.g. drainage basins, seas). Therefore, we argue that this pattern 464 

and large scale population structure have been most likely shaped by past biogeographic 465 

events as for other species (e.g. Costedoat and Gilles, 2009; Hewitt, 2004b, 2001). We 466 

suggest that P. fluviatilis survived to the last Ice-Age in at least three main refugia (i.e. 467 

regions currently displaying strong genetic specificities and higher genetic variability; Fig. 468 

2A-B): (i) in the west of the European Plain (between 5°E and 20°E), (ii) in the north-east of 469 

the European Plain (potentially located in a large ice dammed lake east of the north European 470 

ice sheet; Mangerud et al., 2004; Maslenikova and Mangerud, 2001), and (iii) in the upper 471 
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part of the Danube drainage basin (i.e. west of 20°E). Two other areas may also have acted as 472 

refugia: the Balkans and the west-northern Fennoscandia since they host endemic haplotypes. 473 

However, the low genetic variability and the lack of sufficient amount of samples from the 474 

above areas makes difficult to assess if these regions (i) were refugia in which repeated or 475 

protracted bottleneck events decreased the local genetic diversity (Avise, 2000; Petit et al., 476 

2003) or (ii) were secondarily colonised from one of the three main refugia and then 477 

underwent local genetic differentiation (Kotlík and Berrebi, 2001). Additional sampling from 478 

eastern drainages and western Fennoscandia are needed to test these hypotheses. 479 

The sub-structuring of mitochondrial DNA-based clusters detected by the microsatellite 480 

analyses and previous studies (e.g. Bergek and Björklund, 2009; Butkauskas et al., 2012; 481 

Olsson et al., 2011) is most likely due to local differentiation phenomena fostered by species 482 

intrinsic features. First, the species natal homing behaviour reduces gene flow between 483 

populations leading to local genetic structuring (Järv, 2000). Second, species short migration 484 

distances (from one to 20 km; Stepien et al., 2015; Zamora and Moreno-Amich, 2002) can 485 

further increase the structuring at local geographic scale by decreasing gene flow between 486 

adjacent populations. Third, selective disadvantage of foreign individuals due to local 487 

environmental conditions and (partial) post-zygotic reproduction isolation between allopatric 488 

populations observed in P. fluviatilis (Behrmann-Godel, 2004; Behrmann-Godel et al., 2006, 489 

2004; Behrmann-Godel and Gerlach, 2008) can limit gene flow and shape genetic 490 

differentiation between neighbouring populations.  491 

4.3 Considering spatial patterns of genetic variability for Perca fluviatilis aquaculture: 492 

Towards an improved production? 493 

Improving P. fluviatilis aquaculture is a major challenge for fish farmers since they are facing 494 

several bottlenecks which are limiting P. fluviatilis economic development such as low 495 

survival and growth rates, high growth heterogeneity, cannibalism, or low egg quality 496 

(Kestemont et al., 2015). Moreover, genetic diversity is also a limiting factor in breeding 497 

programs since it can lead to inbreeding depression (Mignon-Grasteau et al., 2005). One 498 

solution to overcome current issues consists in (i) sampling individuals to create fish farmers 499 

stocks in genetic diversity hotspots and (ii) taking into account variation of zootechnical traits 500 

between geographically distinct populations of the European perch. Indeed, this latter could 501 

be potentially relevant since variations in traits related to growth (e.g. growth rate, growth 502 

heterogeneity rate), development (e.g. swim bladder inflation rate, survival rate), organoleptic 503 
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characteristics (e.g. colour, filet quality), and behaviour (cannibalism rate, group structure) 504 

have been highlighted in P. fluviatilis (Mairesse et al., 2006; Mandiki et al., 2004; Mélard et 505 

al., 2003; Pimakhin et al., 2015; Pimakhin and Zak, 2014, Toomey et al., 2019, Vanina et al., 506 

2019). Moreover, differences in growth and survival rates between several populations (i.e. 507 

Belgian, Finnish, French, and Italian; Mandiki et al., 2004) correspond to genetically 508 

differentiated groups in our analyses (Fig. 2). In the same way, aggressiveness and group 509 

structure differ between two Finnish populations and Geneva Lake which belong to different 510 

genetic groups (Toomey et al., 2019). Therefore, we suggest that investigations of populations 511 

from different genetic groups could allow highlighting populations with divergent 512 

performances for aquaculture. 513 

4.4 Implications and future guidelines for conservation, management, and production of the 514 

European perch 515 

For the time being, the European perch does not seem to be threatened by potential issues that 516 

could modify its geographic genetic variability pattern. Indeed, P. fluviatilis (i) is not a 517 

threatened species (Freyhof and Kottelat, 2008), (ii) has a quite large ecological niche 518 

(Kestemont et al., 2015), (iii) has presumably undergone few within-range translocations 519 

(often unintentional; but it can constitute up to 11.6% of unintentionally stocked fishes when 520 

stocking material is produced in Polish carp ponds, Kaczkowsk, 2006), (iv) is not presumably 521 

the subject of restocking programs, and (v) has low dispersion potential (Stepien et al., 2015; 522 

Zamora and Moreno-Amich, 2002). However, the ongoing development of its aquaculture 523 

could change this situation (Fontaine, 2004; Kestemont et al., 2015; Kestemont and Mélard, 524 

2000). Consequently, we argue that production, trade, and translocations of the European 525 

perch should be regulated at the nascent stage of the production (see also Allendorf, 1991) in 526 

order to avoid detrimental problems observed for other fish species (e.g. Fleming et al., 2000; 527 

Lemer and Planes, 2012; McGinnity et al., 2003).  528 

In this perspective, prohibition of all importations of wild P. fluviatilis to lands inhabited by 529 

distinct genetic populations should be promoted to hamper potential genetic homogenisation 530 

as well as risks of competition with local populations from the translocation of non-native 531 

populations performing better (see for example Michener, 1975; Vehanen et al., 2009). 532 

Moreover, characterisations of current P. fluviatilis farmed stocks have shown specificities 533 

compared to wild populations in the neighbouring areas of production facilities (Ben Khadher 534 

et al., 2016). This means that escapees from fish farms could lead to genetic introgression and, 535 
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potentially, fitness decrease in the wild (i.e. hybrid offspring from wild and domestic parents 536 

are often less adapted to local environment; Besnier et al., 2015; Bolstad et al., 2017; Tufto, 537 

2017). One could expect that using local populations or at least populations belonging to the 538 

same genetic group could avoid further issues (Youngson et al., 2003). However, captive 539 

breeding leads rapidly to genetic changes through adaptation to captive environment 540 

(Williams and Hoffman, 2009). Therefore, regulations aiming at limiting gene flow from fish 541 

farms should be strongly encouraged, even in indoor aquaculture for which risks cannot be 542 

excluded (Summerfelt and Vinci, 2009). 543 

4.5 Further prospects 544 

The European perch aquaculture is currently at the beginning of its development and we 545 

consider that it is a good opportunity to (i) carefully plan future production and translocation 546 

management strategies and (ii) investigate genetic units ‘intraspecific differentiation of 547 

zootechnical traits to improve production. In order to promote a better management strategy, 548 

it could also be useful to delineate evolutionarily significant units (Moritz, 1994), widely used 549 

in conservation and fisheries management, by considering other lines of evidence such as 550 

phenotypic traits. Here applied to P. fluviatilis, the provision of guidelines through the 551 

consideration of spatial patterns of genetic variability could be applied to other 552 

socioeconomically interesting species exhibiting intraspecific geographic differentiation. 553 
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All supplementary tables and figures are available at: 943 
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Table S1 : Perca fluviatilis sampling sites. 945 

Table S2 : Descriptive indicators for each locus and for the concatenated alignment of Perca 946 

fluviatilis. GST, NST and ΦST correspond to genetic differentiation metrics (see the text for further 947 

details). (*) refers to p-values < 0.05. 948 

Table S3 : Best-fitting substitution models identified with jModeltest for the different genes and 949 

the concatenated mitochondrial alignment of Perca fluviatilis. Locus corresponds to the gene or the 950 

concatenated matrix according to codon position for coding genes (COI and Cytb). Best fitting model 951 

corresponds to the model found using jModeltest with the Akaike information criteria corrected for 952 

small sample sizes. MrBayes substitution model corresponds to the closest over-parameterised model 953 

available. 954 

Table S4: Properties of the eight microsatellite loci of Perca fluviatilis used in this study. A: 955 

number of alleles per locus; Ar: allelic richness, Ho and He: observed and expected (He) 956 

heterozygosities. 957 

Table S5: Spatial analysis of molecular variance (SAMOVA) based on the concatenated 958 

mitochondrial alignment (16S, COI, D-loop and Cytb) for Perca fluviatilis. Analyses were 959 

performed for K values ranging from one to 10 with 10,000 iterations and 10 repetitions. For each K, 960 

the best run was selected based on its associated ΦCT (see the text for further details). Colours and 961 

numbers indicate the SAMOVA clusters identified for each sampling location for a given value of K. 962 

Figure S1: Sampling map for Perca fluviatilis. Sampling sites are represented by blue circles and 963 

juxtaposed population names refer to Table S1. 964 

Figure S2: Mitochondrial haplotype networks for each distinct locus as well as for the 965 

concatenated alignment of Perca fluviatilis. For each mitochondrial locus as well as for the 966 

concatenated alignment, we report the median-joining network and the spatial distribution of 967 

haplotypes, i.e. pie charts indicating the haplotypes frequencies identified in each sampling site. In the 968 

network, each haplotype is represented by a circle and circle sizes are relative to haplotype 969 

frequencies. The number attributed to the line separating two haplotypes represents the number of 970 

mutations that differentiates these haplotypes (absence of number corresponding to a single mutation). 971 

Red squares on lines represent undetected/extinct intermediate haplotype states. Black circles 972 

correspond to P. fluviatilis sequences, empty red circles to P. flavescens sequences, and empty blue 973 

https://www.sciencedirect.com/science/article/abs/pii/S0044848618323640
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circles to P. schrenkii sequences. Each map reports haplotype frequencies in each sampling sites and 974 

colours refer to the corresponding haplotype colour of the network. Pie chart sizes are relative to the 975 

number of individuals analysed for each sampling site. 976 

Figure S3 Interpolation of genetic diversity of Perca fluviatilis estimated with the concatenated 977 

alignment of mitochondrial sequences (nucleotide diversity π) or with the eight microsatellite 978 

markers (Bray-Curtis dissimilarity “BCD”) (see the text for further details on the interpolation 979 

procedure) for several radius (25, 100, and 200 km). 980 

Figure S4: Majority-rule consensus of the trees sampled by the Bayesian analysis performed on 981 

the concatenated molecular data matrix (COI, Cytb, D-loop and 16S) of Perca fluviatilis. Values 982 

above branches are Bayesian posterior probabilities/Maximum likehood bootstrap values (only values 983 

> 0.5/50 are shown). Posterior probabilities and bootstrap values inferior to 0.95 or 95, respectively, 984 

are considered as poorly supported. Colour labels of branches refer to geographic areas: yellow for the 985 

European Plain Europe, green for Northern and Eastern Europe, brown for the Balkans, and blue for 986 

the Danube. P. schrenkii and P. flavescens were used as outgroups to root the trees. 987 

Figure S5: Factorial correspondence analysis based on eight microsatellites loci in the European 988 

perch (Perca fluviatilis). Each square represents a distinct sampling location. Sampling locations from 989 

the Balkans, the Danube drainage, and the Alpine Foreland are coloured in red, blue, and green, 990 

respectively. 991 

Figure S6: STRUCTURE HARVESTER results using ΔK method of Evanno et al. (2005) and of 992 

log-likelihood values associated with each K (“log(P(K)) method”) for Perca fluviatilis 993 
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