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Candidate genes prioritization allows to rank among a large number of genes, those that are strongly associated with a phenotype or a disease. Due to the important amount of data that needs to be integrate and analyse, gene-to-phenotype association is still a challenging task. In this paper, we evaluated a knowledge graph approach combined with embedding methods to overcome these challenges. We first introduced a dataset of rice genes created from several open-access databases. Then, we used the Translating Embedding model and Convolution Knowledge Base model, to vectorize gene information. Finally, we evaluated the results using link prediction performance and vectors representation using some unsupervised learning techniques.

I. INTRODUCTION

Rice is the first global cereal in terms of production / human diet but also a model plant for agronomic research. In order to meet the challenges of global food growth in a context of climate change, especially in Vietnam who is a major producer, a better understanding of genotype-phenotype relationships is crucial to improve production capabilities. Recent advances in plant biotechnology lead to an unprecedented revolution in the acquisition of diverse data: phenotypic, transcriptomic, genomic, etc. However, data currently available is highly distributed and patchy in nature. For scientists, the challenge lies in integrating data and finding relevant information as the amount of data is hard to manage. For instance, Genomewide association studies (GWAS) usually provide several hundred to several thousand genes potentially associated with a phenotype. Since using pure experimental approaches to verify all candidates could be expensive, a number of computational methods have been developed to rank candidates genes [START_REF] Moreau | Computational tools for prioritizing candidate genes: Boosting disease gene discovery[END_REF]- [START_REF] Kumar | pBRIT: gene prioritization by correlating functional and phenotypic annotations through integrative data fusion[END_REF]. Although the number of deep learning applications in genomics is increasing, few of them handle the challenge of genes prioritization [START_REF] Pérez-Enciso | A guide on deep learning for complex trait genomic prediction[END_REF], [START_REF] Rao | Phenotype-driven gene prioritization for rare diseases using graph convolution on heterogeneous networks[END_REF]. In this paper, we applied graph embeddings techniques to study and rank gene-phenotype interactions.

A. Databases

Currently, rice gene information is available in various online databases where each of them contain different attributes. The challenge is to collect comprehensive data and organise it logically to enable efficient analysis. In order to build a new dataset, we first considered several rice databases containing complementary information: Oryzabase [START_REF] Kurata | Oryzabase. an integrated biological and genome information database for rice[END_REF], The Rice Annotation Project (RAP) [START_REF] Sakai | Rice annotation project database (rap-db): an integrative and interactive database for rice genomics[END_REF], Rice SNP-Seek Database [START_REF] Mansueto | Rice snp-seek database update: new snps, indels, and queries[END_REF], Funricegene [START_REF] Yao | funricegenes dataset for comprehensive understanding and application of rice functional genes[END_REF], The Universal Protein Resource (UniProt) [START_REF] Consortium | Uniprot: a worldwide hub of protein knowledge[END_REF], Gramene [START_REF] Tello-Ruiz | Gramene 2018: unifying comparative genomics and pathway resources for plant research[END_REF], Rice Expression Database (RED) [START_REF] Consortium | Information commons for rice (ic4r)[END_REF], MSU Rice Genome Annotation Project (RGAP) [START_REF] Kawahara | Improvement of the oryza sativa nipponbare reference genome using next generation sequence and optical map data[END_REF], Predicted Rice Interactome Network (PRIN) [START_REF] Gu | Prin: a predicted rice interactome network[END_REF]. Then, we used the PyRice package [START_REF] Do | Pyrice: a python package for querying oryza sativa functional databases[END_REF] to collect data and filter important information. More details of the dataset are available in section III-A.

B. Knowledge graphs

Knowledge graphs (KGs) represent entity information and their relationship. The representation of knowledge has a long history of logic and artificial intelligence. Knowledge graphs are similar to simple graphs which include two components: Vertex/Entity and Edge/Relation. A knowledge graphs is a directional graph so we can represent it in term of the original form, including sets of triples. A triple includes head entity, relation, tail entity, denoted as (h, r, t), (e.g. BarackObama, wasBornIn, Honolulu). Knowledge graphs have wide of benefits, based on the definition of vertex and edge such as: semantic searching and ranking [START_REF] Kasneci | Naga: Searching and ranking knowledge[END_REF], [START_REF] Xiong | Explicit semantic ranking for academic search via knowledge graph embedding[END_REF], question answering [START_REF] Hao | An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[END_REF] and machine reading [START_REF] Yang | Leveraging knowledge bases in lstms for improving machine reading[END_REF].

The critical point of knowledge graphs is how to store graphs efficiently so that we can extract as much information as possible. Moreover the approach must be fast enough (and simple) to deploy in real-time systems. The Knowledge graph embedding approach allows to represent entities as points and relations as scalar vectors in space coordinates. However, in practical, knowledge graphs usually consist of millions or billions of triples, while many of them are invalid or missing [START_REF] West | Knowledge base completion via search-based question answering[END_REF]. Many studies are focusing on the task of improving knowledge graphs to predict the missing triples in KGs, such as predicting whether a triple not in KGs is likely to be valid or not [START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF].

Recently, many embedding models have been proposed to learn the vector representation of the components in the triples. The link prediction results, introduced by Nickel et al. [START_REF] Nickel | A review of relational machine learning for knowledge graphs[END_REF] obtains the state-of-the-art. Embedding models evaluate the triple (h, r, t), optimally so that the valid triple are higher than the invalid triples.

Conventional embedding methods such as DISTMULT [START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF], TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], ComplEx [START_REF] Trouillon | Complex embeddings for simple link prediction[END_REF] have been successfully applied in the knowledge extraction fields. However, these approaches only aim to explore the linear relationship among entities because they are mostly based on simple operators such as addition, subtraction or multiplication. In the last decades, convolution neural networks, introduced by LeCun et al. [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], were initially designed for computer vision. Recently, based on the research of Collobert [START_REF] Collobert | Natural language processing (almost) from scratch[END_REF], [START_REF] Kim | Convolutional neural networks for sentence classification[END_REF], CNN received a significant attention in the field of natural language processing. By learning non-linear features to capture the relationships between components, CNN usually takes less number of parameters compared to standard fully-connected neural networks thereby reducing the computation cost. Inspired by the success of CNN, Dettmers et al. [START_REF] Dettmers | Convolutional 2d knowledge graph embeddings[END_REF] proposed a model named ConvE -the first model applying CNN for the knowledge extraction task.

Moreover, ConvKB, introduced by Nguyen et al. [START_REF] Nguyen | A novel embedding model for knowledge base completion based on convolutional neural network[END_REF], is a CNN based model for knowledge graph completion which successfully achieved state-of-the-art results. In practical, knowledge graph embedding models are commonly constructed to model entries at the same dimension for the given triple, where presumably each dimension captures some relation-specific attribute of entities [START_REF] Nguyen | A capsule network-based embedding model for knowledge graph completion and search personalization[END_REF]. However, following the research of [START_REF] Nguyen | A capsule network-based embedding model for knowledge graph completion and search personalization[END_REF], existing models are not available to provide a deep architecture to model the relationship among entities in triples on the same dimension.

C. Objective

In the scope of this paper, our contributions are descibed as follows:

• Introduce a new dataset named OsGenePrio for rice gene information and pre-process the data to use the embedding models TransE and ConvKB in order to explore information in a KGs context. • Evaluate the results of the embedding models using link prediction performance (Mean rank -MR, Mean reciprocal rank -MRR and Hit ratio -Hits@). After representing gene information as vectors, we used unsupervised learning techniques: to cluster genes (using K-Means Clustering), to find similarity between genes (using K-Nearest Neighbors).

II. EMBEDDING MODEL

A knowledge base G represents a set of triples (h, r, t) with h, t ∈ E and r ∈ R, where E is a set of entities and R is a set of relations. Embedding models are used to define a score function (score function) f, which provides the score for each triple (h, r, t) such the score of the real triples is always higher than the unreal triples. For each triple (h, r, t), the corresponding vector k dimensions is marked as v h , v r , v t which correspond to an input 3 vectors k dimension.

A. Translating Embedding model

Translating Embedding (TransE) model is the most basic among several types of embedding models. The idea of TransE aims to optimize the sum of the head entity and relation as close as possible with the tail entity. A triple including head entity, relation, tail entity, denoted as h, r, t. In general, a triple is represented as:

head + relation ≈ tail or with format vector v h , v r , v t : v h + v r ≈ v t (1) 
For example, a triple (BarackObama, wasBornIn, Honolulu) satisfy this property:

BarackObama + wasBornIn = Honolulu
The original TransE has based on the reduce of loss function to improve model performance.

f (h, t, r) → 0 (2) 
In practical, the most basic case of TransE is represented as:

f (h, t, r) = ||v h + v r -v t || 2 2 (3)
However, there is a drawback of TransE because it only covers the case of one-to-one relation, and is not suitable for one-tomany/many-to-one relation. For example, if there exists two triples with similar components such as (BarackObama, was-BornIn, Honolulu) and (BrunoMars, wasBornIn, Honolulu), the entity vector of "'BarackObama'" will be very close to the other one after the training phase. Nevertheless, there is no such similarity in the real world. To handle this, we used the TransE model as pre-trained to replace the initial random entities vectors.

B. Convolution Knowledge Base model 1) Idea:

In this project, we used an embedded Convolution Knowledge Base (ConvKB) model to complete a knowledge base. The ConvKB model is designed to capture the relationship between entities in the knowledge base.

In the ConvKB model, each entity or relation is represented as a k dimensional vector. For each triple (h, r, t), v h , v r , v t which corresponds to an input matrix size k ×3. This matrix is processed on the convolutional layer where each different filter having the same size of 1 × 3, is used to extract the general relation in a triple. These filters slide on rows of matrix to create different feature maps. Then, these feature maps are concatenate to form a feature vector and together with the weight vector, will return a score for the triple (h, r, t). This score is used to evaluate if the triple is valid (h, r, t) or invalid (h , r , t ).

2) Architecture: As mentioned above, k dimensional vectors of triple (v h , v r , v t ) are considered as a matrix A = [v h , v r , v t ] ∈ R k×3 . For each A i,: ∈ R k×3 considered as row i th of the matrix A.

Assuming that we use a filter ω ∈ R 1×3 in the convolutional layer, ω does not only verify the relationship between corresponding v h , v r , v t , but also generalizes its characteristics.

The filter ω slides on each row of matrix A to create feature maps

v = [v 1 , v 2 , ..., v k ] ∈ R k : v i = g ω × A i,: + b (4)
Where b ∈ R is the bias and g is an activation function such as ReLU, sigmoid.

ConvKB uses different filters ∈ R 1×3 to create feature maps. The set of filters marked as Ω, and τ is marked as number of filters, such that: τ = |Ω| and have τ feature maps. These feature maps τ are concatenated to form a feature vector ∈ R τ k×1 , then is multiplied with weight vectors w ∈ R τ k×1 and returns a score for a triple (h, r, t).

We defined the score function f of ConvKB following this equation:

f (h, r, t) = concat g [v h , v r , v t ] * Ω (5) 
Where Ω, w are the shared independent parameters of h, r, t; * is convolution operator and concat is the concatenation function of vector. 3) Loss Function: The ConvKB model uses the ADAM optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] during the training phase to optimize the loss function L with L 2 regularization over the weight w:

L = (h,r,t)∈G∪G log 1 + exp((l (h,r,t) .f (h, r, t)) + λ 2 ||w|| 2 2 (6) Where: l(h, r, t) = 1, if (h, r, t) ∈ G -1, if (h, r, t) ∈ G
G is a set of generated triples which are created from the original set of triples G.

4) Applying ConvKB model for OsGenePrio dataset: Because they are based on vertices and edges structure, knowledge graphs have a wide benefits. In our model, rice genes and their attributes are represented by a set of triplets. In principle, each triplet is a set of 3 elements: head, relation and tail (h, r, t). Head stands for a gene id, tail stands for a gene attribute and relation stands for a relationship between gene id and its attribute extracted from different databases. Then, we consider vertex as head and tail of the triplet while edge is its relation. Currently, OsGenePrio contains only the relationship between genes and their attributes. The direct relation between genes is not available but it can be stated based on the same attributes belonging in the same cluster of genes. In section III-B2 and section III-B3, we present how vectors of gene id v h are used to cluster and find similar genes.

III. EXPERIMENTS

A. Dataset

To explore the information, we use PyRice package [START_REF] Do | Pyrice: a python package for querying oryza sativa functional databases[END_REF] to collect gene information from six databases: Oryzabase, RAP-DB, Gramene, Funricegene-genekeywords, Funricegenefaminfo, Funricegene-geneinfo.

Moreover, using the Uniprot and PRIN databases, we added more data for the training set. Due to the large number of gene attributes, we kept only some specific information taking into account a broader covering knowledge and a minimum of redundancy. In the following are presented the attributes used for our embedding model: 1) Data standardization: The tuning process to standardize the dataset took a lot of time to complete. After implement statistics of gene attributes, we found that attributes which have a high frequency of occurrence such as KW-0181, KW-1185 are keyword attributes specific from the Uniprot database and did not generalize for genes databases. Besides, some other attributes appear rarely, such as some annotations with gene ontology (GO), trait ontology (TO) and plant ontology (PO) attributes. These low frequency attributes may affect the training process. Therefore, the selection of attributes is also considered as a tuning parameter. This selection is very important for the quality of the dataset. After evaluating the dataset attributes, we removed those with the number of occurrences higher than 7000 and less than two. For instance, from Fig. 2 we can see that there are approximately 4000 attributes appear 1-5 times. Here, the issue is how to assign different properties to each group. Solution: using the jaccard similarity measurement with the following steps:

• Split attributes by length.

• Use the Jaccard distance equation: the number of overlap word based on 2 attributes A,B divide by the mean of 2 attributes.

d J (A, B) = 2 * |A ∩ B| |A ∪ B| = 2 * |A ∩ B| |A| + |B| (7) 
|A ∩ B|: number of overlap word at the same position in A and B. |A|, |B|: A and B are length of attributes. • Two attributes will be considered in the same group if its distance is bigger than 0.6. Through experiments, we found that this value is suitable to fit with the dataset.

2) Dataset for embedding model: The number of entities includes: 12 relations between entities (#R), 33268 entities (#E); where:

• 25742 is the number of gene identifiers;

• 7525 is the number of gene attributes on different databases B. Evaluation model 1) Predict entities with triples: To predict the entity present at the head or the tail, for instance, to predict h given that (?, r, t) or predict t given that (?, r, t); with ? is the entity needed to be predicted. The output will be evaluated by ranking the score after applying f (h, r, t) with the validation set.

Each triple (h, r, t) is randomly replaced by a set of the first or last entity (candidate set). Then it is ranked by score (raw evaluation). Besides, there is a simplified approach used to "Filtered" setting protocol [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] which is similar to raw filter, but the triple is generated randomly from the first and last entity. If they exist in the training set, the triple will be removed and not be ranked during the evaluation process. We used three metrics to evaluate the ranking: Mean rank (MR), Mean reciprocal rank (MRR) and Hit ratio (Hits@).

2) K-Means to cluster genes: From ConvKB results, we obtained a vector of genes to cluster and classify in order to identify similar genes. Alternatively, we can predict attributes and values of a gene. However, the predictions need to be confirmed by biologists, thus this part will not be evaluated in the scope of this paper.

To evaluate the K-Means clustering, we used the total distance from genes in the cluster to the centroid of the cluster. From this cluster, we can capture the general characteristic about a group of genes. For example, this cluster will represent a trait or a disease.

3) K-nearest neighbors to find similarity of gene: Find K similar genes corresponding to a gene input or rank genes based on the similarity of attributes. The score will be high if two genes are similar. This work is very potential in term of improving time and performance.

C. Training model

Based on the research of Wang et al. [START_REF] Wang | Knowledge graph embedding by translating on hyperplanes[END_REF], [START_REF] Lin | Learning entity and relation embeddings for knowledge graph completion[END_REF], we applied the Bernoulli's distribution to generate the head and tail of sampling invalid triples. As we mentioned in the previous part, TransE is used as the pre-trained model to initialize embedding entities while ConvKB is used as pre-trained model to embed relationships among entities. During the training phase, the details of parameters for TransE are: the number of epochs 120, the dimensions of embeddings k ∈ {50, 100, 150}, ADAM learning rate η ∈ {1e -3 , 1e -4 }, L 2 norm and margin γ ∈ {1, 3, 5}. To fit the model parameters including the entity and relation to the dataset, filters ω and the weight vector w, we choose the initial learning rate η ∈ {1e -3 , 1e -4 } with ADAM optimizer and ReLU as activation function g. Batch size is set at 128 with the L 2 regularizer λ = 1e -3 . The filters ω are initialized by a truncated normal distribution or by [0.1, 0.1, -0.1] with number of filters τ ∈ {100, 150, 200}. To train ConvKB, the number of epochs is set up to 125. The output from last epochs is used for the evaluation later.

D. Main experimental results

In this section, we will use different set of parameters to evaluate and select the best ones for the model. Parameters are selected based on the results obtained on the validation set.

1) Link prediction results: To ensure about the results, we evaluated the model based on 3 metrics which are proposed above MR, MRR and Hits@. We selected the best set of parameters to compare with MRR. Results are presented below. The highest MMR scores on the validation set are obtained when using k = 150, τ = 150, learning rate η = 1e -3 (for both TransE and ConvKB), margin γ = 3, the truncated normal distribution for filter initialization. Table II shows the results based on the validation set with the configuration "Filtered" and "Not Filtered" protocol. 2) K-Means results: Fig. 3 shows that the total distance decreases when we increase the number of clusters. We can see with cluster higher 300, the loss of K-means start the convergence. The number of clusters recommended from data scientists is around k = [75, 100] clusters. Moreover, following Fig. 3, we can see that the number of recommended clusters is suitable. In the future, we aim to improve the results of the model following the directions bellow:

• Improved the PyRice tool: integrating the ConvKB model will make gene search more efficient and meaningful, not just based on regular text searches. Besides, we can expand to other databases on rice genes. • Improvements in data: since there is still some noise, for example, the gene attribute groups are not fully homogeneous. This issue needs the attention of researchers in biology as well as additional methods to a better pre-processing phase. Besides, the important gene information might be missing, which leads to difficulties in training and prediction. • Model enhancements: the new model only uses TransE, which is the simplest models in the knowledge graph and CNNs. However, recently, other models have been developed to improve the performance in terms of structure and efficiency.

V. CONCLUSION This project focused on the studies of knowledge graphs combining with CNNs to apply on gene analysis. The proposed method implemented from a new dataset OsGenePrio which is built from publishing databases of plant science. The result shows that CNN is very exploitable in other fields, not only in computer vision. Besides, it also shows the advantages compared to traditional embedding methods such as translating embedding model.

To sum up, the project has completed the proposed goals in the objective. First, we developed some tools and generated a dataset for genetic analysis, then do some research based on knowledge graph and set up some tests and evaluation methods. Finally, we provided an evaluation of the results.
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Fig. 1 .

 1 Fig. 1. ConvKB Model[START_REF] Nguyen | A novel embedding model for knowledge base completion based on convolutional neural network[END_REF] 

Fig. 2 .

 2 Fig. 2. Statics dataset

Fig. 3 .

 3 Fig. 3. Performance on K-Means

Fig. 4 .

 4 Fig. 4. Example of using K-nearest neighbor

Table I

 I 

show the statistics of the dataset OsGenePrio. The validation set is used to evaluate and optimize the model during the training phase. The number of triple after extraction is 206795 which is split into training and validation set.

TABLE II RESULTS

 II ON THE VALIDATION SET WITH THE BEST SET OF PARAMETERS

	Result		Not Filtered		Filtered	
	of best	MR	MRR	Hits@10	MR	MRR Hits@10
	paramater	70038	0.568	0.91	63514	0.7	0.914
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