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Abstract

The dynamics of phase separation of co-polymers is investigate theoretically in the case where

the bridging between the heteropolymers is realized by a surfactant. The Cahn-Hilliard-Oono

equation which describes the dynamics of the polymers is here coupled with a di¤usion equation

for the surfactant which has an a¢ nity for the interfacial region of the polymer blend. As a result,

we �nd a dual localization of the interfaces of the di¤erent species. We investigate in particular, in

detail the onset of the phase transition dynamics associated with these coupled di¤usion equations,

both analytically and numerically.
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I. INTRODUCTION

Self-organization in soft condensed matter systems can lead to new promising idea for

smart technologies [[1]]. Modulated phases systems can for instance be a solution for easily

building 2 or 3D spatial patterns in a reproducible manner. The di-block copolymers are

good examples of such micro-structured systems and are therefore widely studied, especially

for their 2D lamellar phase which can be used to print and �exible �lms. It has been proposed

to apply this spontaneous micro-structuration property to design a new class of �exible

photo-voltaic devices using semi-conducting di-block copolymers. Alternatively, small length

ad-hoc diblock copolymers could be engineered such to act as surfactant to bridge together

longer semi-conducting polymers, with the desired complementary properties in order to

produce a junction.

Di-block copolymers are composed of two di¤erent semi-�exible chains linked together.

Contrary to the case of heterogeneous polymers mixtures which tend to segregate at low

enough T or high enough Flory parameter, the chemical bridging characteristic of di-block

copolymers prevents a global phase separation (also called strong segregation). The usual

repulsion between hetero-polymers and the attraction due to the permanent link (or to the

semi-permanent link created by the surfactant with a¢ nity for both heterogeneous poly-

mers) are two antagonist tendencies which generate a geometric frustration and result in

the formation of periodic structures, or micro-structured patterns [2]. This bridging, which

can be a permanent link when induced by a covalent bounding, or a semi-permanent link

created by a surfactant with a¢ nity for both heterogeneous polymers, results in an e¤ective

long range attraction.

The dynamics of self-structuration of this class of systems can be model using a modi-

�ed Cahn-Hilliard equation with additional terms that model this homogenizing long range

interaction term. Like the standard Cahn-Hilliard dynamics, which describes the spinodal

decomposition in the usual segregation within binary alloys of hetero-polymers mixtures[3],

theses modi�ed versions remain in the class of conservative dynamics (also called model

B) [4]. Oono [5] proposed to add to the Cahn-Hilliard dynamics a term derived from the

long-range interaction energy proposed by Leibler [6],[7]. The resulting time dependent

equation is well adapted for numerical studies but also for analytical treatment in 1D, using

exact results from the standard Cahn-Hilliard dynamics[8], [9], [10]. The phase diagram
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obtained with these dynamics shows stationary patterns with a well-de�ned periodicity for

the modulation of the order parameter [11].

In this letter, we propose to adapt the standard Cahn-Hilliard-Oono�s dynamics to model

a new class of copolymer where the link between the two heteropolymers is not anymore

permanent.

This bound can be thought as a surface active agent engineered to have a¢ nity for

the two speci�c polymers it is designed to glue and therefore to favour the colocation of

heteropolymers and thus

micro-segregation, by favourably locates itself at the interfaces between heteropolymer bulk

regions. It can for example be a small length macromolecule, even a copolymer, with two

di¤erent speci�c a¢ nities on each end branches. As this additional ingredient in the polymers

blend can di¤use, its coarse grained density d(x; t) will also be space dependent (and time

dependent during the transient regime of the dynamics toward stationary pattern formation),

with a spacial average value d0. In order to take into account of this new degree of freedom,

we propose to modify the Cahn-Hilliard conservative dynamics by coupling it to a di¤usion

equation for the surfactant.

Our model is then based on the following properties :

- the strength of the link between heteropolymers, denoted �(d), depends locally on the

density of surfactant. In the following, we will take a linear dependence �(d) = �d(x; t):

- the surfactant can di¤use through the polymer blend, with a preference toward the

well-mixed regions (u = 0) where it can link to both heteropolymers. This favours interfaces

by lowering their energetic cost.

The dynamics can therefore be modelled by two coupled equations, the �rst one being

the Oono�s extension of the Cahn-Hilliard conservative equation :

@u

@t
= r2(�u+ u3 �r2u)� �du (1)

The order parameter u(x; t) represents the coarse grained �uctuations of one of the compo-

nent of the polymer blend. Because we restrict our study to the symmetric case, this order

parameter veri�es hu(x)i = 0. The �rst part of the right hand side derives from the usual
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Ginzburg-Landau free energy

FG�L =

Z �
�u

2(x)

2
+
u4(x)

4
+
1

2
(ru(x))2

�
dx

Below the critical temperature (negative sign of the �rst coe¢ cient), the sole Ginzburg-

Landau free energy drives the order parameter u to non zero value (inverse di¤usion), close

to the bulk values �1 which minimize the free energy density �u2(x)
2
+ u4(x)

4
:Derived by Oono

from Leibler�s free energy using a conservative dynamics, the last term of the dynamics

describes the e¤ect of the long range interaction which is to prevent the formation of large

size domains when � is positive. It forces the order parameter to be on the average of zero

value on macroscopic scale (homogenization by regular di¤usion). But we take its amplitude

proportional to the local density of the surface active agent d(x; t). This auxiliary order

parameter being a positive quantity, this dynamical equation, including its last term, is on

the overall conservative if initially hu(x)i = 0. But the competition between the antagonist
e¤ect of the two parts of the right hand side leads to the formation of a spatially modulated

phase [[2]]. The relative strength of the two competing e¤ects is determined on the average

by the value of �:

In this article, the strength of this long range interaction force can vary locally, according

to the local density of surface active agent, or surfactant. The consequence of this new degree

of freedom is to locally reduce the energetic cost of interfaces. The density of surfactant

itself obeys a di¤usion equation

@d

@t
= Dr2d+

�

2
r2(u2) (2)

We have chosen the simplest form for a di¤usion equation coupled to the Oono�s version

of the Cahn-Hilliard dynamics. The last term of the right hand side favours the localization

of the surface active agents in the u�interfacial region (where u2(x) is small and convex) in
between the homogeneous domains (where u2(x) ' 1). In other terms, it tends to expel the
surfactant from homogeneous polymer domains, driving thus the surfactant to be mainly at

the interfaces. This additional di¤usion term, proportional to �
2
, is the counterpart in the

d�di¤usion equation of the Oono�s term in the d�di¤usion equation 1. It couples the order
parameter u(x; t) with the surfactant concentration d(x; t), acting like an e¤ective potential

(which is taken to be symmetric in u$ �u). The �rst term of the right hand side is the usual
self di¤usion term, where D is the positive coe¢ cient of di¤usion of the surfactant within the
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polymers melt. It tends to homogenize the surfactant distribution and prevents singularities

in the d�pro�le, which would otherwise appear collocated at every u�inter-phase, if the
d-dynamics were solely govern by the symmetric e¤ective u2(x) potential.

Note that this dynamics is also conservative for the order parameter d(x; t) : 8t; hd(x)i =
d0 (which can be veri�ed numerically). It can be seen as a modi�ed di¤usion equation where

the di¤usion coe¢ cient varies due to the local variation of polymer density. Note also that

conservative noise terms can be added to both equations.

II. LINEAR STABILITY IN THE ONE DIMENSIONAL CASE

We have limited our study to small values of �, because in Oono�s version of the Cahn-

Hilliard dynamics (when d(x; t) = 1), there is a linear instability for values of � between 0

(simple C-H limit) and 1=4 (Swift-Hohenberg limit[11]).

Indeed, when looking at the linear stability around the homogeneous solution u = 0, by

analysing the behaviour of the di¤erent Fourier modes uq :

u(r; t) = uq sin(q � r)e�(q)t;

we recover that the ampli�cation factor associated with linearized version of equation (1) is

close to Cahn and Hilliard original stability analysis,

�(q) = (1� q2)q2 � �

Thus, if � < �c = 1=4 , some Fourier modes are linearly instable as �(q) > 0 in the band

0:5
p
1�

p
1� 4� < q < 0:5

p
1 +

p
1� 4�. The most instable mode remains qC�H = 0:5

independently of �.

The spatial variation of the strength of the long range interaction doesn�t change this

linear stability analysis around the homogeneous solution u0 = 0, which now gives the

growth factor �(q) = q2 � q4 � �d0 where d0 = hdi. The maximum growth rate is still for

q2C�H = 1=2, associated to a growth factor �C�H = 1=4��d0 which is positive if �d0 < 1=4:
The second equation could a priori give rise to a di¤erent growth rate and a di¤erent

spatial characteristic wavelength. The linearization of the second equation is done around

an homogeneous order parameter d0 = hdi, with additional �uctuations of low amplitudes
u1(t) = u1e

�C�H t and d1(t) such that
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u(x; t) = u1e
�C�H t sin(q

C�Hx)

d(x; t) = d0 + d1(t) sin(q
0x+ �)

Replacing d(x; t) and u(x; t) in equation 2 and keeping only the lowest order terms, we

obtain

@

@t
d1(t) sin(q

0x+ �) = �q02Dd1(t) sin(q0x+ �) +
�

2
u21e

2�C�H tr2 sin2(q
C�Hx) (3)

= �q02Dd1(t) sin(q0x+ �) + �q2C�Hu
2
1e
2�C�H t cos(2q

C�Hx)

Multiplying both sides by sin(q0x+�), and averaging over 2�=q, allows only one possible

value q0 = 2q
C�H for a positive value of the right hand side of the preceding equation, so 3

reads

@

@t
d1(t) =

�
�4Dd1(t) + �u21 sin(�)e2�C�H t

�
q2
C�H

which is maximum for � =
�

2

so d(x; t) = d0 + d1(t) cos(2qC�Hx)

with d1(t) =
�u21

4D + 2�C�H=q2C�H
(e2�C�H t � e�4Dq

2
C�H t) + d1(t = 0)e

�4Dq2
C�H t

The dynamics at the onset of the instability of the order parameter pro�le d(x; t) representing

the surfactant density is dominated by the �rst part of the solution, � (u1e
�C�Ht)2

4D+2�C�H=q2C�H
. Thus

the dynamics of d(x; t) is entirely driven by the instability of the order parameter u(x; t),

which acts as a source term (or more precisely, because of the phase � = �
2
, u2(x; t) is a

sink term). The amplitude d1 of the modulation of d(x; t) will grow exponentially with

the growth factor 2�C�H and will follows the dynamics of u2, even if d1(t = 0) = 0 (the

amplitude of the initial �uctuation of d(x; t) is irrelevant). The two pro�les are developing

their respective modulated patterns in such a way that d(x) is maximum when u(x) = 0,

i.e. the anti-nodes of d(x) are at the interfaces (or nodes) of the u�homogeneous domains.

III. NUMERICAL STUDY OF THE COUPLED DYNAMIC IN IN THE ONE DI-
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FIG. 1:

MENSIONNAL CASE

We have consider a 1D system of length L >> �CH = 2�
p
2 , with an initial completely

disordered order parameter u(x; t = 0), of zero mean value (high temperature phase), and

a surfactant distribution d(x; t = 0) with �uctuation around a mean value d0 = 1. As

predicted by the linear stability analysis, the early stage of the dynamics of d(x; t) follows

that of u(x; t) : islands of non-zero values of u push the surfactant away towards the

interfaces, as a direct e¤ect of the term �r2u2 . The usual di¤usion term Dr2d(x; t) tends

to homogenize the distribution of d(x; t) and prevents its singularities.

The Figures 1.a) and 1.b) show �nal pro�les u(x) and d(x), for di¤erent values of D

and �xed value of �. These simulations con�rm that the dynamics is indeed conservative,

for both u(x; t) and d(x ; t). They also enlight that the di¤usion coe¢ cient D controls

the amplitude of the �nal distribution of d. When D is large enough (Figure 1.a), the

di¤usion of d homogenizes the surfactant density (d ' 1) in the melt of polymers, and the
dynamics is then similar to Oono�s dynamics. Otherwise, for small values of D (Figure

1.b), the distribution of d becomes less homogenous. This may causes di¤erent regions to

have locally di¤erent values of � � d (i.e. local e¤ective "�" values). Within domains, the
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FIG. 2: The right image shows the spatial pro�les of the order parameters u and d, respectively

in red and blue, for � = 0:1; and D = 1:0 for the Figure a) and D = 0:001 for the Figure b). We

didn�t use any stability criteria but we consider solutions that are stable after long time simulation,

usually 6.106 iterations with time steps changing dynamically between 0.0001 and 0.1.

e¤ective value of the long range interaction is lower than its average value, removing thus

partially the frustration. On the contrary, the value of this interaction is higher near the

u-inter-phase where it is energetically less costly. As can be seen on the Figure 1.b), the

e¤ective local value of � � d could then be close or even higher than �c = 1=4; the critical
value of the simple Oono�s dynamics. Thus, we could wonder if the interruption of the

coarsening dynamics wouldn�t therefore take place earlier, than in the Oono�s model.

IV. CONCLUSION

The dynamics of phase separation of co-polymers is investigated theoretically in the case

where the bridging between the heteropolymers is realized by a surfactant. The Cahn-

Hilliard-Oono equation is here coupled with a di¤usion equation for the surfactant. Due to

its a¢ nity for the interfacial region of the polymer blend, this surfactant will migrate mostly
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in the interfacial region of the polymer blend, where the segregation is the weakest, in order

to lower the energetic cost of the periodic interfaces. We have investigated in particular the

coupled instabilities of the distibutions of the polymer and the sufactant concentrations.

V. ANNEXE

Oono�s original derivation starts from the free energy proposed by Leibler [6] for the long

range interaction term (and treated for the strong segregation case by Ohta and Kawasaki

[7]): Z Z
u(x0)g(x0; x)u(x)dx0dx with r2g(x0; x) = ���(x0; x)

The simplest extension of this dynamics would be either to have d-dependence of the � term.

r2g(x0; x) = ��d(x; t)�(x0; x)

Or we could have chosen a kernel that could be written d(x0; t)g(x0; x)d(x; t) in order to

keep a symmetric form in x $ x0. But whether it is a linear or quadratic d-dependence,

this would lead to the same behaviour at �rst order, as hd(x)i = d0 is �nite. And such a

symmetric expression of the kernel would also lead to an additional non-local term in the

dynamics

r2(
�

�u(x)

Z
u(x0)d(x0)g(x0; x)d(x)u(x)dx0) = r2

Z
u(x0)d(x0)g(x0; x)d(x)dx0

=

Z
(u(x0)d(x0)g(x0; x)r2d(x)+u(x0)d(x0)r2g(x0; x)d(x))dx0=

Z
u(x0)d(x0)g(x0; x)r2

xd(x)dx
0��u(x)d(x; t)

This non-locality is also present if we attempt to derive the additional di¤usion equation

from the variation of the free energy with respect to d(x) :

r2
x(

�

�d(x)

Z
u(x0)d(x0; t)g(x0; x)d(x; t)u(x)dx0) = r2

x

Z
u(x0)d(x0; t)g(x0; x)u(x)dx0

=
Z
u(x0)d(x0; t)(g(x0; x)r2

xu(x)+r2
xg(x

0; x)u(x))dx0=
Z
u(x0)d(x0)g(x0; x)r2

xu(x)dx
0��u2(x; t)d(x; t)

Note also that the �rst term obtained is not conservative. The proposed empirical coupled

dynamical equations avoid the non-locality and are conservative for the order parameters,

u(x; t) and d(x; t):
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If we choose the d-dependence of the � term, we have to make the approximation

r2
x(

�
�d(x)

R
u(x0)g(x0; x)u(x)dx0 ' �

2
r2u2 which is conservative. Again, at �rst order, it

would be equivalent to �
2
r2 (u2(x)d(x)) as hd(x)i = d0 is �nite.
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