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Breakdown of gametophytic self-incompatibility in subdivided populations

Abstract

Many hermaphroditic  flowering  plants  species  possess  a  genetic  self-incompatibility  (SI)

system that prevents self-fertilization and is typically controlled by a single multiallelic locus,

the  S-locus.  The  conditions  under  which  SI  can  be  stably  maintained  in  single  isolated

populations are well known and depend chiefly on the level of inbreeding depression and the

number of SI alleles segregating at the S-locus. However, while both the number of SI alleles

and the level of inbreeding depression are potentially affected by population subdivision, the

conditions for the maintenance of SI in subdivided populations remain to be studied. In this

paper,  we  combine  analytical  predictions  and  two  different  individual-based  simulation

models to show that population subdivision can severely compromise the maintenance of SI.

Under the conditions we explored, this effect is mainly driven by the decrease of the local

diversity of SI alleles rather than by a change in the dynamics of inbreeding depression. We

discuss the implications of our results for the interpretation of empirical data on the loss of SI

in natural populations.

Keywords: mating system, inbreeding depression, dispersal, fragmentation

Introduction

Around half of hermaphroditic flowering plants species have the capacity to prevent selfing

and enforce outcrossing through a self-incompatibility (SI) system (Ivanov et al. 2010; Gibbs

2014).  SI  systems  have  evolved  multiple  times  with  different  molecular  mechanisms

(Steinbachs  and  Holsinger  2002;  Castric  and  Vekemans  2004).  In  many  species,  SI

specificities are controlled by a large allelic series at a single multiallelic locus, the S-locus

(Takayama and Isogai 2005), and SI is actively achieved by a rejection reaction that prevents

self-fertilization as well as fertilization between individuals expressing cognate specificities

(De Nettancourt 1997; Gibbs 2014).

Transitions  from  outcrossing  to  selfing  are  widespread  in  the  flowering  plants

(Stebbins 1974; Barrett 2002; Igic et al. 2008; Shimizu and Tsuchimatsu 2015) and there has

been  considerable  theoretical  interest  to  understand  the  conditions  under  which  self-

compatible  (SC)  mutants  can  invade a  SI  population,  a  prerequisite  for  the  evolution  of

selfing.  Briefly,  the  conditions  for  maintenance  of  SI  are  expected  to  reflect  the  balance
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between  its  advantages  (mainly  the  prevention  of  the  deleterious  effects  of  inbreeding

depression), and the variety of its costs (including the cost of outcrossing Fisher (1941) and

the  fact  that  SI  acts  as  a  barrier  to  fertilization  between  individuals  expressing  cognate

specificities, and as such can impair mating success). In a seminal study, Charlesworth and

Charlesworth  (1979) showed that SC mutants are expected to invade a SI population when

the intensity of inbreeding depression is below some threshold. In addition, they showed that

the invasion was more straightforward when the number of segregating SI alleles is limited,

because SI pollen then suffers from being rejected by individuals with the same SI allele

while  the  SC  mutants  have  universal  compatibility  and  therefore  enjoy  a  comparative

advantage through the male reproductive function. More recently, as the segregation of SC

mutants may be expected to allow purging of the genetic load (Glémin 2003) and may thus

decrease inbreeding depression, Gervais et al. (2014) explicitly modeled the accumulation of

partially recessive mildly deleterious mutations, thus considering inbreeding depression as a

dynamic  variable  rather  than  a  fixed  parameter.  They  showed  that  allowing  inbreeding

depression to vary had only a marginal  impact  on the qualitative pattern beyond a slight

decrease of the parameter range under which SI is maintained.

Subdivision is  one of  the  most  common features  of  natural  populations  (Selander

1970; Loveless and Hamrick 1984; Slatkin 1987), but the breakdown of SI in a spatially

structured population has never been theoretically investigated. On the one hand, a general

effect of the strong balancing selection acting on the SI genes (Wright 1939) is to maintain

among-demes  differentiation  at  a  low level.  Thus,  SI  alleles  should  be  distributed  more

homogeneously among local demes than variants at the genomic background (Schierup 1998)

and the effect of population subdivision could be negligible.  On the other hand, there are

several reasons to believe that the dynamics of SI and SC mutants may differ from that in a

single isolated population. First, population subdivision should have an effect on the diversity

of SI alleles maintained, both locally and globally (Schierup 1998). The effect of population

subdivision on the global and local diversity of SI alleles is however not trivial. Indeed, while

local  diversity  always  decreases  with  increasing  population  subdivision,  Schierup  (1998)

showed  that  the  global  diversity  of  SI  alleles  does  not  vary  monotonously  with  pollen

dispersal. In fact, strong subdivision may allow different sets of SI alleles to stably segregate

in the different subpopulations, such that there are conditions where intermediate levels of

isolation  are  associated  with  the  lowest  global  diversity  of  SI  alleles.  Thus,  the  cross-

compatibility  advantage  for  pollen  of  a  SC  mutant  can  be  expected  to  depend  on  a
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combination of pollen dispersal rate and the local and global diversity of SI alleles whose

interaction  is  potentially  complex  and  has  not  been  explored  yet.  Second,  population

subdivision adds complexity to the dynamics of inbreeding depression, because in subdivided

populations the decline in fitness experienced by a selfer depends on the relative fitnesses of

outcrossed  individuals  within  the  demes  and  outcrossed  individuals  between  the  demes

(Glémin et al. 2003). An increasing subdivision has an adverse effect on within-demes and

between-demes inbreeding depressions, decreasing the first and increasing the second in most

cases  (Theodorou  and  Couvet  2002;  Glémin  et  al.  2003;  Roze  and  Rousset  2004).

Furthermore, population structure should affect the impact of selfing on the purging process

of the mutation load. In subdivided populations, self-fertilization always decreases within-

demes  inbreeding  depression  relative  to  random  mating  whereas  high  and  low  self-

fertilization rates increase and decrease respectively between-demes inbreeding depression

(Roze and Rousset  2004).  Finally,  when inbreeding depression depends on multiple  loci,

selective interference can reduce the effect  of spatial  structure and increases within-deme

inbreeding depression (Roze 2015). Overall, due to the multiple processes cited above, it is

not  straightforward  to  predict  the  dynamics  of  inbreeding  depression  in  a  subdivided

population when SC mutants are introduced.

In this study, we determined the conditions under which a subdivided population with

gametophytic SI can resist invasion by a SC mutant. We combined analytical predictions and

individual-based  simulation  models  to  compare  the  conditions  under  which  SI  can  be

maintained with different levels of subdivision. We explored the impact of the mechanisms

mediating  this  effect,  namely  the  diversity  of  SI  alleles  and the  dynamics  of  inbreeding

depression.

Methods

We assumed a population of a hermaphroditic plant species with gametophytic SI (GSI). The

population  was  subdivided  in  equally-sized  demes  and  dispersal  occurred  with  equal

probability between each pair of demes, following an island model. We first performed an

analytical analysis and then built two individual-based models: one with constant inbreeding

depression  and  one  with  explicit  modelling  of  deleterious  mutations  to  allow inbreeding

depression to vary dynamically. The analytical model allowed us to specifically investigate

the effect of pollen flow on competition among pollen expressing the different SI and SC

alleles, independently of its effect on gene flow i.e. on the number of SI alleles. Comparison
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between the results of the models with constant vs. variable inbreeding depression allowed us

to investigate the importance of the purging process of deleterious mutations.

Analytical model:

We adapted the model of Gervais et al.  (2014) by assuming a metapopulation of an annual

plant made of an infinite number of infinitely large demes interconnected by pollen flow. We

focused on one focal deme of this metapopulation and made the following assumptions: (i)

the  number  of  SI  alleles  n in  the  focal  deme  is  constant  and  all  S-alleles  have  equal

frequencies;  (ii) pollen disperse at rate  d p,  which we define as  the proportion of outcross

pollen each plant of the focal population sends away in the metapopulation and the proportion

of (outcross) pollen the metapopulation sends to the focal deme; (iii) the effect of pollen flow

from the focal deme towards the metapopulation is neglected, i.e. a SC allele cannot invade

the metapopulation  and pollen from the metapopulation  only contains  SI  alleles; (iv)  the

number of SI alleles in the metapopulation is much larger than in the focal deme such that

any immigrant pollen is compatible with all individuals of the focal deme. 

To  investigate  the  fate  of  SC  mutants  introduced  at  low  frequency  in  the  focal

population of SI individuals, we followed the frequency x i of four types of individuals that

differ by S-locus genotype and by origin. We denote x1 and x2 the frequency of individuals

with two SC alleles (SC/SC), produced by selfing and by outcrossing respectively; x3 and x4

the frequency of individuals with a SC and a SI allele (SC/SI), produced by selfing and by

outcrossing respectively. It follows that the frequency in the focal deme of individuals with

two self-incompatible alleles (SI/SI) is 1−x1−x2−x3− x4. To determine the male and female

gamete production W i of each type of individuals i, we assumed that there is no heterosis, i.e.

outcrossed individuals with a father from the focal population and outcrossed individuals

with a father from the metapopulation have an identical gamete production W o, defined as the

gamete production of outcrossed individuals. Thus W 2=W 4=W o=1, with W 2 and W 4 gamete

production  of  outcrossed  individuals,  with  two  and  one  SC  alleles  respectively.  Selfed

individuals with two and one SC alleles have gamete production  W 1 and  W 3 respectively.

These latter  individuals  suffer from inbreeding depression  δ ,  assumed to be constant and

acting on gamete production only. Thus W 1=W 3=W s=1−δ  with W s the gamete production

of  selfed  individuals.  The  mean  gamete  production  in  the  focal  deme  is  thus

W̄=W s (x1+ x3 )+W o (1− x1−x3 )=1−δ (x1+x3 ). The frequency q of SC alleles in male gametes

is
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q=∑
i

θ iW i x i /W̄ (1)

and the frequency of each SI allele in the male gametes is

p= (1−q )/n . (2)

For each type of individuals, we determined the selfing, within-deme outcrossing and

between-demes  outcrossing  rates,  which  we  define  as  the  proportion  of  female  gametes

fertilized by self-pollen, by pollen from the focal deme or by pollen from the metapopulation,

respectively. These quantities depend on the amount of compatible pollen received from three

sources:  i)  self-pollen:  α θ iW i,  ii)  outcross  pollen  from individuals  from the  focal  deme:

(1−α ) (1−d p )W̄ (1−2 p )≃ (1−α ) (1−d p )W̄  under the assumption that the number of SI alleles

is  largeand  iii)  outcross  pollen  from  individuals  from  the  rest  of  the  metapopulation:

(1−α )d pW o, where α  is the proportion of self-pollen and θi the proportion of self-compatible

self-pollen  for  each  type  of  individuals  (θ1=θ2=1 and  θ3=θ4=1/2).  Then,  the  effective

selfing rate of individuals i of frequency x i is

a i=
α θiW i

α θiW i+(1−α ) (1−d p )W̄+(1−α ) d pW o

, (3)

its effective within-deme outcrossing rate is

li=
(1−α ) (1−d p )W̄

α θiW i+(1−α ) (1−d p )W̄ +(1−α )d pW o

, (4)

and its between-demes outcrossing rate is

mi=
(1−α ) d pW o

αθiW i+ (1−α ) (1−d p )W̄ +(1−α )d pW o

. (5)

It follows that the frequencies at the next generation of the four types of individuals are given

by

W̄ x ' 1=W 1a1 x1+W 2a2 x2+
1
2
W

3

a3 x3+
1
2
W

4

a4 x4

(6)W̄ x ' 2=W 1 l1q x1+W 2l2q x2+
(W 3l3 x3+W 4 l4 x4 )q

2 (1− p )

W̄ x ' 3=
1
2
W 3a3 x3+

1
2
W 4a4 x4
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W̄ x ' 4=W 1l1 (1−q ) x1+W 1m1 x1+W 2l2 (1−q ) x2+W 2m2 x2+
1
2
W

3

l3 x3+
1
2
W 3m3 x3

+
1
2
W

4

l4 x4+
1
2
W 4m4 x4+W o (1−x1−x2−x3−x4 )

q (1−d p )

(1−2 p )
.

Note that with d p=0 the equations above are exactly the same as in a panmictic population

(Gervais et al. 2014).

Following Gervais et al. (2014), we used the equation of the frequencies of each type

of individual at the next generation (Eq. 6) to perform a local stability analysis, whereby we

determined for different d p , α  and n, the values of δ  for which the SC allele was expected to

increase in frequency when rare. We simplified the system by considering x2 (the frequency

of  individuals  with  two  SC  alleles  from  outcrossing)  negligible  when  SC  is  rare.  By

simplifying Eq. (6) to the first order in  x1,  x3 and  x4 we get a stability matrix  A such that

(x1 , x3 , x4 )'=A . (x1 , x3 , x4 ). We used Routh-Hurwitz conditions to determine the stability of

the equilibrium when SC is rare without having to calculate the eigenvalues of the stability

matrix  explicitly  (Otto  and  Day  2007).  For  different  values  of  d p , α ,  n,  we  solved

numerically Routh-Hurwitz conditions, using Mathematica ver. 11.3.0.0 (Wolfram Research),

to find the values of  δ  for which the equilibrium is unstable and the SC allele increases in

frequency.

Individual-based model:

To complement the analytical model in more complex settings, we then ran two different sets

of individual-based simulations, with either constant or dynamic inbreeding depression. We

considered  diploid  hermaphroditic  plants  with  non-overlapping  generations  in  a

metapopulation of constant size N  divided in D equally-sized demes. During the first steps of

the simulations, we introduced no SC mutant and all individuals were obligate outcrossers. At

the beginning of the simulations,  we randomly drew for each individual  two different  SI

alleles among S different possible SI alleles. Individuals in the population were then formed

each generation by random draws with replacement of gametes from two parents from the

previous generation proportionally to their gamete production. The female gamete was drawn

from the local deme and the male gamete (pollen) was either drawn from the same deme as

that of the female gamete with probability 1−d p, or from another deme with probability d p

the pollen dispersal rate. Pollen were drawn repeatedly until a compatible pollen was found

(no pollen limitation). Each inherited SI allele had a probability U SI to mutate to another SI

allele among the S possible different SI alleles. Allowing this type of mutation provides the
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conditions for long-term maintenance of SI allele’s diversity against  loss by genetic drift.

Later in the simulations, we recurrently introduced SC alleles into the metapopulation with

probability U SC for each SI allele. When an individual i from the local deme k  was drawn as a

female, it produced a selfed offspring with probability a i given by:

a i=
α γiiW i

α γ iiW i+(1−α ) (1−d p )
∑ γijW j

N /D−1
+ (1−α )d p

∑ γijW j

N−1

(7)

where γii is 0, 1 or 2, the number of SC alleles of individual i, γij the number of S-alleles of

individual  j compatible  with  the  S-alleles  of  individual  i,  W i the  pollen  production  of

individual  i,  W j the  pollen  production  of  individual  j.  In  case  of  selfing,  if  the  selfing

individual  had only one SC allele,  this  SC allele  was necessarily  the paternal  S-allele.  If

individuals  had  two  SC  alleles  we  randomly  chose  one  of  them.  1−ai was  then  the

outcrossing rate of individual i and was equal to 1 for individuals with no SC allele (γii=0).

Note that  when  d p=0,  we recovered the same situation  as in  isolated populations

(Gervais et  al.  2014) for the same deme size.  Note also that  in contrast  to the analytical

model,  the  dispersed  pollen  enters  in  competition  with  other  pollen  in  other  demes.

Comparing results between the analytical model and simulations will thus give insights about

the  role  of  SC  pollen  export,  especially  for  high  dispersal.  Similar  results  between

simulations and analytical model would suggest that the SC pollen flow between demes has a

negligible effect.

Modeling of inbreeding depression

In  the  first  model  we  considered  constant  inbreeding  depression,  and  individuals  from

outcrossing had a relative gamete production of 1 whereas individuals from selfing (male and

female gametes from a same individual) had a relative gamete production of 1−δ  with δ  the

constant inbreeding cost.

In the second model, we followed the framework developed by Roze (2009) (see also

Gervais et al. 2014 and Roze & Michod 2010) and explicitly considered chromosomes of size

L, assuming that the S-locus was located at the center of the chromosome. Each generation, a

random number of  deleterious  mutations  was introduced along each chromosome,  drawn

from  a  Poisson  distribution  of  parameter  U ,  the  haploid  deleterious  mutation  rate.  The

position of each new deleterious mutation was drawn from a uniform continuous distribution,

hence  effectively  allowing  an  infinite  number  of  loci  for  deleterious  mutations.  At  the

reproduction stage, individuals produced recombinant gametes. The number of cross-overs
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occurring  along the  chromosome was  drawn from a  Poisson distribution  of  parameter  L

(genome  map  length  in  Morgans)  and  the  position  of  each  crossover  from  a  uniform

continuous distribution. All deleterious mutations were considered to have the same selection

coefficient  s and the same dominance coefficient h. The effect on gamete production W i of

the  deleterious  mutations  carried  by  individual  i was  supposed  multiplicative,  i.e.

W i=(1−hs)M he (1−s )
M ho, where  M he and  M ho are the number of mutations in the genome at

heterozygous and homozygous states, respectively. We estimated inbreeding depression by

δ=1−
W self

(1−d p )Wwithin+dpW between

 with  W self  the  mean gamete  production  for  an  individual

from selfing,  W within the  mean  gamete  production  for  an  individual  from a  within-deme

outcrossing and W between the mean gamete production for an individual from a between-demes

outcrossing.  Each  mean  gamete  production  is  estimated  from  of  a  sample  of  1,000

individuals, i.e. chromosome pairs, created independently of the main simulation process and

with the appropriate mating rule.

Simulation procedure

In  the  model  with  constant  inbreeding  depression,  simulations  were  first  run  until  the

effective number of SI alleles attained a drift-migration-mutation-selection equilibrium. We

considered the equilibrium was reached when there was less than 2% variation of the average

effective  number  of  S-alleles  over  200  generations.  Self-compatible  mutants  were  then

introduced.

In the model with variable inbreeding depression, simulations were similarly run until

the effective number of SI alleles reached equilibrium. Second, deleterious mutations were

introduced  and  simulations  were  run  until  inbreeding  depression  reached  mutation-drift-

selection equilibrium. Third, mutations toward SC alleles were allowed. In both models, we

determined the inbreeding depression threshold above which the SI system was maintained

(less than 5% of SC alleles at the end of the simulations) or below which it was lost because

of the invasion of SC mutants (100% of SC alleles at the end of the simulation). In order to

find the threshold value of interest, we explored the parameter space by modifying  δ  or  U

with a decreasing step size, increasing the value when SC mutants invaded and decreasing it

when the SI system was maintained. Because of computation time constraints we stopped the

exploration after a determined number of steps or if the SI system was not maintained despite

convergence towards very high inbreeding depression (in the model where it was dynamic).
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We considered two conditions: 100% of SC allele despite δ ≥0.99 and more than 5% of SC

allele  despite  δ ≥0.995.  If  one of  these conditions  was reached,  we assumed that  a  fully

functional SI system cannot be maintained.

Results

In  agreement  with  previous  models  (Charlesworth  and  Charlesworth  1979;  Porcher  and

Lande 2005a; Gervais et al. 2014), our analytical model showed that the maintenance of SI

was favored when the rate of  self-pollen decreased and the number of SI alleles increased

(Fig. 1, grey lines for d p=0). Our model also showed that increasing the pollen dispersal rate

d p rendered the maintenance of SI relatively easier. With  d p=10−2 the critical  inbreeding

depression needed to maintain SI was lower than for d p=0 and this effect increased with an

increasing number of SI alleles. Indeed, as the pollen dispersal rate increased, the amount of

SI pollen received from  the metapopulation and the amount of SC pollen exported to the

metapopulation  increased,  which decreased  fertilization  opportunities  for  outcrossed  SC

pollen. In the extreme case of  d p=1, SI was always maintained, regardless of the level of

inbreeding depression. Indeed, when  d p=1 outcrossing occurred only between demes such

that all pollen from the focal deme was exported to the metapopulation and all outcrossed

pollen in the focal population was SI pollen from the metapopulation. Globally, our analytical

model  showed that  considering only the effect  of pollen dispersal on pollen competition,

dispersed pollen from other self-incompatible populations was expected to facilitate the local

maintenance of SI. However, this model does not take into account the facts that 1) the SC

mutation can actually occur anywhere in the metapopulation, not just the focal deme, 2) SC

pollen  from the  focal  deme can disperse and fertilize  mates  in  other  populations  and 3)

inbreeding depression and the number of SI alleles are not necessarily constant. 

To explore these situations that are not tractable with an analytical model, we now

show results obtained by stochastic simulations. In these simulations, the critical inbreeding

depression required for SI maintenance consistently increased with increasing subdivision,

i.e. decreasing  pollen  dispersal  rate,  for  all  self-pollination  rates  (Fig.  2).  We have  also

investigated the effect of an increasing subdivision by rather increasing the number of demes

and reducing their size and found the same result: the critical inbreeding depression required

for SI maintenance increased with an increasing subdivision of the population. This effect is

retained regardless of the self-pollen rate α  (Fig. 3). In both cases, an increase in subdivision

is associated with a non-monotonous variation of the global effective number of SI alleles (a
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decrease followed by an increase), but a monotonous decrease of the local effective number

of SI alleles (Fig. 2b and 3b). These results are in line with Schierup (2000) and suggest that

the monotonous increase we observed in  the critical inbreeding depression required for SI

maintenance is associated with the local effective number of SI alleles rather than the global

effective number of SI alleles in the total population.

In order to further test the hypothesis of the primary importance of the local number

of SI alleles, we performed simulations with the same set of parameters except that we put a

constraint on the number of possible SI alleles  S. By reducing  S we obtained similar local

numbers of SI alleles despite the difference in subdivision (Fig. 4b, 4d and fig. 5b), allowing

us to disentangle the effect of allelic richness from that of population subdivision itself. Our

results showed that for a similar local number of SI alleles, the critical inbreeding depression

needed to maintain SI was similar (Fig. 4a, 4c and fig. 5a). In other words, most of the effect

of  the  spatial  structure  was  captured  by  the  local  effective  number  of  SI  alleles.  This

hypothesis  is  supported  by  the  comparison  between  simulations  results  and  analytical

predictions. Analytical predictions for a single isolated population (d p=0) taking into account

the number of SI alleles in the local populations were in good agreement with simulation

results, for all dispersal rates (Fig. 2, 3). This again suggests that in our simulations, changes

in the local number of S-alleles was the main driver of the change in inbreeding threshold of

SI maintenance. 

Finally, in order to test whether spatial  structure could affect the breakdown of SI

through its effect on inbreeding depression, we compared the inbreeding depression threshold

considering inbreeding depression either as a fixed parameter or as a variable depending on

recurrent  deleterious  mutations.  Overall,  our  results  showed only  very subtle  quantitative

differences between the two models. Specifically, the critical inbreeding depression needed to

maintain SI was slightly  higher in the model with variable inbreeding depression than in the

model with fixed inbreeding depression (Fig. 2). This can be attributed to two phenomena:

the  effective  number  of  local  SI  alleles  was  slightly  lower  with  variable  inbreeding

depression  (see  Fig.  2b  and 2d)  and  the  partial  purging of  deleterious  mutations  (which

should facilitate the invasion of SC mutants). Accordingly, under the parameters tested in our

model,  inbreeding  depression  was  poorly  affected  by  subdivision  (Fig.  6).  Globally,  our

results  suggest  that  the  effect  of  subdivision  on  inbreeding  depression  does  not  modify

substantially the conditions for the maintenance of SI. This confirms that the most critical

variable for the maintenance of SI is the local effective number of SI alleles.
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Discussion

Our analytical and simulation results showed that population subdivision favors the

breakdown of SI and that this effect mainly depends on the local diversity of SI alleles. At the

deme scale,  the  effect  of  subdivision  is  therefore  similar  to  the  effect  of  a  demographic

bottleneck, with a loss of diversity of SI alleles.  Bottlenecks are one of the main ecological

factor proposed to explain transitions to self-compatibility  (Reinartz and Les 1994; Porcher

and Lande 2005a; Busch 2011). Such a bottleneck is expected at the range margin of species

and in colonization processes as  shown in  Arabidopsis lyrata (Griffin and Willi 2014). A

bottleneck also accompanied the transition to self-compatibility of A. thaliana (Durvasula et

al.  2017) and  Capsella rubella (Foxe et al.  2009).  However, at the metapopulation scale,

subdivision  is  expected  to  increase  the  effective  population  size  (Wright  1943;  Nei  and

Takahata 1993; Wang and Caballero 1999) and do not have the same effect than a bottleneck

on SI-allele diversity  (Schierup 1998).However, subdivision can have other effects that are

not  captured  by  our  models.  Empirical  and theoretical  analyses  have  shown that  mating

success of the female reproductive function of SI individual can been reduced in ecological

conditions where compatible pollen is scarce (Busch and Schoen 2008; Leducq et al. 2010).

Pollen  limitation  is  indeed  expected  in  spatially  structured  populations,  especially  at

colonization  fronts  (Pannell  2015) or  in  poorly  connected  populations  (Gascoigne  et  al.

2009). Self-compatibility is advantageous in conditions of pollen limitation because it can

provide reproductive assurance (Busch and Delph 2012). While our models did not consider

pollen limitation, we expect that it should further reduce the conditions for SI maintenance

(Porcher  and  Lande  2005a),  hence  reinforcing  the  effect  of  population  structure  we

documented, or promote stable mixed mating system (Porcher and Lande 2005b). In addition,

the comparison between our analytical predictions and simulations results show that under

the assumption of our analytical model the effect of pollen flow on pollen competition can

greatly improve SI maintenance independently of an increase in the number of SI alleles. The

assumption of our analytical model of neglecting pollen exported from the focal deme can be

compared  to  pollen  exchange  between  a  marginal  and a  core  population  that  SC alleles

cannot invade, a situation that our individual-based models did not capture and that it might

be interesting to investigate.

We did not see a strong qualitative effect of considering inbreeding depression as a

fixed parameter or as a dynamic variable. This suggests that the purging effect is minor, and
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only slightly affected by population subdivision. This result is consistent with the literature

because we considered weak effect  recessive deleterious  mutations  for which purging by

selfing is limited  (Gervais et al. 2014). Our model assumed that inbreeding depression was

caused by recessive deleterious mutations  (Charlesworth and Willis  2009), and a possible

extension of our model  would be to  implement  other  types  of  mutations,  such as  highly

deleterious  or  lethal  recessive  mutations.  For  these  mutations,  we expect  a  more  intense

purging effect (Gervais et al. 2014; Roze 2015; García-Dorado 2017), so we predict that the

introduction  of  such  mutations  would  lead  to  even  more  restricted  conditions  for  the

maintenance of SI.

Our results have important implications for the interpretation of empirical data on the

loss of SI in natural populations. In fact, population  subdivision is one the most common

features of natural populations, and the level of subdivision can vary through time for a given

species. As explained above, the effect of subdivision on SI maintenance is akin to a genetic

bottleneck,  which  has  been  considered  one  of  the  main  ecological  factors  to  explain

transitions to self-compatibility  (Reinartz and Les 1994; Porcher and Lande 2005a; Busch

2011).  Such bottlenecks  are  expected  at  the range margin of  species  and in  colonization

processes  as  shown in  Arabidopsis  lyrata (Griffin  and  Willi  2014).  A  bottleneck  also

accompanied the transition to self-compatibility of  A. thaliana (Durvasula et al. 2017) and

Capsella rubella (Foxe et al. 2009). Furthermore, shifts of the climatic conditions can modify

the distribution range as well as alter the connectivity among demes  (Thomas et al. 2004).

Similarly, the loss of an important pollinator may modify the conditions of pollen transport

(Aguilar  et  al.  2006).  These  effects  were  not  previously  integrated  in  models  for  the

maintenance of SI, and our results predict that these ecological factors should strongly and

directly affect the maintenance of SI. Several lines of evidence suggest that the breakdown of

SI  has  indeed  occurred  in  spatially  structured  populations  in  several  plant  species.  For

instance, North American populations of A. lyrata show multiple independent breakdowns of

SI  (Foxe et  al.  2010) and  distinct  SC mutations  have  been  found across  Leavenworthia

(Busch et al. 2011) and Solanum (Markova et al. 2016) populations. In the selfer A. thaliana,

as many as three different causal segregating SC mutations have been identified,  possibly

associated with distinct ancient glacial refugia  (Shimizu et al. 2008; Durvasula et al. 2017;

Tsuchimatsu et  al.  2017).  In light  of our results,  we propose the interpretation that  these

observations correspond to cases where subdivision has increased species-wide because of

changes of ecological factors, bringing the conditions to SC invasion all over the range, hence

allowing invasion by multiple SC mutants.
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Our results also have important implications in the context of how new SI alleles can

arise through allelic diversification  (Uyenoyama et al. 2001). Because the male and female

components of SI are typically encoded by distinct (but tightly linked) genes (Takayama and

Isogai  2005),  allelic  diversification  has  been  proposed  to  arise  through  the  transient

segregation of mutants that bear mutations modifying recognition specificity of one of the

two genes only, compromising the male-female recognition and resulting in SC alleles. The

conditions under which this initial  SC mutation can stably segregate without being either

eliminated or fixed are crucial to predict whether it can be hit by a mutation on the second

gene creating a novel recognition specificity, resulting in allelic diversification (Uyenoyama

et  al.  2001;  Gervais  et  al.  2011).  As  shown by  Gervais  et  al.  (2011),  the  dynamics  of

diversification  of SI alleles  decreased as the number of SI alleles  itself  increased,  so we

expect that population subdivision, by keeping the number of SI alleles at a low level may

actually increase the rate at which new SI alleles arise. Moreover, Gervais et al. 2011 also

predicted that in a large portion of the parameter range the transient SC allele was expected to

replace its ancestral copy, resulting in allelic turnover rather than diversification per se. It is

possible  that  in  a  metapopulation,  the  replacement  phenomenon  may  take  place

independently in the different demes if they are sufficiently isolated, resulting in the origin of

new alleles in different parts of the range. It will now be interesting to study whether this

process indeed allows for the increase in diversity of SI alleles in a wider range of parameters

than in a single isolated population.

To conclude,  we showed that  spatial  structure is  an important  factor  affecting  the

conditions for the maintenance of SI. We demonstrated that, under the parameters tested in

our  study,  it  is  the  effect  of  population  subdivision  on  the  number  of  SI  alleles  locally

maintained in the demes that determines the fate of SC mutants when they arise rather than a

change  in  the  dynamics  of  inbreeding  depression.  Our  results  have  implications  for  the

interpretation of the scenarios by which plant mating systems can shift in natural populations

and  may  change  our  understanding  of  the  factors  affecting  the  process  of  allelic

diversification.
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Figure 1: Analytical predictions of the critical inbreeding depression needed to maintain the

SI system as a function of the self-pollination rate, for different numbers of SI alleles n in the

focal deme and for d p=10−4, d p=10−2, d p=1 (black curves) and for d p=0 (grey curves). The

SI system was maintained above the curves, while the frequency of SC mutants increased

when rare  below the  curves.  Note  that  for  d p=10−4,  curves  are  superimposed with  grey

curves of  d p=0 and that for  d p=1, the SI system was always maintained (no black curve,

only grey curves).
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Figure 2: Effect of the rate of pollen dispersal on minimal inbreeding depression needed to 

maintain the SI system (a,c) and on the local and global effective numbers of SI alleles before

introduction of SC mutants (b,d). (a,c) Symbols show simulation results. Each line shows 

analytical prediction for d p=0 and for the median effective number of local allele obtained in

the simulations (see panels b and d) for d p=10−4 (dotted curve), d p=10−2 (dashed curve ) and

d p=1 (solid curve). (b,d) Bars show the distribution of 95% of the simulation results. (a,b) 

Constant inbreeding depression. (c,d) Variable inbreeding depression. Parameters (a,b,c,d)

N=105, D=10, S=1000,mSI=10−5 ,mSC=10− 4. (c,d) s=0.05,h=0.2, γ=0.5.
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Figure 3: Effect of subdivision on critical inbreeding depression needed to maintain the SI 

system (a) and on the effective number of SI alleles before the introduction of SC mutants 

(b). (a) Symbols show simulation results. Each line shows analytical predictions for d p=0 

and for the effective number of local alleles obtained by simulation (see panel b) for α=0.2 

(dotted curve), α=0.5 (dashed curve) and α=0.8 (solid curve). (b) Effective local (open 

symbols) and global (closed symbols) number of SI alleles. Variable inbreeding depression. 

Parameters: N=105, d p=10−4 , S=1000,mSI=10−5 ,mSC=10− 4 , s=0.05,h=0.2, γ=0.5.
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Figure 4: Effect of the rate of pollen dispersal on the minimal inbreeding depression needed 

to maintain the SI system (a,c) and on the local and global effective number of SI alleles 

before introduction of SC mutants (b,d) when the number of possible SI alleles S was 

constrained to low values (10). (a,c) Symbols show simulation results. Each line shows 

analytical predictions for d p=0 and for the median effective number of local alleles obtained 

in the simulations (see panels b and d) for d p=10−4 (dotted curve), d p=10−2 (dashed curve) 

and d p=1 (solid curve). (b,d) Bars showing the distribution of 95% of the simulations results 

were smaller than the symbols' height and are therefore not represented. (a,b) Constant 
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inbreeding depression (c,d) Variable inbreeding depression. Parameters (a,b,c,d)

N=105, D=10, S=10,mSI=10−5 ,mSC=10− 4. (c,d) s=0.05,h=0.2, γ=0.5.
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Figure 5: Effect of subdivision on the critical inbreeding depression needed to maintain the SI

system (a) and on the effective number of SI alleles before introduction of SC mutants (b) 

when the number of possible SI alleles S was constrained to low values (10). (a) Symbols 

show simulation results. Each line shows analytical predictions for d p=0 and for the effective

number of local alleles obtained by simulation (see panel b) for α=0.2 (no curve, the SI 

system was never maintained), α=0.5 (dashed curve) and α=0.8 (solid curve). (b) Effective 

local (open symbols) and global (closed symbols) numbers of SI alleles. Variable inbreeding 

depression. Parameters:

N=105, d p=10−4 , S=1000,mSI=10−5 ,mSC=10− 4 , s=0.05,h=0.2, γ=0.5.
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Figure 6: Inbreeding depression as a function of the deleterious mutation rate for different 

dispersal rates. Variable inbreeding depression. Parameters:

N=105, D=10, S=1000,mSI=10−5 ,mSC=10− 4 , s=0.05,h=0.2, γ=0.5.
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