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A Hybrid High-Order method for multiple-network poroelasticity

We develop Hybrid High-Order methods for multiple-network poroelasticity, modelling seepage through deformable fissured porous media. The proposed methods are designed to support general polygonal and polyhedral elements. This is a crucial feature in geological modelling, where the need for general elements arises, e.g., due to the presence of fracture and faults, to the onset of degenerate elements to account for compaction or erosion, or when nonconforming mesh adaptation is performed. We use as a starting point a mixed weak formulation where an additional total pressure variable is added, that ensures the fulfilment of a discrete inf-sup condition. A complete theoretical analysis is performed, and the results are demonstrated on a panel of numerical tests.

Introduction

In this work, we develop and analyse Hybrid High-Order (HHO) methods for the multiple-network poroelastic problem.

In the standard quasi-static poroelasticity theory [18], the medium is modelled as a continuous superposition of solid and fluid phases. The corresponding set of equations, named after Biot in recognition of his pioneering contributions [START_REF] Biot | General theory of threedimensional consolidation[END_REF][START_REF] Biot | Theory of elasticity and consolidation for a porous anisotropic solid[END_REF], result from the balances of force and mass. Specifically, mechanical equilibrium is assumed, with the total stress tensor decomposed into one contribution due to the strain of the porous matrix and one due to the pore pressure; see [START_REF] Terzaghi | Theoretical soil mechanics[END_REF]. A standard description of the flow, on the other hand, is obtained combining the mass balance with the Darcy law. This simplified description can fail to capture physically relevant phenomena in fissured media. A modification of the Darcy model accounting for the simultaneous presence of pore and fissure networks was originally proposed by Barenblatt et al. in [START_REF] Barenblatt | Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[END_REF] for the rigid case. Plugging this description into the Biot model gives raise to the so-called Barenblatt-Biot equations. These ideas can be naturally extended to 𝑀 porous networks, finding applications, e.g., in the modelling of the interactions between biological fluids and tissue; see, e.g, [START_REF] Tully | Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus[END_REF].

In the context of computational geosciences, the use of discretisation methods that support general polytopal meshes and, possibly, high-order has been recently advocated by several authors; see, e.g., [1, 2, 5, 15-17, 26, 30] and references therein. The support of polyhedral meshes enables, e.g., a seamless treatment of degenerate elements which may arise due to erosion or compaction in corner-point descriptions of petroleum basins, of non-matching interfaces across fractures or faults, and of non-conforming mesh refinement or agglomeration [START_REF] Bassi | On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations[END_REF]. High-order methods, on the other hand, typically lead to a better usage of computational resources than loworder methods whenever the solution exhibits sufficient (local) regularity or mesh adaptation is available.

Our focus is here on a specific family of polytopal discretisations, HHO methods. Originally introduced in [START_REF] Di Pietro | A hybrid high-order locking-free method for linear elasticity on general meshes[END_REF] in the context of linear elasticity, HHO methods rely on two key ingredients: local reconstructions obtained by solving small, embarrassingly parallel problems inside each element and stabilisation terms that penalise, inside each element, residuals designed so as to preserve optimal approximation properties. A general and up-to-date overview of HHO methods can be found in the recent monograph [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF]. Concerning their applications to poroelasticity, we can cite, in particular: the HHO-Discontinuous Galerkin method for the Biot problem proposed and analysed in [START_REF] Boffi | A nonconforming high-order method for the Biot problem on general meshes[END_REF], based in turn on the methods of [START_REF] Di Pietro | A hybrid high-order locking-free method for linear elasticity on general meshes[END_REF] for the mechanics and [START_REF] Di Pietro | Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection[END_REF] for the flow; its extension to nonlinear elastic laws proposed in [START_REF] Botti | A Hybrid High-Order discretisation method for nonlinear poroelasticity[END_REF], where the mechanical term is discretised according to [START_REF] Botti | A Hybrid High-Order method for nonlinear elasticity[END_REF]; its application to the treatment of stochastic coefficients considered in [START_REF] Botti | Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods[END_REF] in conjunction with Polynomial Chaos techniques. An abstract analysis framework covering general schemes for the linear Biot problem in fully discrete formulation (cf. [START_REF] Di Pietro | A third Strang lemma for schemes in fully discrete formulation[END_REF]) has been recently proposed in [START_REF] Botti | An abstract analysis framework for monolithic discretisations of poroelasticity with application to Hybrid High-Order methods[END_REF] covering, in particular, a variation of the method of [START_REF] Boffi | A nonconforming high-order method for the Biot problem on general meshes[END_REF] where also the flow equation is discretised in the HHO spirit. Other applications of HHO methods to problems in geosciences include flows in fractured porous media [START_REF] Chave | A Hybrid High-Order method for Darcy flows in fractured porous media[END_REF][START_REF] Chave | A Hybrid High-Order method for passive transport in fractured porous media[END_REF] and miscible fluid flows in porous media [START_REF] Anderson | An arbitrary order scheme on generic meshes for miscible displacements in porous media[END_REF].

The method proposed in the present work uses as a starting point the mixed formulation of [START_REF] Lee | A Mixed Finite Element Method for Nearly Incompressible Multiple-Network Poroelasticity[END_REF], where an additional total pressure variable is introduced that accounts for the pore and mechanical pressures. Given an integer polynomial degree 𝑘 ≥ 0, the discretisation of the mechanical term in the equilibrium equation follows [START_REF] Botti | A Hybrid High-Order method for nonlinear elasticity[END_REF] if 𝑘 ≥ 1 and [START_REF] Botti | A low-order nonconforming method for linear elasticity on general meshes[END_REF] if 𝑘 = 0. This choice induces a natural discretisation for the total pressure in the space of broken polynomials of total degree ≤ 𝑘, which ensures inf-sup stability. As it has been done in [START_REF] Botti | An abstract analysis framework for monolithic discretisations of poroelasticity with application to Hybrid High-Order methods[END_REF], we consider two different discretisations of the Darcy term in the mass balance equations (one per pore network). The first scheme is based on the HHO method of [START_REF] Di Pietro | An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators[END_REF], so the discrete unknowns for the pore pressures are both at elements and faces. The second scheme is obtained by using the Discontinuous Galerkin (DG) method of [START_REF] Di Pietro | Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection[END_REF]. In both cases, the linear exchange terms as well as the porosity are discretised using element unknowns only. The resulting methods have several appealing features: they supports general polytopal meshes and high-order; they can be applied to an arbitrary number 𝑀 ≥ 1 of pore networks; they are well-behaved for quasi-incompressible porous matrices; they deliver an 𝐿 2 -error estimate for the total pressure robust in the entire range of geophysical parameters.

From the practical standpoint, a relevant difference between the two schemes is that the HHO-HHO version can benefit from static condensation, leading to linear systems where the only globally coupled unknowns are displacement and pore pressure at faces, and global pressures at elements. On typical meshes, this results in fewer unknowns with respect to the HHO-DG scheme and better computational efficiency, particularly in three space dimensions; see, e.g., the numerical tests on meshes with planar faces in [START_REF] Botti | A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits[END_REF]. On the other hand, the HHO-DG scheme may be easier to implement, as it does not require the introduction of pore pressures at faces, nor the computation of local pore pressure reconstruction or static condensation. From the theoretical point of view, the analysis of the HHO-DG scheme requires elliptic regularity (in Theorem 2 the convexity of the domain is assumed) to achieve optimal orders of convergence. As pointed out in [START_REF] Botti | An abstract analysis framework for monolithic discretisations of poroelasticity with application to Hybrid High-Order methods[END_REF], this is not the case for the HHO-HHO scheme. In this paper, we focus on the HHO-DG scheme for the numerical tests of Section 5, and defer a comparison with the HHO-HHO scheme to a future work.

The rest of this paper is organised as follows. In Section 2 we establish the continuous setting and state the multiple-network poroelasticity problem in weak formulation. Section 3 describes the discrete setting and contains the statement of the discrete problem. The analysis of the method is carried out in Section 4 focusing, for the sake of simplicity, on the HHO-HHO variant. The pivotal result is here an a priori estimate for an abstract problem whose purpose is twofold: when applied to the HHO scheme, it yields its well-posedness; when applied to the error equations, it establishes a basic error estimate. Finally, Section 5 contains a thorough numerical validation of the method.

Continuous setting

In what follows, given an open bounded set 𝑋 ⊂ R 𝑑 , we denote by (•, •) 𝑋 the usual scalar product of 𝐿 2 (𝑋; R), 𝐿 2 (𝑋; R 𝑑 ), or 𝐿 2 (𝑋; R 𝑑×𝑑 ), according to the context. When 𝑋 = Ω, the subscript is omitted.

We consider the evolution over a finite time 𝑡 F > 0 of a porous medium which, in its reference configuration, occupies a fixed region of space Ω ⊂ R 𝑑 , 𝑑 ∈ {2, 3}, and hosts 𝑀 ≥ 1 pore networks. For the sake of simplicity, we assume that Ω is a polygon or a polyhedron, so that it can be covered exactly by a spatial mesh made of polygonal or polyhedral elements. Denote by 𝜇 > 0 and 𝜆 ≥ 0 the Lamé parameters of the matrix and, for any 𝑖 ∈ 1, 𝑀 , by 𝐶 𝑖 ≥ 0, 𝛼 𝑖 ∈ (0, 1], and 𝐾 𝑖 > 0, respectively, the constrained specific storage, Biot-Willis, and permeability coefficients of each network. We additionally denote by 𝒇 ∈ 𝐻 1 (0, 𝑡 F ; 𝐿 2 (Ω; R 𝑑 )) a volumetric force and, for any 𝑖 ∈ 1, 𝑀 , by 𝑔 𝑖 ∈ 𝐶 0 ( [0, 𝑡 F ]; 𝐿 2 (Ω; R)) a source term for the 𝑖th pore network. The above physical parameters and forcing terms will be collectively referred to as the problem data.

Let 𝑼 ≔ 𝐻 1 0 (Ω; R 𝑑 ), 𝑃 0 ≔ 𝑞 ∈ 𝐿 2 (Ω; R) :

∫ Ω 𝑞 = 0 , and, for all 𝑖 ∈ 1, 𝑀 , 𝑃 𝑖 ≔ 𝐻 1 0 (Ω; R). We also set, for the sake of brevity, 𝜶 ≔ (1, 𝛼 1 , . . . , 𝛼 𝑀 ) ∈ R 𝑀 +1 and, denoting by 𝑝 0 the total pressure field and, for any 𝑖 ∈ 1, 𝑀 , by 𝑝 𝑖 the pressure field in the 𝑖th porous network, 𝒑 ≔ ( 𝑝 0 , 𝑝 1 , . . . , 𝑝 𝑀 ). We consider a weak formulation inspired by (but not coincident with) the one considered in [START_REF] Lee | A Mixed Finite Element Method for Nearly Incompressible Multiple-Network Poroelasticity[END_REF]: Find the displacement 𝒖 ∈ 𝐶 0 ( [0, 𝑡 F ]; 𝑼), the total pressure 𝑝 0 ∈ 𝐻 1 (0, 𝑡 F ; 𝑃 0 ) and, for all 𝑖 ∈ 1, 𝑀 , the 𝑖th pore network pressure 𝑝 𝑖 ∈ 𝐶 0 ( [0, 𝑡 F ]; 𝑃 𝑖 ) ∩ 𝐻 1 (0, 𝑡 F ; 𝐿 2 (Ω; R)) such that it holds, for almost every 𝑡 ∈ (0, 𝑡 F ], all 𝒗 ∈ 𝑼, all 𝑞 0 ∈ 𝑃 0 , and all

𝑞 𝑖 ∈ 𝑃 𝑖 , 𝑖 ∈ 1, 𝑀 , 2𝜇 𝑎(𝒖(𝑡), 𝒗) + 𝑏(𝒗, 𝑝 0 (𝑡)) = ( 𝒇 (𝑡), 𝒗), (1a) 
𝑏(𝒖(𝑡), 𝑞 0 ) -𝜆 -1 (𝜶• 𝒑, 𝑞 0 ) = 0, (1b) (d 𝑡 𝜓 𝑖 ( 𝒑(𝑡)), 𝑞 𝑖 ) + (𝑆 𝑖 ( 𝒑(𝑡)), 𝑞 𝑖 ) + 𝐾 𝑖 𝑐( 𝑝 𝑖 , 𝑞 𝑖 ) = (𝑔 𝑖 (𝑡), 𝑞 𝑖 ) ∀𝑖 ∈ 1, 𝑀 , (1c)
where we have set, for all 𝑖 ∈ 1, 𝑀 and all 𝒒 ∈ R 𝑀 +1 ,

𝜓 𝑖 (𝒒) ≔ 𝐶 𝑖 𝑞 𝑖 + 𝛼 𝑖 𝜆 -1 𝜶•𝒒, (2) 
and we have introduced the bilinear forms 𝑎 : 𝑼 × 𝑼 → R, 𝑏 : 𝑼 × 𝑃 0 → R, and 𝑐 : 𝐻 1 (Ω; R) × 𝐻 1 (Ω; R) → R such that, for all 𝒘, 𝒗 ∈ 𝑼, all 𝑞 0 ∈ 𝑃 0 , and all 𝑟, 𝑞 ∈ 𝐻 1 (Ω; R),

𝑎(𝒘, 𝒗) ≔ (∇ s 𝒘, ∇ s 𝒗), 𝑏(𝒗, 𝑞 0 ) ≔ (∇•𝒗, 𝑞 0 ), 𝑐(𝑟, 𝑞) ≔ (∇𝑟, ∇𝑞). (3) 
In the expression of the bilinear form 𝑎, ∇ s denotes the symmetric part of the gradient applied to vector fields. In (1c), the exchange term is expressed by the function 𝑆 𝑖 : R 𝑀 +1 → R such that, for any 𝒒 ∈ R 𝑀 +1 ,

𝑆 𝑖 (𝒒) ≔ 𝑀 ∑︁ 𝑗=1 𝜉 𝑖← 𝑗 (𝑞 𝑖 -𝑞 𝑗 ),
where 𝜉 𝑖← 𝑗 : 𝑖, 𝑗 ∈ 1, 𝑀 is a family of nonnegative real numbers such that 𝜉 𝑖← 𝑗 = 𝜉 𝑗←𝑖 for all 𝑖, 𝑗 ∈ 1, 𝑀 . We assume that the initial pressures 𝑝 0 𝑖 ∈ 𝑃 𝑖 , 𝑖 ∈ 0, 𝑀 , are given, so that an initial equilibrium displacement 𝒖 0 ∈ 𝑼 can be computed from (1a).

Discrete setting

Space and time meshes

We consider spatial meshes corresponding to couples M ℎ ≔ (T ℎ , F ℎ ), where T ℎ is a finite collection of polyhedral elements such that ℎ ≔ max 𝑇 ∈T ℎ ℎ 𝑇 > 0 with ℎ 𝑇 denoting the diameter of 𝑇, while F ℎ is a finite collection of planar faces. It is assumed henceforth that the mesh M ℎ matches the geometrical requirements detailed in [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF]Definition 1.4]. This covers, essentially, any reasonable partition of Ω into polyhedral sets, not necessarily convex.

For every mesh element 𝑇 ∈ T ℎ , we denote by F 𝑇 the subset of F ℎ containing the faces that lie on the boundary 𝜕𝑇 of 𝑇. For any mesh element 𝑇 ∈ T ℎ and each face 𝐹 ∈ F 𝑇 , 𝒏 𝑇 𝐹 is the constant unit vector normal to 𝐹 pointing out of 𝑇. Boundary faces lying on 𝜕Ω and internal faces contained in Ω are collected in the sets F b ℎ and F i ℎ , respectively. For any 𝐹 ∈ F i ℎ , we denote by 𝑇 1 and 𝑇 2 the elements of T ℎ such that 𝐹 ⊂ 𝜕𝑇 1 ∩ 𝜕𝑇 2 . The numbering of 𝑇 1 and 𝑇 2 is arbitrary but fixed once and for all, and we set 𝒏 𝐹 ≔ 𝒏 𝑇 1 𝐹 .

Our focus being on the ℎ-convergence analysis, we consider a sequence of refined polygonal or polyhedral meshes that is regular in the sense of [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF]Definition 1.9]. This implies, in particular, that the diameter ℎ 𝑇 of a mesh element 𝑇 ∈ T ℎ is comparable to the diameter ℎ 𝐹 of each face 𝐹 ∈ F 𝑇 uniformly in ℎ, and that the number of faces in F 𝑇 is bounded above by an integer 𝑁 𝜕 independent of ℎ; see [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF]Lemma 1.12]. In order to have the stability of the bilinear form discretising the mechanical term when discrete unknowns are polynomials of degree 𝑘 ≥ 1, we will further assume that every element 𝑇 ∈ T ℎ is star-shaped with respect to every point of a ball of diameter uniformly comparable to ℎ 𝑇 . This assumption ensures, in particular, that uniform local Korn inequalities hold inside each element; cf. the Appendix of [START_REF] Botti | A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits[END_REF] and also [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF]Chapter 7].

The time mesh is obtained subdividing [0, 𝑡 F ] into 𝑁 ∈ N * uniform subintervals. We introduce the timestep 𝜏 ≔ 𝑡 F /𝑁 and the discrete times 𝑡 𝑛 ≔ 𝑛𝜏, 𝑛 ∈ 0, 𝑁 . For any vector space 𝑉 and interval (𝑡 𝐴 , 𝑡 𝐵 ) ⊂ (0, 𝑡 F ), we denote by 𝐶 0 ( [𝑡 𝐴 , 𝑡 𝐵 ]; 𝑉) the spaces of continuous 𝑉-valued functions of time on [𝑡 𝐴 , 𝑡 𝐵 ] and by 𝐻 𝑚 (𝑡 𝐴 , 𝑡 𝐵 ; 𝑉) the space of 𝑉-valued functions that are square-integrable along with their derivatives up to the 𝑚-th on (𝑡 𝐴 , 𝑡 𝐵 ), equipped with the usual norms.

For all 𝑛 ∈ 1, 𝑁 and all 𝜑 ∈ 𝐶 0 ( [0, 𝑡 F ]; 𝑉) we let, for the sake of brevity,

𝜑 𝑛 ≔ 𝜑(𝑡 𝑛 )
and define the discrete backward time derivative operator 𝛿 𝑛 𝑡 : 𝐶 0 ( [0, 𝑡 F ]; 𝑉) → 𝑉 at time 𝑛 as

𝛿 𝑛 𝑡 𝜑 ≔ 𝜑 𝑛 -𝜑 𝑛-1 𝜏 . ( 4 
)
Denoting by (•, •) 𝑉 an inner product in 𝑉 with associated norm • 𝑉 , and letting 𝜑 ∈ 𝐻 1 (0, 𝑡 F ; 𝑉), it holds

𝑁 ∑︁ 𝑛=1 𝜏 𝛿 𝑛 𝑡 𝜑 2 𝑉 ≤ 𝜑 2 𝐻 1 (0,𝑡 F ;𝑉 ) . (5) 

Local and broken spaces and projectors

Let a polynomial degree 𝑙 ≥ 0 be fixed. For all 𝑋 ∈ T ℎ ∪ F ℎ , denote by P 𝑙 (𝑋; R) the space spanned by the restriction to 𝑋 of 𝑑-variate polynomials of total degree ≤ 𝑙, and let 𝜋 𝑙 𝑋 : 𝐿 1 (𝑋; R) → P 𝑙 (𝑋; R) be the corresponding 𝐿 2 -orthogonal projector such that, for any 𝑣 ∈ 𝐿 1 (𝑋; R),

(𝜋 𝑙 𝑋 𝑣 -𝑣, 𝑤) 𝑋 = 0 ∀𝑤 ∈ P 𝑙 (𝑋; R).
Denoting by 𝑚 ≥ 1 an integer, the vector version 𝝅 𝑙 𝑋 : 𝐿 1 (𝑋; R 𝑚 ) → P 𝑙 (𝑋; R 𝑚 ), is obtained applying 𝜋 𝑙 𝑋 component-wise. We will also need, in what follows, the spaces of 𝑑 × 𝑑 symmetric matrix-valued fields with polynomial entries, denoted by P 𝑙 (𝑇; R 𝑑×𝑑 sym ). At the global level, we introduce the broken polynomial space

P 𝑙 (T ℎ ; R) ≔ 𝑣 ∈ 𝐿 1 (Ω; R) : 𝑣 |𝑇 ∈ P 𝑙 (𝑇; R) ∀𝑇 ∈ T ℎ ,
the corresponding vector version P 𝑙 (T ℎ ; R 𝑑 ), and the space P 𝑙 (T ℎ ; R 𝑑×𝑑 sym ) of 𝑑 × 𝑑 symmetric matrix-valued fields with broken polynomial entries. The 𝐿 2 -orthogonal projector on

P 𝑙 (T ℎ ; R) is 𝜋 𝑙 ℎ : 𝐿 1 (Ω; R) → P 𝑙 (T ℎ ; R) such that, for all 𝑣 ∈ 𝐿 1 (Ω; R), (𝜋 𝑙 ℎ 𝑣) |𝑇 = 𝜋 𝑙 𝑇 𝑣 |𝑇 ∀𝑇 ∈ T ℎ . (6) 
Broken polynomial spaces constitute special instances of the broken Sobolev spaces 𝐻 𝑚 (T ℎ ; R) ≔ 𝑣 ∈ 𝐿 2 (Ω; R) : 𝑣 |𝑇 ∈ 𝐻 𝑚 (𝑇; R) ∀𝑇 ∈ T ℎ , which will be used to express the regularity requirements on the exact solution in the error estimate of Theorems 1 and 2. For any function 𝑣 ∈ 𝐻 1 (T ℎ ; R) we define, for all 𝐹 ∈ F i ℎ , the jump operator such that

[𝑣] 𝐹 ≔ 𝑣 |𝑇 1 -𝑣 |𝑇 2 ,
where we remind the reader that 𝑇 1 and 𝑇 2 are the mesh elements that share 𝐹 as a face, taken in an arbitrary but fixed order. On boundary faces, the jump operator simply returns the trace of its argument on 𝜕Ω.

Discrete spaces and reconstructions

To formulate the discrete problem, we need scalar and vector HHO spaces. From this point on, we let an integer 𝑘 ≥ 0 be fixed, corresponding to the polynomial degrees of the discrete unknowns.

Scalar HHO space and pressure reconstruction

The scalar HHO space, that will be used to discretise network pressures in the HHO-HHO scheme [START_REF] Di Pietro | A hybrid high-order locking-free method for linear elasticity on general meshes[END_REF], is

𝑄 𝑘 ℎ ≔ 𝑞 ℎ = ((𝑞 𝑇 ) 𝑇 ∈ T ℎ , (𝑞 𝐹 ) 𝐹 ∈ F ℎ ) :
𝑞 𝑇 ∈ P 𝑘 (𝑇; R) for all 𝑇 ∈ T ℎ and 𝑞 𝐹 ∈ P 𝑘 (𝐹; R) for all 𝐹 ∈ F ℎ .

The interpolator 𝐼 𝑘 ℎ : 𝐻 1 (Ω; R) → 𝑄 𝑘 ℎ is defined setting, for all 𝑞 ∈ 𝐻 1 (Ω; R),

𝐼 𝑘 ℎ 𝑞 ≔ (𝜋 𝑘 𝑇 𝑞) 𝑇 ∈T ℎ , (𝜋 𝑘 𝐹 𝑞) 𝐹 ∈ F ℎ .
For all 𝑞 ℎ ∈ 𝑄 𝑘 ℎ , we define the broken polynomial function 𝑞 ℎ ∈ P 𝑘 (T ℎ ; R) obtained patching element unknowns, that is,

(𝑞 ℎ ) |𝑇 ≔ 𝑞 𝑇 ∀𝑇 ∈ T ℎ .
For any element 𝑇 ∈ T ℎ , we denote by 𝑄 𝑘 𝑇 the restriction of 𝑄 𝑘 ℎ to 𝑇, and we introduce the pressure reconstruction r 𝑘+1 𝑇 :

𝑞 𝑘 𝑇 → P 𝑘+1 (𝑇; R) such that, for all 𝑞 𝑇 ∈ 𝑄 𝑘 𝑇 , (∇r 𝑘+1 𝑇 𝑞 𝑇 , ∇𝑤) 𝑇 = -(𝑞 𝑇 , Δ𝑤) 𝑇 + ∑︁ 𝐹 ∈ F 𝑇 (𝑞 𝐹 , ∇𝑤•𝒏 𝑇 𝐹 ) 𝐹 ∀𝑤 ∈ P 𝑘+1 (𝑇; R), ∫ 𝑇 r 𝑘+1 𝑇 𝑞 𝑇 = ∫ 𝑇 𝑞 𝑇 .
The global pressure reconstruction operator r 𝑘+1 ℎ

: 𝑄 𝑘 ℎ → P 𝑘+1 (T ℎ ; R) is obtained patching the local ones: For all 𝑞 ℎ ∈ 𝑄 𝑘 ℎ , (r 𝑘+1 ℎ 𝑞 ℎ ) |𝑇 ≔ r 𝑘+1 𝑇 𝑞 𝑇 ∀𝑇 ∈ T ℎ .

Vector HHO space, strain, and displacement reconstructions

The vector HHO space, that will be used to discretise the displacement, is

𝑽 𝑘 ℎ ≔ 𝒗 ℎ = ((𝒗 𝑇 ) 𝑇 ∈ T ℎ , (𝒗 𝐹 ) 𝐹 ∈ F ℎ ) : 𝒗 𝑇 ∈ P 𝑘 (𝑇; R 𝑑 ) for all 𝑇 ∈ T ℎ and 𝒗 𝐹 ∈ P 𝑘 (𝐹; R 𝑑 ) for all 𝐹 ∈ F ℎ . For all 𝒗 ℎ ∈ 𝑽 𝑘 ℎ , we let 𝒗 ℎ ∈ P 𝑘 (T ℎ ; R 𝑑 ) be such that (𝒗 ℎ ) |𝑇 ≔ 𝒗 𝑇 ∀𝑇 ∈ T ℎ . The interpolator 𝑰 𝑘 ℎ : 𝐻 1 (Ω; R 𝑑 ) → 𝑽 𝑘 ℎ is such that, for any 𝒗 ∈ 𝐻 1 (Ω; R 𝑑 ), 𝑰 𝑘 ℎ 𝒗 ≔ (𝝅 𝑘 𝑇 𝒗) 𝑇 ∈T ℎ , (𝝅 𝑘 𝐹 𝒗) 𝐹 ∈ F ℎ .
For any element 𝑇 ∈ T ℎ , we denote by 𝑽 𝑘 𝑇 the restriction of 𝑽 𝑘 ℎ to 𝑇 and we introduce the strain reconstruction E 𝑘 𝑇 : 𝑽 𝑘 𝑇 → P 𝑘 (𝑇; R 𝑑×𝑑 sym ) such that, for all 𝒗 𝑇 ∈ 𝑽 𝑘 𝑇 ,

(E 𝑘 𝑇 𝒗 𝑇 , 𝝉) 𝑇 = -(𝒗 𝑇 , ∇•𝝉) 𝑇 + ∑︁ 𝐹 ∈ F 𝑇 (𝒗 𝐹 , 𝝉𝒏 𝑇 𝐹 ) 𝐹 ∀𝝉 ∈ P 𝑘 (𝑇; R 𝑑×𝑑 sym ).
For any 𝒗 𝑇 ∈ 𝑽 𝑘 𝑇 , we reconstruct from E 𝑘 𝑇 𝒗 𝑇 a high-order displacement r 𝑘+1 𝑇 𝒗 𝑇 ∈ P 𝑘+1 (𝑇; R 𝑑 ) enforcing the following conditions:

(∇ s r 𝑘+1 𝑇 𝒗 𝑇 -E 𝑘 𝑇 𝒗 𝑇 , ∇ s 𝒘) 𝑇 = 0 ∀𝒘 ∈ P 𝑘+1 (𝑇; R 𝑑 ), ∫ 𝑇 r 𝑘+1 𝑇 𝒗 𝑇 = ∫ 𝑇 𝒗 𝑇 , and 
∫ 𝑇 ∇ ss r 𝑘+1 𝑇 𝒗 𝑇 = 1 2 ∑︁ 𝐹 ∈ F 𝑇 ∫ 𝐹 (𝒗 𝐹 ⊗ 𝒏 𝑇 𝐹 -𝒏 𝑇 𝐹 ⊗ 𝒗 𝐹 ),
where ∇ ss denotes the skew-symmetric part of the gradient applied to vector fields. The global strain and displacement reconstructions E 𝑘 ℎ :

𝑽 𝑘 ℎ → P 𝑘 (T ℎ ; R 𝑑×𝑑 sym ) and r 𝑘+1 ℎ : 𝑽 𝑘 ℎ → P 𝑘+1 (T ℎ ; R 𝑑 ) are obtained setting, for all 𝒗 ℎ ∈ 𝑽 𝑘 ℎ , (E 𝑘 ℎ 𝒗 ℎ ) |𝑇 ≔ E 𝑘 𝑇 𝒗 𝑇 and (r 𝑘+1 ℎ 𝒗 ℎ ) |𝑇 ≔ r 𝑘+1 𝑇 𝒗 𝑇 for all 𝑇 ∈ T ℎ .
We also define a global divergence reconstruction

D 𝑘 ℎ : 𝑽 𝑘 ℎ → P 𝑘 (T ℎ ; R) as the trace of E 𝑘 ℎ , that is, for all 𝒗 ℎ ∈ 𝑽 𝑘 ℎ , D 𝑘 ℎ 𝒗 ℎ ≔ tr(E 𝑘 ℎ 𝒗 ℎ ).

Displacement and pressure spaces

The discrete spaces for the displacement including the strongly enforced homogeneous boundary conditions and for the total pressure including the zero-average conditions are, respectively:

𝑼 𝑘 ℎ ≔ 𝒗 ℎ ∈ 𝑽 𝑘 ℎ : 𝒗 𝐹 = 0 for all 𝐹 ∈ F b ℎ and 𝑃 𝑘 ℎ,0 ≔ P 𝑘 (T ℎ ; R) ∩ 𝑃 0 .
When using the HHO method for the discretisation of the flow equations, for any 𝑖 ∈ 1, 𝑀 , the space for the 𝑖th network pressure is

𝑃 𝑘 ℎ,𝑖 ≔ 𝑄 𝑘 ℎ,D with 𝑄 𝑘 ℎ,D ≔ 𝑞 ℎ ∈ 𝑄 𝑘 ℎ : 𝑞 𝐹 = 0 for all 𝐹 ∈ F b ℎ ,
while, when using the DG method, we use instead

𝑃 𝑘 ℎ,𝑖 ≔ P 𝑘 (T ℎ ; R).

Discrete bilinear forms

We discuss in this section the approximation of the continuous bilinear forms defined in [START_REF] Barenblatt | Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[END_REF]. In order to alleviate the exposition, from this point on we use the abridged notation 𝑎 𝑏 for the inequality 𝑎 ≤ 𝐶𝑏 with real number 𝐶 > 0 independent of the meshsize, the time step and, for local inequalities, on the mesh element or face. Further dependencies of the hidden constant will be specified when appropriate.

Mechanical term

The discrete counterpart of the continuous bilinear form 𝑎 is a ℎ :

𝑽 𝑘 ℎ × 𝑽 𝑘 ℎ → R such that, for all 𝒘 ℎ , 𝒗 ℎ ∈ 𝑽 𝑘 ℎ , a ℎ (𝒘 ℎ , 𝒗 ℎ ) ≔ (E 𝑘 ℎ 𝒘 ℎ , E 𝑘 ℎ 𝒗 ℎ ) + s a,ℎ (𝒘 ℎ , 𝒗 ℎ ) if 𝑘 ≥ 1, (E 0 ℎ 𝒘 ℎ , E 0 ℎ 𝒗 ℎ ) + s a,ℎ (𝒘 ℎ , 𝒗 ℎ ) + j ℎ (r 1 ℎ 𝒘 ℎ , r 1 ℎ 𝒗 ℎ ) if 𝑘 = 0,
with stabilising bilinear form s a,ℎ :

𝑽 𝑘 ℎ × 𝑽 𝑘 ℎ → R and jump penalisation bilinear form j ℎ : 𝐻 1 (T ℎ ; R 𝑑 ) × 𝐻 1 (T ℎ ; R 𝑑 ) → R such that s a,ℎ (𝒘 ℎ , 𝒗 ℎ ) ≔ ∑︁ 𝑇 ∈ T ℎ ∑︁ 𝐹 ∈ F 𝑇 ℎ -1 𝐹 (𝜹 𝑘 𝑇 𝐹 𝒘 𝑇 , 𝜹 𝑘 𝑇 𝐹 𝒗 𝑇 ) 𝐹 ∀𝒘 ℎ , 𝒗 ℎ ∈ 𝑽 𝑘 ℎ , j ℎ (𝒘, 𝒗) ≔ ∑︁ 𝐹 ∈ F ℎ ℎ -1 𝐹 ( [𝒘] 𝐹 , [𝒗] 𝐹 ) 𝐹 ∀𝒘, 𝒗 ∈ 𝐻 1 (T ℎ ; R 𝑑 ),
where, for all 𝑇 ∈ T ℎ and all 𝐹 ∈ F 𝑇 , 𝜹 𝑘 𝑇 𝐹 𝒗 𝑇 ≔ 𝝅 𝑘 𝐹 (r 𝑘+1 𝑇 𝒗 𝑇 -𝒗 𝐹 ) -𝝅 𝑘 𝑇 (r 𝑘+1 𝑇 𝒗 𝑇 -𝒗 𝑇 ). A discussion on the case 𝑘 = 0, including a justification of the term involving the bilinear form j ℎ , can be found in [START_REF] Botti | A low-order nonconforming method for linear elasticity on general meshes[END_REF]; see also [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF]Section 7.6].

Following [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF]Chapter 7], the bilinear form a ℎ defines an inner product on 𝑼 𝑘 ℎ , and we denote by • a,ℎ the induced norm. The corresponding dual norm • a,ℎ, * is defined such that, for any linear form ℓ ℎ :

𝑼 𝑘 ℎ,0 → R, ℓ ℎ a,ℎ, * ≔ sup 𝒗 ℎ ∈𝑼 𝑘 ℎ \{0} ℓ ℎ (𝒗 ℎ ) 𝒗 ℎ a,ℎ . (7) 
The following consistency property holds: For all

𝒘 ∈ 𝑼 ∩ 𝐻 𝑘+2 (T ℎ ; R 𝑑 ), E a,ℎ (𝒘; •) a,ℎ, * ℎ 𝑘+1 |𝒘| 𝐻 𝑘+2 ( T ℎ ;R 𝑑 ) , (8) 
where the hidden constant is independent of both ℎ and 𝒘 and the consistency error linear form E a,ℎ (𝒘; •) :

𝑼 𝑘 ℎ → R is such that, for all 𝒗 ℎ ∈ 𝑼 𝑘 ℎ , E a,ℎ (𝒘; 𝒗 ℎ ) ≔ -(∇•∇ s 𝒘, 𝒗 ℎ ) -a ℎ ( 𝑰 𝑘 ℎ 𝒘, 𝒗 ℎ ). (9) 
We additionally have the following discrete Korn-Poincaré inequality:

𝒗 ℎ 𝐿 2 (Ω;R 𝑑 ) ≤ 𝐶 K 𝒗 ℎ a,ℎ ∀𝒗 ℎ ∈ 𝑼 𝑘 ℎ , (10) 
where the real number 𝐶 K > 0 is independent of ℎ, but possibly depends on Ω, 𝑑, 𝑘, and the mesh regularity parameter. In the case 𝑘 ≥ 1, this inequality results from [22, Eq. ( 7.75) with 2𝜇 = 1 and 𝜆 = 0 together with Remark 7.26] whereas, in the case 𝑘 = 0, it is a consequence of [22, Eq. ( 7.109) with 𝜆 = 0 and Remark 7.26].

Pressure-displacement coupling

The coupling between the total pressure and the displacement is realised by means of the bilinear form b ℎ :

𝑽 𝑘 ℎ × P 𝑘 (T ℎ ; R) such that, for all (𝒗 ℎ , 𝑞 ℎ ) ∈ 𝑽 𝑘 ℎ × P 𝑘 (T ℎ ; R), b ℎ (𝒗 ℎ , 𝑞 ℎ ) ≔ (D 𝑘 ℎ 𝒗 ℎ , 𝑞 ℎ ).
The following inf-sup condition holds: There is a real number 𝛽 > 0 independent of ℎ, but possibly depending on Ω, 𝑑, 𝑘, and the mesh regularity parameter, such that

𝛽 𝑞 ℎ 𝐿 2 (Ω;R) ≤ b ℎ (•, 𝑞 ℎ ) a,ℎ, * ∀𝑞 ℎ ∈ 𝑃 𝑘 ℎ,0 . (11) 
Moreover, we have the following consistency properties: For all 𝒗 ∈ 𝑼,

b ℎ ( 𝑰 𝑘 ℎ 𝒗, 𝑞 ℎ ) = 𝑏(𝒗, 𝑞 ℎ ) ∀𝑞 ℎ ∈ 𝑃 𝑘 ℎ,0 (12) 
and, for all

𝑞 ∈ 𝐻 1 (Ω; R) ∩ 𝐻 𝑘+1 (T ℎ ; R), E b,ℎ (𝑞; •) a,ℎ, * ℎ 𝑘+1 |𝑞| 𝐻 𝑘+1 ( T ℎ ;R) , (13) 
where the hidden constant is independent of both ℎ and 𝑞 and the consistency error linear form E b,ℎ (𝑞; •) :

𝑼 𝑘 ℎ → R is such that, for all 𝒗 ℎ ∈ 𝑼 𝑘 ℎ , E b,ℎ (𝑞; 𝒗 ℎ ) ≔ (∇𝑞, 𝒗 ℎ ) -b ℎ (𝒗 ℎ , 𝜋 𝑘 ℎ 𝑞). (14) 

HHO discretisaton of the Darcy term

Denote by ∇ ℎ the broken gradient acting element-wise. The Darcy bilinear form 𝑐 is approximated by c hho ℎ :

𝑄 𝑘 ℎ × 𝑄 𝑘 ℎ → R such that, for all 𝑟 ℎ , 𝑞 ℎ ∈ 𝑄 𝑘 ℎ , c hho ℎ (𝑟 ℎ , 𝑞 ℎ ) ≔ (∇ ℎ r 𝑘+1 ℎ 𝑟 ℎ , ∇ ℎ r 𝑘+1 ℎ 𝑞 ℎ ) + s c,ℎ (𝑟 ℎ , 𝑞 ℎ ),
with stabilising bilinear form

s c,ℎ (𝑟 ℎ , 𝑞 ℎ ) ≔ ∑︁ 𝑇 ∈T ℎ ∑︁ 𝐹 ∈ F 𝑇 ℎ -1 𝐹 (𝛿 𝑘 𝑇 𝐹 𝑟 𝑇 , 𝛿 𝑘 𝑇 𝐹 𝑞 𝑇 ) 𝐹 ,
where, for all 𝑇 ∈ T ℎ and all 𝐹 ∈ F 𝑇 , 𝛿 

: 𝑄 𝑘 ℎ,D → R, ℓ ℎ c,ℎ, * ≔ sup 𝑞 ℎ ∈𝑃 𝑘 ℎ,𝑖 \{0} ℓ ℎ (𝑞 ℎ ) 𝑞 ℎ c,ℎ,hho . (15) 
It follows from [22, Eq. (2.42)] that, for all

𝑟 ∈ 𝐻 1 0 (Ω; R) ∩ 𝐻 𝑘+2 (T ℎ ; R) such that Δ𝑟 ∈ 𝐿 2 (Ω; R), E hho c,ℎ (𝑟; •) c,ℎ, * ℎ 𝑘+1 |𝑟 | 𝐻 𝑘+2 ( T ℎ ;R) , (16) 
where the hidden constant is independent of both ℎ and 𝑟, and the consistency error linear form

E hho c,ℎ (𝑟; •) : 𝑄 𝑘 ℎ,D → R is such that, for all 𝑞 ℎ ∈ 𝑄 𝑘 ℎ,D , E hho c,ℎ (𝑟; 𝑞 ℎ ) ≔ -(Δ𝑟, 𝑞 ℎ ) -c hho ℎ (𝐼 𝑘 ℎ 𝑟, 𝑞 ℎ ). (17) 
The following discrete Poincaré inequality results combining [22, Lemma 2.15 and Eq. (2.41)]: For all

𝑞 ℎ ∈ 𝑄 𝑘 ℎ,D , 𝑞 ℎ 𝐿 2 (Ω;R) ≤ 𝐶 P 𝑞 ℎ c,ℎ,hho , (18) 
with real number 𝐶 P > 0 independent of ℎ and 𝑞 ℎ , but possibly depending on Ω, 𝑑, 𝑘, and the mesh regularity parameter.

DG discretisation of the Darcy term

For the DG approximation of the Darcy operator we need to assume 𝑘 ≥ 1 to have consistency. Let the normal trace average operator be defined such that, for all 𝝍 ∈ 𝐻 1 (T ℎ ; R 𝑑 ) and all 𝐹 ∈ F i ℎ shared by the mesh elements 𝑇 1 and 𝑇 2 ,

{𝝍 • 𝒏} 𝐹 ≔ 1 2 𝝍 |𝑇 1 + 𝝍 |𝑇 2 |𝐹 • 𝒏 𝐹 .
The DG method hinges on the bilinear form c dg

ℎ : P 𝑘 (T ℎ ; R) × P 𝑘 (T ℎ ; R) → R such that, for all 𝑟 ℎ , 𝑞 ℎ ∈ P 𝑘 (T ℎ ; R), c dg ℎ (𝑟 ℎ , 𝑞 ℎ ) ≔ (∇ ℎ 𝑟 ℎ , ∇ ℎ 𝑞 ℎ ) + ∑︁ 𝐹 ∈ F ℎ 𝜂 ℎ 𝐹 ( [𝑟 ℎ ] 𝐹 , [𝑞 ℎ ] 𝐹 ) 𝐹 - ∑︁ 𝐹 ∈ F ℎ (( [𝑟 ℎ ] 𝐹 , {∇ ℎ 𝑞 ℎ • 𝒏} 𝐹 ) 𝐹 + ({∇ ℎ 𝑟 ℎ • 𝒏} 𝐹 , [𝑞 ℎ ] 𝐹 ) 𝐹 ) , (19) 
where the stabilisation parameter 𝜂 > 0 is chosen large enough to ensure coercivity with respect to the norm • c,ℎ,dg defined such that, for all 𝑞 ℎ ∈ P 𝑘 (T ℎ ; R),

𝑞 ℎ c,ℎ,dg ≔ ∇ ℎ 𝑞 ℎ 2 𝐿 2 (Ω) 𝑑 + ∑︁ 𝐹 ∈ F i ℎ ℎ -1 𝐹 [𝑞 ℎ ] 𝐹 2 𝐿 2 (𝐹 ) 1 2 
.

Let 𝑟 ∈ 𝐻 1 (Ω, R) be such that Δ𝑟 ∈ 𝐿 2 (Ω, R), and consider the elliptic projection problem that consists in finding

𝑟 ℎ ∈ P 𝑘 (T ℎ ; R) such that c dg ℎ (𝑟 ℎ , 𝑞 ℎ ) = -(Δ𝑟, 𝑞 ℎ ) 𝐿 2 (Ω) ∀𝑞 ℎ ∈ P 𝑘 (T ℎ , R), ∫ Ω 𝑟 ℎ (𝒙) d𝒙 = ∫ Ω 𝑟 (𝒙) d𝒙. (20) It is inferred from [21, Appendix A] that, if Ω is convex and 𝑟 ∈ 𝐻 𝑚+1 (T ℎ , R) for some 𝑚 ∈ {0, . . . , 𝑘 }, it holds 𝑟 ℎ -𝑟 𝐿 2 (Ω) + ℎ 𝑟 ℎ -𝑟 c,ℎ,dg ℎ 𝑚+1 |𝑟 | 𝐻 𝑚+1 ( T ℎ ) , (21) 
with hidden constant independent of ℎ and 𝑟.

Discrete problems

Assume the initial pressures given, and denote by 𝒖 0 ∈ 𝑼 the corresponding initial equilibrum displacement. Enforce the initial condition by setting

𝒖 0 ℎ ≔ 𝑰 𝑘 ℎ 𝒖 0 , 𝑝 0 ℎ,𝑖 ≔ 𝜋 𝑘 ℎ 𝑝 0 𝑖 ∀𝑖 ∈ 0, 𝑀 . (22) 
The discrete problem with HHO discretisation of the Darcy term (HHO-HHO scheme) reads: For 𝑛 = 1, . . . , 𝑁, find 𝒖 𝑛 ℎ ∈ 𝑼 𝑘 ℎ , 𝑝 𝑛 ℎ,0 ∈ 𝑃 𝑘 ℎ,0 and, for all 𝑖 ∈ 1, 𝑀 , 𝑝 𝑛 ℎ,𝑖 ∈ 𝑃 𝑘 ℎ,𝑖 such that, for all 𝒗 ℎ ∈ 𝑼 𝑘 ℎ , all 𝑞 ℎ,0 ∈ 𝑃 𝑘 ℎ,0 , and all 𝑞 ℎ,𝑖

∈ 𝑃 𝑘 ℎ,𝑖 , 𝑖 ∈ 1, 𝑀 , 2𝜇 a ℎ (𝒖 𝑛 ℎ , 𝒗 ℎ ) + b ℎ (𝒗 ℎ , 𝑝 𝑛 ℎ,0 ) = ( 𝒇 𝑛 , 𝒗 ℎ ), (23a) 
b ℎ (𝒖 𝑛 ℎ , 𝑞 ℎ,0 ) -𝜆 -1 (𝜶• 𝒑 𝑛 ℎ , 𝑞 ℎ,0 ) = 0, (23b) 
(𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑 ℎ ), 𝑞 ℎ,𝑖 ) + (𝑆 𝑖 ( 𝒑 𝑛 ℎ ), 𝑞 ℎ,𝑖 ) + 𝐾 𝑖 c hho ℎ ( 𝑝 𝑛 ℎ,𝑖 , 𝑞 ℎ,𝑖 ) = (𝑔 𝑛 𝑖 , 𝑞 ℎ,𝑖 ) ∀𝑖 ∈ 1, 𝑀 , (23c) 
where we have set, for any 𝑛 ∈ 0, 𝑁 , 𝒑 𝑛 ℎ ≔ ( 𝑝 𝑛 ℎ,0 , 𝑝 𝑛 ℎ,1 , . . . , 𝑝 𝑛 ℎ,𝑀 ) and we remind the reader that 𝜓 𝑖 is defined by [START_REF] Antonietti | Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids[END_REF].

The problem resulting from the DG approximation of the flow operator (HHO-DG scheme) reads: For 𝑛 = 1, . . . , 𝑁, find 𝒖 𝑛 ℎ ∈ 𝑼 𝑘 ℎ and 𝑝 𝑛 ℎ,0 ∈ 𝑃 𝑘 ℎ,0 such that (23a)-(23b) hold for all 𝒗 ℎ ∈ 𝑼 𝑘 ℎ and all 𝑞 ℎ,0 ∈ 𝑃 𝑘 ℎ,0 , respectively, and, for all 𝑖 ∈ 1, 𝑀 , 𝑝 𝑛 ℎ,𝑖 ∈ 𝑃 𝑘 ℎ,𝑖 such that, for all 𝑞 ℎ,𝑖 ∈ 𝑃 𝑘 ℎ,𝑖 , 𝑖 ∈ 1, 𝑀 ,

(𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑 ℎ ), 𝑞 ℎ,𝑖 ) + (𝑆 𝑖 ( 𝒑 𝑛 ℎ ), 𝑞 ℎ,𝑖 ) + 𝐾 𝑖 c dg ℎ ( 𝑝 𝑛 ℎ,𝑖 , 𝑞 ℎ,𝑖 ) = (𝑔 𝑛 𝑖 , 𝑞 ℎ,𝑖 ) ∀𝑖 ∈ 1, 𝑀 . (24) 

Convergence analysis

We carry out a convergence analysis for the methods formulated in Section 3.5.

For the sake of conciseness, the focus is on the HHO-HHO scheme [START_REF] Di Pietro | A hybrid high-order locking-free method for linear elasticity on general meshes[END_REF]. The modifications needed to adapt the results to the HHO-DG scheme are discussed in Section 4.4. A unified analysis covering both HHO-HHO and HHO-DG methods for the single-network Biot problem can be found in [START_REF] Botti | An abstract analysis framework for monolithic discretisations of poroelasticity with application to Hybrid High-Order methods[END_REF].

An abstract a priori estimate

We derive an a priori estimate for an auxiliary problem analogous to [START_REF] Di Pietro | A hybrid high-order locking-free method for linear elasticity on general meshes[END_REF], but with modified right-hand side. Applied to the discrete problem [START_REF] Di Pietro | A hybrid high-order locking-free method for linear elasticity on general meshes[END_REF], this estimate can be used to infer its well-posendess. Applied to the error equations (50) below, it gives a basic error estimate.

Let the families of linear forms (ℓ 𝑛 1 : 

𝑈 𝑘 ℎ → R) 𝑛∈ 0, 𝑁 ,
∈ 𝑃 𝑘 ℎ,𝑖 , 𝑖 ∈ 1, 𝑀 , 2𝜇 a ℎ (𝒘 𝑛 ℎ , 𝒗 ℎ ) + b ℎ (𝒗 ℎ , 𝑟 𝑛 ℎ,0 ) = ℓ 𝑛 1 (𝒗 ℎ ), (25a) 
b ℎ (𝒘 𝑛 ℎ , 𝑞 ℎ,0 ) -𝜆 -1 (𝜶•𝒓 𝑛 ℎ , 𝑞 ℎ,0 ) = 0, (25b) 
(𝛿 𝑛 𝑡 𝜓 𝑖 (𝒓 ℎ ), 𝑞 ℎ,𝑖 ) + (𝑆 𝑖 (𝒓 𝑛 ℎ ), 𝑞 ℎ,𝑖 ) + 𝐾 𝑖 c hho ℎ (𝑟 𝑛 ℎ,𝑖 , 𝑞 ℎ,𝑖 ) = ℓ 𝑛 2,𝑖 (𝑞 ℎ,𝑖 ) ∀𝑖 ∈ 1, 𝑀 , (25c) 
where, for any 𝑛 ∈ 0, 𝑁 , 𝒓 𝑛 ℎ ≔ (𝑟 𝑛 ℎ,0 , 𝑟 𝑛 ℎ,1 , . . . , 𝑟 𝑛 ℎ,𝑀 ). Applying discrete time derivation to (25b) we obtain, for all

𝑛 ∈ 1, 𝑁 , b ℎ (𝛿 𝑛 𝑡 𝒘 ℎ , 𝑞 ℎ,0 ) -𝜆 -1 (𝜶•𝛿 𝑛 𝑡 𝒓 ℎ , 𝑞 ℎ,0 ) = 0 ∀𝑞 ℎ,0 ∈ 𝑃 𝑘 ℎ,0 . (26) 
Lemma 1 (Abstract priori estimate). Assuming 𝜏 small enough (with threshold independent of ℎ), the solution to [START_REF] Di Pietro | An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators[END_REF] satisfies the following a priori estimate:

max 𝑛∈ 1, 𝑁 𝜇 𝒘 𝑛 ℎ 2 a,ℎ + 𝜆 -1 𝜶•𝒓 𝑛 ℎ 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 𝑟 𝑛 ℎ,𝑖 2 𝐿 2 (Ω;R) + 𝑁 ∑︁ 𝑛=1 𝜏 𝒓 𝑛 ℎ 2 𝝃 + 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝑟 𝑛 ℎ,𝑖 2 c,ℎ,hho ≤ exp 𝑡 F 1 -𝜏 (N ℓ + N 0 ) , ( 27 
)
where we have introduced the exchange norm

𝒓 𝑛 ℎ 2 𝝃 ≔ 𝑀 ∑︁ 𝑖=1 𝑀 ∑︁ 𝑗=1 𝜉 𝑖← 𝑗 (𝑟 𝑛 ℎ,𝑖 -𝑟 𝑛 ℎ, 𝑗 ) 2 𝐿 2 (Ω;R)
and we have set

N ℓ ≔ 1 2𝜇 max 𝑛∈ 1, 𝑁 ℓ 𝑛 1 2 a,ℎ, * + 1 𝜇 𝑁 ∑︁ 𝑛=1 𝜏 𝛿 𝑛 𝑡 ℓ 1 2 a,ℎ, * + 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝐾 -1 𝑖 ℓ 𝑛 2,𝑖 2 c,ℎ, * , (28a) 
N 0 ≔ 2 ℓ 0 1 a,ℎ, * 𝒘 0 ℎ a,ℎ +2𝜇 𝒘 0 ℎ 2 a,ℎ + 1 𝜆 𝜶•𝒓 0 ℎ 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 𝑟 0 ℎ,𝑖 2 
𝐿 2 (Ω;R) . ( 28b 
)
Moreover, it holds

𝛽 2 𝜇 max 𝑛∈ 1, 𝑁 𝑟 𝑛 ℎ,0 2 
𝐿 2 (Ω;R) ≤ 2 𝜇 max 𝑛∈ 1, 𝑁 ℓ 𝑛 1 2 a,ℎ, * + 4𝛽 2 exp 𝑡 F 1 -𝜏 (N ℓ + N 0 ) . (29) 
Proof. We start by deriving a basic energy estimate and then, leveraging the discrete inf-sup condition [START_REF] Botti | A low-order nonconforming method for linear elasticity on general meshes[END_REF], deduce from the latter the estimate on the total pressure. = 𝑟 𝑛 ℎ,𝑖 in (25c), and summing the resulting equations we obtain, after expanding 𝛿 𝑛 𝑡 𝜓 𝑖 (𝒓 ℎ ) according to its definition,

2𝜇 a ℎ (𝒘 𝑛 ℎ , 𝛿 𝑛 𝑡 𝒘 𝑛 ℎ ) + 𝜆 -1 (𝜶•𝛿 𝑛 𝑡 𝒓 𝑛 ℎ , 𝜶•𝒓 𝑛 ℎ ) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 (𝛿 𝑛 𝑡 𝑟 ℎ,𝑖 , 𝑟 𝑛 ℎ,𝑖 ) + 𝑀 ∑︁ 𝑖=1 (𝑆 𝑖 (𝒓 𝑛 ℎ ), 𝑟 𝑛 ℎ,𝑖 ) + 𝑀 ∑︁ 𝑖=1 𝐾 𝑖 c hho ℎ (𝑟 𝑛 ℎ,𝑖 , 𝑟 𝑛 ℎ,𝑖 ) = ℓ 𝑛 1 (𝛿 𝑛 𝑡 𝒘 ℎ ) + 𝑀 ∑︁ 𝑖=1 ℓ 2,𝑖 (𝑟 𝑛 ℎ,𝑖 ). ( 30 
)
Denote by

L 𝑛 = L 𝑛 1 + • • • L 𝑛 5 and R 𝑛 = R 𝑛 1 + R 𝑛 2
, respectively, the left-and righthand side of the above expression, and set L ≔ N 𝑛=1 𝜏L 𝑛 and, for 𝑖 ∈ {1, 2}, R 𝑖 ≔ N 𝑛=1 𝜏R 𝑛 𝑖 . (i.A) Lower bound for L. Recalling the definition (4) of the discrete time derivative and using multiple times the formula

𝑥(𝑥 -𝑦) = 1 2 𝑥 2 + (𝑥 -𝑦) 2 -𝑦 2 (31) 
with 𝑥 = • 𝑛 and 𝑦 = • 𝑛-1 , we can write for the first three terms in L 𝑛

L 𝑛 1 = 𝜇 𝜏 𝒘 𝑛 ℎ 2 a,ℎ + 𝒘 𝑛 ℎ -𝒘 𝑛-1 ℎ 2 a,ℎ -𝒘 𝑛-1 ℎ 2 a,ℎ , L 𝑛 2 = 1 2𝜆𝜏 𝜶•𝒓 𝑛 ℎ 2 𝐿 2 (Ω;R) + 𝜶•(𝒓 𝑛 ℎ -𝒓 𝑛-1 ℎ ) 2 𝐿 2 (Ω;R) -𝜶•𝒓 𝑛-1 ℎ 2 𝐿 2 (Ω;R) , L 𝑛 3 = 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 2𝜏 𝑟 𝑛 ℎ,𝑖 2 
𝐿 2 (Ω;R) + 𝑟 𝑛 ℎ,𝑖 -𝑟 𝑛-1 ℎ,𝑖 2 
𝐿 2 (Ω;R) -𝑟 𝑛-1 ℎ,𝑖 2 
𝐿 2 (Ω;R) . (32) 
For the fourth term, using again [START_REF] Terzaghi | Theoretical soil mechanics[END_REF] this time with 𝑥 = 𝑟 𝑛 ℎ,𝑖 and 𝑦 = 𝑟 𝑛 ℎ, 𝑗 along with 𝜉 𝑖← 𝑗 = 𝜉 𝑗←𝑖 , we get

L 𝑛 4 = 𝑀 ∑︁ 𝑖=1 𝑀 ∑︁ 𝑗=1 (𝜉 𝑖← 𝑗 (𝑟 𝑛 ℎ,𝑖 -𝑟 𝑛 ℎ, 𝑗 ), 𝑟 𝑛 ℎ,𝑖 ) = 1 2 𝑀 ∑︁ 𝑖=1 𝑀 ∑︁ 𝑗=1 𝜉 1 2 𝑖← 𝑗 𝑟 𝑛 ℎ,𝑖 2 
𝐿 2 (Ω;R) + 𝜉 1 2 𝑖← 𝑗 (𝑟 𝑛 ℎ,𝑖 -𝑟 𝑛 ℎ, 𝑗 ) 2 𝐿 2 (Ω;R) -𝜉 1 2 𝑗←𝑖 𝑟 𝑛 ℎ, 𝑗 2 𝐿 2 (Ω;R) = 1 2 𝑀 ∑︁ 𝑖=1 𝑀 ∑︁ 𝑗=1 𝜉 1 2 𝑖← 𝑗 (𝑟 𝑛 ℎ,𝑖 -𝑟 𝑛 ℎ, 𝑗 ) 2 𝐿 2 (Ω;R) = 1 2 𝒓 𝑛 ℎ 2 𝝃 .
(33) Multiplying ( 30) by 𝜏, summing over 𝑛 ∈ 1, N , using ( 32) and (33), and telescoping out the appropriate summands, we get

𝜇 𝒘 N ℎ 2 a,ℎ + 1 2𝜆 𝜶•𝒓 N ℎ 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 2 𝑟 N ℎ,𝑖 2 
𝐿 2 (Ω;R) + 1 2 N ∑︁ 𝑛=1 𝜏 𝒓 𝑛 ℎ 2 𝝃 + 𝑀 ∑︁ 𝑖=1 N ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝑟 𝑛 ℎ,𝑖 2 c,ℎ,hho ≤ R + 𝜇 𝒘 0 ℎ 2 a,ℎ + 1 2𝜆 𝜶•𝒓 0 ℎ 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 2 𝑟 0 ℎ,𝑖 2 
𝐿 2 (Ω;R) . (34) 
(i.B) Upper bound for R. A discrete integration by parts in time gives for the first term

R 1 = ℓ N 1 (𝒘 N ℎ ) -ℓ 0 1 (𝒘 0 ℎ ) - N ∑︁ 𝑖=1 𝜏(𝛿 𝑛 𝑡 ℓ 1 ) (𝒘 𝑛-1 ℎ ) ≤ ℓ N 1 a,ℎ, * 𝒘 N ℎ a,ℎ + ℓ 0 1 a,ℎ, * 𝒘 0 ℎ a,ℎ + N ∑︁ 𝑛=1 𝜏𝜇 -1 2 𝛿 𝑛 𝑡 ℓ 1 a,ℎ, * 𝜇 1 2 𝒘 𝑛-1 ℎ a,ℎ ≤ 1 4𝜇 ℓ N 1 2 a,ℎ, * + 𝜇 2 𝒘 N ℎ 2 a,ℎ + ℓ 0 1 a,ℎ, * 𝒘 0 ℎ a,ℎ + 1 2𝜇 N ∑︁ 𝑛=1 𝜏 𝛿 𝑛 𝑡 ℓ 1 2 a,ℎ, * + 𝜇 2 N ∑︁ 𝑛=0 𝜏 𝒘 𝑛 ℎ 2 a,ℎ , (35) 
where we have used multiple times the definition of dual norm [START_REF] Biot | Theory of elasticity and consolidation for a porous anisotropic solid[END_REF] to pass to the second line and we have concluded invoking the standard and generalised Young inequalities and rearranging.

Moving to the second term, we use the definition (15) of the dual norm and the Young inequality to write, for all 𝑖 ∈ 1, 𝑀 ,

N ∑︁ 𝑛=1 𝜏ℓ 𝑛 2,𝑖 (𝑟 𝑛 ℎ,𝑖 ) ≤ N ∑︁ 𝑛=1 𝜏𝐾 -1 2 𝑖 ℓ 𝑛 2,𝑖 c,ℎ, * 𝐾 1 2 𝑖 𝑟 𝑛 ℎ,𝑖 c,ℎ,hho ≤ 1 2 N ∑︁ 𝑛=1 𝜏𝐾 -1 𝑖 ℓ 𝑛 2,𝑖 2 c,ℎ, * + 1 2 N ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝑟 𝑛 ℎ,𝑖 2 c,ℎ,hho . 
Hence, summing over 𝑖 ∈ 1, 𝑀 , 

R 2 ≤ 1 2 𝑀 ∑︁ 𝑖=1 N ∑︁ 𝑛=1 𝜏𝐾 -1 𝑖 ℓ 𝑛 2,𝑖 2 
Gathering ( 35) and (36) and rearranging, we arrive at

R ≤ 𝜇 2 𝒘 N ℎ 2 a,ℎ + 1 2 𝑀 ∑︁ 𝑖=1 N ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝑟 𝑛 ℎ,𝑖 2 c,ℎ,hho + 𝜇 2 N ∑︁ 𝑛=0 𝜏 𝒘 𝑛 ℎ 2 a,ℎ + 1 4𝜇 ℓ N 1 a,ℎ, * + 1 2𝜇 N ∑︁ 𝑛=1 𝜏 𝛿 𝑛 𝑡 ℓ 1 2 a,ℎ, * + 1 2 𝑀 ∑︁ 𝑖=1 N ∑︁ 𝑛=1 𝜏𝐾 -1 𝑖 ℓ 𝑛 2,𝑖 2 c,ℎ, * + ℓ 0 1 a,ℎ, * 𝒘 0 ℎ a,ℎ . (37) 
(i.C) Basic estimate. Combining (34) and (37) and multiplying by 2, we arrive at (ii) Estimate on the total pressure. For all 𝑛 ∈ 1, N , using the inf-sup stability [START_REF] Botti | A low-order nonconforming method for linear elasticity on general meshes[END_REF] of the pressure-displacement coupling, we can write

𝜇 𝒘 N ℎ 2 a,ℎ + 𝜆 -1 𝜶•𝒓 N ℎ 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 𝑟 N ℎ,𝑖 2 𝐿 2 (Ω;R) + N ∑︁ 𝑛=1 𝜏 𝒓 𝑛 ℎ 2 𝝃 + 𝑀 ∑︁ 𝑖=1 N ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝑟 𝑛 ℎ,𝑖 2 
𝛽 𝑟 𝑛 ℎ,0 𝐿 2 (Ω;R) ≤ sup 𝒗 ℎ ∈𝑼 𝑘 ℎ \{0} b ℎ (𝒗 ℎ , 𝑟 𝑛 ℎ,0 ) 𝒗 ℎ a,ℎ ≤ sup 𝒗 ℎ ∈𝑼 𝑘 ℎ \{0} ℓ 𝑛 1 (𝒗 ℎ ) -2𝜇 a ℎ (𝒘 𝑛 ℎ , 𝒗 ℎ ) 𝒗 ℎ a,ℎ ≤ ℓ 𝑛 1 a,ℎ, * + 2𝜇 𝒘 𝑛 ℎ a,ℎ , (39) 
where we have used (25a) in the second line and we have concluded using the definition (7) of dual norm for the first term and a Cauchy-Schwarz inequality on the symmetric positive definite bilinear form a ℎ for the second. Squaring, dividing both sides by 𝜇, passing to the maximum over 𝑛 ∈ 1, 𝑁 , and using [START_REF] Heywood | Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization[END_REF] to estimate the second term in the right-hand side, (41) follows.

A priori estimate for the HHO-HHO scheme

The following lemma contains an a priori estimate on the discrete solution, from which the well posedness of problem ( 23) can be inferred.

Lemma 2 (A priori estimate on the discrete solution).

Assuming 𝜏 small enough, any solution to 𝒖 𝑛 ℎ , 𝑝 𝑛 ℎ,0 , ( 𝑝 ℎ,𝑖 ) 1≤𝑖 ≤𝑀 1≤𝑛 ≤𝑁 to the discrete problem [START_REF] Di Pietro | A hybrid high-order locking-free method for linear elasticity on general meshes[END_REF] satisfies the following a priori bound:

max 𝑛∈ 1, 𝑁 𝜇 𝒖 𝑛 ℎ 2 a,ℎ + 𝜆 -1 𝜶• 𝒑 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 𝑝 𝑛 ℎ,𝑖 2 𝐿 2 (Ω;R) + 𝑁 ∑︁ 𝑛=1 𝜏 𝒓 𝑛 ℎ 2 𝝃 + 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝑝 𝑛 ℎ,𝑖 2 c,ℎ,hho ≤ exp 𝑡 F 1 -𝜏 (A + B) , ( 40 
)
where

A ≔ 𝐶 2 K 2𝜇 𝒇 2 𝐶 0 ( [0,𝑡 F ];𝐿 2 (Ω;R 𝑑 )) + 1 𝜇 𝒇 2 𝐻 1 (0,𝑡 F ;𝐿 2 (Ω;R 𝑑 )) + 𝐶 P 𝑡 F 𝑀 ∑︁ 𝑖=1 1 𝐾 𝑖 𝑔 𝑖 2 𝐶 0 ( [0,𝑡 F ];𝐿 2 (Ω;R)) B ≔ 2𝐶 K 𝒇 0 𝐿 2 (Ω;R 𝑑 ) 𝒖 0 ℎ a,ℎ + 2𝜇 𝒖 0 ℎ 2 a,ℎ + 𝜆 -1 𝜶 • 𝒑 0 ℎ 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 𝑝 0 ℎ,𝑖 2 
𝐿 2 (Ω;R) .
Moreover, it holds

𝛽 2 𝜇 max 𝑛∈ 1, 𝑁 𝑝 𝑛 ℎ,0 2 𝐿 2 (Ω;R) ≤ 2𝐶 2 K 𝜇 𝒇 2 𝐶 0 ( [0,𝑡 F ];𝐿 2 (Ω;R 𝑑 )) + 4𝛽 2 exp 𝑡 F 1 -𝜏 (A + B) . ( 41 
)
Proof. We apply Lemma 1 with

ℓ 𝑛 1 = 𝑼 𝑘 ℎ 𝒗 ℎ ↦ → ( 𝒇 , 𝒗 ℎ ) ∈ R for all 𝑛 ∈ 0, 𝑁 and ℓ 𝑛 2 = 𝑃 𝑛 ℎ,𝑖 𝑞 ℎ,𝑖 ↦ → (𝑔 𝑖 , 𝑞 ℎ,𝑖 ) ∈ R for all 𝑛 ∈ 1, 𝑁 and all 𝑖 ∈ 1, 𝑀 and show that N ℓ ≤ A and N 0 ≤ B. (42) 
Let us prove the first bound in (42). Denote by N ℓ,𝑖 , 𝑖 ∈ 1, 3 , the terms in the right-hand side of (28a). We start by noticing that, for all 𝑖 ∈ 0, 𝑁 ,

ℓ 𝑛 1 a,ℎ, * = sup 𝒗 ℎ ∈𝑼 𝑘 ℎ \{0} ℓ 𝑛 1 (𝒗 ℎ ) 𝒗 ℎ a,ℎ = sup 𝒗 ℎ ∈𝑼 𝑘 ℎ \{0} 𝒇 𝑛 𝐿 2 (Ω;R 𝑑 ) 𝒗 ℎ 𝐿 2 (Ω;R 𝑑 ) 𝒗 ℎ a,ℎ = sup 𝒗 ℎ ∈𝑼 𝑘 ℎ \{0} 𝐶 K 𝒇 𝑛 𝐿 2 (Ω;R 𝑑 ) 𝒗 ℎ a,ℎ 𝒗 ℎ a,ℎ ≤ 𝐶 K 𝒇 𝑛 𝐿 2 (Ω;R 𝑑 ) , (43) 
where we have used the definition (7) of the dual norm in the first line, a Cauchy-Schwarz inequality to pass to the the second line, and the discrete Korn inequality [START_REF] Botti | A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits[END_REF] to pass to the third line. As a consequence,

N ℓ,1 ≤ 𝐶 2 K 2𝜇 max 𝑛∈ 1, 𝑁 𝒇 𝑛 2 𝐿 2 (Ω;R 𝑑 ) = 𝐶 2 K 2𝜇 𝒇 2 𝐶 0 ( [0,𝑡 F ];𝐿 2 (Ω;R 𝑑 )) . ( 44 
)
Proceeding similarly for the second term and invoking the boundedness (5) of the discrete time derivative with 𝑉 = 𝐿 2 (Ω; R 𝑑 ) and 𝜑 = 𝒇 , we get

N ℓ,2 ≤ 𝐶 2 K 2𝜇 𝑛 ∑︁ 𝑛=1 𝜏 𝛿 𝑛 𝑡 𝒇 2 𝐿 2 (Ω;R 𝑑 ) ≤ 𝐶 2 K 2𝜇 𝒇 2 𝐻 1 (0,𝑡 F ;𝐿 2 (Ω;R 𝑑 )) . (45) 
To bound the third term, we observe that, using the definition (15) of the dual norm and the Poincaré inequality in a similar manner as above, we infer, for all 𝑛 ∈ 1, 𝑁 and all 𝑖 ∈ 1, 𝑀 , ℓ 𝑛 2,𝑖 c,ℎ, * ≤ 𝐾 -1 𝑖 𝐶 P 𝑔 𝑛 𝑖 𝐿 2 (Ω;R) , hence

N ℓ,3 ≤ 𝐶 P 𝑀 ∑︁ 𝑖=1 1 𝐾 𝑖 𝑁 ∑︁ 𝑛=1 𝜏 𝑔 𝑛 𝑖 2 𝐿 2 (Ω;R) ≤ 𝐶 P 𝑡 F 𝑀 ∑︁ 𝑖=1 1 𝐾 𝑖 max 𝑛∈ 1, 𝑁 𝑔 𝑛 𝑖 2 𝐿 2 (Ω;R) = 𝐶 P 𝑡 F 𝑀 ∑︁ 𝑖=1 1 𝐾 𝑖 𝑔 𝑖 2 𝐶 0 ( [0,𝑡 F ];𝐿 2 (Ω;R)) . (46) 
Gathering ( 44)-( 46), the first bound in [START_REF] Nordbotten | Stable cell-centered finite volume discretization for Biot equations[END_REF] follows. The second bound in ( 30) is an immediate after invoking (43) with 𝑛 = 0. This concludes the proof.

Error estimate for the HHO-HHO scheme

Following the general ideas of [START_REF] Di Pietro | A third Strang lemma for schemes in fully discrete formulation[END_REF], we estimate the error such that, for all 𝑛 ∈ 0, 𝑁 ,

𝒆 𝑛 ℎ ≔ 𝒖 𝑛 ℎ -û𝑛 ℎ , 𝜖 𝑛 ℎ,0 ≔ 𝑝 𝑛 ℎ,0 -p𝑛 ℎ,0 , 𝜖 𝑛 ℎ,𝑖 ≔ 𝑝 𝑛 ℎ,𝑖 -p𝑛 ℎ,𝑖 ∀𝑖 ∈ 1, 𝑀 , (47) 
where the interpolate of the continuous solution obtained setting, for all 𝑛 ∈ 0, 𝑁 ,

û𝑛 ℎ ≔ 𝑰 𝑘 ℎ 𝒖 𝑛 , p𝑛 ℎ,0 ≔ 𝜋 𝑘 ℎ 𝑝 𝑛 0 , p𝑛 ℎ,𝑖 ≔ 𝐼 𝑘 ℎ 𝑝 𝑛 𝑖 ∀𝑖 ∈ 1, 𝑀 . (48) 
The starting point for the error analysis is the following proposition, which establishes that the errors solve the auxiliary problem [START_REF] Di Pietro | An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators[END_REF] for a suitable choice of the right-hand sides ℓ 1 and ℓ 2,𝑖 , 𝑖 ∈ 1, 𝑀 .

Proposition 1 (Error equations).

We have that

𝒆 0 ℎ = 0, 𝜖 0 ℎ,0 = 0, 𝜖 0 ℎ,𝑖 = 0 ∀𝑖 ∈ 1, 𝑀 (49) 
and, for 𝑛 = 1, . . . , 𝑁, it holds, for all Proof. Equation ( 49) is an immediate consequence of the definition (47) of the errors along with the discrete initial condition [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF]. Let now 𝑛 ∈ 1, 𝑁 . To prove (50a), it suffices to subtract from both sides of (23a) the quantity 2𝜇 a ℎ ( û𝑛

𝒗 ℎ ∈ 𝑼 𝑘 ℎ , all 𝑞 ℎ,0 ∈ 𝑃 𝑘 ℎ,0 , 2𝜇 a ℎ (𝒆 𝑛 ℎ , 𝒗 ℎ ) + b ℎ (𝒗 ℎ , 𝜖 𝑛 ℎ,0 ) = E a,ℎ (𝒖 𝑛 ; 𝒗 ℎ ) + E b,ℎ ( 𝑝 𝑛 0 ; 𝒗 ℎ ), ( 50a 
) b ℎ (𝒆 𝑛 ℎ , 𝑞 ℎ,0 ) -𝜆 -1 (𝜶•𝝐 𝑛 ℎ , 𝑞 ℎ,0 ) = 0, ( 50b 
ℎ , 𝒗 ℎ ) + b ℎ (𝒗 ℎ , ε 𝑛 ℎ,0 ), observe that 𝒇 𝑛 = -2𝜇∇•(∇ s 𝒖 𝑛 ) -∇𝑝 𝑛 0
almost everywhere in Ω, and recall the definitions ( 9) and ( 14) of the consistency error linear forms associated with a ℎ and b ℎ .

Moving to (50b), we observe that, for all 𝑞 ℎ,0

∈ 𝑃 𝑘 ℎ,0 , b ℎ ( û𝑛 ℎ , 𝑞 ℎ,0 ) -𝜆 -1 (𝜶• p𝑛 ℎ , 𝑞 ℎ,0 ) = b ℎ ( 𝑰 𝑘 ℎ 𝒖 𝑛 , 𝑞 ℎ,0 ) -𝜆 -1 (𝜶•𝝅 𝑘 ℎ 𝒑 𝑛 , 𝑞 ℎ,0 ) = 𝑏(𝒖, 𝑞 ℎ,0 ) -𝜆 -1 (𝜶• 𝒑 𝑛 , 𝑞 ℎ,0 ) = 0, (51) 
where, to pass to the second line, we have used the consistency property ( 12) of b ℎ together with the definition (6) of the global 𝐿 2 -orthogonal projector and 𝑞 ℎ,0 ∈ P 𝑘 (T ℎ ; R) to remove it from the second term, while the conclusion follows from (1b) after observing that 𝑃 𝑘 ℎ,0 ⊂ 𝑃 0 . The error equation (50b) then follows subtracting (51) from (23b) and using the linearity of the bilinear forms in the left-hand side.

Finally, to prove (50c) for a given 𝑖 ∈ 1, 𝑀 and 𝑞 ) and observe that

(𝑔 𝑛 𝑖 , 𝑞 ℎ,𝑖 ) = (d 𝑛 𝑡 𝜓 𝑖 ( 𝒑), 𝑞 ℎ,𝑖 ) + (𝑆 𝑖 ( 𝒑 𝑛 ), 𝑞 ℎ,𝑖 ) -(𝐾 𝑖 Δ𝑝 𝑛 𝑖 , 𝑞 ℎ,𝑖 ) = (d 𝑛 𝑡 𝜓 𝑖 ( 𝒑) -𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑), 𝑞 ℎ,𝑖 ) + E hho c,ℎ ( 𝑝 𝑛 𝑖 ; 𝑞 ℎ,𝑖 ) + (𝛿 𝑛 𝑡 𝜓 𝑖 ( pℎ ), 𝑞 ℎ,𝑖 ) + (𝑆 𝑖 ( p𝑛 ℎ ), 𝑞 ℎ,𝑖 ) + 𝐾 𝑖 c hho ℎ ( p𝑛 ℎ,𝑖 , 𝑞 ℎ,𝑖 ),
where, to pass to the second line, we have added and subtracted

(𝛿 𝑛 𝑡 𝜓 𝑖 ( pℎ ), 𝑞 ℎ,𝑖 ) + c hho ℎ ( p𝑛 ℎ,𝑖 , 𝑞 ℎ,𝑖
), used the fact that 𝑞 ℎ,𝑖 ∈ P 𝑘 (T ℎ ; R) along with the linearity of 𝜓 and the definition (6) of the global 𝐿 2 -orthogonal projector to write (𝛿 𝑛 𝑡 𝜓 𝑖 ( pℎ ), 𝑞 ℎ,𝑖 ) = (𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑), 𝑞 ℎ,𝑖 ), and recalled the definition (17) of the consistency error associated with the bilinear form c hho ℎ .

Theorem 1 (Error estimate for the HHO-HHO scheme). Assume the additional regularity

𝒖 ∈ 𝐻 1 (0, 𝑡 F ; 𝐻 𝑘+2 (T ℎ ; R 𝑑 )), 𝑝 0 ∈ 𝐻 1 (0, 𝑡 F ; 𝐻 𝑘+1 (T ℎ ; R)), ∀𝑖 ∈ 1, 𝑀 , 𝑝 𝑖 ∈ 𝐶 0 ( [0, 𝑡 F ]; 𝐻 𝑘+2 (T ℎ ; R)), ∀𝑖 ∈ 1, 𝑀 , 𝜓 𝑖 ( 𝒑) ∈ 𝐻 2 (0, 𝑡 F ; 𝐿 2 (Ω; R)).
Then, for a time step 𝜏 small enough, it holds that

max 𝑛∈ 1, 𝑁 𝜇 𝒆 𝑛 ℎ 2 a,ℎ + 𝜆 -1 𝜶•𝝐 𝑛 ℎ 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 𝜖 𝑛 ℎ,𝑖 2 𝐿 2 (Ω;R) + 𝛽 2 𝜇 𝜖 𝑛 ℎ,0 2 𝐿 2 (Ω;R) + 𝑁 ∑︁ 𝑛=1 𝜏 𝝐 𝑛 ℎ 2 𝝃 + 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝜖 𝑛 ℎ,𝑖 2 c,ℎ,hho ℎ 2(𝑘+1) A + 𝜏 2 B, (52)
where the hidden constant is independent of ℎ, 𝜏, of the problem data, of 𝒖, and of 𝑝 𝑖 , 𝑖 ∈ 0, 𝑀 , but possibly depends on Ω, 𝑡 F , the mesh regularity parameter, and 𝑘, and we have set

A ≔ 𝜇 -1 𝒖 2 𝐻 1 (0,𝑡 F ;𝐻 𝑘+2 ( T ℎ ;R 𝑑 )) + 𝑝 0 2 𝐻 1 (0,𝑡 F ;𝐻 𝑘+1 ( T ℎ ;R 𝑑 )) + 𝑀 ∑︁ 𝑖=1 𝐾 -1 𝑖 𝑝 𝑖 2 𝐶 0 ( [0,𝑡 F ];𝐻 𝑘+2 ( T ℎ ;R)) , B ≔ 𝑀 ∑︁ 𝑖=1 𝐾 -1 𝑖 𝜓 𝑖 ( 𝒑) 2 𝐻 2 (0,𝑡 F ;𝐿 2 (Ω;R)) .
Proof. For the sake of brevity, denote by E ℎ𝜏 the left-hand side of (52). Applying Lemma 1 with, for all 𝑛 ∈ 1, 𝑁 ,

ℓ 𝑛 1 = E a,ℎ (𝒖 𝑛 ; •) + E b,ℎ ( 𝑝 𝑛 0 ; •), ℓ 𝑛 2,𝑖 = (d 𝑛 𝑡 𝜓 𝑖 ( 𝒑) -𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑), •) + E hho c,ℎ ( 𝑝 𝑖 ; •) ∀𝑖 ∈ 1, 𝑀 ,
using multiple times the triangle inequality, and rearranging the terms, we arrive at

E ℎ 𝜏 𝜇 -1 max 𝑛∈ 1, 𝑁 E a,ℎ (𝒖 𝑛 ; •) + E b,ℎ ( 𝑝 𝑛 0 ; •) 2 a,ℎ, * + 𝜇 -1 𝑁 ∑︁ 𝑛=1 𝜏 𝛿 𝑛 𝑡 E a,ℎ (𝒖; •) + E b,ℎ ( 𝑝 0 ; •) 2 a,ℎ, * + 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝐾 -1 𝑖 E hho c,ℎ ( 𝑝 𝑛 𝑖 ; •) 2 c,ℎ, * + 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝐾 -1 𝑖 (d 𝑛 𝑡 𝜓 𝑖 ( 𝒑) -𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑), •) 2 c,ℎ, * ≕ 𝔗 1 + • • • + 𝔗 4 . (53) 
We proceed to bound the terms in the right-hand side of the above expression. For the first term, we write

𝔗 1 𝜇 -1 max 𝑛∈ 1, 𝑁 E a,ℎ (𝒖 𝑛 ; •) 2 a,ℎ, * + max 𝑛∈ 1, 𝑁 E b,ℎ ( 𝑝 𝑛 0 ; •) 2 a,ℎ, * ℎ 2(𝑘+1) 𝜇 -1 max 𝑛∈ 1, 𝑁 |𝒖 𝑛 | 2 𝐻 𝑘+2 ( T ℎ ;R 𝑑 )) + | 𝑝 𝑛 0 | 2 𝐻 𝑘+1 ( T ℎ ;R)) = ℎ 2(𝑘+1) 𝜇 -1 𝒖 2 𝐶 0 ( [0,𝑡 F ];𝐻 𝑘+2 ( T ℎ ;R 𝑑 )) + 𝑝 0 2 𝐶 0 ( [0,𝑡 F ];𝐻 𝑘+1 ( T ℎ ;R)) ℎ 2(𝑘+1) A, (54) 
where, to pass to the second line, we have used the consistency properties (8) of a ℎ and ( 13) of b ℎ , while the conclusion follows from the embedding 𝐻 1 (0, 𝑡 F ; 𝑉) ↩→ 𝐶 0 ( [0, 𝑡 F ]; 𝑉) valid in dimension 1.

For the second term, we write

𝔗 2 𝜇 -1 𝑁 ∑︁ 𝑛=1 𝜏 E a,ℎ (𝛿 𝑛 𝑡 𝒖; •) 2 a,ℎ, * + E b,ℎ (𝛿 𝑛 𝑡 𝑝 0 ; •) 2 a,ℎ, * ℎ 2(𝑘+1) 𝜇 -1 𝑁 ∑︁ 𝑛=1 𝜏 |𝛿 𝑛 𝑡 𝒖| 2 𝐻 𝑘+2 ( T ℎ ;R 𝑑 ) + |𝛿 𝑛 𝑡 𝑝 0 | 2 𝐻 𝑘+1 ( T ℎ ;R) ℎ 2(𝑘+1) 𝜇 -1 𝒖 2 𝐻 1 (0,𝑡 F ;𝐻 𝑘+2 ( T ℎ ;R 𝑑 )) + 𝑝 0 2 𝐻 1 (0,𝑡 F ;𝐻 𝑘+1 ( T ℎ ;R)) ℎ 2(𝑘+1) A, (55) 
where, in the first line, we have used the fact that 𝛿 𝑛 𝑡 E a,ℎ (𝒖; •) + E b,ℎ ( 𝑝 0 ; •) = E a,ℎ (𝛿 𝑛 𝑡 𝒖; •) + E b,ℎ (𝛿 𝑛 𝑡 𝑝 0 ; •) followed by a triangle inequality, we have invoked the consistency (8) of a ℎ and (13) of b ℎ to pass to the second line, and the boundedness (5) of the backward time derivative operator to pass to the third line.

For the third term, the consistency properties (16) of c hho ℎ readily give

𝔗 3 ≤ ℎ 2(𝑘+1) 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝐾 -1 𝑖 | 𝑝 𝑛 𝑖 | 2 𝐻 𝑘+2 ( T ℎ ;R) ℎ 2(𝑘+1) 𝑡 F 𝑀 ∑︁ 𝑖=1 𝐾 -1 𝑖 𝑝 𝑖 2 𝐶 0 ( [0,𝑡 F ];𝐻 𝑘+2 ( T ℎ ;R)) ℎ 2(𝑘+1) A. (56) 
Let us now move to the fourth term. For the sake of conciseness, we let, for all 𝑖 ∈ 1, 𝑀 , 𝜓 𝑖 ≔ 𝜓 𝑖 ( 𝒑), regarded as an element 𝐻 1 (0, 𝑡 F ; 𝐿 2 (Ω; R)), and we conventionally denote 𝜓(𝒙, 𝑡) ≔ 𝜓(𝑡) (𝒙) for all 𝑡 ∈ [0, 𝑡 F ] and almost every 𝒙 ∈ Ω. Let 𝑖 ∈ 1, 𝑀 . It holds, for all 𝑛 ∈ 1, 𝑁 ,

𝑑 𝑛 𝑡 𝜓 𝑖 -𝛿 𝑛 𝑡 𝜓 𝑖 = 𝑑 𝑛 𝑡 𝜓 𝑖 - 1 𝜏 ∫ 𝑡 𝑛 𝑡 𝑛-1 𝑑 𝑡 𝜓 𝑖 (𝑡) d𝑡 = 𝑑 𝑛 𝑡 𝜓 𝑖 - 1 𝜏 ∫ 𝑡 𝑛 𝑡 𝑛-1 𝑑 𝑛 𝑡 𝜓 𝑖 - ∫ 𝑡 𝑛 𝑡 𝑑 2 𝑡 𝜓 𝑖 (𝑠) d𝑠 d𝑡 = 1 𝜏 ∫ 𝑡 𝑛 𝑡 𝑛-1 ∫ 𝑡 𝑛 𝑡 𝑑 2 𝑡 𝜓 𝑖 (𝑠) d𝑠 d𝑡 ≤ ∫ 𝑡 𝑛 𝑡 𝑛-1 |𝑑 2 𝑡 𝜓 𝑖 (𝑡)| d𝑡.
Combining this result with the Jensen inequality, we infer

𝑑 𝑛 𝑡 𝜓 𝑖 -𝛿 𝑛 𝑡 𝜓 𝑖 2 𝐿 2 (Ω;R) ≤ ∫ Ω ∫ 𝑡 𝑛 𝑡 𝑛-1 |𝑑 2 𝑡 𝜓 𝑖 (𝒙, 𝑡)| d𝑡 2 d𝒙 ≤ 𝜏 ∫ 𝑡 𝑛 𝑡 𝑛-1 𝑑 2 𝑡 𝜓 𝑖 (𝑡) 2 𝐿 2 (Ω;R) d𝑡 ≤ 𝜏 𝜓 𝑖 2 𝐻 2 (𝑡 𝑛-1 ,𝑡 𝑛 ;𝐿 2 (Ω;R)) . (57) 
We next write, for all 𝑛 ∈ 1, 𝑁 , all 𝑖 ∈ 1, 𝑀 , and all 𝑞 ℎ,𝑖 ∈ 𝑃 𝑘 ℎ,𝑖 ,

(d 𝑛 𝑡 𝜓 𝑖 -𝛿 𝑛 𝑡 𝜓 𝑖 , 𝑞 ℎ,𝑖 ) ≤ d 𝑛 𝑡 𝜓 𝑖 -𝛿 𝑛 𝑡 𝜓 𝑖 𝐿 2 (Ω;R) 𝑞 ℎ,𝑖 𝐿 2 (Ω;R) ≤ 𝜏 1 2 𝜓 𝑖 𝐻 2 (𝑡 𝑛-1 ,𝑡 𝑛 ;𝐿 2 (Ω;R)) 𝑞 ℎ,𝑖 𝐿 2 (Ω;R) 𝜏 1 2 𝜓 𝑖 𝐻 2 (𝑡 𝑛-1 ,𝑡 𝑛 ;𝐿 2 (Ω;R)) 𝑞 ℎ,𝑖 c,ℎ,hho ,
where we have used a Cauchy-Schwarz inequality in the first line, the bound (57) in the second line, and a discrete global Poincaré inequality in HHO spaces (resulting from a combination of [START_REF] Di Pietro | A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes[END_REF]Proposition 5.4] and [START_REF] Di Pietro | An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators[END_REF]Lemma 4]) to conclude. Using the above estimate in conjunction with the definition [START_REF] Brenner | Vertex approximate gradient scheme for hybrid dimensional two-phase Darcy flows in fractured porous media[END_REF] 

𝔗 4 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏 2 𝐾 -1 𝑖 𝜓 𝑖 ( 𝒑) 2 𝐻 2 (𝑡 𝑛-1 ,𝑡 𝑛 ;𝐿 2 (Ω;R)) = 𝜏 2 𝑁 ∑︁ 𝑖=1 𝐾 -1 𝑖 𝜓 𝑖 ( 𝒑) 2 𝐻 2 (0,𝑡 F ;𝐿 2 (Ω;R)) = 𝜏 2 B. (58) 
Plugging ( 54)-( 58) into (53) yields (52).

Error estimate for the HHO-DG scheme

The proof of the error estimate for the HHO-DG scheme follows by adapting the arguments used in Theorem 1 to a different choice of the interpolates of the continuous pressures in (48). For all 𝑛 ∈ 0, 𝑁 and all 𝑖 ∈ 1, 𝑀 , we set

𝜖 𝑛 ℎ,𝑖 ≔ 𝑝 𝑛 ℎ,𝑖 -p𝑛 ℎ,𝑖 ,
where p0 ℎ,𝑖 ≔ 𝜋 𝑘 ℎ 𝑝 0 𝑖 and, for 𝑛 ≥ 1, p𝑛 ℎ,𝑖 is the solution of problem [START_REF] Di Pietro | A third Strang lemma for schemes in fully discrete formulation[END_REF] with 𝑟 = 𝑝 𝑛 𝑖 . Theorem 2 (Error estimate for the HHO-DG scheme). Assume 𝑘 ≥ 1, Ω convex, and the additional regularity

𝒖 ∈ 𝐻 1 (0, 𝑡 F ; 𝐻 𝑘+2 (T ℎ ; R 𝑑 )), 𝑝 0 ∈ 𝐻 1 (0, 𝑡 F ; 𝐻 𝑘+1 (T ℎ ; R)), 𝜓 0 ( 𝒑) ∈ 𝐻 1 (0, 𝑡 F ; 𝐻 𝑘+1 (T ℎ ; R)) ∀𝑖 ∈ 1, 𝑀 , 𝑆 𝑖 ( 𝒑) ∈ 𝐶 0 ( [0, 𝑡 F ]; 𝐻 𝑘+1 (T ℎ ; R)), ∀𝑖 ∈ 1, 𝑀 , 𝜓 𝑖 ( 𝒑) ∈ 𝐻 2 (0, 𝑡 F ; 𝐿 2 (Ω; R)) ∩ 𝐻 1 (0, 𝑡 F ; 𝐻 𝑘+1 (T ℎ ; R)),
with 𝜓 0 ( 𝒑) ≔ 𝜆 -1 (𝜶• 𝒑 -𝑝 0 ). Then, for a time step 𝜏 small enough (with threshold independent of ℎ), it holds that

max 𝑛∈ 1, 𝑁 𝜇 𝒆 𝑛 ℎ 2 a,ℎ + 𝜆 -1 𝜶•𝝐 𝑛 ℎ 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 𝜖 𝑛 ℎ,𝑖 2 𝐿 2 (Ω;R) + 𝛽 2 𝜇 𝜖 𝑛 ℎ,0 2 𝐿 2 (Ω;R) + 𝑁 ∑︁ 𝑛=1 𝜏 𝝐 𝑛 ℎ 2 𝝃 + 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝜖 𝑛 ℎ,𝑖 2 c,ℎ,dg ℎ 2(𝑘+1) A dg + 𝜏 2 B dg , (59)
where the hidden constant is independent of ℎ, 𝜏, of the problem data, of 𝒖, and of 𝑝 𝑖 , 𝑖 ∈ 0, 𝑀 , but possibly depends on Ω, 𝑡 F , the mesh regularity parameter, and 𝑘, and we have set

A dg ≔ 𝜇 -1 𝒖 2 𝐻 1 (0,𝑡 F ;𝐻 𝑘+2 ( T ℎ ;R 𝑑 )) + 𝑝 0 2 𝐻 1 (0,𝑡 F ;𝐻 𝑘+1 ( T ℎ ;R 𝑑 )) + 𝑀 ∑︁ 𝑖=0 𝜆𝛼 -2 𝑖 𝜓 𝑖 ( 𝒑) 2 𝐻 1 (0,𝑡 F ;𝐻 𝑘+1 ( T ℎ ;R)) + 𝑀 ∑︁ 𝑖=1 𝜆𝛼 -2 𝑖 𝑆 𝑖 ( 𝒑) 2 𝐿 2 (0,𝑡 F ;𝐻 𝑘+1 ( T ℎ ;R)) , B dg ≔ 𝑀 ∑︁ 𝑖=1 𝜆𝛼 -2 𝑖 𝜓 𝑖 ( 𝒑) 2 𝐻 2 (0,𝑡 F ;𝐿 2 (Ω;R)) .
Proof. Proceeding as in the proof of Proposition 1 and recalling the definition of the elliptic projection in [START_REF] Di Pietro | A third Strang lemma for schemes in fully discrete formulation[END_REF], it is readily inferred that 

𝒆 0 ℎ = 0, 𝜖 0 ℎ,𝑖 = 0, ∀𝑖 ∈ 0, 𝑀 (60a) 
where, in (60c), we have applied discrete time derivation and introduced the linear function 𝜓 0 defined such that, for all 𝒒 ∈ R 𝑀 +1 , 𝜓 0 (𝒒) ≔ 𝜆 -1 (𝜶•𝒒 -𝑞 0 ). Then, following the first two step of the proof of Lemma 1 we obtain an estimate similar to (34), namely, for an arbitrary N ∈ 1, 𝑁 it holds

𝜇 𝒆 N ℎ 2 a,ℎ + 𝜶•𝝐 N ℎ 2 𝐿 2 (Ω;R) 2𝜆 + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 2 𝜖 N ℎ,𝑖 2 
𝐿 2 (Ω;R) + N ∑︁ 𝑛=1 𝜏 2 𝝐 𝑛 ℎ 2 𝝃 + 𝑀 ∑︁ 𝑖=1 N ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝜖 𝑛 ℎ,𝑖 2 c,ℎ,dg ≤ N ∑︁ 𝑛=1 𝜏 E a,ℎ (𝒖 𝑛 ; 𝛿 𝑛 𝑡 𝒆 ℎ ) + E b,ℎ ( 𝑝 𝑛 0 ; 𝛿 𝑛 𝑡 𝒆 ℎ ) + 𝑀 ∑︁ 𝑖=0 N ∑︁ 𝑛=1 𝜏(E 𝑛 𝑖,ℎ ( 𝒑), 𝜖 𝑛 ℎ,𝑖 ), (61) 
with E 𝑛 0,ℎ ( 𝒑) ≔ 𝛿 𝑛 𝑡 𝜓 0 ( 𝒑pℎ ) and, for all 𝑖 ∈ 1, 𝑀 ,

E 𝑛 𝑖,ℎ ( 𝒑) ≔ (d 𝑛 𝑡 𝜓 𝑖 ( 𝒑) -𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑)) + 𝑆 𝑖 ( 𝒑 𝑛 -p𝑛 ℎ ) + 𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑 -pℎ ).
The first term in the right-hand side of (61) can be bounded as in (35). We bound the second term by using the Cauchy-Schwarz and Young inequality to write

𝑀 ∑︁ 𝑖=0 N ∑︁ 𝑛=1 𝜏(E 𝑛 𝑖,ℎ ( 𝒑), 𝜖 𝑛 ℎ,𝑖 ) ≤ 𝑀 ∑︁ 𝑖=0 N ∑︁ 𝑛=1 𝜏𝜆 2𝛼 2 𝑖 E 𝑛 𝑖,ℎ ( 𝒑) 2 𝐿 2 (Ω,R) + N ∑︁ 𝑛=1 𝜏 2𝜆 𝜶•𝝐 𝑛 ℎ 2 𝐿 2 (Ω;R) .
Therefore, proceeding as in steps (i.C) and (ii) of Lemma 1, yields max

𝑛∈ 1, 𝑁 𝜇 𝒆 𝑛 ℎ 2 a,ℎ + 𝜆 -1 𝜶•𝝐 𝑛 ℎ 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝐶 𝑖 𝜖 𝑛 ℎ,𝑖 2 
𝐿 2 (Ω;R) + 𝛽 2 𝜇 𝜖 𝑛 ℎ,0 2 𝐿 2 (Ω;R) + 𝑁 ∑︁ 𝑛=1 𝜏 𝝐 𝑛 ℎ 2 𝝃 +2 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝐾 𝑖 𝜖 𝑛 ℎ,𝑖 2 
c,ℎ,dg exp 𝑡 F 1 -𝜏 𝔗 1 + 𝔗 2 + 𝔗 dg 3 + 𝔗 dg 4 , (62) 
where 

𝔗 dg 3 = 𝑁 ∑︁ 𝑛=1 𝜏 𝑀 ∑︁ 𝑖=0 𝜆𝛼 -2 𝑖 𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑 -pℎ ) 2 𝐿 2 (Ω;R) + 𝑀 ∑︁ 𝑖=1 𝜆𝛼 -2 𝑖 𝑆 𝑖 ( 𝒑 𝑛 -p𝑛 ℎ ) 2 𝐿 2 (Ω;R) 𝔗 dg 4 = 𝑀 ∑︁ 𝑖=1 𝑁 ∑︁ 𝑛=1 𝜏𝜆𝛼 -2 𝑖 d 𝑛 𝑡 𝜓 𝑖 ( 𝒑) -𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑)
𝔗 dg 3 ℎ 2(𝑘+1) 𝑁 ∑︁ 𝑛=1 𝜏 𝑀 ∑︁ 𝑖=0 𝜆𝛼 -2 𝑖 𝛿 𝑛 𝑡 𝜓 𝑖 𝒑 2 𝐻 𝑘+1 ( T ℎ ;R) + 𝑀 ∑︁ 𝑖=1 𝜆𝛼 -2 𝑖 𝑆 𝑖 ( 𝒑 𝑛 ) 2 𝐻 𝑘+1 ( T ℎ ;R) ℎ 2(𝑘+1) A dg .
Combining the previous bounds with (62) leads to the conclusion.

Numerical tests

In this section, we present a few numerical examples to illustrate the theoretical results. In order to confirm the convergence rates predicted in Theorem 2, we rely on a manufactured smooth solution of a two-network poroelasticity problem (i.e. the Barenblatt-Biot problem) on the unit square domain Ω = (0, 1) 2 and time interval [0, 𝑡 F = 1). The exact displacement 𝒖 and exact pressures 𝑝 1 and 𝑝 2 are given by, 𝒖(𝒙, 𝑡) = sin(𝜋𝑡) cos(𝜋𝑥 1 ) cos(𝜋𝑥 2 ) sin(𝜋𝑥 1 ) sin(𝜋𝑥 2 ) , 𝑝 1 (𝒙, 𝑡) = 𝜋 sin(𝜋𝑡) (sin(𝜋𝑥 1 ) cos(𝜋𝑥 2 ) + cos(𝜋𝑥 1 ) sin(𝜋𝑥 2 )) , 𝑝 2 (𝒙, 𝑡) = 𝜋 sin(𝜋𝑡) (sin(𝜋𝑥 1 ) cos(𝜋𝑥 2 )cos(𝜋𝑥 1 ) sin(𝜋𝑥 2 )) .

The total pressure 𝑝 0 , volumetric load 𝒇 , and source terms 𝑔 1 and 𝑔 2 are inferred from the exact solution. In order to assess the robustness with respect to the model coefficients we consider the four sets of parameters depicted in Table 1. The first set of the model parameters is taken from [START_REF] Kolesov | Splitting schemes with respect to physical processes for double-porosity poroelasticity problems[END_REF]. The second, third, and fourth sets are meant to check the robustness of the method in the nearly incompressible case (i.e. large values of 𝜆), in the vanishing storage coefficients case, and in the small permeabilities case, respectively. We remark that the value of 𝜇 and 𝜆 considered in the second test corresponds to a Poisson ratio 𝜈 = 0.49999. We consider the HHO method described in Section 3 with DG discretisation of the Darcy term with polynomial degree 𝑘 ∈ {1, 2, 3} over a trapezoidal elements mesh sequence (T ℎ ) 𝑗 with 2 2+2 𝑗 elements, for 𝑗 ∈ 1, 5 . The time discretisation is Each error measure is accompanied by the corresponding estimated order of convergence (EOC). The observed convergence rates are in agreement with the error estimate of Theorem 2. We remark that the performances are not affected by the different choices of the model parameters. Hence, the method is robust in all the limit cases of vanishing storage, nearly incompressible, and poorly permeable media. 

( i )

 i Basic energy estimate. Let N ∈ 1, 𝑁 and 𝑛 ∈ 1, N . Taking 𝒗 ℎ = 𝛿 𝑛 𝑡 𝒘 ℎ in (25a), 𝑞 ℎ,0 = -𝑟 𝑛 ℎ,0 in (26), and, for all 𝑖 ∈ 1, 𝑀 , 𝑞 ℎ,𝑖

  + N ℓ + N 0 . (38)The estimate[START_REF] Heywood | Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization[END_REF] follows from the discrete Gronwall inquality of[START_REF] Heywood | Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization[END_REF] Lemma 5.1].

  as a consequence of[START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF] Eq. (2.41) and Corollary 2.16], and we denote by • c,ℎ,hho the induced norm. The corresponding dual norm is such that, for any linear form ℓ ℎ

	𝑘 𝑇 𝐹 𝑞	𝑇	≔ 𝜋 𝑘 𝐹 (r 𝑘+1 𝑇 𝑞	𝑇	-𝑞 𝐹 ) -𝜋 𝑘 𝑇 (r 𝑘+1 𝑇 𝑞
	The bilinear form c hho ℎ defines an inner product on 𝑄 𝑘 ℎ,D		

𝑇

-𝑞 𝑇 ).

  (𝛿 𝑛 𝑡 𝜓 𝑖 (𝝐 ℎ ), 𝑞 ℎ,𝑖 ) + (𝑆 𝑖 (𝝐 𝑛 ℎ ), 𝑞 ℎ,𝑖 ) + 𝐾 𝑖 c hho ℎ (𝜖 𝑛 ℎ,𝑖 , 𝑞 𝑛 𝑡 𝜓 𝑖 ( 𝒑) -𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑), 𝑞 ℎ,𝑖 ) + E hho c,ℎ ( 𝑝 𝑛 𝑖 ; 𝑞

		)
		ℎ,𝑖
	= (d ℎ,𝑖	), (50c)
	where we have set, for all 𝑛 ∈ 0, 𝑁 , 𝝐 𝑛 ℎ ≔ (𝜖 𝑛 ℎ,0 , 𝜖 𝑛 ℎ,1 , . . . , 𝜖 𝑛 ℎ,𝑀 ) and, given
	a function of time 𝜑 smooth enough, we have introduced the abridged notation
	d 𝑛 𝑡 𝜑 ≔ d	
	ℎ,𝑖	∈ 𝑃 𝑘 ℎ,𝑖 ,

)

and, for all 𝑖 ∈ 1, 𝑀 and all 𝑞 𝑡 𝜑(𝑡 𝑛 ).

  and, for 𝑛 ∈ 1, 𝑁 , it holds, for all 𝒗 ℎ ∈ 𝑼 𝑘 ℎ , all 𝑞 ℎ,0 ∈ 𝑃 𝑘 ℎ,0 , 2𝜇 a ℎ (𝒆 𝑛 ℎ , 𝒗 ℎ ) + b ℎ (𝒗 ℎ , 𝜖 𝑛 ℎ,0 ) = E a,ℎ (𝒖 𝑛 ; 𝒗 ℎ ) + E b,ℎ ( 𝑝 𝑛 𝑀 and 𝑞 ℎ,𝑖 ∈ 𝑃 𝑘 ℎ,𝑖 , (𝛿 𝑛 𝑡 𝜓 𝑖 (𝝐 ℎ ), 𝑞 ℎ,𝑖 ) + (𝑆 𝑖 (𝝐 𝑛 ℎ ), 𝑞 ℎ,𝑖 ) + 𝐾 𝑖 c dg ℎ (𝜖 𝑛 ℎ,𝑖 , 𝑞 ℎ,𝑖 ) = (𝑆 𝑖 ( 𝒑 𝑛 -p𝑛 ℎ ), 𝑞 ℎ,𝑖 ) + (d 𝑛 𝑡 𝜓 𝑖 ( 𝒑) -𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑), 𝑞 ℎ,𝑖 ) + (𝛿 𝑛 𝑡 𝜓 𝑖 ( 𝒑pℎ ), 𝑞 ℎ,𝑖 ),

		0 ; 𝒗	ℎ ),	(60b)
	b ℎ (𝛿 𝑛 𝑡 𝒆	ℎ , 𝑞 ℎ,0 ) -𝜆 -1 (𝛿 𝑛 𝑡 (𝜶•𝝐 ℎ ), 𝑞 ℎ,0 ) = -(𝛿 𝑛 𝑡 (𝜓 0 ( 𝒑 -pℎ ), 𝑞 ℎ,0 ),		(60c)
	and, for all 𝑖 ∈ 1,	

  Owing to the linearity of the backward time derivative 𝛿 𝑛 𝑡 and the functions 𝜓 𝑖 and 𝑆 𝑖 for all 𝑖 ∈ 1, 𝑀 , the approximation property (21) of the elliptic projection, and the boundedness property (5), we infer

	2	
	𝐿 2 (Ω;R)	
	and the terms 𝔗 1 and 𝔗 2 are defined in (53) and bounded in (54) and (55), respectively.
	The term 𝔗 dg 4 can be bounded using (57) and (58) to obtain 𝔗 dg 4 only remains to bound 𝔗 dg 3 .	𝜏 2 B dg . Hence, it

Table 1 :

 1 Model parameters. BDF) of order (𝑘 +1) with a fixed time step 𝜏 = 10 -3 . The boundary conditions are inferred from the exact solution. On the bottom edge {𝒙 ∈ 𝜕Ω|𝑥 2 = 0} we impose Dirichlet conditions for the displacement and Neumann conditions for both the network pressures 𝑝 1 and 𝑝 2 . On the rest of the domain boundary we set Neumann conditions for the displacement and Dirichlet for the two pressures. Initial conditions are specified by means of 𝐿 2 -projections over mesh elements according to[START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes[END_REF]. Initialisation is performed at several time points (𝑡 𝑖 = -𝜏 𝑖, 𝑖 = 1, ..., 𝑘 + 1), in agreement with the BDF order.In Tables2-4we report the convergence rates for the four set of model parameters indicated in Table1. We use the following shorthand notations for the error measures:

	Parameter	Unit	Set i		Set ii	Set iii	Set iv
	𝜇	MPa	4.2			4.2	4.2	4.2
	𝜆	MPa	2.4		2.4 • 10 5	2.4	2.4
	𝛼 1	-	0.95		0.95	0.95	0.95
	𝛼 2	-	0.12		0.12	0.12	0.12
	𝐶 1	MPa -1	0.054		0.054	0.0	0.054
	𝐶 2	MPa -1	0.014		0.014	0.0	0.014
	𝐾 1	m 2 MPa -1 s -1 6.18 • 10 -6	6.18 • 10 -6	6.18 • 10 -6	10 -12
	𝐾 2	m 2 MPa -1 s -1 2.72 • 10 -5	2.72 • 10 -5	2.72 • 10 -5	10 -11
	𝜉 1←2	MPa -1 s -1	0.01		0.01	0.01	0.01
	based on Backward Differentiation Formulas (𝒆 ℎ 𝜏 ∞,1 ≔ max 𝑛∈ 1, 𝑁 𝒖 𝑛 ℎ -𝑰 𝑘 ℎ 𝒖 𝑛	a,ℎ ,
		𝜖 𝑖,ℎ 𝜏 ∞,0 ≔ max 𝑛∈ 1, 𝑁	𝑝 𝑛 𝑖,ℎ -𝜋 𝑘 ℎ 𝑝 𝑛 𝑖 𝐿

2 

(Ω;R) , ∀𝑖 ∈ 0, 2 .

Table 2 :

 2 EOC𝜖 0,ℎ𝜏 ∞,0 EOC 𝜖 1,ℎ𝜏 ∞,0 EOC 𝜖 2,ℎ𝜏 ∞,0 EOC Convergence rates for the HHO-DG discretisation with polynomial degree 𝑘 = 1 based on manufactured solutions of theBarenblatt-Biot problem, see text for details. EOC 𝜖 0,ℎ𝜏 ∞,0 EOC 𝜖 1,ℎ𝜏 ∞,0 EOC 𝜖 2,ℎ𝜏 ∞,0 EOC

	Set	𝒆	ℎ𝜏 ∞,1						
		2.39e-01	-	5.60e-01	-	4.78e-01	-	2.48e-01	-
		6.23e-02	1.94	1.11e-01	2.24	9.31e-02	2.36	4.80e-02	2.37
	i	1.51e-02	2.05	2.28e-02	2.28	1.88e-02	2.31	1.01e-02	2.24
		3.73e-03	2.01	4.92e-03	2.21	3.83e-03	2.29	2.52e-03	2.01
		9.39e-04	1.99	1.08e-03	2.19	7.55e-04	2.34	6.28e-04	2.00
		2.43e-01	-	8.25e-01	-	1.43e-01	-	1.32e-01	-
		6.26e-02	1.95	1.55e-01	2.41	3.76e-02	1.92	3.86e-02	1.77
	ii	1.51e-02	2.05	3.09e-02	2.33	9.16e-03	2.04	9.52e-03	2.02
		3.73e-03	2.02	6.84e-03	2.18	2.34e-03	1.97	2.49e-03	1.93
		9.35e-04	2.00	1.71e-03	2.00	6.04e-04	1.95	6.27e-04	1.99
		2.39e-01	-	5.67e-01	-	4.79e-01	-	3.08e-01	-
		6.23e-02	1.94	1.14e-01	2.31	9.43e-02	2.34	6.48e-02	2.25
	iii	1.51e-02	2.05	2.40e-02	2.24	1.97e-02	2.26	1.40e-02	2.21
		3.73e-03	2.01	5.50e-03	2.13	4.45e-03	2.15	3.27e-03	2.10
		9.35e-04	2.00	1.38e-03	1.99	1.12e-03	1.99	8.19e-04	2.00
		2.42e-01	-	8.00e-01	-	7.78e-01	-	4.14e-01	-
		6.25e-02	1.95	1.46e-01	2.46	1.41e-01	2.47	6.28e-02	2.72
	iv	1.51e-02	2.05	2.79e-02	2.39	2.62e-02	2.43	1.11e-02	2.50
		3.73e-03	2.01	5.58e-03	2.32	4.88e-03	2.42	2.61e-03	2.09
		9.39e-04	1.99	1.12e-03	2.31	8.43e-04	2.53	6.40e-04	2.03

Table 3 :

 3 Convergence rates for the HHO-DG discretisation with polynomial degree 𝑘 = 2 based on manufactured solutions of the Barenblatt-Biot problem, see text for details. EOC 𝜖 0,ℎ𝜏 ∞,0 EOC 𝜖 1,ℎ𝜏 ∞,0 EOC 𝜖 2,ℎ𝜏 ∞,0 EOC

	Set	𝒆	ℎ𝜏 ∞,1						
		3.30e-03	-	8.57e-03	-	7.41e-03	-	2.77e-03	-
		2.42e-04	3.77	5.34e-04	4.00	4.48e-04	4.05	1.66e-04	4.06
	i	1.42e-05	4.09	2.64e-05	4.34	2.03e-05	4.46	9.44e-06	4.14
		9.26e-07	3.94	1.41e-06	4.23	8.87e-07	4.52	6.29e-07	3.91
		5.79e-08	4.00	7.49e-08	4.24	3.89e-08	4.51	3.89e-08	4.02
		3.36e-03	-	1.19e-02	-	1.94e-03	-	1.83e-03	-
		2.43e-04	3.79	7.14e-04	4.06	1.42e-04	3.77	1.57e-04	3.54
	ii	1.42e-05	4.10	3.83e-05	4.22	8.91e-06	4.00	9.39e-06	4.07
		9.14e-07	3.96	2.37e-06	4.01	5.94e-07	3.91	6.28e-07	3.90
		5.66e-08	4.01	1.45e-07	4.03	3.83e-08	3.96	3.89e-08	4.01
		3.31e-03	-	8.94e-03	-	7.62e-03	-	4.80e-03	-
		2.42e-04	3.77	5.78e-04	3.95	4.88e-04	3.97	3.17e-04	3.92
	iii	1.42e-05	4.10	3.15e-05	4.20	2.65e-05	4.20	1.73e-05	4.19
		9.14e-07	3.95	1.99e-06	3.99	1.67e-06	3.99	1.10e-06	3.98
		5.67e-08	4.01	1.22e-07	4.02	1.03e-07	4.02	6.78e-08	4.02
		3.34e-03	-	1.09e-02	-	1.08e-02	-	3.25e-03	-
		2.42e-04	3.78	6.23e-04	4.13	5.95e-04	4.18	1.78e-04	4.19
	iv	1.42e-05	4.09	2.91e-05	4.42	2.53e-05	4.56	9.62e-06	4.21
		9.27e-07	3.94	1.45e-06	4.33	9.93e-07	4.67	6.31e-07	3.93
		5.79e-08	4.00	7.47e-08	4.28	3.94e-08	4.66	3.89e-08	4.02

Table 4 :

 4 Convergence rates for the HHO-DG discretisation with polynomial degree 𝑘 = 3 based on manufactured solutions of the Barenblatt-Biot problem, see text for details.
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