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A Hybrid High-Order method for
multiple-network poroelasticity

Lorenzo Botti, Michele Botti, and Daniele A. Di Pietro

Abstract We develop Hybrid High-Order methods for multiple-network poroelas-
ticity, modelling seepage through deformable fissured porous media. The proposed
methods are designed to support general polygonal and polyhedral elements. This
is a crucial feature in geological modelling, where the need for general elements
arises, e.g., due to the presence of fracture and faults, to the onset of degenerate
elements to account for compaction or erosion, or when nonconforming mesh adap-
tation is performed. We use as a starting point a mixed weak formulation where an
additional total pressure variable is added, that ensures the fulfilment of a discrete
inf-sup condition. A complete theoretical analysis is performed, and the results are
demonstrated on a panel of numerical tests.

1 Introduction

In this work, we develop and analyse Hybrid High-Order (HHO) methods for the
multiple-network poroelastic problem.
In the standard quasi-static poroelasticity theory [18], the medium is modelled

as a continuous superposition of solid and fluid phases. The corresponding set of
equations, named after Biot in recognition of his pioneering contributions [6, 7],
result from the balances of force and mass. Specifically, mechanical equilibrium is
assumed, with the total stress tensor decomposed into one contribution due to the
strain of the porous matrix and one due to the pore pressure; see [31]. A standard
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description of the flow, on the other hand, is obtained combining the mass balance
with the Darcy law. This simplified description can fail to capture physically relevant
phenomena in fissured media. A modification of the Darcy model accounting for
the simultaneous presence of pore and fissure networks was originally proposed by
Barenblatt et al. in [3] for the rigid case. Plugging this description into the Biot model
gives raise to the so-called Barenblatt–Biot equations. These ideas can be naturally
extended to 𝑀 porous networks, finding applications, e.g., in the modelling of the
interactions between biological fluids and tissue; see, e.g, [32].
In the context of computational geosciences, the use of discretisation methods

that support general polytopal meshes and, possibly, high-order has been recently
advocated by several authors; see, e.g., [1,2,5,15–17,26,30] and references therein.
The support of polyhedral meshes enables, e.g., a seamless treatment of degenerate
elements which may arise due to erosion or compaction in corner-point descriptions
of petroleum basins, of non-matching interfaces across fractures or faults, and of
non-conforming mesh refinement or agglomeration [4]. High-order methods, on the
other hand, typically lead to a better usage of computational resources than low-
order methods whenever the solution exhibits sufficient (local) regularity or mesh
adaptation is available.
Our focus is here on a specific family of polytopal discretisations, HHOmethods.

Originally introduced in [23] in the context of linear elasticity, HHOmethods rely on
two key ingredients: local reconstructions obtained by solving small, embarrassingly
parallel problems inside each element and stabilisation terms that penalise, inside
each element, residuals designed so as to preserve optimal approximation properties.
A general and up-to-date overview of HHO methods can be found in the recent
monograph [22]. Concerning their applications to poroelasticity, we can cite, in
particular: the HHO-Discontinuous Galerkin method for the Biot problem proposed
and analysed in [8], based in turn on the methods of [23] for the mechanics and [24]
for the flow; its extension to nonlinear elastic laws proposed in [14], where the
mechanical term is discretised according to [13]; its application to the treatment
of stochastic coefficients considered in [12] in conjunction with Polynomial Chaos
techniques. An abstract analysis framework covering general schemes for the linear
Biot problem in fully discrete formulation (cf. [20]) has been recently proposed in [9]
covering, in particular, a variation of the method of [8] where also the flow equation
is discretised in the HHO spirit. Other applications of HHO methods to problems
in geosciences include flows in fractured porous media [16, 17] and miscible fluid
flows in porous media [1].
The method proposed in the present work uses as a starting point the mixed

formulation of [29], where an additional total pressure variable is introduced that
accounts for the pore and mechanical pressures. Given an integer polynomial degree
𝑘 ≥ 0, the discretisation of the mechanical term in the equilibrium equation follows
[13] if 𝑘 ≥ 1 and [11] if 𝑘 = 0. This choice induces a natural discretisation for the
total pressure in the space of broken polynomials of total degree ≤ 𝑘 , which ensures
inf-sup stability. As it has been done in [9], we consider two different discretisations
of the Darcy term in the mass balance equations (one per pore network). The first
scheme is based on the HHO method of [25], so the discrete unknowns for the
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pore pressures are both at elements and faces. The second scheme is obtained by
using the Discontinuous Galerkin (DG) method of [24]. In both cases, the linear
exchange terms as well as the porosity are discretised using element unknowns
only. The resulting methods have several appealing features: they supports general
polytopal meshes and high-order; they can be applied to an arbitrary number 𝑀 ≥ 1
of pore networks; they are well-behaved for quasi-incompressible porous matrices;
they deliver an 𝐿2-error estimate for the total pressure robust in the entire range of
geophysical parameters.
From the practical standpoint, a relevant difference between the two schemes

is that the HHO-HHO version can benefit from static condensation, leading to
linear systems where the only globally coupled unknowns are displacement and pore
pressure at faces, and global pressures at elements. On typical meshes, this results
in fewer unknowns with respect to the HHO-DG scheme and better computational
efficiency, particularly in three space dimensions; see, e.g., the numerical tests on
meshes with planar faces in [10]. On the other hand, the HHO-DG scheme may be
easier to implement, as it does not require the introduction of pore pressures at faces,
nor the computation of local pore pressure reconstruction or static condensation.
From the theoretical point of view, the analysis of the HHO-DG scheme requires
elliptic regularity (in Theorem 2 the convexity of the domain is assumed) to achieve
optimal orders of convergence. As pointed out in [9], this is not the case for the HHO-
HHO scheme. In this paper, we focus on the HHO-DG scheme for the numerical
tests of Section 5, and defer a comparison with the HHO-HHO scheme to a future
work.
The rest of this paper is organised as follows. In Section 2 we establish the

continuous setting and state the multiple-network poroelasticity problem in weak
formulation. Section 3 describes the discrete setting and contains the statement of
the discrete problem. The analysis of the method is carried out in Section 4 focusing,
for the sake of simplicity, on the HHO-HHO variant. The pivotal result is here an a
priori estimate for an abstract problem whose purpose is twofold: when applied to
the HHO scheme, it yields its well-posedness; when applied to the error equations, it
establishes a basic error estimate. Finally, Section 5 contains a thorough numerical
validation of the method.

2 Continuous setting

In what follows, given an open bounded set 𝑋 ⊂ R𝑑 , we denote by (·, ·)𝑋 the usual
scalar product of 𝐿2 (𝑋;R), 𝐿2 (𝑋;R𝑑), or 𝐿2 (𝑋;R𝑑×𝑑), according to the context.
When 𝑋 = Ω, the subscript is omitted.
We consider the evolution over a finite time 𝑡F > 0 of a porous medium which, in

its reference configuration, occupies a fixed region of spaceΩ ⊂ R𝑑 , 𝑑 ∈ {2, 3}, and
hosts𝑀 ≥ 1 pore networks. For the sake of simplicity, we assume thatΩ is a polygon
or a polyhedron, so that it can be covered exactly by a spatial meshmade of polygonal
or polyhedral elements. Denote by 𝜇 > 0 and 𝜆 ≥ 0 the Lamé parameters of the
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matrix and, for any 𝑖 ∈ È1, 𝑀É, by 𝐶𝑖 ≥ 0, 𝛼𝑖 ∈ (0, 1], and 𝐾𝑖 > 0, respectively,
the constrained specific storage, Biot–Willis, and permeability coefficients of each
network. We additionally denote by 𝒇 ∈ 𝐻1 (0, 𝑡F; 𝐿2 (Ω;R𝑑)) a volumetric force
and, for any 𝑖 ∈ È1, 𝑀É, by 𝑔𝑖 ∈ 𝐶0 ( [0, 𝑡F]; 𝐿2 (Ω;R)) a source term for the 𝑖th
pore network. The above physical parameters and forcing terms will be collectively
referred to as the problem data.
Let 𝑼 ≔ 𝐻10 (Ω;R

𝑑), 𝑃0 ≔
{
𝑞 ∈ 𝐿2 (Ω;R) :

∫
Ω
𝑞 = 0

}
, and, for all 𝑖 ∈ È1, 𝑀É,

𝑃𝑖 ≔ 𝐻10 (Ω;R). We also set, for the sake of brevity, 𝜶 ≔ (1, 𝛼1, . . . , 𝛼𝑀 ) ∈ R𝑀+1
and, denoting by 𝑝0 the total pressure field and, for any 𝑖 ∈ È1, 𝑀É, by 𝑝𝑖 the
pressure field in the 𝑖th porous network, 𝒑 ≔ (𝑝0, 𝑝1, . . . , 𝑝𝑀 ). We consider a weak
formulation inspired by (but not coincident with) the one considered in [29]: Find the
displacement 𝒖 ∈ 𝐶0 ( [0, 𝑡F];𝑼), the total pressure 𝑝0 ∈ 𝐻1 (0, 𝑡F; 𝑃0) and, for all
𝑖 ∈ È1, 𝑀É, the 𝑖th pore network pressure 𝑝𝑖 ∈ 𝐶0 ( [0, 𝑡F]; 𝑃𝑖) ∩𝐻1 (0, 𝑡F; 𝐿2 (Ω;R))
such that it holds, for almost every 𝑡 ∈ (0, 𝑡F], all 𝒗 ∈ 𝑼, all 𝑞0 ∈ 𝑃0, and all 𝑞𝑖 ∈ 𝑃𝑖 ,
𝑖 ∈ È1, 𝑀É,

2𝜇 𝑎(𝒖(𝑡), 𝒗) + 𝑏(𝒗, 𝑝0 (𝑡)) = ( 𝒇 (𝑡), 𝒗), (1a)

𝑏(𝒖(𝑡), 𝑞0) − 𝜆−1 (𝜶· 𝒑, 𝑞0) = 0, (1b)
(d𝑡𝜓𝑖 ( 𝒑(𝑡)), 𝑞𝑖) + (𝑆𝑖 ( 𝒑(𝑡)), 𝑞𝑖) + 𝐾𝑖 𝑐(𝑝𝑖 , 𝑞𝑖) = (𝑔𝑖 (𝑡), 𝑞𝑖) ∀𝑖 ∈ È1, 𝑀É, (1c)

where we have set, for all 𝑖 ∈ È1, 𝑀É and all 𝒒 ∈ R𝑀+1,

𝜓𝑖 (𝒒) ≔ 𝐶𝑖𝑞𝑖 + 𝛼𝑖𝜆−1𝜶·𝒒, (2)

and we have introduced the bilinear forms 𝑎 : 𝑼 ×𝑼 → R, 𝑏 : 𝑼 × 𝑃0 → R, and
𝑐 : 𝐻1 (Ω;R) × 𝐻1 (Ω;R) → R such that, for all 𝒘, 𝒗 ∈ 𝑼, all 𝑞0 ∈ 𝑃0, and all
𝑟, 𝑞 ∈ 𝐻1 (Ω;R),

𝑎(𝒘, 𝒗) ≔ (∇s𝒘,∇s𝒗), 𝑏(𝒗, 𝑞0) ≔ (∇·𝒗, 𝑞0), 𝑐(𝑟, 𝑞) ≔ (∇𝑟,∇𝑞). (3)

In the expression of the bilinear form 𝑎, ∇s denotes the symmetric part of the
gradient applied to vector fields. In (1c), the exchange term is expressed by the
function 𝑆𝑖 : R𝑀+1 → R such that, for any 𝒒 ∈ R𝑀+1,

𝑆𝑖 (𝒒) ≔
𝑀∑︁
𝑗=1
𝜉𝑖← 𝑗 (𝑞𝑖 − 𝑞 𝑗 ),

where
{
𝜉𝑖← 𝑗 : 𝑖, 𝑗 ∈ È1, 𝑀É

}
is a family of nonnegative real numbers such that

𝜉𝑖← 𝑗 = 𝜉 𝑗←𝑖 for all 𝑖, 𝑗 ∈ È1, 𝑀É. We assume that the initial pressures 𝑝0𝑖 ∈ 𝑃𝑖 ,
𝑖 ∈ È0, 𝑀É, are given, so that an initial equilibrium displacement 𝒖0 ∈ 𝑼 can be
computed from (1a).
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3 Discrete setting

3.1 Space and time meshes

We consider spatial meshes corresponding to couples Mℎ ≔ (Tℎ , Fℎ), where Tℎ
is a finite collection of polyhedral elements such that ℎ ≔ max𝑇 ∈Tℎ ℎ𝑇 > 0 with
ℎ𝑇 denoting the diameter of 𝑇 , while Fℎ is a finite collection of planar faces. It
is assumed henceforth that the mesh Mℎ matches the geometrical requirements
detailed in [22, Definition 1.4]. This covers, essentially, any reasonable partition of
Ω into polyhedral sets, not necessarily convex.
For every mesh element 𝑇 ∈ Tℎ , we denote by F𝑇 the subset of Fℎ containing the

faces that lie on the boundary 𝜕𝑇 of 𝑇 . For any mesh element 𝑇 ∈ Tℎ and each face
𝐹 ∈ F𝑇 , 𝒏𝑇 𝐹 is the constant unit vector normal to 𝐹 pointing out of 𝑇 . Boundary
faces lying on 𝜕Ω and internal faces contained in Ω are collected in the sets F b

ℎ
and

F i
ℎ
, respectively. For any 𝐹 ∈ F i

ℎ
, we denote by 𝑇1 and 𝑇2 the elements of Tℎ such

that 𝐹 ⊂ 𝜕𝑇1 ∩ 𝜕𝑇2. The numbering of 𝑇1 and 𝑇2 is arbitrary but fixed once and for
all, and we set 𝒏𝐹 ≔ 𝒏𝑇1𝐹 .
Our focus being on the ℎ-convergence analysis, we consider a sequence of refined

polygonal or polyhedral meshes that is regular in the sense of [22, Definition 1.9].
This implies, in particular, that the diameter ℎ𝑇 of a mesh element 𝑇 ∈ Tℎ is
comparable to the diameter ℎ𝐹 of each face 𝐹 ∈ F𝑇 uniformly in ℎ, and that
the number of faces in F𝑇 is bounded above by an integer 𝑁𝜕 independent of ℎ;
see [22, Lemma 1.12]. In order to have the stability of the bilinear form discretising
the mechanical term when discrete unknowns are polynomials of degree 𝑘 ≥ 1, we
will further assume that every element 𝑇 ∈ Tℎ is star-shaped with respect to every
point of a ball of diameter uniformly comparable to ℎ𝑇 . This assumption ensures,
in particular, that uniform local Korn inequalities hold inside each element; cf. the
Appendix of [10] and also [22, Chapter 7].
The time mesh is obtained subdividing [0, 𝑡F] into 𝑁 ∈ N∗ uniform subintervals.

We introduce the timestep 𝜏 ≔ 𝑡F/𝑁 and the discrete times 𝑡𝑛 ≔ 𝑛𝜏, 𝑛 ∈ È0, 𝑁É. For
any vector space 𝑉 and interval (𝑡𝐴, 𝑡𝐵) ⊂ (0, 𝑡F), we denote by 𝐶0 ( [𝑡𝐴, 𝑡𝐵];𝑉) the
spaces of continuous𝑉-valued functions of time on [𝑡𝐴, 𝑡𝐵] and by𝐻𝑚 (𝑡𝐴, 𝑡𝐵;𝑉) the
space of 𝑉-valued functions that are square-integrable along with their derivatives
up to the 𝑚-th on (𝑡𝐴, 𝑡𝐵), equipped with the usual norms.
For all 𝑛 ∈ È1, 𝑁É and all 𝜑 ∈ 𝐶0 ( [0, 𝑡F];𝑉) we let, for the sake of brevity,

𝜑𝑛 ≔ 𝜑(𝑡𝑛)

and define the discrete backward time derivative operator 𝛿𝑛𝑡 : 𝐶0 ( [0, 𝑡F];𝑉) → 𝑉

at time 𝑛 as
𝛿𝑛𝑡 𝜑 ≔

𝜑𝑛 − 𝜑𝑛−1
𝜏

. (4)

Denoting by (·, ·)𝑉 an inner product in 𝑉 with associated norm ‖·‖𝑉 , and letting
𝜑 ∈ 𝐻1 (0, 𝑡F;𝑉), it holds
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𝑁∑︁
𝑛=1

𝜏‖𝛿𝑛𝑡 𝜑‖2𝑉 ≤ ‖𝜑‖2𝐻 1 (0,𝑡F;𝑉 ) . (5)

3.2 Local and broken spaces and projectors

Let a polynomial degree 𝑙 ≥ 0 be fixed. For all 𝑋 ∈ Tℎ ∪ Fℎ , denote by P𝑙 (𝑋;R) the
space spanned by the restriction to 𝑋 of 𝑑-variate polynomials of total degree ≤ 𝑙,
and let 𝜋𝑙

𝑋
: 𝐿1 (𝑋;R) → P𝑙 (𝑋;R) be the corresponding 𝐿2-orthogonal projector

such that, for any 𝑣 ∈ 𝐿1 (𝑋;R),

(𝜋𝑙𝑋𝑣 − 𝑣, 𝑤)𝑋 = 0 ∀𝑤 ∈ P𝑙 (𝑋;R).

Denoting by 𝑚 ≥ 1 an integer, the vector version 𝝅𝑙
𝑋
: 𝐿1 (𝑋;R𝑚) → P𝑙 (𝑋;R𝑚),

is obtained applying 𝜋𝑙
𝑋
component-wise. We will also need, in what follows, the

spaces of 𝑑 × 𝑑 symmetric matrix-valued fields with polynomial entries, denoted by
P𝑙 (𝑇 ;R𝑑×𝑑sym ).
At the global level, we introduce the broken polynomial space

P𝑙 (Tℎ;R) ≔
{
𝑣 ∈ 𝐿1 (Ω;R) : 𝑣 |𝑇 ∈ P𝑙 (𝑇 ;R) ∀𝑇 ∈ Tℎ

}
,

the corresponding vector version P𝑙 (Tℎ;R𝑑), and the space P𝑙 (Tℎ;R𝑑×𝑑sym ) of 𝑑 × 𝑑
symmetric matrix-valued fields with broken polynomial entries. The 𝐿2-orthogonal
projector on P𝑙 (Tℎ;R) is 𝜋𝑙ℎ : 𝐿

1 (Ω;R) → P𝑙 (Tℎ;R) such that, for all 𝑣 ∈ 𝐿1 (Ω;R),

(𝜋𝑙ℎ𝑣) |𝑇 = 𝜋𝑙𝑇 𝑣 |𝑇 ∀𝑇 ∈ Tℎ . (6)

Broken polynomial spaces constitute special instances of the broken Sobolev
spaces 𝐻𝑚 (Tℎ;R) ≔

{
𝑣 ∈ 𝐿2 (Ω;R) : 𝑣 |𝑇 ∈ 𝐻𝑚 (𝑇 ;R) ∀𝑇 ∈ Tℎ

}
, which will be

used to express the regularity requirements on the exact solution in the error estimate
of Theorems 1 and 2. For any function 𝑣 ∈ 𝐻1 (Tℎ;R) we define, for all 𝐹 ∈ F iℎ , the
jump operator such that

[𝑣]𝐹 ≔ 𝑣 |𝑇1 − 𝑣 |𝑇2 ,

where we remind the reader that 𝑇1 and 𝑇2 are the mesh elements that share 𝐹 as
a face, taken in an arbitrary but fixed order. On boundary faces, the jump operator
simply returns the trace of its argument on 𝜕Ω.

3.3 Discrete spaces and reconstructions

To formulate the discrete problem, we need scalar and vector HHO spaces. From this
point on, we let an integer 𝑘 ≥ 0 be fixed, corresponding to the polynomial degrees
of the discrete unknowns.
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3.3.1 Scalar HHO space and pressure reconstruction

The scalar HHO space, that will be used to discretise network pressures in the
HHO-HHO scheme (23), is

𝑄𝑘
ℎ
≔

{
𝑞
ℎ
= ((𝑞𝑇 )𝑇 ∈Tℎ , (𝑞𝐹 )𝐹 ∈Fℎ ) :

𝑞𝑇 ∈ P𝑘 (𝑇 ;R) for all 𝑇 ∈ Tℎ and 𝑞𝐹 ∈ P𝑘 (𝐹;R) for all 𝐹 ∈ Fℎ
}
.

The interpolator 𝐼𝑘
ℎ
: 𝐻1 (Ω;R) → 𝑄𝑘

ℎ
is defined setting, for all 𝑞 ∈ 𝐻1 (Ω;R),

𝐼𝑘ℎ𝑞 ≔
(
(𝜋𝑘𝑇 𝑞)𝑇 ∈Tℎ , (𝜋𝑘𝐹𝑞)𝐹 ∈Fℎ

)
.

For all 𝑞
ℎ
∈ 𝑄𝑘

ℎ
, we define the broken polynomial function 𝑞ℎ ∈ P𝑘 (Tℎ;R) obtained

patching element unknowns, that is,

(𝑞ℎ) |𝑇 ≔ 𝑞𝑇 ∀𝑇 ∈ Tℎ .

For any element𝑇 ∈ Tℎ , we denote by𝑄𝑘
𝑇
the restriction of𝑄𝑘

ℎ
to𝑇 , andwe introduce

the pressure reconstruction r𝑘+1
𝑇
: 𝑞𝑘
𝑇
→ P𝑘+1 (𝑇 ;R) such that, for all 𝑞

𝑇
∈ 𝑄𝑘

𝑇
,

(∇r𝑘+1𝑇 𝑞
𝑇
,∇𝑤)𝑇 = −(𝑞𝑇 ,Δ𝑤)𝑇 +

∑︁
𝐹 ∈F𝑇

(𝑞𝐹 ,∇𝑤·𝒏𝑇 𝐹 )𝐹 ∀𝑤 ∈ P𝑘+1 (𝑇 ;R),∫
𝑇

r𝑘+1𝑇 𝑞
𝑇
=

∫
𝑇

𝑞𝑇 .

The global pressure reconstruction operator r𝑘+1
ℎ
: 𝑄𝑘

ℎ
→ P𝑘+1 (Tℎ;R) is obtained

patching the local ones: For all 𝑞
ℎ
∈ 𝑄𝑘

ℎ
,

(r𝑘+1ℎ 𝑞
ℎ
) |𝑇 ≔ r𝑘+1𝑇 𝑞

𝑇
∀𝑇 ∈ Tℎ .

3.3.2 Vector HHO space, strain, and displacement reconstructions

The vector HHO space, that will be used to discretise the displacement, is

𝑽𝑘
ℎ
≔

{
𝒗
ℎ
= ((𝒗𝑇 )𝑇 ∈Tℎ , (𝒗𝐹 )𝐹 ∈Fℎ ) :

𝒗𝑇 ∈ P𝑘 (𝑇 ;R𝑑) for all 𝑇 ∈ Tℎ and 𝒗𝐹 ∈ P𝑘 (𝐹;R𝑑) for all 𝐹 ∈ Fℎ
}
.

For all 𝒗
ℎ
∈ 𝑽𝑘

ℎ
, we let 𝒗ℎ ∈ P𝑘 (Tℎ;R𝑑) be such that

(𝒗ℎ) |𝑇 ≔ 𝒗𝑇 ∀𝑇 ∈ Tℎ .
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The interpolator 𝑰𝑘
ℎ
: 𝐻1 (Ω;R𝑑) → 𝑽𝑘

ℎ
is such that, for any 𝒗 ∈ 𝐻1 (Ω;R𝑑),

𝑰𝑘ℎ𝒗 ≔
(
(𝝅𝑘𝑇 𝒗)𝑇 ∈Tℎ , (𝝅𝑘𝐹 𝒗)𝐹 ∈Fℎ

)
.

For any element𝑇 ∈ Tℎ , we denote by𝑽𝑘𝑇 the restriction of𝑽
𝑘
ℎ
to𝑇 and we introduce

the strain reconstruction E𝑘
𝑇
: 𝑽𝑘

𝑇
→ P𝑘 (𝑇 ;R𝑑×𝑑sym ) such that, for all 𝒗𝑇 ∈ 𝑽

𝑘
𝑇
,

(E𝑘𝑇 𝒗𝑇 , 𝝉)𝑇 = −(𝒗𝑇 ,∇·𝝉)𝑇 +
∑︁
𝐹 ∈F𝑇

(𝒗𝐹 , 𝝉𝒏𝑇 𝐹 )𝐹 ∀𝝉 ∈ P𝑘 (𝑇 ;R𝑑×𝑑sym ).

For any 𝒗
𝑇
∈ 𝑽𝑘

𝑇
, we reconstruct from E𝑘

𝑇
𝒗
𝑇
a high-order displacement r𝑘+1

𝑇
𝒗
𝑇
∈

P𝑘+1 (𝑇 ;R𝑑) enforcing the following conditions:

(∇sr𝑘+1𝑇 𝒗
𝑇
− E𝑘𝑇 𝒗𝑇 ,∇s𝒘)𝑇 = 0 ∀𝒘 ∈ P𝑘+1 (𝑇 ;R𝑑),∫

𝑇

r𝑘+1𝑇 𝒗
𝑇
=

∫
𝑇

𝒗𝑇 , and
∫
𝑇

∇ssr𝑘+1𝑇 𝒗
𝑇
=
1
2

∑︁
𝐹 ∈F𝑇

∫
𝐹

(𝒗𝐹 ⊗ 𝒏𝑇 𝐹 − 𝒏𝑇 𝐹 ⊗ 𝒗𝐹 ),

where ∇ss denotes the skew-symmetric part of the gradient applied to vector fields.
The global strain and displacement reconstructions E𝑘

ℎ
: 𝑽𝑘

ℎ
→ P𝑘 (Tℎ;R𝑑×𝑑sym ) and

r𝑘+1
ℎ
: 𝑽𝑘

ℎ
→ P𝑘+1 (Tℎ;R𝑑) are obtained setting, for all 𝒗ℎ ∈ 𝑽

𝑘
ℎ
,

(E𝑘ℎ𝒗ℎ) |𝑇 ≔ E𝑘𝑇 𝒗𝑇 and (r
𝑘+1
ℎ 𝒗

ℎ
) |𝑇 ≔ r𝑘+1𝑇 𝒗

𝑇
for all 𝑇 ∈ Tℎ .

We also define a global divergence reconstruction D𝑘
ℎ
: 𝑽𝑘

ℎ
→ P𝑘 (Tℎ;R) as the trace

of E𝑘
ℎ
, that is, for all 𝒗

ℎ
∈ 𝑽𝑘

ℎ
,

D𝑘ℎ𝒗ℎ ≔ tr(E𝑘ℎ𝒗ℎ).

3.3.3 Displacement and pressure spaces

The discrete spaces for the displacement including the strongly enforced homoge-
neous boundary conditions and for the total pressure including the zero-average
conditions are, respectively:

𝑼𝑘
ℎ
≔

{
𝒗
ℎ
∈ 𝑽𝑘

ℎ
: 𝒗𝐹 = 0 for all 𝐹 ∈ F bℎ

}
and 𝑃𝑘ℎ,0 ≔ P

𝑘 (Tℎ;R) ∩ 𝑃0.

When using the HHO method for the discretisation of the flow equations, for any
𝑖 ∈ È1, 𝑀É, the space for the 𝑖th network pressure is

𝑃𝑘ℎ,𝑖 ≔ 𝑄𝑘
ℎ,D
with 𝑄𝑘

ℎ,D
≔

{
𝑞
ℎ
∈ 𝑄𝑘

ℎ
: 𝑞𝐹 = 0 for all 𝐹 ∈ F bℎ

}
,

while, when using the DG method, we use instead

𝑃𝑘ℎ,𝑖 ≔ P
𝑘 (Tℎ;R).
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3.4 Discrete bilinear forms

We discuss in this section the approximation of the continuous bilinear forms defined
in (3). In order to alleviate the exposition, from this point on we use the abridged
notation 𝑎 . 𝑏 for the inequality 𝑎 ≤ 𝐶𝑏 with real number 𝐶 > 0 independent of
the meshsize, the time step and, for local inequalities, on the mesh element or face.
Further dependencies of the hidden constant will be specified when appropriate.

3.4.1 Mechanical term

The discrete counterpart of the continuous bilinear form 𝑎 is aℎ : 𝑽𝑘ℎ × 𝑽𝑘
ℎ
→ R

such that, for all 𝒘
ℎ
, 𝒗
ℎ
∈ 𝑽𝑘

ℎ
,

aℎ (𝒘ℎ , 𝒗ℎ) ≔
{
(E𝑘
ℎ
𝒘
ℎ
,E𝑘
ℎ
𝒗
ℎ
) + sa,ℎ (𝒘ℎ , 𝒗ℎ) if 𝑘 ≥ 1,

(E0
ℎ
𝒘
ℎ
,E0
ℎ
𝒗
ℎ
) + sa,ℎ (𝒘ℎ , 𝒗ℎ) + jℎ (r1ℎ𝒘ℎ , r

1
ℎ
𝒗
ℎ
) if 𝑘 = 0,

with stabilising bilinear form sa,ℎ : 𝑽𝑘ℎ × 𝑽
𝑘
ℎ
→ R and jump penalisation bilinear

form jℎ : 𝐻1 (Tℎ;R𝑑) × 𝐻1 (Tℎ;R𝑑) → R such that

sa,ℎ (𝒘ℎ , 𝒗ℎ) ≔
∑︁
𝑇 ∈Tℎ

∑︁
𝐹 ∈F𝑇

ℎ−1𝐹 (𝜹𝑘𝑇 𝐹𝒘𝑇 , 𝜹
𝑘
𝑇 𝐹 𝒗𝑇 )𝐹 ∀𝒘

ℎ
, 𝒗
ℎ
∈ 𝑽𝑘

ℎ
,

jℎ (𝒘, 𝒗) ≔
∑︁
𝐹 ∈Fℎ

ℎ−1𝐹 ( [𝒘]𝐹 , [𝒗]𝐹 )𝐹 ∀𝒘, 𝒗 ∈ 𝐻1 (Tℎ;R𝑑),

where, for all𝑇 ∈ Tℎ and all 𝐹 ∈ F𝑇 , 𝜹𝑘𝑇 𝐹 𝒗𝑇 ≔ 𝝅𝑘
𝐹
(r𝑘+1
𝑇

𝒗
𝑇
−𝒗𝐹 )−𝝅𝑘𝑇 (r𝑘+1𝑇

𝒗
𝑇
−𝒗𝑇 ).

A discussion on the case 𝑘 = 0, including a justification of the term involving the
bilinear form jℎ , can be found in [11]; see also [22, Section 7.6].
Following [22, Chapter 7], the bilinear form aℎ defines an inner product on 𝑼𝑘ℎ ,

and we denote by ‖·‖a,ℎ the induced norm. The corresponding dual norm ‖·‖a,ℎ,∗ is
defined such that, for any linear form ℓℎ : 𝑼𝑘ℎ,0 → R,

‖ℓℎ ‖a,ℎ,∗ ≔ sup
𝒗
ℎ
∈𝑼𝑘

ℎ
\{0}

ℓℎ (𝒗ℎ)
‖𝒗
ℎ
‖a,ℎ

. (7)

The following consistency property holds: For all 𝒘 ∈ 𝑼 ∩ 𝐻𝑘+2 (Tℎ;R𝑑),

‖Ea,ℎ (𝒘; ·)‖a,ℎ,∗ . ℎ𝑘+1 |𝒘 |𝐻 𝑘+2 (Tℎ ;R𝑑) , (8)

where the hidden constant is independent of both ℎ and 𝒘 and the consistency error
linear form Ea,ℎ (𝒘; ·) : 𝑼𝑘ℎ → R is such that, for all 𝒗ℎ ∈ 𝑼

𝑘
ℎ
,

Ea,ℎ (𝒘; 𝒗ℎ) ≔ −(∇·∇s𝒘, 𝒗ℎ) − aℎ (𝑰
𝑘
ℎ𝒘, 𝒗ℎ). (9)
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We additionally have the following discrete Korn–Poincaré inequality:

‖𝒗ℎ ‖𝐿2 (Ω;R𝑑) ≤ 𝐶K‖𝒗ℎ ‖a,ℎ ∀𝒗
ℎ
∈ 𝑼𝑘

ℎ
, (10)

where the real number 𝐶K > 0 is independent of ℎ, but possibly depends on Ω,
𝑑, 𝑘 , and the mesh regularity parameter. In the case 𝑘 ≥ 1, this inequality results
from [22, Eq. (7.75) with 2𝜇 = 1 and 𝜆 = 0 together with Remark 7.26] whereas, in
the case 𝑘 = 0, it is a consequence of [22, Eq. (7.109) with 𝜆 = 0 and Remark 7.26].

3.4.2 Pressure–displacement coupling

The coupling between the total pressure and the displacement is realised by means
of the bilinear form bℎ : 𝑽𝑘ℎ ×P𝑘 (Tℎ;R) such that, for all (𝒗ℎ , 𝑞ℎ) ∈ 𝑽

𝑘
ℎ
×P𝑘 (Tℎ;R),

bℎ (𝒗ℎ , 𝑞ℎ) ≔ (D
𝑘
ℎ𝒗ℎ , 𝑞ℎ).

The following inf-sup condition holds: There is a real number 𝛽 > 0 independent of
ℎ, but possibly depending on Ω, 𝑑, 𝑘 , and the mesh regularity parameter, such that

𝛽‖𝑞ℎ ‖𝐿2 (Ω;R) ≤ ‖bℎ (·, 𝑞ℎ)‖a,ℎ,∗ ∀𝑞ℎ ∈ 𝑃𝑘ℎ,0. (11)

Moreover, we have the following consistency properties: For all 𝒗 ∈ 𝑼,

bℎ (𝑰𝑘ℎ𝒗, 𝑞ℎ) = 𝑏(𝒗, 𝑞ℎ) ∀𝑞ℎ ∈ 𝑃𝑘ℎ,0 (12)

and, for all 𝑞 ∈ 𝐻1 (Ω;R) ∩ 𝐻𝑘+1 (Tℎ;R),

‖Eb,ℎ (𝑞; ·)‖a,ℎ,∗ . ℎ𝑘+1 |𝑞 |𝐻 𝑘+1 (Tℎ ;R) , (13)

where the hidden constant is independent of both ℎ and 𝑞 and the consistency error
linear form Eb,ℎ (𝑞; ·) : 𝑼𝑘ℎ → R is such that, for all 𝒗ℎ ∈ 𝑼

𝑘
ℎ
,

Eb,ℎ (𝑞; 𝒗ℎ) ≔ (∇𝑞, 𝒗ℎ) − bℎ (𝒗ℎ , 𝜋
𝑘
ℎ𝑞). (14)

3.4.3 HHO discretisaton of the Darcy term

Denote by ∇ℎ the broken gradient acting element-wise. The Darcy bilinear form 𝑐

is approximated by chho
ℎ
: 𝑄𝑘

ℎ
×𝑄𝑘

ℎ
→ R such that, for all 𝑟ℎ , 𝑞ℎ ∈ 𝑄

𝑘

ℎ
,

chhoℎ (𝑟ℎ , 𝑞ℎ) ≔ (∇ℎr𝑘+1ℎ 𝑟ℎ ,∇ℎr𝑘+1ℎ 𝑞
ℎ
) + sc,ℎ (𝑟ℎ , 𝑞ℎ),

with stabilising bilinear form

sc,ℎ (𝑟ℎ , 𝑞ℎ) ≔
∑︁
𝑇 ∈Tℎ

∑︁
𝐹 ∈F𝑇

ℎ−1𝐹 (𝛿𝑘𝑇 𝐹𝑟𝑇 , 𝛿
𝑘
𝑇 𝐹𝑞𝑇

)𝐹 ,
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where, for all𝑇 ∈ Tℎ and all 𝐹 ∈ F𝑇 , 𝛿𝑘𝑇 𝐹𝑞𝑇 ≔ 𝜋𝑘
𝐹
(r𝑘+1
𝑇
𝑞
𝑇
−𝑞𝐹 )−𝜋𝑘𝑇 (r𝑘+1𝑇

𝑞
𝑇
−𝑞𝑇 ).

The bilinear form chho
ℎ
defines an inner product on𝑄𝑘

ℎ,D
as a consequence of [22, Eq.

(2.41) and Corollary 2.16], and we denote by ‖·‖c,ℎ,hho the induced norm. The
corresponding dual norm is such that, for any linear form ℓℎ : 𝑄𝑘

ℎ,D
→ R,

‖ℓℎ ‖c,ℎ,∗ ≔ sup
𝑞
ℎ
∈𝑃𝑘

ℎ,𝑖
\{0}

ℓℎ (𝑞
ℎ
)

‖𝑞
ℎ
‖c,ℎ,hho

. (15)

It follows from [22, Eq. (2.42)] that, for all 𝑟 ∈ 𝐻10 (Ω;R) ∩ 𝐻
𝑘+2 (Tℎ;R) such that

Δ𝑟 ∈ 𝐿2 (Ω;R),
‖Ehhoc,ℎ (𝑟; ·)‖c,ℎ,∗ . ℎ

𝑘+1 |𝑟 |𝐻 𝑘+2 (Tℎ ;R) , (16)

where the hidden constant is independent of both ℎ and 𝑟 , and the consistency error
linear form Ehhoc,ℎ (𝑟; ·) : 𝑄

𝑘

ℎ,D
→ R is such that, for all 𝑞

ℎ
∈ 𝑄𝑘

ℎ,D
,

Ehhoc,ℎ (𝑟; 𝑞ℎ) ≔ −(Δ𝑟, 𝑞ℎ) − c
hho
ℎ (𝐼

𝑘
ℎ𝑟, 𝑞ℎ

). (17)

The following discrete Poincaré inequality results combining [22, Lemma 2.15 and
Eq. (2.41)]: For all 𝑞

ℎ
∈ 𝑄𝑘

ℎ,D
,

‖𝑞ℎ ‖𝐿2 (Ω;R) ≤ 𝐶P‖𝑞ℎ ‖c,ℎ,hho, (18)

with real number 𝐶P > 0 independent of ℎ and 𝑞
ℎ
, but possibly depending on Ω, 𝑑,

𝑘 , and the mesh regularity parameter.

3.4.4 DG discretisation of the Darcy term

For the DG approximation of the Darcy operator we need to assume 𝑘 ≥ 1 to
have consistency. Let the normal trace average operator be defined such that, for all
𝝍 ∈ 𝐻1 (Tℎ;R𝑑) and all 𝐹 ∈ F iℎ shared by the mesh elements 𝑇1 and 𝑇2,

{𝝍 · 𝒏}𝐹 ≔
1
2

(
𝝍 |𝑇1 + 𝝍 |𝑇2

)
|𝐹
· 𝒏𝐹 .

The DG method hinges on the bilinear form cdg
ℎ
: P𝑘 (Tℎ;R) × P𝑘 (Tℎ;R) → R such

that, for all 𝑟ℎ , 𝑞ℎ ∈ P𝑘 (Tℎ;R),

cdg
ℎ
(𝑟ℎ , 𝑞ℎ) ≔ (∇ℎ𝑟ℎ ,∇ℎ𝑞ℎ) +

∑︁
𝐹 ∈Fℎ

𝜂

ℎ𝐹
( [𝑟ℎ]𝐹 , [𝑞ℎ]𝐹 )𝐹

−
∑︁
𝐹 ∈Fℎ

(( [𝑟ℎ]𝐹 , {∇ℎ𝑞ℎ · 𝒏}𝐹 )𝐹 + ({∇ℎ𝑟ℎ · 𝒏}𝐹 , [𝑞ℎ]𝐹 )𝐹 ) ,
(19)
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where the stabilisation parameter 𝜂 > 0 is chosen large enough to ensure coercivity
with respect to the norm ‖·‖c,ℎ,dg defined such that, for all 𝑞ℎ ∈ P𝑘 (Tℎ;R),

‖𝑞ℎ ‖c,ℎ,dg ≔
©«‖∇ℎ𝑞ℎ ‖2𝐿2 (Ω)𝑑 +

∑︁
𝐹 ∈Fi

ℎ

ℎ−1𝐹 ‖ [𝑞ℎ]𝐹 ‖2𝐿2 (𝐹 )
ª®®¬
1
2

.

Let 𝑟 ∈ 𝐻1 (Ω,R) be such that Δ𝑟 ∈ 𝐿2 (Ω,R), and consider the elliptic projection
problem that consists in finding 𝑟ℎ ∈ P𝑘 (Tℎ;R) such that

cdg
ℎ
(𝑟ℎ , 𝑞ℎ) = −(Δ𝑟, 𝑞ℎ)𝐿2 (Ω) ∀𝑞ℎ ∈ P𝑘 (Tℎ ,R),∫

Ω

𝑟ℎ (𝒙) d𝒙 =

∫
Ω

𝑟 (𝒙) d𝒙.
(20)

It is inferred from [21, Appendix A] that, if Ω is convex and 𝑟 ∈ 𝐻𝑚+1 (Tℎ ,R) for
some 𝑚 ∈ {0, . . . , 𝑘}, it holds

‖𝑟ℎ − 𝑟 ‖𝐿2 (Ω) + ℎ‖𝑟ℎ − 𝑟 ‖c,ℎ,dg . ℎ𝑚+1 |𝑟 |𝐻𝑚+1 (Tℎ) , (21)

with hidden constant independent of ℎ and 𝑟 .

3.5 Discrete problems

Assume the initial pressures given, and denote by 𝒖0 ∈ 𝑼 the corresponding initial
equilibrum displacement. Enforce the initial condition by setting

𝒖0
ℎ
≔ 𝑰𝑘ℎ𝒖

0, 𝑝0ℎ,𝑖 ≔ 𝜋𝑘ℎ 𝑝
0
𝑖 ∀𝑖 ∈ È0, 𝑀É. (22)

The discrete problem with HHO discretisation of the Darcy term (HHO-HHO
scheme) reads: For 𝑛 = 1, . . . , 𝑁 , find 𝒖𝑛

ℎ
∈ 𝑼𝑘

ℎ
, 𝑝𝑛

ℎ,0 ∈ 𝑃
𝑘
ℎ,0 and, for all 𝑖 ∈ È1, 𝑀É,

𝑝𝑛
ℎ,𝑖
∈ 𝑃𝑘

ℎ,𝑖
such that, for all 𝒗

ℎ
∈ 𝑼𝑘

ℎ
, all 𝑞ℎ,0 ∈ 𝑃𝑘ℎ,0, and all 𝑞ℎ,𝑖 ∈ 𝑃

𝑘
ℎ,𝑖
, 𝑖 ∈ È1, 𝑀É,

2𝜇 aℎ (𝒖𝑛ℎ , 𝒗ℎ) + bℎ (𝒗ℎ , 𝑝
𝑛
ℎ,0) = ( 𝒇

𝑛, 𝒗ℎ), (23a)

bℎ (𝒖𝑛ℎ , 𝑞ℎ,0) − 𝜆
−1 (𝜶· 𝒑𝑛ℎ , 𝑞ℎ,0) = 0, (23b)

(𝛿𝑛𝑡 𝜓𝑖 ( 𝒑ℎ), 𝑞ℎ,𝑖) + (𝑆𝑖 ( 𝒑𝑛ℎ), 𝑞ℎ,𝑖) + 𝐾𝑖c
hho
ℎ (𝑝

𝑛

ℎ,𝑖
, 𝑞
ℎ,𝑖
) = (𝑔𝑛𝑖 , 𝑞ℎ,𝑖) ∀𝑖 ∈ È1, 𝑀É,

(23c)

where we have set, for any 𝑛 ∈ È0, 𝑁É, 𝒑𝑛
ℎ
≔ (𝑝𝑛

ℎ,0, 𝑝
𝑛
ℎ,1, . . . , 𝑝

𝑛
ℎ,𝑀
) and we remind

the reader that 𝜓𝑖 is defined by (2).
The problem resulting from theDG approximation of the flow operator (HHO-DG

scheme) reads: For 𝑛 = 1, . . . , 𝑁 , find 𝒖𝑛
ℎ
∈ 𝑼𝑘

ℎ
and 𝑝𝑛

ℎ,0 ∈ 𝑃
𝑘
ℎ,0 such that (23a)-
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(23b) hold for all 𝒗
ℎ
∈ 𝑼𝑘

ℎ
and all 𝑞ℎ,0 ∈ 𝑃𝑘ℎ,0, respectively, and, for all 𝑖 ∈ È1, 𝑀É,

𝑝𝑛
ℎ,𝑖
∈ 𝑃𝑘

ℎ,𝑖
such that, for all 𝑞ℎ,𝑖 ∈ 𝑃𝑘ℎ,𝑖 , 𝑖 ∈ È1, 𝑀É,

(𝛿𝑛𝑡 𝜓𝑖 ( 𝒑ℎ), 𝑞ℎ,𝑖) + (𝑆𝑖 ( 𝒑𝑛ℎ), 𝑞ℎ,𝑖) + 𝐾𝑖c
dg
ℎ
(𝑝𝑛ℎ,𝑖 , 𝑞ℎ,𝑖) = (𝑔

𝑛
𝑖 , 𝑞ℎ,𝑖) ∀𝑖 ∈ È1, 𝑀É.

(24)

4 Convergence analysis

We carry out a convergence analysis for the methods formulated in Section 3.5.
For the sake of conciseness, the focus is on the HHO-HHO scheme (23). The
modifications needed to adapt the results to the HHO-DG scheme are discussed in
Section 4.4. A unified analysis covering both HHO-HHO and HHO-DGmethods for
the single-network Biot problem can be found in [9].

4.1 An abstract a priori estimate

We derive an a priori estimate for an auxiliary problem analogous to (23), but with
modified right-hand side. Applied to the discrete problem (23), this estimate can be
used to infer its well-posendess. Applied to the error equations (50) below, it gives
a basic error estimate.
Let the families of linear forms (ℓ𝑛1 : 𝑈

𝑘
ℎ
→ R)𝑛∈È0,𝑁É, and, for all 𝑖 ∈ È1, 𝑀É,

(ℓ𝑛2,𝑖 : 𝑃
𝑘
ℎ,𝑖
→ R)𝑛∈È1,𝑁É, be given. Assume 𝒘0ℎ ∈ 𝑼𝑘

ℎ
, 𝑟0
ℎ,0 ∈ 𝑃

𝑘
ℎ,0, and, for all

𝑖 ∈ È1, 𝑀É, 𝑟0
ℎ,𝑖
∈ 𝑃𝑘

ℎ,𝑖
also given. For 𝑛 = 1, . . . , 𝑁 , 𝒘𝑛

ℎ
∈ 𝑼𝑘

ℎ
, 𝑟𝑛
ℎ,0 ∈ 𝑃

𝑘
ℎ,0 and,

for all 𝑖 ∈ È1, 𝑀É, 𝑟𝑛
ℎ,𝑖
∈ 𝑃𝑘

ℎ,𝑖
are such that, for all 𝒗

ℎ
∈ 𝑼𝑘

ℎ
, all 𝑞ℎ ∈ 𝑃𝑘ℎ,0, and all

𝑞
ℎ,𝑖
∈ 𝑃𝑘

ℎ,𝑖
, 𝑖 ∈ È1, 𝑀É,

2𝜇 aℎ (𝒘𝑛ℎ , 𝒗ℎ) + bℎ (𝒗ℎ , 𝑟
𝑛
ℎ,0) = ℓ

𝑛
1 (𝒗ℎ), (25a)

bℎ (𝒘𝑛ℎ , 𝑞ℎ,0) − 𝜆
−1 (𝜶·𝒓𝑛ℎ , 𝑞ℎ,0) = 0, (25b)

(𝛿𝑛𝑡 𝜓𝑖 (𝒓ℎ), 𝑞ℎ,𝑖) + (𝑆𝑖 (𝒓𝑛ℎ), 𝑞ℎ,𝑖) + 𝐾𝑖 c
hho
ℎ (𝑟

𝑛
ℎ,𝑖 , 𝑞ℎ,𝑖

) = ℓ𝑛2,𝑖 (𝑞ℎ,𝑖) ∀𝑖 ∈ È1, 𝑀É,
(25c)

where, for any 𝑛 ∈ È0, 𝑁É, 𝒓𝑛
ℎ
≔ (𝑟𝑛

ℎ,0, 𝑟
𝑛
ℎ,1, . . . , 𝑟

𝑛
ℎ,𝑀
). Applying discrete time

derivation to (25b) we obtain, for all 𝑛 ∈ È1, 𝑁É,

bℎ (𝛿𝑛𝑡 𝒘ℎ , 𝑞ℎ,0) − 𝜆
−1 (𝜶·𝛿𝑛𝑡 𝒓ℎ , 𝑞ℎ,0) = 0 ∀𝑞ℎ,0 ∈ 𝑃𝑘ℎ,0. (26)

Lemma 1 (Abstract priori estimate). Assuming 𝜏 small enough (with threshold
independent of ℎ), the solution to (25) satisfies the following a priori estimate:
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max
𝑛∈È1,𝑁É

(
𝜇‖𝒘𝑛

ℎ
‖2a,ℎ + 𝜆

−1‖𝜶·𝒓𝑛ℎ ‖
2
𝐿2 (Ω;R) +

𝑀∑︁
𝑖=1

𝐶𝑖 ‖𝑟𝑛ℎ,𝑖 ‖
2
𝐿2 (Ω;R)

)
+

𝑁∑︁
𝑛=1

𝜏‖𝒓𝑛ℎ ‖
2
𝝃 +

𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝐾𝑖 ‖𝑟𝑛ℎ,𝑖 ‖
2
c,ℎ,hho ≤ exp

( 𝑡F
1 − 𝜏

)
(Nℓ + N0) , (27)

where we have introduced the exchange norm

‖𝒓𝑛ℎ ‖
2
𝝃 ≔

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1
‖𝜉𝑖← 𝑗 (𝑟𝑛ℎ,𝑖 − 𝑟

𝑛
ℎ, 𝑗 )‖

2
𝐿2 (Ω;R)

and we have set

Nℓ ≔
1
2𝜇

max
𝑛∈È1,𝑁É

‖ℓ𝑛1 ‖
2
a,ℎ,∗ +

1
𝜇

𝑁∑︁
𝑛=1

𝜏‖𝛿𝑛𝑡 ℓ1‖2a,ℎ,∗ +
𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝐾−1𝑖 ‖ℓ𝑛2,𝑖 ‖
2
c,ℎ,∗, (28a)

N0 ≔ 2‖ℓ01 ‖a,ℎ,∗‖𝒘
0
ℎ
‖a,ℎ+2𝜇‖𝒘0ℎ ‖

2
a,ℎ+
1
𝜆
‖𝜶·𝒓0ℎ ‖

2
𝐿2 (Ω;R)+

𝑀∑︁
𝑖=1

𝐶𝑖 ‖𝑟0ℎ,𝑖 ‖
2
𝐿2 (Ω;R) .

(28b)

Moreover, it holds

𝛽2

𝜇
max

𝑛∈È1,𝑁É
‖𝑟𝑛ℎ,0‖

2
𝐿2 (Ω;R) ≤

2
𝜇
max

𝑛∈È1,𝑁É
‖ℓ𝑛1 ‖

2
a,ℎ,∗ + 4𝛽

2 exp
( 𝑡F
1 − 𝜏

)
(Nℓ + N0) .

(29)

Proof. We start by deriving a basic energy estimate and then, leveraging the discrete
inf-sup condition (11), deduce from the latter the estimate on the total pressure.

(i) Basic energy estimate. Let N ∈ È1, 𝑁É and 𝑛 ∈ È1,NÉ. Taking 𝒗
ℎ
= 𝛿𝑛𝑡 𝒘ℎ in

(25a), 𝑞ℎ,0 = −𝑟𝑛
ℎ,0 in (26), and, for all 𝑖 ∈ È1, 𝑀É, 𝑞ℎ,𝑖 = 𝑟𝑛

ℎ,𝑖
in (25c), and

summing the resulting equations we obtain, after expanding 𝛿𝑛𝑡 𝜓𝑖 (𝒓ℎ) according to
its definition,

2𝜇 aℎ (𝒘𝑛ℎ , 𝛿
𝑛
𝑡 𝒘

𝑛
ℎ
) + 𝜆−1 (𝜶·𝛿𝑛𝑡 𝒓𝑛ℎ ,𝜶·𝒓

𝑛
ℎ) +

𝑀∑︁
𝑖=1

𝐶𝑖 (𝛿𝑛𝑡 𝑟ℎ,𝑖 , 𝑟𝑛ℎ,𝑖)

+
𝑀∑︁
𝑖=1
(𝑆𝑖 (𝒓𝑛ℎ), 𝑟

𝑛
ℎ,𝑖) +

𝑀∑︁
𝑖=1

𝐾𝑖 chhoℎ (𝑟
𝑛
ℎ,𝑖 , 𝑟

𝑛
ℎ,𝑖) = ℓ

𝑛
1 (𝛿

𝑛
𝑡 𝒘ℎ) +

𝑀∑︁
𝑖=1

ℓ2,𝑖 (𝑟𝑛ℎ,𝑖). (30)

Denote by L𝑛 = L𝑛1 + · · · L
𝑛
5 and R

𝑛 = R𝑛1 + R
𝑛
2 , respectively, the left- and right-

hand side of the above expression, and set L ≔
∑N
𝑛=1 𝜏L𝑛 and, for 𝑖 ∈ {1, 2},

R𝑖 ≔
∑N
𝑛=1 𝜏R𝑛𝑖 .

(i.A) Lower bound for L. Recalling the definition (4) of the discrete time derivative
and using multiple times the formula



A Hybrid High-Order method for multiple-network poroelasticity 15

𝑥(𝑥 − 𝑦) = 1
2

(
𝑥2 + (𝑥 − 𝑦)2 − 𝑦2

)
(31)

with 𝑥 = •𝑛 and 𝑦 = •𝑛−1, we can write for the first three terms in L𝑛

L𝑛1 =
𝜇

𝜏

(
‖𝒘𝑛

ℎ
‖2a,ℎ + ‖𝒘

𝑛
ℎ
− 𝒘𝑛−1

ℎ
‖2a,ℎ − ‖𝒘

𝑛−1
ℎ
‖2a,ℎ

)
,

L𝑛2 =
1
2𝜆𝜏

(
‖𝜶·𝒓𝑛ℎ ‖

2
𝐿2 (Ω;R) + ‖𝜶·(𝒓

𝑛
ℎ − 𝒓𝑛−1ℎ )‖

2
𝐿2 (Ω;R) − ‖𝜶·𝒓

𝑛−1
ℎ ‖

2
𝐿2 (Ω;R)

)
,

L𝑛3 =

𝑀∑︁
𝑖=1

𝐶𝑖

2𝜏

(
‖𝑟𝑛ℎ,𝑖 ‖

2
𝐿2 (Ω;R) + ‖𝑟

𝑛
ℎ,𝑖 − 𝑟

𝑛−1
ℎ,𝑖 ‖

2
𝐿2 (Ω;R) − ‖𝑟

𝑛−1
ℎ,𝑖 ‖

2
𝐿2 (Ω;R)

)
.

(32)

For the fourth term, using again (31) this time with 𝑥 = 𝑟𝑛
ℎ,𝑖
and 𝑦 = 𝑟𝑛

ℎ, 𝑗
along with

𝜉𝑖← 𝑗 = 𝜉 𝑗←𝑖 , we get

L𝑛4 =

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1
(𝜉𝑖← 𝑗 (𝑟𝑛ℎ,𝑖 − 𝑟

𝑛
ℎ, 𝑗 ), 𝑟

𝑛
ℎ,𝑖)

=
1
2

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

(
‖𝜉

1
2
𝑖← 𝑗𝑟

𝑛
ℎ,𝑖 ‖

2
𝐿2 (Ω;R)+‖𝜉

1
2
𝑖← 𝑗 (𝑟

𝑛
ℎ,𝑖−𝑟

𝑛
ℎ, 𝑗 )‖

2
𝐿2 (Ω;R)−‖𝜉

1
2
𝑗←𝑖𝑟

𝑛
ℎ, 𝑗 ‖

2
𝐿2 (Ω;R)

)
=
1
2

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1
‖𝜉

1
2
𝑖← 𝑗 (𝑟

𝑛
ℎ,𝑖 − 𝑟

𝑛
ℎ, 𝑗 )‖

2
𝐿2 (Ω;R) =

1
2
‖𝒓𝑛ℎ ‖

2
𝝃 .

(33)
Multiplying (30) by 𝜏, summing over 𝑛 ∈ È1,NÉ, using (32) and (33), and telescoping
out the appropriate summands, we get

𝜇‖𝒘N
ℎ
‖2a,ℎ+

1
2𝜆
‖𝜶·𝒓N

ℎ ‖
2
𝐿2 (Ω;R)+

𝑀∑︁
𝑖=1

𝐶𝑖

2
‖𝑟N
ℎ,𝑖 ‖

2
𝐿2 (Ω;R)+

1
2

N∑︁
𝑛=1
𝜏‖𝒓𝑛ℎ ‖

2
𝝃+

𝑀∑︁
𝑖=1

N∑︁
𝑛=1
𝜏𝐾𝑖 ‖𝑟𝑛ℎ,𝑖 ‖

2
c,ℎ,hho

≤ R + 𝜇‖𝒘0
ℎ
‖2a,ℎ +

1
2𝜆
‖𝜶·𝒓0ℎ ‖

2
𝐿2 (Ω;R) +

𝑀∑︁
𝑖=1

𝐶𝑖

2
‖𝑟0ℎ,𝑖 ‖

2
𝐿2 (Ω;R) . (34)

(i.B) Upper bound for R. A discrete integration by parts in time gives for the first
term
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R1 = ℓN
1 (𝒘

N
ℎ
) − ℓ01 (𝒘

0
ℎ
) −

N∑︁
𝑖=1

𝜏(𝛿𝑛𝑡 ℓ1) (𝒘𝑛−1ℎ
)

≤ ‖ℓN
1 ‖a,ℎ,∗‖𝒘

N
ℎ
‖a,ℎ + ‖ℓ01 ‖a,ℎ,∗‖𝒘

0
ℎ
‖a,ℎ+

N∑︁
𝑛=1

𝜏𝜇−
1
2 ‖𝛿𝑛𝑡 ℓ1‖a,ℎ,∗𝜇

1
2 ‖𝒘𝑛−1

ℎ
‖a,ℎ

≤ 1
4𝜇
‖ℓN
1 ‖
2
a,ℎ,∗ +

𝜇

2
‖𝒘N

ℎ
‖2a,ℎ + ‖ℓ

0
1 ‖a,ℎ,∗‖𝒘

0
ℎ
‖a,ℎ

+ 1
2𝜇

N∑︁
𝑛=1

𝜏‖𝛿𝑛𝑡 ℓ1‖2a,ℎ,∗ +
𝜇

2

N∑︁
𝑛=0

𝜏‖𝒘𝑛
ℎ
‖2a,ℎ ,

(35)
where we have used multiple times the definition of dual norm (7) to pass to the
second line and we have concluded invoking the standard and generalised Young
inequalities and rearranging.
Moving to the second term, we use the definition (15) of the dual norm and the

Young inequality to write, for all 𝑖 ∈ È1, 𝑀É,

N∑︁
𝑛=1

𝜏ℓ𝑛2,𝑖 (𝑟
𝑛
ℎ,𝑖) ≤

N∑︁
𝑛=1

𝜏𝐾
− 12
𝑖
‖ℓ𝑛2,𝑖 ‖c,ℎ,∗ 𝐾

1
2
𝑖
‖𝑟𝑛ℎ,𝑖 ‖c,ℎ,hho

≤ 1
2

N∑︁
𝑛=1

𝜏𝐾−1𝑖 ‖ℓ𝑛2,𝑖 ‖
2
c,ℎ,∗ +

1
2

N∑︁
𝑛=1

𝜏𝐾𝑖 ‖𝑟𝑛ℎ,𝑖 ‖
2
c,ℎ,hho.

Hence, summing over 𝑖 ∈ È1, 𝑀É,

R2 ≤
1
2

𝑀∑︁
𝑖=1

N∑︁
𝑛=1

𝜏𝐾−1𝑖 ‖ℓ𝑛2,𝑖 ‖
2
c,ℎ,∗ +

1
2

𝑀∑︁
𝑖=1

N∑︁
𝑛=1

𝜏𝐾𝑖 ‖𝑟𝑛ℎ,𝑖 ‖
2
c,ℎ,hho. (36)

Gathering (35) and (36) and rearranging, we arrive at

R ≤ 𝜇

2
‖𝒘N

ℎ
‖2a,ℎ +

1
2

𝑀∑︁
𝑖=1

N∑︁
𝑛=1

𝜏𝐾𝑖 ‖𝑟𝑛ℎ,𝑖 ‖
2
c,ℎ,hho +

𝜇

2

N∑︁
𝑛=0

𝜏‖𝒘𝑛
ℎ
‖2a,ℎ

+ 1
4𝜇
‖ℓN
1 ‖a,ℎ,∗ +

1
2𝜇

N∑︁
𝑛=1

𝜏‖𝛿𝑛𝑡 ℓ1‖2a,ℎ,∗ +
1
2

𝑀∑︁
𝑖=1

N∑︁
𝑛=1

𝜏𝐾−1𝑖 ‖ℓ𝑛2,𝑖 ‖
2
c,ℎ,∗

+ ‖ℓ01 ‖a,ℎ,∗‖𝒘
0
ℎ
‖a,ℎ .

(37)

(i.C) Basic estimate. Combining (34) and (37) and multiplying by 2, we arrive at
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𝜇‖𝒘N
ℎ
‖2a,ℎ + 𝜆

−1‖𝜶·𝒓N
ℎ ‖
2
𝐿2 (Ω;R) +

𝑀∑︁
𝑖=1

𝐶𝑖 ‖𝑟N
ℎ,𝑖 ‖

2
𝐿2 (Ω;R)

+
N∑︁
𝑛=1

𝜏‖𝒓𝑛ℎ ‖
2
𝝃 +

𝑀∑︁
𝑖=1

N∑︁
𝑛=1

𝜏𝐾𝑖 ‖𝑟𝑛ℎ,𝑖 ‖
2
c,ℎ,hho ≤ 𝜇

N∑︁
𝑛=0

𝜏‖𝒘𝑛
ℎ
‖2a,ℎ + Nℓ + N0. (38)

The estimate (27) follows from the discrete Gronwall inquality of [27, Lemma 5.1].

(ii) Estimate on the total pressure. For all 𝑛 ∈ È1,NÉ, using the inf-sup stability (11)
of the pressure-displacement coupling, we can write

𝛽‖𝑟𝑛ℎ,0‖𝐿2 (Ω;R) ≤ sup
𝒗
ℎ
∈𝑼𝑘

ℎ
\{0}

bℎ (𝒗ℎ , 𝑟𝑛ℎ,0)
‖𝒗
ℎ
‖a,ℎ

≤ sup
𝒗
ℎ
∈𝑼𝑘

ℎ
\{0}

ℓ𝑛1 (𝒗ℎ) − 2𝜇 aℎ (𝒘
𝑛
ℎ
, 𝒗
ℎ
)

‖𝒗
ℎ
‖a,ℎ

≤ ‖ℓ𝑛1 ‖a,ℎ,∗ + 2𝜇 ‖𝒘
𝑛
ℎ
‖a,ℎ ,

(39)

where we have used (25a) in the second line and we have concluded using the
definition (7) of dual norm for the first term and a Cauchy–Schwarz inequality on the
symmetric positive definite bilinear form aℎ for the second. Squaring, dividing both
sides by 𝜇, passing to the maximum over 𝑛 ∈ È1, 𝑁É, and using (27) to estimate the
second term in the right-hand side, (41) follows. ut

4.2 A priori estimate for the HHO-HHO scheme

The following lemma contains an a priori estimate on the discrete solution, from
which the well posedness of problem (23) can be inferred.

Lemma 2 (A priori estimate on the discrete solution). Assuming 𝜏 small enough,
any solution to

(
𝒖𝑛
ℎ
, 𝑝𝑛
ℎ,0, (𝑝ℎ,𝑖)1≤𝑖≤𝑀

)
1≤𝑛≤𝑁 to the discrete problem (23) satisfies

the following a priori bound:

max
𝑛∈È1,𝑁É

(
𝜇‖𝒖𝑛

ℎ
‖2a,ℎ + 𝜆

−1‖𝜶· 𝒑‖2
𝐿2 (Ω;R) +

𝑀∑︁
𝑖=1

𝐶𝑖 ‖𝑝𝑛ℎ,𝑖 ‖
2
𝐿2 (Ω;R)

)
+

𝑁∑︁
𝑛=1

𝜏‖𝒓𝑛ℎ ‖
2
𝝃 +

𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝐾𝑖 ‖𝑝𝑛
ℎ,𝑖
‖2c,ℎ,hho ≤ exp

( 𝑡F
1 − 𝜏

)
(A + B) , (40)

where
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A ≔
𝐶2K
2𝜇
‖ 𝒇 ‖2

𝐶0 ( [0,𝑡F ];𝐿2 (Ω;R𝑑)) +
1
𝜇
‖ 𝒇 ‖2

𝐻 1 (0,𝑡F;𝐿2 (Ω;R𝑑))

+ 𝐶P𝑡F
𝑀∑︁
𝑖=1

1
𝐾𝑖
‖𝑔𝑖 ‖2𝐶0 ( [0,𝑡F ];𝐿2 (Ω;R))

B ≔ 2𝐶K‖ 𝒇 0‖𝐿2 (Ω;R𝑑) ‖𝒖0ℎ ‖a,ℎ + 2𝜇‖𝒖
0
ℎ
‖2a,ℎ + 𝜆

−1‖𝜶 · 𝒑0ℎ ‖
2
𝐿2 (Ω;R)

+
𝑀∑︁
𝑖=1

𝐶𝑖 ‖𝑝0ℎ,𝑖 ‖
2
𝐿2 (Ω;R) .

Moreover, it holds

𝛽2

𝜇
max

𝑛∈È1,𝑁É
‖𝑝𝑛ℎ,0‖

2
𝐿2 (Ω;R)

≤
2𝐶2K
𝜇
‖ 𝒇 ‖2

𝐶0 ( [0,𝑡F ];𝐿2 (Ω;R𝑑)) + 4𝛽
2 exp

( 𝑡F
1 − 𝜏

)
(A + B) . (41)

Proof. We apply Lemma 1 with ℓ𝑛1 =
(
𝑼𝑘
ℎ
3 𝒗

ℎ
↦→ ( 𝒇 , 𝒗ℎ) ∈ R

)
for all 𝑛 ∈ È0, 𝑁É

and ℓ𝑛2 =

(
𝑃𝑛
ℎ,𝑖
3 𝑞

ℎ,𝑖
↦→ (𝑔𝑖 , 𝑞ℎ,𝑖) ∈ R

)
for all 𝑛 ∈ È1, 𝑁É and all 𝑖 ∈ È1, 𝑀É and

show that
Nℓ ≤ A and N0 ≤ B. (42)

Let us prove the first bound in (42). Denote by Nℓ,𝑖 , 𝑖 ∈ È1, 3É, the terms in the
right-hand side of (28a). We start by noticing that, for all 𝑖 ∈ È0, 𝑁É,

‖ℓ𝑛1 ‖a,ℎ,∗ = sup
𝒗
ℎ
∈𝑼𝑘

ℎ
\{0}

ℓ𝑛1 (𝒗ℎ)
‖𝒗
ℎ
‖a,ℎ

= sup
𝒗
ℎ
∈𝑼𝑘

ℎ
\{0}

‖ 𝒇 𝑛‖𝐿2 (Ω;R𝑑) ‖𝒗ℎ ‖𝐿2 (Ω;R𝑑)
‖𝒗
ℎ
‖a,ℎ

= sup
𝒗
ℎ
∈𝑼𝑘

ℎ
\{0}

𝐶K‖ 𝒇 𝑛‖𝐿2 (Ω;R𝑑) ‖𝒗ℎ ‖a,ℎ
‖𝒗
ℎ
‖a,ℎ

≤ 𝐶K‖ 𝒇 𝑛‖𝐿2 (Ω;R𝑑) ,

(43)

where we have used the definition (7) of the dual norm in the first line, a Cauchy–
Schwarz inequality to pass to the the second line, and the discrete Korn inequality
(10) to pass to the third line. As a consequence,

Nℓ,1 ≤
𝐶2K
2𝜇

max
𝑛∈È1,𝑁É

‖ 𝒇 𝑛‖2
𝐿2 (Ω;R𝑑) =

𝐶2K
2𝜇
‖ 𝒇 ‖2

𝐶0 ( [0,𝑡F ];𝐿2 (Ω;R𝑑)) . (44)

Proceeding similarly for the second term and invoking the boundedness (5) of the
discrete time derivative with 𝑉 = 𝐿2 (Ω;R𝑑) and 𝜑 = 𝒇 , we get
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Nℓ,2 ≤
𝐶2K
2𝜇

𝑛∑︁
𝑛=1

𝜏‖𝛿𝑛𝑡 𝒇 ‖2𝐿2 (Ω;R𝑑) ≤
𝐶2K
2𝜇
‖ 𝒇 ‖2

𝐻 1 (0,𝑡F;𝐿2 (Ω;R𝑑)) . (45)

To bound the third term, we observe that, using the definition (15) of the dual norm
and the Poincaré inequality in a similar manner as above, we infer, for all 𝑛 ∈ È1, 𝑁É
and all 𝑖 ∈ È1, 𝑀É, ‖ℓ𝑛2,𝑖 ‖c,ℎ,∗ ≤ 𝐾

−1
𝑖
𝐶P‖𝑔𝑛𝑖 ‖𝐿2 (Ω;R) , hence

Nℓ,3 ≤ 𝐶P
𝑀∑︁
𝑖=1

1
𝐾𝑖

𝑁∑︁
𝑛=1

𝜏‖𝑔𝑛𝑖 ‖2𝐿2 (Ω;R)

≤ 𝐶P𝑡F
𝑀∑︁
𝑖=1

1
𝐾𝑖

max
𝑛∈È1,𝑁É

‖𝑔𝑛𝑖 ‖2𝐿2 (Ω;R) = 𝐶P𝑡F
𝑀∑︁
𝑖=1

1
𝐾𝑖
‖𝑔𝑖 ‖2𝐶0 ( [0,𝑡F ];𝐿2 (Ω;R)) .

(46)

Gathering (44)–(46), the first bound in (30) follows. The second bound in (30) is an
immediate after invoking (43) with 𝑛 = 0. This concludes the proof. ut

4.3 Error estimate for the HHO-HHO scheme

Following the general ideas of [20], we estimate the error such that, for all 𝑛 ∈ È0, 𝑁É,

𝒆𝑛
ℎ
≔ 𝒖𝑛

ℎ
− �̂�𝑛

ℎ
, 𝜖𝑛ℎ,0 ≔ 𝑝𝑛ℎ,0−𝑝

𝑛
ℎ,0, 𝜖𝑛

ℎ,𝑖
≔ 𝑝𝑛

ℎ,𝑖
− �̂�𝑛

ℎ,𝑖
∀𝑖 ∈ È1, 𝑀É, (47)

where the interpolate of the continuous solution obtained setting, for all 𝑛 ∈ È0, 𝑁É,

�̂�𝑛
ℎ
≔ 𝑰𝑘ℎ𝒖

𝑛, 𝑝𝑛ℎ,0 ≔ 𝜋𝑘ℎ 𝑝
𝑛
0 , �̂�𝑛

ℎ,𝑖
≔ 𝐼𝑘ℎ𝑝

𝑛
𝑖 ∀𝑖 ∈ È1, 𝑀É. (48)

The starting point for the error analysis is the following proposition,which establishes
that the errors solve the auxiliary problem (25) for a suitable choice of the right-hand
sides ℓ1 and ℓ2,𝑖 , 𝑖 ∈ È1, 𝑀É.

Proposition 1 (Error equations). We have that

𝒆0
ℎ
= 0, 𝜖0ℎ,0 = 0, 𝜖0

ℎ,𝑖
= 0 ∀𝑖 ∈ È1, 𝑀É (49)

and, for 𝑛 = 1, . . . , 𝑁 , it holds, for all 𝒗
ℎ
∈ 𝑼𝑘

ℎ
, all 𝑞ℎ,0 ∈ 𝑃𝑘ℎ,0,

2𝜇 aℎ (𝒆𝑛ℎ , 𝒗ℎ) + bℎ (𝒗ℎ , 𝜖
𝑛
ℎ,0) = Ea,ℎ (𝒖

𝑛; 𝒗
ℎ
) + Eb,ℎ (𝑝𝑛0 ; 𝒗ℎ), (50a)

bℎ (𝒆𝑛ℎ , 𝑞ℎ,0) − 𝜆
−1 (𝜶·𝝐𝑛ℎ , 𝑞ℎ,0) = 0, (50b)

and, for all 𝑖 ∈ È1, 𝑀É and all 𝑞
ℎ,𝑖
∈ 𝑃𝑘

ℎ,𝑖
,
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(𝛿𝑛𝑡 𝜓𝑖 (𝝐ℎ), 𝑞ℎ,𝑖) + (𝑆𝑖 (𝝐𝑛ℎ), 𝑞ℎ,𝑖) + 𝐾𝑖 c
hho
ℎ (𝜖

𝑛
ℎ,𝑖
, 𝑞
ℎ,𝑖
)

= (d𝑛𝑡 𝜓𝑖 ( 𝒑) − 𝛿𝑛𝑡 𝜓𝑖 ( 𝒑), 𝑞ℎ,𝑖) + Ehhoc,ℎ (𝑝
𝑛
𝑖 ; 𝑞ℎ,𝑖), (50c)

where we have set, for all 𝑛 ∈ È0, 𝑁É, 𝝐𝑛
ℎ

≔ (𝜖𝑛
ℎ,0, 𝜖

𝑛
ℎ,1, . . . , 𝜖

𝑛
ℎ,𝑀
) and, given

a function of time 𝜑 smooth enough, we have introduced the abridged notation
d𝑛𝑡 𝜑 ≔ d𝑡𝜑(𝑡𝑛).

Proof. Equation (49) is an immediate consequence of the definition (47) of the errors
along with the discrete initial condition (22).
Let now 𝑛 ∈ È1, 𝑁É. To prove (50a), it suffices to subtract from both sides of (23a)

the quantity 2𝜇 aℎ (�̂�𝑛ℎ , 𝒗ℎ) + bℎ (𝒗ℎ , 𝜖𝑛ℎ,0), observe that 𝒇
𝑛 = −2𝜇∇·(∇s𝒖𝑛) − ∇𝑝𝑛0

almost everywhere in Ω, and recall the definitions (9) and (14) of the consistency
error linear forms associated with aℎ and bℎ .
Moving to (50b), we observe that, for all 𝑞ℎ,0 ∈ 𝑃𝑘ℎ,0,

bℎ (�̂�𝑛ℎ , 𝑞ℎ,0) − 𝜆
−1 (𝜶· �̂�𝑛ℎ , 𝑞ℎ,0) = bℎ (𝑰

𝑘
ℎ𝒖

𝑛, 𝑞ℎ,0) − 𝜆−1 (𝜶·𝝅𝑘ℎ 𝒑
𝑛, 𝑞ℎ,0)

= 𝑏(𝒖, 𝑞ℎ,0) − 𝜆−1 (𝜶· 𝒑𝑛, 𝑞ℎ,0) = 0,
(51)

where, to pass to the second line, we have used the consistency property (12)
of bℎ together with the definition (6) of the global 𝐿2-orthogonal projector and
𝑞ℎ,0 ∈ P𝑘 (Tℎ;R) to remove it from the second term, while the conclusion follows
from (1b) after observing that 𝑃𝑘

ℎ,0 ⊂ 𝑃0. The error equation (50b) then follows
subtracting (51) from (23b) and using the linearity of the bilinear forms in the
left-hand side.
Finally, to prove (50c) for a given 𝑖 ∈ È1, 𝑀É and 𝑞

ℎ,𝑖
∈ 𝑃𝑘

ℎ,𝑖
, we subtract from

both sides the quantity (𝛿𝑛𝑡 𝜓𝑖 ( �̂�ℎ), 𝑞ℎ,𝑖) + (𝑆𝑖 ( �̂�𝑛ℎ), 𝑞ℎ,𝑖) + 𝐾𝑖 chhoℎ ( �̂�
𝑛

ℎ,𝑖
, 𝑞
ℎ,𝑖
) and

observe that

(𝑔𝑛𝑖 , 𝑞ℎ,𝑖) = (d𝑛𝑡 𝜓𝑖 ( 𝒑), 𝑞ℎ,𝑖) + (𝑆𝑖 ( 𝒑𝑛), 𝑞ℎ,𝑖) − (𝐾𝑖Δ𝑝𝑛𝑖 , 𝑞ℎ,𝑖)
= (d𝑛𝑡 𝜓𝑖 ( 𝒑) − 𝛿𝑛𝑡 𝜓𝑖 ( 𝒑), 𝑞ℎ,𝑖) + Ehhoc,ℎ (𝑝

𝑛
𝑖 ; 𝑞ℎ,𝑖)

+ (𝛿𝑛𝑡 𝜓𝑖 ( �̂�ℎ), 𝑞ℎ,𝑖) + (𝑆𝑖 ( �̂�𝑛ℎ), 𝑞ℎ,𝑖) + 𝐾𝑖 c
hho
ℎ ( �̂�

𝑛

ℎ,𝑖
, 𝑞
ℎ,𝑖
),

where, to pass to the second line, we have added and subtracted (𝛿𝑛𝑡 𝜓𝑖 ( �̂�ℎ), 𝑞ℎ,𝑖) +
chho
ℎ
( �̂�𝑛
ℎ,𝑖
, 𝑞
ℎ,𝑖
), used the fact that 𝑞ℎ,𝑖 ∈ P𝑘 (Tℎ;R) along with the linearity of 𝜓 and

the definition (6) of the global 𝐿2-orthogonal projector to write (𝛿𝑛𝑡 𝜓𝑖 ( �̂�ℎ), 𝑞ℎ,𝑖) =
(𝛿𝑛𝑡 𝜓𝑖 ( 𝒑), 𝑞ℎ,𝑖), and recalled the definition (17) of the consistency error associated
with the bilinear form chho

ℎ
. ut

Theorem 1 (Error estimate for the HHO-HHO scheme). Assume the additional
regularity
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𝒖 ∈ 𝐻1 (0, 𝑡F;𝐻𝑘+2 (Tℎ;R𝑑)),
𝑝0 ∈ 𝐻1 (0, 𝑡F;𝐻𝑘+1 (Tℎ;R)),

∀𝑖 ∈ È1, 𝑀É, 𝑝𝑖 ∈ 𝐶0 ( [0, 𝑡F];𝐻𝑘+2 (Tℎ;R)),
∀𝑖 ∈ È1, 𝑀É, 𝜓𝑖 ( 𝒑) ∈ 𝐻2 (0, 𝑡F; 𝐿2 (Ω;R)).

Then, for a time step 𝜏 small enough, it holds that

max
𝑛∈È1,𝑁É

(
𝜇‖𝒆𝑛

ℎ
‖2a,ℎ + 𝜆

−1‖𝜶·𝝐𝑛ℎ ‖
2
𝐿2 (Ω;R) +

𝑀∑︁
𝑖=1

𝐶𝑖 ‖𝜖𝑛ℎ,𝑖 ‖
2
𝐿2 (Ω;R) +

𝛽2

𝜇
‖𝜖𝑛ℎ,0‖

2
𝐿2 (Ω;R)

)
+

𝑁∑︁
𝑛=1

𝜏‖𝝐𝑛ℎ ‖
2
𝝃 +

𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝐾𝑖 ‖𝜖𝑛ℎ,𝑖 ‖
2
c,ℎ,hho . ℎ

2(𝑘+1)A + 𝜏2B, (52)

where the hidden constant is independent of ℎ, 𝜏, of the problem data, of 𝒖, and of
𝑝𝑖 , 𝑖 ∈ È0, 𝑀É, but possibly depends on Ω, 𝑡F, the mesh regularity parameter, and
𝑘 , and we have set

A ≔ 𝜇−1
(
‖𝒖‖2

𝐻 1 (0,𝑡F;𝐻 𝑘+2 (Tℎ ;R𝑑)) + ‖𝑝0‖
2
𝐻 1 (0,𝑡F;𝐻 𝑘+1 (Tℎ ;R𝑑))

)
+
𝑀∑︁
𝑖=1

𝐾−1𝑖 ‖𝑝𝑖 ‖2𝐶0 ( [0,𝑡F ];𝐻 𝑘+2 (Tℎ ;R)) ,

B ≔

𝑀∑︁
𝑖=1

𝐾−1𝑖 ‖𝜓𝑖 ( 𝒑)‖2𝐻 2 (0,𝑡F;𝐿2 (Ω;R)) .

Proof. For the sake of brevity, denote by Eℎ𝜏 the left-hand side of (52). Applying
Lemma 1 with, for all 𝑛 ∈ È1, 𝑁É,

ℓ𝑛1 = Ea,ℎ (𝒖𝑛; ·) + Eb,ℎ (𝑝𝑛0 ; ·),
ℓ𝑛2,𝑖 = (d

𝑛
𝑡 𝜓𝑖 ( 𝒑) − 𝛿𝑛𝑡 𝜓𝑖 ( 𝒑), ·) + Ehhoc,ℎ (𝑝𝑖; ·) ∀𝑖 ∈ È1, 𝑀É,

using multiple times the triangle inequality, and rearranging the terms, we arrive at

Eℎ𝜏 . 𝜇−1 max
𝑛∈È1,𝑁É

‖Ea,ℎ (𝒖𝑛; ·) + Eb,ℎ (𝑝𝑛0 ; ·)‖
2
a,ℎ,∗

+ 𝜇−1
𝑁∑︁
𝑛=1

𝜏‖𝛿𝑛𝑡
(
Ea,ℎ (𝒖; ·) + Eb,ℎ (𝑝0; ·)

)
‖2a,ℎ,∗

+
𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝐾−1𝑖 ‖Ehhoc,ℎ (𝑝
𝑛
𝑖 ; ·)‖2c,ℎ,∗

+
𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝐾−1𝑖 ‖(d𝑛𝑡 𝜓𝑖 ( 𝒑) − 𝛿𝑛𝑡 𝜓𝑖 ( 𝒑), ·)‖2c,ℎ,∗ ≕ 𝔗1 + · · · + 𝔗4.

(53)
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We proceed to bound the terms in the right-hand side of the above expression. For
the first term, we write

𝔗1 . 𝜇
−1

(
max

𝑛∈È1,𝑁É
‖Ea,ℎ (𝒖𝑛; ·)‖2a,ℎ,∗ + max

𝑛∈È1,𝑁É
‖Eb,ℎ (𝑝𝑛0 ; ·)‖

2
a,ℎ,∗

)
. ℎ2(𝑘+1) 𝜇−1 max

𝑛∈È1,𝑁É

(
|𝒖𝑛 |2

𝐻 𝑘+2 (Tℎ ;R𝑑)) + |𝑝
𝑛
0 |
2
𝐻 𝑘+1 (Tℎ ;R))

)
= ℎ2(𝑘+1) 𝜇−1

(
‖𝒖‖2

𝐶0 ( [0,𝑡F ];𝐻 𝑘+2 (Tℎ ;R𝑑)) + ‖𝑝0‖
2
𝐶0 ( [0,𝑡F ];𝐻 𝑘+1 (Tℎ ;R))

)
. ℎ2(𝑘+1)A,

(54)

where, to pass to the second line, we have used the consistency properties (8) of aℎ
and (13) of bℎ , while the conclusion follows from the embedding 𝐻1 (0, 𝑡F;𝑉) ↩→
𝐶0 ( [0, 𝑡F];𝑉) valid in dimension 1.
For the second term, we write

𝔗2 . 𝜇
−1

𝑁∑︁
𝑛=1

𝜏

(
‖Ea,ℎ (𝛿𝑛𝑡 𝒖; ·)‖2a,ℎ,∗ + ‖Eb,ℎ (𝛿

𝑛
𝑡 𝑝0; ·)‖2a,ℎ,∗

)
. ℎ2(𝑘+1) 𝜇−1

𝑁∑︁
𝑛=1

𝜏

(
|𝛿𝑛𝑡 𝒖 |2𝐻 𝑘+2 (Tℎ ;R𝑑) + |𝛿

𝑛
𝑡 𝑝0 |2𝐻 𝑘+1 (Tℎ ;R)

)
. ℎ2(𝑘+1) 𝜇−1

(
‖𝒖‖2

𝐻 1 (0,𝑡F;𝐻 𝑘+2 (Tℎ ;R𝑑)) + ‖𝑝0‖
2
𝐻 1 (0,𝑡F;𝐻 𝑘+1 (Tℎ ;R))

)
. ℎ2(𝑘+1)A,

(55)

where, in the first line, we have used the fact that 𝛿𝑛𝑡
(
Ea,ℎ (𝒖; ·) + Eb,ℎ (𝑝0; ·)

)
=

Ea,ℎ (𝛿𝑛𝑡 𝒖; ·) + Eb,ℎ (𝛿𝑛𝑡 𝑝0; ·) followed by a triangle inequality, we have invoked the
consistency (8) of aℎ and (13) of bℎ to pass to the second line, and the boundedness
(5) of the backward time derivative operator to pass to the third line.
For the third term, the consistency properties (16) of chho

ℎ
readily give

𝔗3 ≤ ℎ2(𝑘+1)
𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝐾−1𝑖 |𝑝𝑛𝑖 |2𝐻 𝑘+2 (Tℎ ;R)

. ℎ2(𝑘+1) 𝑡F

𝑀∑︁
𝑖=1

𝐾−1𝑖 ‖𝑝𝑖 ‖2𝐶0 ( [0,𝑡F ];𝐻 𝑘+2 (Tℎ ;R)) . ℎ
2(𝑘+1)A.

(56)

Let us now move to the fourth term. For the sake of conciseness, we let, for
all 𝑖 ∈ È1, 𝑀É, 𝜓𝑖 ≔ 𝜓𝑖 ( 𝒑), regarded as an element 𝐻1 (0, 𝑡F; 𝐿2 (Ω;R)), and we
conventionally denote 𝜓(𝒙, 𝑡) ≔ 𝜓(𝑡) (𝒙) for all 𝑡 ∈ [0, 𝑡F] and almost every 𝒙 ∈ Ω.
Let 𝑖 ∈ È1, 𝑀É. It holds, for all 𝑛 ∈ È1, 𝑁É,
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𝑑𝑛𝑡 𝜓𝑖 − 𝛿𝑛𝑡 𝜓𝑖 = 𝑑𝑛𝑡 𝜓𝑖 −
1
𝜏

∫ 𝑡𝑛

𝑡𝑛−1
𝑑𝑡𝜓𝑖 (𝑡) d𝑡

= 𝑑𝑛𝑡 𝜓𝑖 −
1
𝜏

∫ 𝑡𝑛

𝑡𝑛−1

(
𝑑𝑛𝑡 𝜓𝑖 −

∫ 𝑡𝑛

𝑡

𝑑2𝑡 𝜓𝑖 (𝑠) d𝑠
)
d𝑡

=
1
𝜏

∫ 𝑡𝑛

𝑡𝑛−1

∫ 𝑡𝑛

𝑡

𝑑2𝑡 𝜓𝑖 (𝑠) d𝑠 d𝑡 ≤
∫ 𝑡𝑛

𝑡𝑛−1
|𝑑2𝑡 𝜓𝑖 (𝑡) | d𝑡.

Combining this result with the Jensen inequality, we infer

‖𝑑𝑛𝑡 𝜓𝑖 − 𝛿𝑛𝑡 𝜓𝑖 ‖2𝐿2 (Ω;R) ≤
∫
Ω

����∫ 𝑡𝑛

𝑡𝑛−1
|𝑑2𝑡 𝜓𝑖 (𝒙, 𝑡) | d𝑡

����2 d𝒙
≤ 𝜏

∫ 𝑡𝑛

𝑡𝑛−1
‖𝑑2𝑡 𝜓𝑖 (𝑡)‖2𝐿2 (Ω;R) d𝑡

≤ 𝜏‖𝜓𝑖 ‖2𝐻 2 (𝑡𝑛−1 ,𝑡𝑛;𝐿2 (Ω;R)) .

(57)

We next write, for all 𝑛 ∈ È1, 𝑁É, all 𝑖 ∈ È1, 𝑀É, and all 𝑞
ℎ,𝑖
∈ 𝑃𝑘

ℎ,𝑖
,��(d𝑛𝑡 𝜓𝑖 − 𝛿𝑛𝑡 𝜓𝑖 , 𝑞ℎ,𝑖)�� ≤ ‖d𝑛𝑡 𝜓𝑖 − 𝛿𝑛𝑡 𝜓𝑖 ‖𝐿2 (Ω;R) ‖𝑞ℎ,𝑖 ‖𝐿2 (Ω;R)

≤ 𝜏 12 ‖𝜓𝑖 ‖𝐻 2 (𝑡𝑛−1 ,𝑡𝑛;𝐿2 (Ω;R)) ‖𝑞ℎ,𝑖 ‖𝐿2 (Ω;R)
. 𝜏

1
2 ‖𝜓𝑖 ‖𝐻 2 (𝑡𝑛−1 ,𝑡𝑛;𝐿2 (Ω;R)) ‖𝑞ℎ,𝑖 ‖c,ℎ,hho,

where we have used a Cauchy–Schwarz inequality in the first line, the bound (57) in
the second line, and a discrete global Poincaré inequality in HHO spaces (resulting
from a combination of [19, Proposition 5.4] and [25, Lemma 4]) to conclude. Using
the above estimate in conjunction with the definition (15) of the dual norm, we have
that

‖(d𝑛𝑡 𝜓𝑖 ( 𝒑) − 𝛿𝑛𝑡 𝜓𝑖 ( 𝒑), ·)‖2c,ℎ,∗ . 𝜏‖𝜓𝑖 ( 𝒑)‖
2
𝐻 2 (𝑡𝑛−1 ,𝑡𝑛;𝐿2 (Ω;R)) .

Using this bound, we obtain

𝔗4 .
𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏2𝐾−1𝑖 ‖𝜓𝑖 ( 𝒑)‖2𝐻 2 (𝑡𝑛−1 ,𝑡𝑛;𝐿2 (Ω;R))

= 𝜏2
𝑁∑︁
𝑖=1

𝐾−1𝑖 ‖𝜓𝑖 ( 𝒑)‖2𝐻 2 (0,𝑡F;𝐿2 (Ω;R)) = 𝜏
2B.

(58)

Plugging (54)–(58) into (53) yields (52). ut
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4.4 Error estimate for the HHO-DG scheme

The proof of the error estimate for the HHO-DG scheme follows by adapting the ar-
guments used in Theorem 1 to a different choice of the interpolates of the continuous
pressures in (48). For all 𝑛 ∈ È0, 𝑁É and all 𝑖 ∈ È1, 𝑀É, we set

𝜖𝑛ℎ,𝑖 ≔ 𝑝𝑛ℎ,𝑖 − 𝑝
𝑛
ℎ,𝑖 ,

where 𝑝0
ℎ,𝑖

≔ 𝜋𝑘
ℎ
𝑝0
𝑖
and, for 𝑛 ≥ 1, 𝑝𝑛

ℎ,𝑖
is the solution of problem (20) with 𝑟 = 𝑝𝑛

𝑖
.

Theorem 2 (Error estimate for the HHO-DG scheme). Assume 𝑘 ≥ 1, Ω convex,
and the additional regularity

𝒖 ∈ 𝐻1 (0, 𝑡F;𝐻𝑘+2 (Tℎ;R𝑑)),
𝑝0 ∈ 𝐻1 (0, 𝑡F;𝐻𝑘+1 (Tℎ;R)),

𝜓0 ( 𝒑) ∈ 𝐻1 (0, 𝑡F;𝐻𝑘+1 (Tℎ;R))
∀𝑖 ∈ È1, 𝑀É, 𝑆𝑖 ( 𝒑) ∈ 𝐶0 ( [0, 𝑡F];𝐻𝑘+1 (Tℎ;R)),
∀𝑖 ∈ È1, 𝑀É, 𝜓𝑖 ( 𝒑) ∈ 𝐻2 (0, 𝑡F; 𝐿2 (Ω;R)) ∩ 𝐻1 (0, 𝑡F;𝐻𝑘+1 (Tℎ;R)),

with 𝜓0 ( 𝒑) ≔ 𝜆−1 (𝜶· 𝒑 − 𝑝0). Then, for a time step 𝜏 small enough (with threshold
independent of ℎ), it holds that

max
𝑛∈È1,𝑁É

(
𝜇‖𝒆𝑛

ℎ
‖2a,ℎ + 𝜆

−1‖𝜶·𝝐𝑛ℎ ‖
2
𝐿2 (Ω;R) +

𝑀∑︁
𝑖=1

𝐶𝑖 ‖𝜖𝑛ℎ,𝑖 ‖
2
𝐿2 (Ω;R) +

𝛽2

𝜇
‖𝜖𝑛ℎ,0‖

2
𝐿2 (Ω;R)

)
+

𝑁∑︁
𝑛=1

𝜏‖𝝐𝑛ℎ ‖
2
𝝃 +

𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝐾𝑖 ‖𝜖𝑛ℎ,𝑖 ‖
2
c,ℎ,dg . ℎ

2(𝑘+1)Adg + 𝜏2Bdg, (59)

where the hidden constant is independent of ℎ, 𝜏, of the problem data, of 𝒖, and of
𝑝𝑖 , 𝑖 ∈ È0, 𝑀É, but possibly depends on Ω, 𝑡F, the mesh regularity parameter, and
𝑘 , and we have set

Adg ≔ 𝜇−1
(
‖𝒖‖2

𝐻 1 (0,𝑡F;𝐻 𝑘+2 (Tℎ ;R𝑑)) + ‖𝑝0‖
2
𝐻 1 (0,𝑡F;𝐻 𝑘+1 (Tℎ ;R𝑑))

)
+
𝑀∑︁
𝑖=0

𝜆𝛼−2𝑖 ‖𝜓𝑖 ( 𝒑)‖2𝐻 1 (0,𝑡F;𝐻 𝑘+1 (Tℎ ;R)) +
𝑀∑︁
𝑖=1

𝜆𝛼−2𝑖 ‖𝑆𝑖 ( 𝒑)‖2𝐿2 (0,𝑡F;𝐻 𝑘+1 (Tℎ ;R)) ,

Bdg ≔
𝑀∑︁
𝑖=1

𝜆𝛼−2𝑖 ‖𝜓𝑖 ( 𝒑)‖2𝐻 2 (0,𝑡F;𝐿2 (Ω;R)) .

Proof. Proceeding as in the proof of Proposition 1 and recalling the definition of the
elliptic projection in (20), it is readily inferred that

𝒆0
ℎ
= 0, 𝜖0ℎ,𝑖 = 0, ∀𝑖 ∈ È0, 𝑀É (60a)
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and, for 𝑛 ∈ È1, 𝑁É, it holds, for all 𝒗
ℎ
∈ 𝑼𝑘

ℎ
, all 𝑞ℎ,0 ∈ 𝑃𝑘ℎ,0,

2𝜇 aℎ (𝒆𝑛ℎ , 𝒗ℎ) + bℎ (𝒗ℎ , 𝜖
𝑛
ℎ,0) = Ea,ℎ (𝒖

𝑛; 𝒗
ℎ
) + Eb,ℎ (𝑝𝑛0 ; 𝒗ℎ), (60b)

bℎ (𝛿𝑛𝑡 𝒆ℎ , 𝑞ℎ,0) − 𝜆
−1 (𝛿𝑛𝑡 (𝜶·𝝐ℎ), 𝑞ℎ,0) = −(𝛿𝑛𝑡 (𝜓0 ( 𝒑 − �̂�ℎ), 𝑞ℎ,0), (60c)

and, for all 𝑖 ∈ È1, 𝑀É and 𝑞ℎ,𝑖 ∈ 𝑃𝑘ℎ,𝑖 ,

(𝛿𝑛𝑡 𝜓𝑖 (𝝐ℎ), 𝑞ℎ,𝑖) + (𝑆𝑖 (𝝐𝑛ℎ), 𝑞ℎ,𝑖) + 𝐾𝑖 c
dg
ℎ
(𝜖𝑛ℎ,𝑖 , 𝑞ℎ,𝑖)

= (𝑆𝑖 ( 𝒑𝑛− �̂�𝑛ℎ), 𝑞ℎ,𝑖) + (d
𝑛
𝑡 𝜓𝑖 ( 𝒑) − 𝛿𝑛𝑡 𝜓𝑖 ( 𝒑), 𝑞ℎ,𝑖) + (𝛿𝑛𝑡 𝜓𝑖 ( 𝒑 − �̂�ℎ), 𝑞ℎ,𝑖),

(60d)

where, in (60c), we have applied discrete time derivation and introduced the linear
function 𝜓0 defined such that, for all 𝒒 ∈ R𝑀+1, 𝜓0 (𝒒) ≔ 𝜆−1 (𝜶·𝒒 − 𝑞0). Then,
following the first two step of the proof of Lemma 1 we obtain an estimate similar
to (34), namely, for an arbitrary N ∈ È1, 𝑁É it holds

𝜇‖𝒆N
ℎ
‖2a,ℎ+

‖𝜶·𝝐N
ℎ
‖2
𝐿2 (Ω;R)
2𝜆

+
𝑀∑︁
𝑖=1

𝐶𝑖

2
‖𝜖N
ℎ,𝑖 ‖

2
𝐿2 (Ω;R)+

N∑︁
𝑛=1

𝜏

2
‖𝝐𝑛ℎ ‖

2
𝝃+

𝑀∑︁
𝑖=1

N∑︁
𝑛=1
𝜏𝐾𝑖 ‖𝜖𝑛ℎ,𝑖 ‖

2
c,ℎ,dg

≤
N∑︁
𝑛=1

𝜏
(
Ea,ℎ (𝒖𝑛; 𝛿𝑛𝑡 𝒆ℎ) + Eb,ℎ (𝑝

𝑛
0 ; 𝛿

𝑛
𝑡 𝒆ℎ)

)
+
𝑀∑︁
𝑖=0

N∑︁
𝑛=1

𝜏(E𝑛𝑖,ℎ ( 𝒑), 𝜖
𝑛
ℎ,𝑖), (61)

with E𝑛0,ℎ ( 𝒑) ≔ 𝛿𝑛𝑡 𝜓0 ( 𝒑 − �̂�ℎ) and, for all 𝑖 ∈ È1, 𝑀É,

E𝑛𝑖,ℎ ( 𝒑) ≔ (d
𝑛
𝑡 𝜓𝑖 ( 𝒑) − 𝛿𝑛𝑡 𝜓𝑖 ( 𝒑)) + 𝑆𝑖 ( 𝒑𝑛 − �̂�𝑛ℎ) + 𝛿

𝑛
𝑡 𝜓𝑖 ( 𝒑 − �̂�ℎ).

The first term in the right-hand side of (61) can be bounded as in (35). We bound
the second term by using the Cauchy–Schwarz and Young inequality to write

𝑀∑︁
𝑖=0

N∑︁
𝑛=1

𝜏(E𝑛𝑖,ℎ ( 𝒑), 𝜖
𝑛
ℎ,𝑖) ≤

𝑀∑︁
𝑖=0

N∑︁
𝑛=1

𝜏𝜆

2𝛼2
𝑖

‖E𝑛𝑖,ℎ ( 𝒑)‖
2
𝐿2 (Ω,R) +

N∑︁
𝑛=1

𝜏

2𝜆
‖𝜶·𝝐𝑛ℎ ‖

2
𝐿2 (Ω;R) .

Therefore, proceeding as in steps (i.C) and (ii) of Lemma 1, yields

max
𝑛∈È1,𝑁É

(
𝜇‖𝒆𝑛

ℎ
‖2a,ℎ + 𝜆

−1‖𝜶·𝝐𝑛ℎ ‖
2
𝐿2 (Ω;R) +

𝑀∑︁
𝑖=1

𝐶𝑖 ‖𝜖𝑛ℎ,𝑖 ‖
2
𝐿2 (Ω;R) +

𝛽2

𝜇
‖𝜖𝑛ℎ,0‖

2
𝐿2 (Ω;R)

)
+
𝑁∑︁
𝑛=1

𝜏‖𝝐𝑛ℎ ‖
2
𝝃+2

𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝐾𝑖 ‖𝜖𝑛ℎ,𝑖 ‖
2
c,ℎ,dg . exp

( 𝑡F
1 − 𝜏

) (
𝔗1 + 𝔗2 + 𝔗dg3 + 𝔗

dg
4

)
,

(62)

where
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𝔗
dg
3 =

𝑁∑︁
𝑛=1

𝜏

(
𝑀∑︁
𝑖=0

𝜆𝛼−2𝑖 ‖𝛿𝑛𝑡 𝜓𝑖 ( 𝒑 − �̂�ℎ)‖2𝐿2 (Ω;R) +
𝑀∑︁
𝑖=1

𝜆𝛼−2𝑖 ‖𝑆𝑖 ( 𝒑𝑛 − �̂�𝑛ℎ)‖
2
𝐿2 (Ω;R)

)
𝔗
dg
4 =

𝑀∑︁
𝑖=1

𝑁∑︁
𝑛=1

𝜏𝜆𝛼−2𝑖 ‖d𝑛𝑡 𝜓𝑖 ( 𝒑) − 𝛿𝑛𝑡 𝜓𝑖 ( 𝒑)‖2𝐿2 (Ω;R)

and the terms𝔗1 and𝔗2 are defined in (53) and bounded in (54) and (55), respectively.
The term 𝔗

dg
4 can be bounded using (57) and (58) to obtain 𝔗

dg
4 . 𝜏

2Bdg. Hence, it
only remains to bound 𝔗dg3 . Owing to the linearity of the backward time derivative
𝛿𝑛𝑡 and the functions 𝜓𝑖 and 𝑆𝑖 for all 𝑖 ∈ È1, 𝑀É, the approximation property (21)
of the elliptic projection, and the boundedness property (5), we infer

𝔗
dg
3 . ℎ

2(𝑘+1)
𝑁∑︁
𝑛=1

𝜏

(
𝑀∑︁
𝑖=0

𝜆𝛼−2𝑖 ‖𝛿𝑛𝑡 𝜓𝑖 𝒑‖2𝐻 𝑘+1 (Tℎ ;R) +
𝑀∑︁
𝑖=1

𝜆𝛼−2𝑖 ‖𝑆𝑖 ( 𝒑𝑛)‖2𝐻 𝑘+1 (Tℎ ;R)

)
. ℎ2(𝑘+1)Adg.

Combining the previous bounds with (62) leads to the conclusion. ut

5 Numerical tests

In this section, we present a few numerical examples to illustrate the theoretical
results. In order to confirm the convergence rates predicted in Theorem 2, we rely
on a manufactured smooth solution of a two-network poroelasticity problem (i.e. the
Barenblatt–Biot problem) on the unit square domain Ω = (0, 1)2 and time interval
[0, 𝑡F = 1). The exact displacement 𝒖 and exact pressures 𝑝1 and 𝑝2 are given by,

𝒖(𝒙, 𝑡) = sin(𝜋𝑡)
(
− cos(𝜋𝑥1) cos(𝜋𝑥2)
sin(𝜋𝑥1) sin(𝜋𝑥2)

)
,

𝑝1 (𝒙, 𝑡) = 𝜋 sin(𝜋𝑡) (sin(𝜋𝑥1) cos(𝜋𝑥2) + cos(𝜋𝑥1) sin(𝜋𝑥2)) ,
𝑝2 (𝒙, 𝑡) = 𝜋 sin(𝜋𝑡) (sin(𝜋𝑥1) cos(𝜋𝑥2) − cos(𝜋𝑥1) sin(𝜋𝑥2)) .

The total pressure 𝑝0, volumetric load 𝒇 , and source terms 𝑔1 and 𝑔2 are inferred
from the exact solution. In order to assess the robustness with respect to the model
coefficients we consider the four sets of parameters depicted in Table 1. The first
set of the model parameters is taken from [28]. The second, third, and fourth sets
are meant to check the robustness of the method in the nearly incompressible case
(i.e. large values of 𝜆), in the vanishing storage coefficients case, and in the small
permeabilities case, respectively. We remark that the value of 𝜇 and 𝜆 considered in
the second test corresponds to a Poisson ratio 𝜈 = 0.49999.
We consider the HHO method described in Section 3 with DG discretisation of

the Darcy term with polynomial degree 𝑘 ∈ {1, 2, 3} over a trapezoidal elements
mesh sequence (Tℎ) 𝑗 with 22+2 𝑗 elements, for 𝑗 ∈ È1, 5É. The time discretisation is
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Table 1: Model parameters.

Parameter Unit Set i Set ii Set iii Set iv

𝜇 MPa 4.2 4.2 4.2 4.2

𝜆 MPa 2.4 2.4 · 105 2.4 2.4

𝛼1 – 0.95 0.95 0.95 0.95

𝛼2 – 0.12 0.12 0.12 0.12

𝐶1 MPa−1 0.054 0.054 0.0 0.054

𝐶2 MPa−1 0.014 0.014 0.0 0.014

𝐾1 m2 MPa−1s−1 6.18 · 10−6 6.18 · 10−6 6.18 · 10−6 10−12

𝐾2 m2 MPa−1s−1 2.72 · 10−5 2.72 · 10−5 2.72 · 10−5 10−11

𝜉1←2 MPa−1s−1 0.01 0.01 0.01 0.01

based on Backward Differentiation Formulas (BDF) of order (𝑘+1) with a fixed time
step 𝜏 = 10−3. The boundary conditions are inferred from the exact solution. On the
bottom edge {𝒙 ∈ 𝜕Ω|𝑥2 = 0} we impose Dirichlet conditions for the displacement
and Neumann conditions for both the network pressures 𝑝1 and 𝑝2. On the rest of the
domain boundary we set Neumann conditions for the displacement and Dirichlet for
the two pressures. Initial conditions are specified by means of 𝐿2-projections over
mesh elements according to (22). Initialisation is performed at several time points
(𝑡𝑖 = −𝜏 𝑖, 𝑖 = 1, ..., 𝑘 + 1), in agreement with the BDF order.
In Tables 2–4 we report the convergence rates for the four set of model parameters

indicated in Table 1.We use the following shorthand notations for the error measures:

‖𝒆
ℎ𝜏
‖∞,1 ≔ max

𝑛∈È1,𝑁É
‖𝒖𝑛
ℎ
− 𝑰𝑘ℎ𝒖

𝑛‖a,ℎ ,

‖𝜖𝑖,ℎ𝜏 ‖∞,0 ≔ max
𝑛∈È1,𝑁É

‖𝑝𝑛𝑖,ℎ − 𝜋
𝑘
ℎ 𝑝

𝑛
𝑖 ‖𝐿2 (Ω;R) , ∀𝑖 ∈ È0, 2É.

Each error measure is accompanied by the corresponding estimated order of con-
vergence (EOC). The observed convergence rates are in agreement with the error
estimate of Theorem 2. We remark that the performances are not affected by the dif-
ferent choices of the model parameters. Hence, the method is robust in all the limit
cases of vanishing storage, nearly incompressible, and poorly permeable media.
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Set ‖𝒆
ℎ𝜏
‖∞,1 EOC ‖𝜖0,ℎ𝜏 ‖∞,0 EOC ‖𝜖1,ℎ𝜏 ‖∞,0 EOC ‖𝜖2,ℎ𝜏 ‖∞,0 EOC

i

2.39e-01 – 5.60e-01 – 4.78e-01 – 2.48e-01 –
6.23e-02 1.94 1.11e-01 2.24 9.31e-02 2.36 4.80e-02 2.37
1.51e-02 2.05 2.28e-02 2.28 1.88e-02 2.31 1.01e-02 2.24
3.73e-03 2.01 4.92e-03 2.21 3.83e-03 2.29 2.52e-03 2.01
9.39e-04 1.99 1.08e-03 2.19 7.55e-04 2.34 6.28e-04 2.00

ii

2.43e-01 – 8.25e-01 – 1.43e-01 – 1.32e-01 –
6.26e-02 1.95 1.55e-01 2.41 3.76e-02 1.92 3.86e-02 1.77
1.51e-02 2.05 3.09e-02 2.33 9.16e-03 2.04 9.52e-03 2.02
3.73e-03 2.02 6.84e-03 2.18 2.34e-03 1.97 2.49e-03 1.93
9.35e-04 2.00 1.71e-03 2.00 6.04e-04 1.95 6.27e-04 1.99

iii

2.39e-01 – 5.67e-01 – 4.79e-01 – 3.08e-01 –
6.23e-02 1.94 1.14e-01 2.31 9.43e-02 2.34 6.48e-02 2.25
1.51e-02 2.05 2.40e-02 2.24 1.97e-02 2.26 1.40e-02 2.21
3.73e-03 2.01 5.50e-03 2.13 4.45e-03 2.15 3.27e-03 2.10
9.35e-04 2.00 1.38e-03 1.99 1.12e-03 1.99 8.19e-04 2.00

iv

2.42e-01 – 8.00e-01 – 7.78e-01 – 4.14e-01 –
6.25e-02 1.95 1.46e-01 2.46 1.41e-01 2.47 6.28e-02 2.72
1.51e-02 2.05 2.79e-02 2.39 2.62e-02 2.43 1.11e-02 2.50
3.73e-03 2.01 5.58e-03 2.32 4.88e-03 2.42 2.61e-03 2.09
9.39e-04 1.99 1.12e-03 2.31 8.43e-04 2.53 6.40e-04 2.03

Table 2: Convergence rates for the HHO-DG discretisation with polynomial degree
𝑘 = 1 based on manufactured solutions of the Barenblatt–Biot problem, see text for
details.
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