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ABSTRACT 
 

 The time synchronization of (MxN) MIMO systems has been studied this last fifteen years, for both 

single-carrier (SC) and multi-carriers links. Without any interference, most of the available receivers assume 

orthogonal sequences. With interference, the current most powerful receiver is a generalized likelihood ratio test 

(GLRT) receiver, assuming unknown, stationary, circular, temporally white and spatially colored Gaussian noise. 

However, this receiver is more complex than its non-GLRT counterparts, which, unfortunately, do not perform as 

well in most cases. In this context, the purpose of this paper is to get new insights into the time synchronization 

of SC MIMO links, both without and with interference, in order to overcome the limitations of the available 

receivers. In the absence of interference, the MIMO GLRT receiver is computed and compared to the existing 

ones in a unified framework, enlightening its better performance. In the presence of interference, as the 

complexity is an important issue in practice, several ways to decrease the complexity of the available GLRT 

receiver while keeping its performance are proposed, enlightening the great practical interest of the proposed 

schemes. Finally, the optimization of the number of transmit antennas is investigated, enlightening the existence 

of an optimal value of M depending on the channel matrix. 

Keywords : Time Synchronization, MIMO, SIMO, GLRT, MMSE, Interference.   
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1. INTRODUCTION 
 

 Two decades ago, MIMO systems, which use multiple antennas at both transmitter and receiver, were 

developed to increase the throughput (bit rate) and reliability of communications over fading channels through 

spatial multiplexing [1] [2] and space-time coding (STC) [3] [4] at transmission, without the need of increasing 

the receiver bandwidth. This powerful technology has been adopted in several wireless standards such as IEEE 

802.11n, IEEE 802.16 [5], LTE [6] or LTE-Advanced [7] in particular. Nevertheless, as wireless spectrum is an 

expensive resource, increasing network capacity without requiring additional bandwidth is a great challenge for 

wireless networks. This has motivated the development of multi-user MIMO (MU-MIMO) techniques [8], such 

as Interference Alignment techniques [9], allowing several MIMO links to share the same time-frequency 

resource. However, in order to be efficient, all these MIMO links require a preliminary step of time and 

frequency synchronization which has to be also robust to interference.   

 Time and frequency synchronization of MIMO systems have been strongly studied these last fifteen years, 

mainly in the contexts of direct-sequence coded division multiple acces (DS-CDMA) and orthogonal frequency 

division multiplex (OFDM) links. Both coarse and fine time synchronization jointly with frequency offset 

estimation and compensation have been analyzed, and many techniques have been proposed either for time-

frequency synchronization [10-21] or for time synchronization only [22-32]. Nevertheless, most of these 

techniques assume both an absence of interference, i.e. a temporally and spatially white noise, and orthogonal 

synchronization sequences. On the other hand, the scarce papers of the literature dealing with MIMO 

synchronization in the presence of interference, i.e. for a temporally white but spatially colored noise, correspond 

to [16] [28] [30] [31]. More precisely, [16] and [28] consider the problem of MIMO synchronization in the 

presence of multi-user interference (MUI) only. The proposed techniques exploit the known structure of MUI 

and are not robust to external interference such as hostile jammers, which may be a great limitation for military 

applications in particular. The unique paper dealing with MIMO synchronization in the presence of interference 

of any kind, such as hostile jammers, has been published recently and corresponds to [30]. In [30], several 

receivers are proposed for time synchronization in both flat fading and frequency selective fading channels. 

However, for complexity reasons, only those developed for flat fading channels seem to be realistic for practical 

situations. Note that in practice, a receiver which is developed for flat fading channels may also be used for 

frequency selective channels, considering the secondary propagation multi-paths as interference. Two receivers 

which are robust to interference of any kind have been proposed in [30] for flat fading channels. They are 

derived from a minimum mean square error (MMSE) and a GLRT approach respectively. The GLRT receiver, 

called GLRT2 receiver in the following, assumes an unknown, stationary, Gaussian, spatially colored and 

temporally white total noise, contrary to the GLRT1 receiver which assumes an unknown, stationary, Gaussian, 
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spatially and temporally white total noise. The GLRT2 receiver has been shown in [30], by computer simulations 

and at least for moderate signal to noise ratio (SNR), to be the best receiver for non-orthogonal synchronization 

sequences. An asymptotical analytical performance analysis of this receiver has been presented recently in [31] 

and [33] for nominal and large antenna arrays respectively. Nevertheless, the GLRT2 receiver proposed in [30] 

may be very costly to implement, for large number of antennas in particular, since, for a (M x N) MIMO system, 

it requires both a (NxN) matrix inversion and an (NxN) or (MxM) determinant computation at each tested sample 

position. An alternative to this GLRT2 receiver could be the MMSE receiver proposed in [30]. However, 

although less complex than the GLRT2 receiver, the MMSE receiver is shown in this paper to be sensitive to the 

synchronization sequences correlations, which may limit its practical use in this case. 

 In this context, the purpose of this paper is to get new insights into the time synchronization of SC MIMO 

links, both without and with interference, in order to overcome the limitations of the available receivers. In the 

absence of interference, the MIMO GLRT1 receiver is computed for arbitrary synchronization sequences and 

compared, through a unified framework, to most of the receivers of the literature, enlightening its better 

performance in most cases for non-orthogonal synchronization sequences in particular. In the presence of 

interference, as the complexity is an important issue for practical implementations, several ways to decrease the 

complexity of the GLRT2 receiver while keeping its performance are proposed. The first way to decrease the 

GLRT2 receiver complexity is to introduce two new MIMO receivers which are robust to interference. These 

two new receivers, called in the following E0-GLRT3 and E1-GLRT3 receivers respectively, correspond to two 

estimates of the GLRT receiver in known, stationary, Gaussian, spatially correlated and temporally white total 

noise, called GLRT3 receiver. These new receivers are shown in the paper to be as much powerful as the GLRT2 

receiver but with a lower complexity. For stationary interference, the complexity of both the GLRT2 and E0-

GLRT3 receivers may be further reduced by computing and inverting at a lower rate, from an observation 

interval greater than the synchronization sequence length, the data correlation matrix appearing in these receiver 

expressions. This strategy is shown to weakly degrade the performance of the considered receivers while 

substantially decreasing their complexities, especially for large values of M and N. Finally, another way to 

decrease the previous receiver complexity is to optimize the number of transmit antennas used for 

synchronization for a given value of the number of receive antennas and for given kinds of propagation channels. 

Note that such a problem has been preliminary investigated in [25-27], [29] in the DS-CDMA context only and 

in [32] for precoded synchronization schemes. One of the goals is to enlighten the conditions under which it 

becomes sub-optimal to implement a MIMO receiver with respect to a SIMO receiver [34] [35] for time 

synchronization. The performance of the proposed optimization schemes and associated receivers, jointly with 

their complexity, are analyzed in this paper and compared with that of the GLRT2 receiver, enlightening the 
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practical interest of the former. Note that preliminary results of the paper in the presence of interference have 

been presented in [36] but without any proof. 

 The paper is organized as follows. Section 2 introduces the system model and formulates the problem 

which is addressed in this paper. Section 3 recalls the basics of detection, the likelihood ratio test and the 

principle of the GLRT. Section 4 assumes an absence of interference, computes the GLRT1 receiver and 

compares its structure with that of the main receivers of the literature. Section 5 considers the presence of 

interference and recalls the GLRT2 and MMSE receivers introduced in [30]. Section 6 computes the GLRT3 

receiver and introduces two new receivers, the E0-GLRT3 and E1-GLRT3 receivers, robust to interference and 

derived from the GLRT3 receiver. Section 7 describes how to decrease the computation rate of the estimated 

correlation matrix appearing in the previous receivers. Section 8 presents a comparative complexity analysis of 

the considered receivers, enlightening the great interest of the proposed receivers. Section 9 presents a numerical 

comparative performance analysis of the receivers introduced in sections 4 to 7, without and with interference, 

for orthogonal and non-orthogonal synchronization sequences and for deterministic and random channels. It also 

investigates the optimization of the number of transmit antennas for several kinds of propagation channels. 

Finally Section 10 concludes this paper.  

 Before proceeding, we fix the notations used throughout the paper. Italic lower (upper) case non boldface 

symbols denote scalar (matrices) whereas italic lower case boldface symbols denote column vectors. T, H and * 

means the transpose, conjugate transpose and conjugate, respectively.  
 

2. OBSERVATION MODEL AND PROBLEM FORMULATION 
 

2.1 Hypotheses and observation model 
 

  We consider a (MxN) MIMO radiocommunication link with M and N narrow-band antennas at 

transmission and reception respectively, and we denote by s(k) the (Mx1) synchronization sequence vector 

transmitted at time k, with components si(k), (1 ≤ i ≤ M), known by the receiver. Assuming a flat fading 

propagation channel and perfect frequency synchronization, the vector, x(k), of the complex envelopes of the 

signals at the output of the N receive antennas at time k can be written as 
 

 x(k)  =  H s(k − l0)  +  v(k)  = ∑;

M

;

i = 1

 si(k − l0) hi  +  v(k)       (1) 

Here, H is the (NxM) channel matrix whose column i is the vector hi, l0 is the unknown propagation delay 

between the transmitter and receiver and v(k) is the sampled total noise vector at time k, which contains the 

potential contribution of MUI interference, jammers and background noise and which is assumed to be 

uncorrelated with s(k − l0). Assuming synchronization sequences of lenght K, denoting by X(l0) and V(l0) the 

(NxK) observation and total noise matrices X(l0) =;
∆

 [x(1+ l0), x(2+ l0), ..., x(K + l0)] and V(l0) =;
∆

 [v(1+ l0), 
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v(2+ l0), ..., v(K + l0)] respectively and by S the (M x K) synchronization sequence matrix S =;
∆

 [s(1), s(2), ..., 

s(K)], we obtain, from (1) 
 
 X(l0)  =  H S  +  V(l0)          (2) 

Note that the flat fading assumption is required here to develop receivers with a limited complexity but is not 

required in practice where the considered receivers may be used even for frequency selective fading channels, 

considering multiple paths as interference. 
 

2.2 Problem formulation 

 The problem of time synchronisation of the MIMO link consists in estimating the unknown delay l0 from 

the observations and the knowledge of  S. This can be done by searching for the integer l, denoted by l;^0, for 

which the matrix S is either optimally estimated or optimally detected from the observations, in a given sense. 

From the latter point of view, considering first the unknown optimal delay l0, the synchronization problem may 

be viewed as a detection problem with two hypotheses [30], [35]. The first hypothesis (H1) is that the matrix S is 

perfectly aligned in time in the observation matrix X(l0) and corresponds to model (2). The second hypothesis 

(H0) is that there is no signal in the observation matrix X(l0) and corresponds to model (3) given by 
 
 X(l0)  =  V(l0)          (3) 
 

Note that the third hypothesis (H2) corresponding to a signal matrix which is misaligned in the observation 

matrices X(l) for l ≠ l0 is not taken into account in the detection approach. The first reason is that a detection 

test with three hypotheses is much more difficult to implement than a detection test with two 

hypotheses. The second reason is that the time synchronization problem, viewed as an estimation 

problem of the SOI time delay from a set of observation vectors, generate estimators which are 

equivalent, under some assumptions, to detectors built from a two hypothesis detection approach. 

Such an equivalence has been shown in the literature for SIMO systems where an MMSE approach 

for SOI or delay estimation [34] has been shown to be equivalent to a GLRT detection approach [35] 

for time synchronization purposes. 

 The two hypotheses detection problem of matrix S from X(l0) then consists in elaborating a statistical 

test, C(l0), function of X(l0), and to compare the value of this test to a threshold. The detection is considered if 

the threshold is exceeded. As in practice l0 is unknown, the problem is to estimate it by computing C(l) for 

arbitrary values of l around l0 and to select the value of l which maximizes C(l) under the constraint of exceeding 

the threshold. For synchronization sequences with perfect autocorrelation properties, the latter processing would 

be sufficient. However in practice, the synchronization sequences have imperfect autocorrelation properties and 

the misaligned case, which is not taken into account in the theoretical approach, may also generate a 

detection (due to the ambiguity functions of the sequences). For this reason, to prevent false detection 

of the signal, we use to test several time positions around a tested position which has generated a 
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detection. More precisely, whenever a tested position l generates a detection (i.e. C(l) is greater than or 

equal to the threshold), to within a false alarm, it may be generated either by an aligned or by a misaligned 

signal. To remove the detection of the misaligned signals, we compute and compare to the threshold C(l+k) for -

K ≤ k ≤ K, where K is the sequence length. Among the values l+k such that C(l+k) is above the threshold, the best 

estimate, l;^0, of l0 corresponds to the delay l+k which maximizes C(l+k). 

 As the main purpose of the paper is to compare several statistical tests for synchronization, to simplify the 

notations, we consider in the following the generic detection problem of the (M x K) matrix S from the (N x K) 

observation matrix X with two hypotheses H1 and H0. Under H1, S is perfectly aligned in time with X whereas 

under H0, there is no matrix S in X which corresponds to the (N x K) total noise matrix V and we obtain: 

 
 H1:  X  =  H S  +  V          (4a) 
 
 H0:  X  =  V          (4b) 
 

where X  =;
∆

 [x(1), x(2), ..., x(K)] and V =;
∆

 [v(1), v(2), ..., v(K)] respectively. The problem addressed in this 

paper is to introduce different statistical tests for the detection of matrix S, built from different approaches and/or 

different hypotheses, and to compare them with those of the literature from both a complexity and a performance 

point of view. The performance of a statistical test is characterized by the probability of a good detection of S, i.e 

that the statistical test exceeds the threshold, under H1 (PD), for a given false alarm probability (PFA), 

corresponding to the probability to exceed the threshold under H0. The performance comparison of the different 

statistical tests will be done without and with interference, for different channel matrix H (deterministic or 

random), synchronization sequences (orthogonal or not) and number of antennas (small or high). The possibility 

of a computation rate decrease of the correlation matrix of the observations is also investigated. Finally the 

number of transmit antennas for synchronization is optimized for different scenarios of channel matrix and 

number of receive antennas. 
 

3. THE LRT RECEIVER AND GLRT PRINCIPLE 
 

 According to the Neyman-Pearson theory of detection [37], the optimal statistical test for the detection of 

matrix S from matrix X is the LRT, which consists in comparing the function LRT =;
∆

 p[X/ H1] / p[X/ H0] to a 

threshold, where p[X/ Hi] (i = 0, 1), is the conditional probability density of X under Hi. To compute this 

statistical test, we assume that the sampled vectors v(k) are zero-mean, stationary, independent and identically 

distributed (i.i.d), temporally white, circular and Gaussian with covariance matrix R =;
∆

 E[v(k) v(k)H]. Under 

these assumptions and using (4), the LRT takes the form: 
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 LRT  =  

∏;
K

;
k = 1

  pH1
[x(k)  / s(k)

 H
 R ]

;_________________________;

∏;
K

;
k = 1

  pH0
[x(k) / R]

     

  
(5) 

where pH1
[x(k) / s(k), H, R] and pH0

[x(k) / R] are given by 

    pH1
[x(k) / s(k), H, R]  =;∆ π−Ν det[R]−1 exp[− (x(k) − H s(k))H

R
−1 (x(k) − H s(k))]  

 (6) 

    pH0
[x(k) / R]  =;∆ π−Ν det[R]−1 exp[− x(k)H

R
−1 

x(k)]     (7) 
 

where det[R] means determinant of R. In the absence of interference, vectors v(k) are assumed to be spatially 

white such that R = η2 IN, where η2 is the mean power of the noise per receive antenna and IN is the identity 

matrix of dimension N. In this case, the LRT, denoted by LRT1, takes the form: 
 

 LRT1  =  

∏;
K

;
k = 1

  pH1
[x(k)  / s(k)

 H
 η2]

;_________________________;

∏;
K

;
k = 1

  pH0
[x(k) / η2]

    

   
(8) 

where pH1
[x(k) / s(k), H, η2] and pH0

[x(k) / η2] are given by (6) and (7) respectively with R = η2 IN. However, 

as in practice (η2, H), in the absence of interference, or (R , H), in the presence of interference, are unknown, 

they have to be replaced in (8) and (5) respectively by their maximum likelihood (ML) estimates under H1 (for 

H) and under H1 and H0 (for η2 or R), giving rise to the GLRT1 and GLRT2 respectively, presented in the 

following sections. Nevertheless, note that GLRT detectors are no longer LRT detectors and then become sub-

optimal detectors.  

 

4. TIME SYNCHRONIZATION WITHOUT INTERFERENCE 
 

 In this section, we compute the GLRT1 receiver for time synchronization in the absence of interference 

for arbitrary synchronization sequences. The structure of this receiver is then compared, through a unified 

framework, with that of the main receivers of the literature in the absence of interference, which is original. A 

comparative performance analysis of these receivers, also original, is then presented in section 9, enlightening, 
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for not too small SNR, the better performance of the GLRT1 receiver for non-orthogonal synchronization 

sequences in particular.  
 

4.1 GLRT1 receiver  
 

 Replacing in (8) η2 and H by their ML estimates under H1 (for H) and under H1 and H0 (for η2), it is 

shown in Appendix A that a sufficient statistic for the GLRT1 is given by 
 

 GLRT1  =  
Tr(R;^xs Rs

−1
 R;^xs

H)
;________________;

Tr(R;^x)
       

 
(9) 

where Tr(.) means Trace and where matrices R;^x, Rs and R;^xs are defined by  
 

  R;^x =;∆ XX
H/ K  =  

1
;__;

K
 ∑;

K

;

k = 1

 x(k) x(k) H  ;    Rs =;∆ SS
H/ K  =  

1
;__;

K
 ∑;

K

;

k = 1

 

s(k) s(k) H     (10) 

 R;^xs =;∆ XS
H/ K  =  

1
;__;

K
 ∑;

K

;

k = 1

 x(k) s(k) H  =;∆  [r;^xs1,…, r;^xsM]      (11) 

with 

  r;^xsi   =;∆   
1

;__;
K

   ∑;

K

;

k = 1

  x(k) si(k)*        ;   Tr(R;^x)  =  
1

;__;
K

 ∑;

K

;

k = 1

 x(k)H x(k)  =;∆  

r;^x   (12) 
 

Note that the element [i, j], Rs[i, j], (1 ≤ i, j ≤ M) of Rs corresponds to the correlation of the synchronization 

sequences i and j. Thus, Rs[i, i], denoted in the following by rsi, is the mean power of the sequence i. Expression 

(9), which does not seem to be published in the literature, requires that Rs is invertible, which is only possible if 

M ≤ K and which is assumed in the following. Note that this condition does not prevent M to be large, provided 

that K is at least as large as M. 

 In the particular case of M orthogonal synchronization sequences, expression (9) reduces to 
 

 GLRT1 =   ∑;

M

;

i = 1

   
r;^xsi

Η 
r;^xsi

;_________;
r;^x rsi

       

 
(13) 

which corresponds to the sum of M SIMO GLRT1 statistics, each one being associated with a transmitted 

antenna.  

4.2 Receivers of the literature  
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Several statistical tests for time synchronization of MIMO links in the absence of interference have been 

proposed in the literature [10-15], [17-27], [29], mainly for DS-CDMA and OFDM links. Some of them may be 

also used for non DS-CDMA SC links. It is then interesting and important in practice to compare the most 

popular ones with the GLRT1 through a unified framework.  
 

a) Mody’s Test 
 

One of the reference test for time synchronization of MIMO links without interference is the one 

proposed in [10], [13] for OFDM links. It assumes orthogonal training sequences such that s(k)
H

s(k) = 1, 1 ≤ k ≤ 

K, and may also be used for SC links. It can be written as    

 Mody   =;∆   Sup;
j
 { ∑;

M

;

i = 1

  
 r;^xjsi

2

;______;
r;^xj

   }    

 
(14) 

where r;^xjsi and r;^xj are defined by the first and second part of (12) respectively with xj(k) replacing x(k).  

 
 

b) Correlation test  

 Another reference test for time synchronization of MIMO links without interference is the correlation test 

proposed in [30] for SC links. It makes no assumptions on the synchronization sequences. It can be written as:  
 
  

 

 COR   =;∆   ∑;

M

;

i = 1

   
r;^xsi

H 
r;^xsi

;____________;
r;^x [∑;

M
;
m = 1

 r;sm ] 
      

  
(15) 

c) Least square MIMO channel estimate test  
 

 An alternative to the correlation test is the least square (LS) MIMO channel estimate test proposed in 

[30], called hereafter LS test, which still makes no assumptions on the synchronization sequences. It consists 

in comparing to a threshold the normalized Frobenius norm squared of the (NxM) LS channel estimate H;^ =;
∆

 

R;^xs Rs
−1

. We then deduce that the LS test can then be written as: 
 

 LS   =;∆    
Tr[R;^xsR;^s

−2 
R;^xs

H]
;_______________;

r;^x Tr[R;s
−1] 

       

 
(16) 

  In the particular case of M orthogonal synchronization sequences, expression (16) reduces to 
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 LS   =   ∑;

M

;

i = 1

   
r;si

−2 
r;^xsi

Η 
r;^xsi

;_____________;
r;^x [∑;

M
;
m = 1

r;sm
−1]

     

   
(17) 

d) Synthesis  

 We deduce from the previous expressions, in the absence of interference, that for orthogonal 

synchronization sequences having the same power, the COR and the LS tests, for a (MxN) MIMO link, and the 

Mody's test, for a (Mx1) MISO link, are equivalent to the GLRT1. This allows us to obtain, in this case, 

alternative interpretations of the GLRT1 receiver. Otherwise, and for non-orthogonal sequences in particular, the 

Mody’s, COR and LS tests are no longer equivalent to the GLRT1 which may expect to give better results than 

the others as it will be analyzed in section 9.  

 

5. RECEIVERS IN THE LITERATURE FOR TIME SYNCRONIZATION WITH INTERFERENCE 
 

 In this section, we briefly recall the GLRT2 and MMSE receivers introduced in [30] for time 

synchronization in the presence of interference.  
 

5.1 GLRT2 receiver  
 

 In the presence of interference, the total noise v(k) is spatially colored and R is no longer proportional to 

the identity matrix. Replacing in (5) H by its ML estimate under H1 and R by its ML estimate under both H1 and 

H0, it has been shown in [30] that a sufficient statistic for the GLRT2 is given by 

 GLRT2  =  det[IK − Ps P;^x ]
−K       

(18) 
 

where det[.] means determinant and where Ps and P;^x are (KxK) matrices corresponding to the orthogonal 

projectors onto the row spaces of S and X respectively, defined by Ps =;
∆

 S
Η

(SS
Η

)
−1

S and P;^x =;
∆

 

X
Η

(XX
Η

)
−1

X. Using properties of the determinant, it is straighforward to show that (18) can also be written as   

 GLRT2  =  det[IN − R;^x
−1

R;^xs Rs
−1

R;^xs
Η]−Κ  =  det[IM − Rs

−1
R;^xs

Η
R;^x

−1
R;^xs]

−Κ 

   (19) 
 

Note that (19), less costly than (18) when K > Max(N, M), has not been presented in [30]. For time 

synchronization, expressions (18) and (19) show that, at each tested sample position, the GLRT2 receiver 

requires the computation of at least a (NxN) matrix inversion, R;^x
−1

, and the determinant of a (PxP) matrix 

where P = Min(K, N, M), which may be prohibitive for large K and large values of the number of antennas.  

 In the particular case of a SIMO system (M = 1), the vector s(k) reduces to the scalar s1(k), the matrix R;^

xs reduces to the vector r;^xs1, Rs reduces to the scalar rs1 and we deduce from (19) that a sufficient statistic for 

the GLRT2 is given by 
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 GLRT2SIMO  =   
r;^xs1

Η 
R;^x

−1
r;^xs1

;____________;
r;s1

      

 (20) 

result already obtained in [34] and [35]. 
 

5.2 MMSE receiver  
 

Time synchronization from the MMSE receiver consists in finding the sample position which minimizes 

the LS error, ε;^, between the known sampled vectors s(k) and their LS estimation from a spatial filtering of the 

data x(k) (1 ≤ k ≤ K). After elementary computations, it can be verified that a sufficient statistic for the MMSE 

receiver is given by [30]  
 

 MMSE    =;∆    
Tr(R;^xs

H 
R;^x

−1
R;^xs)

;______________;
Tr(R;s)

   =   ∑;

M

;

i = 1

  

r;^xsi

H 
R;^x

−1
r;^xsi

;______________;
[∑;

M
;
m = 1

 r;sm ] 
      (21) 

Comparing (21) to (20), we deduce that, to within a constant, the MMSE receiver corresponds to the weighted 

sum of M SIMO receivers, each of them being associated with a particular transmit antenna. The computation of 

the MMSE receiver requires a (NxN) matrix inversion at each tested sample position but no determinant 

computation, which is less complex than the GLRT2 computation. For SIMO links (M = 1), (21) reduces to (20) 

and the MMSE and GLRT2 receivers coincide. However for MIMO links (M > 1), this result is a priori no 

longer true, even for orthogonal synchronization sequences having the same power, and this result is still valid 

for M ≥ 2, which was not obvious a priori. Thus, despite its lower complexity, the MMSE receiver is potentially 

less powerful than the GLRT2 receiver, as shown in [30] for non-orthogonal sequences and moderate SNR in 

particular. This motivates the development of alternative receivers aiming at improving the performance of the 

MMSE receiver, and at approaching the performance of the GLRT2 receiver, whatever the orthogonality of the 

synchonization sequences, which is the purpose of the next section.  

 

6. NEW RECEIVERS FOR TIME SYNCRONIZATION WITH INTERFERENCE  
 

 The direct computation of the determinant (19) is not so straitghtforward for M > 2 while the MMSE 

receiver (21) has been shown in [30] to become sub-optimal for non-orthogonal synchronization sequences at not 

too low SNR. In this context, a way to decrease the complexity of the GLRT2 receiver for arbitrary values of M 

while trying to keep its performance is to develop new alternative receivers. To this aim, it seems natural to think 

that non-GLRT receivers corresponding to good estimates of the GLRT receiver in known total noise, called 
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GLRT3 receiver, have good chances to approach the performance of the GLRT2 receiver. For this reason, in this 

section, we introduce the GLRT3 receiver and we propose two new receivers corresponding to two different 

estimates of the GLRT3 receiver. 
 

6.1 GLRT3 receiver  
 

 The GLRT3 receiver is obtained by considering expression (5), assuming an unknown channel matrix H 

and a zero-mean, i.i.d stationary, circular, Gaussian total noise whose covariance matrix, R, is assumed to be 

known. Replacing in (5) H by its ML estimate, H;^ = R;^xs Rs
−1

, generates the GLRT3 receiver. It is shown in 

Appendix B that a sufficient statistic for the GLRT3 receiver is given by 

 GLRT3  =  Tr(Rs
−1

R;^xs
Η

 R
−1

R;^xs) 
     

(22)  
 

In the particular case of M orthogonal synchronization sequences, expression (22) reduces to 

 

 GLRT3    =;∆   ∑;

M

;

i = 1

   
r;^xsi

H
R

−1 
r;^xsi

;____________;
r;si 

      

 (23) 
  

Expressions (22) and (23) show that the GLRT3 receiver does not require any determinant computation and 

corresponds, for orthogonal sequences, to the sum of M SIMO GLRT3 receivers, each one being associated with 

a transmitting antenna. Unfortunately, it cannot be used in pratice since R is unknown but it can be estimated by 

replacing R by an estimate R;^, which is done in the following sections. 
 

6.2 Estimated GLRT3 receiver under H0  
 

 A first possibility to built from (22) a new receiver useful in practice is to replace in (22) the matrix R by 

its ML estimate, R;^0, under H0. It is well-known [35] that R;^0 = R;^x, which gives rise to the estimated GLRT3 

receiver under H0 (E0-GLRT3), defined by 

 E0-GLRT3  =  Tr(Rs
−1

R;^xs
Η

 R;^x
−1

R;^xs) 
    

 
(24)  

 In the particular case of M orthogonal synchronization sequences, expression (24) reduces to 
 

 E0-GLRT3    =;∆   ∑;

M

;

i = 1

   
r;^xsi

H
R;^x

−1 
r;^xsi

;______________;
r;si 

      (25) 

which corresponds, to within a constant and for orthogonal sequences having the same power, to the MMSE 

statistical test defined by (21). This gives, in this case, an interpretation of the MMSE receiver in terms of 

estimate of the GLRT3 receiver under H0. Otherwise, E0-GLRT3 receiver has no link with the MMSE receiver.  
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6.3 Estimated GLRT3 receiver under H1  
 

 A second possibility to built from (22) a new receiver useful in practice is to replace in (22) the matrix R 

by its ML estimate, R;^1, under H1. It is well-known that R;^1 is defined by [23], [35] 
 

 R;^1  =  R;^x  −  R;^xs  Rs
−1 

R;^xs
Η     (26) 

 

In (26) the estimated contributions of the transmitted synchronization sequences have been removed from R;^x. 

This gives rise to the estimated GLRT3 receiver under H1 (E1-GLRT3), defined by 

 E1-GLRT3  =  Tr(Rs
−1

R;^xs
Η

 R;^1
−1

R;^xs) 
    

 
(27)  

 

 In the particular case of M orthogonal synchronization sequences, expression (27) reduces to 

 

 E1-GLRT3    =;∆   ∑;

M

;

i = 1

   
r;^xsi

H 
R;^1

−1 
r;^xsi

;______________;
r;si 

      (28) 

 

7. COMPUTATION RATE DECREASE OF R;^x 
 

 In practice, at each tested sample position l, the computation of C(l) from the GLRT2, MMSE, E0-

GLRT3 and E1-GLRT3 receivers requires the computation of both a new (NxN) correlation matrix R;^x(l) =;∆ 

X(l)X(l)
H

/ K, over K observation samples, and a new (NxN) matrix inversion (R;^x(l)
−1

 or R;^1(l)
−1

). This 

generates a computation rate of one R;^x(l)  matrix plus one matrix inverse per time sample l, which may 

become very costly for high values of N. In particular, for samples l generating a detection, we have to test 2K+1 

positions around l (C(l+k) for -K ≤ k ≤ K), which means that we have to compute and to invert 2K+1 correlation 

matrix estimates R;^x(l+k), -K ≤ k ≤ K.  

 In this context, an additional way to decrease the complexity of the GLRT2 and E0-GLRT3 receivers is 

to decrease the computation rate of R;^x(l) and R;^x(l)
−1

 by a factor β > 1. More precisely, the principle is to 

built an (NxK') observation matrix X'(l) = [x(1+ l), x(2+ l), ..., x(K' + l)] from K' observation samples instead of 

K, such that K' > K, to replace R;^x(l) =;∆ X(l)X(l)
H

/ K by R;^x'(l) =;∆ X'(l)X'(l)
H

/K', and to use the same 

correlation matrix estimate, R;^x'(l) (instead of R;^x(l)), for the β = K' − K+1 tested position l + i (0 ≤ i ≤ β − 1). 

Using this strategy in the GLRT2 and E0-GLRT3 receivers gives rise to GLRT2-CRD and E0-GLRT3-CRD 

receivers respectively, where R-CRD means receiver R with a computation rate decrease. Note that K' − K 

samples are now data samples instead of synchronization samples. As the data samples associated with different 

antennas are uncorrelated, this strategy to decrease the complexity of GLRT2 and E0-GLRT3 receivers is only 

valid for orthogonal synchronization sequences. Of course, this strategy requires constant values of H and R 
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over K' samples, which may limit the value of K'. However, it allows to compute and to inverse only one (NxN) 

matrix per set of β tested sample positions, hence a gain of β in the matrix computation and inversion. Note that 

this strategy cannot be applied to the E1-GLRT3 receiver since the computation of R;^1 from (26) and thus its 

inversion, requires an update of R;^xs at each time samples.  
 

8. COMPLEXITY ANALYSIS 
 

 In order to get more insights into the relative complexities of the receivers which are robust to 

interference, we present in this section a complexity analysis of the latter. Note that the complexity of a receiver 

corresponds to the approximate number of complex operations required to compute the associated statistical 

test. Note that complexity analysis through big-O(var) notation has full meaning when var is high. For small 

values of var, the meaning of big-O notations decreases and a more detailed analysis, which uses assumptions of 

section 8.1, is required. 
 

8.1 Assumptions   

 To compute the complexity of a receiver, we need to briefly recall the complexity of some common 

operations on a (NxN) matrix A. 

 - The cost of the LU decomposition of A is approximately 2N
3
/3. 

 - Using the LU decomposition of A, we easily deduce that the complexity of the determinant 

computation of A is 2N
3
/3 + 2(N − 1) + 1. 

 - Using the LU decomposition of A, the total cost required to inverse A is 2N
3
/3 + 2N

3
  = 8N

3
/3.   

 - The cost of a matrix C = EB, where E is a (NxK) matrix and B is a (KxM) matrix is NM(2K − 1). If E 

and B are both (NxN), the cost is N
2
(2N − 1) = 2N

3
 − N

2
. In the particular case where C = EE

Η
, the matrix C is 

Hermitian and the cost becomes (N
2+ N)(2K − 1)/2. 

  

8.2 Complexity analysis    

 Since the receivers with computation rate decrease are only applicable for orthogonal synchronization 

sequences, we assume here that the sequences are orthogonal, i.e. that Rs is diagonal. Moreover, as in practice 

the sequences have equal power, we assume that Rs is proportional to identity and that the sequences are 

normalized in power. Under these assumptions, as the MMSE and E0-GLRT3 receivers are equivalent, we only 

consider GLRT2, GLRT2-CRD, E0-GLRT3 and E0-GLRT3-CRD receivers. Moreover, by defining               

GN =;
∆

 R;^x
−1

R;^xs R;^xs
Η

 and GM =;
∆

 R;^xs
Η

R;^x
−1

R;^xs, we deduce from (19) and (24) that the GLRT2 and 

E0-GLRT3 receivers can be rewritten as  

 GLRT2  =  det[IN − GN]−Κ  =  det[IM − GM]−Κ    (29) 

 E0-GLRT3  =  Tr(GM)  = Tr(GN)        (30)  
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Thus, the computation of both statistics requires the computation of either GN or GM. In practice, to minimize 

the complexity, we may choose to compute GP where P = Min(N, M). In the following we choose to compute 

GM. Under these assumptions, Table 1 indicates the number of operations required to compute each receiver 

using GM. Moreover, Figure 1 shows, for K = 32, K'/K = 10, M = 2 and M = 8, the number of complex 

operations required to compute the GLRT2, GLRT2-CRD, E0-GLRT3 and E0-GLRT3-CRD receivers as a 

function of N. Note the increasing complexity with M and N for all the receivers. Note, from a complexity point 

of view, the increasing interest of E0-GLRT3 with respect to GLRT2 as M increases. Note the increasing interest 

of E0-GLRT3-CRD and GLRT2-CRD with respect to E0-GLRT3 and GLRT2 as M increases. Note finally the 

great interest to optimize the value of M at least from a complexity point of view. 

Table 1  

Figure 1  

 

9. SIMULATIONS AND DISCUSSIONS 
 

 We present in this section a comparative performance analysis of most of the MIMO receivers introduced 

in sections 4 to 7. These receivers are first compared without interference and then with interference. This 

analysis allows us in particular to enlighten the practical interest of the new receivers introduced in this paper 

(GLRT1, E0-GLRT3, E1-GLRT3, GLRT2-CRD, E0-GLRT3-CRD) with respect to the receivers of the 

literature and to the GLRT2 receiver in particular, which has been considered to be the best receiver in [30] at 

least for non-orthogonal sequences and not too low SNR. Finally, the optimization of the number of transmit 

antennas, M, for several kinds of propagation channel matrix H, is investigated at the end of the section. 
 

9.1 Assumptions  

a) Array of antennas 

 We consider in this section 9 (MxN) MIMO links for which the transmitting and the receiving antennas 

are omnidirectional. The receiving array of antennas is a uniform linear array of N antennas spaced half a 

wavelenght apart, whereas the geometry of the transmitting array may be arbitrary, depending of the scenario.  

b) Channel matrix 

 Two kinds of channel matrix H, corresponding to deterministic and random channel matrices, are 

considered. In the deterministic case, which may correspond to a line of sight (LOS) situation, the transmitted 

antennas are assumed to be potentially distributed in space or well-separated from each other, the channel is 

assumed to be a free space propagation channel and the channel vectors hi correspond, to within a phase term, to 

steering vectors for the receiving array. In this case, the vector hi is defined by hi =;
∆

 exp(jφi) [1, 

exp(jπsin(θi)),exp(j2πsin(θi)),....,exp(j(N−1)πsin(θi))]
Τ

, where θi is the angle of arrival (AOA) of sequence i 

with respect to broadside, whereas φi corresponds to a phase term, function of the transmitting array geometry. 
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The colinearity degree of the channel vectors hi and hj is characterized by the spatial correlation coefficient, αij 

(1≤ i,j ≤ M), between hi and hj, such that 0 ≤ |αij | ≤ 1 and  defined by 
 

  αij  =;∆   
hi

†
hj

;______________;
(hi

†
hi)

1/2(hj
†
hj)

1/2
         

 (31) 

In the random case, the transmitted antennas are no longer distributed in space and the coefficients, Hij, of the 

channel matrix H are assumed to be zero-mean i.i.d, circular and Gaussian variables such that E[|Hij|
2

] = 1, 

which modelizes a Rayleigh flat fading channel with a maximal diversity. 

c) Synchronization sequences 

 Each synchronization sequence is composed of K samples. These sequences have the same power (rsi 

=;
∆

 rs, 1≤ i ≤ M) and are normalized such that the signal to thermal noise ratio per receive antenna, defined by 

SNR =;
∆

 M rs / η2, may be arbitrary chosen.  

 Orthogonal sequences correspond to cyclically shifted Zadoff-Chu sequences [38]. More specifically, the 

rows of matrix S are chosen as cyclic shifts of a Zadoff-Chu sequence of length K, such that Rs = rs IM. 

 Non-orthogonal sequences are composed of quadrature phase shift keying (QPSK) complex symbols. 

The correlation degree of two sequences i and j is characterized by the temporal correlation coefficient, ρij (1≤ 

i,j ≤ M), such that 0 ≤ |ρij | ≤ 1 and  defined by 
 

  ρij  =;∆   
rsij

;______________;
(rsi)

1/2(rsj)
1/2

         

 (32) 
 

where rsij =;
∆

 Rs[i, j]. The sequences i and j are orthogonal if ρij = 0. In practice, the correlation value between 

sequences is obtained by splitting each antennas sequence in two subsequences. The first subsequence is 

composed of the same QPSK symbols for every antenna, whereas the second subsequences are independent and 

random QPSK symbols. By changing the first subsequence length with respect to K, we obtain different 

correlation values. In the following K = 32. 

d) Total noise model  

 Over a duration interval on which the channel does not change, the total noise vector v(k) is assumed to 

be composed of one rank-one single antenna interference, whose associated channel vector has no delay spread, 

and a background noise and can be written as  

 v(k)  =  jI(k) hI  +  n(k)        (33) 
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Here, n(k) is the sampled background noise vector, assumed to be zero-mean, stationary, Gaussian, SO circular, 

spatially and temporally white with a mean power per received antenna equal to η2, jI(k) is the complex sample 

at time k of the interference, such that πI =;
∆

 E[|jI(k)|
2
] is the input mean power of the interference per antenna. 

In the following, jI(k) is either a QPSK interference sampled at the symbol rate or a stationary, circular complex 

Gaussian interference whose samples are i.i.d. Vector hI, with components hI[i] (1≤ i ≤ N), is the channel vector 

of the interference such that the components hI[i] are either deterministic or random. In the first case, hI is a 

steering vector, as discussed in section 9.1 b), whereas in the second case, the components hI[i] (1≤ i ≤ N), are 

realizations of a zero-mean i.i.d circular Gaussian variables such that E[|hI[i]|
2] = 1. In both cases, over a 

duration interval on which the channel does not change, R can be written as  

 R  =  πI hI hI
Η

  + η2 I        (34) 

Note that in the simulations, hI will change for each realization. The interference to noise ratio per receive 

antenna is defined by INR =;
∆

 πI /η2. In the absence of interference, INR = 0, whereas in the presence of 

interference, INR may be such that INR/SNR =  5 or 15 dB. In the following, the false alarm rate is such that 

PFA = 10
−3

 for all the scenarios. The Figures are built from 10
6
 independent realizations.  

 

9.2 Absence of interference  

We assume in this section no interference, and we consider both orthogonal and non-orthogonal 

synchronization sequences. 

a) Orthogonal synchronization sequences 

 For orthogonal sequences having the same power, the statistical tests COR and LS are equivalent to 

GLRT1, whereas MMSE and E0-GLRT3 are equivalent. We thus only consider in this case, GLRT1, Mody, 

GLRT2, E0-GLRT3 and E1-GLRT3 receivers. Under the previous assumptions, Figures 2a and 2b show, for a 

(2x2) MIMO link, the variations of the missprobability (PM =;
∆

 1 – PD) as a function of the SNR per receive 

antenna at the output of the previous receivers for a deterministic channel matrix H. The vector h1
 
is associated 

with an AOA, θ1 = 0°, which is orthogonal to the line array, whereas h2
 
corresponds to an AOA θ2 such α12 = 

0 (2a) and |α12|
2
 = 0.6 (2b) respectively. Figures 3a and 3b show the same variations but for a random channel 

matrix H of dimension (2x2) (3a) and (4x4) (3b). For deterministic channels, the increase of |α12| does not alter 

the performance of the GLRT1 and Mody receivers, while it degrades slightly the GLRT2, E0-GLRT3 and E1-

GLRT3 receivers which stay always equivalent. Note the best behaviour of GLRT1 with respect to other 

receivers and GLRT2 in particular, and the worst behaviour of Mody’s receiver in all cases. For random 

channels, the performance of all the receivers increases from figure (3a) to figure (3b) due to an increase of both 

receive array gain and transmit and receive spatial diversity. Again, the GLRT1 has the best performance, 

Mody’s receiver has the worst performance and GLRT2, E0-GLRT3 and E1-GLRT3 are almost equivalent.  

Figure 2  
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Figure 3  

b) Non-orthogonal synchronization sequences 

 For non-orthogonal sequences, we consider GLRT1, Mody, COR, GLRT2, MMSE, E0-GLRT3 and E1-

GLRT3 receivers which are a priori not equivalent. Under these assumptions, Figures 4 and 5 consider the same 

scenarios and show the same variations as Figures 2 and 3 respectively but for the previous receivers and for 

non-orthogonal synchronization sequences such that 0.6 ≤ |ρij | ≤ 0.9. For deterministic channels, the increase of 

|α12| seems to increase the performance of each receiver. However, whatever the value of |α12|, the best receiver 

is the COR receiver, and does no longer correspond to the GLRT1, which is less powerful than the MMSE and 

COR receiver but which is more powerful than GLRT2, E0-GLRT3 and E1-GLRT3 which are approximately 

equivalent. Finally the Mody receiver is still the worse receiver. For random channels, the performance of all the 

receivers increases from figure (5a) to Figure (5b) due to an increase of both receive array gain and transmit and 

receive spatial diversity. Moreover, below a certain value of SNR, increasing with the number of antennas, the 

COR receiver still has the best performance, followed by the MMSE and the GLRT1 receivers. This result has 

not been presented in [30] which does not consider low SNR. However, above this value of SNR, the GLRT1 

becomes the best receiver, followed by the GLRT2, E1-GLRT3 and E0-GLRT3 which are almost equivalent, 

themselves followed by the COR, MMSE and Mody receivers. Note in this case, a strong performance 

degradation of the MMSE receiver with respect to the GLRT2, as already found in [30]. Note also, for high 

SNR, that performance of GLRT2 are not far from that of GLRT1, with a difference which decreases as the 

number of antennas decreases.    

Figure 4  

Figure 5  

9.3 Presence of interference  

We assume in this section the presence of one interference, and we consider both orthogonal and non-

orthogonal synchronization sequences. 

a) Orthogonal synchronization sequences 

 For orthogonal sequences having the same power, MMSE and E0-GLRT3 are equivalent and thus we 

only consider in this case, for the robust receivers, GLRT2, E0-GLRT3 and E1-GLRT3 receivers. In addition we 

also consider GLRT1 and Mody non robust receivers as reference receivers. Under the previous assumptions, 

Figures 6, 7, on one hand, and Figures 8, 9, on the other hand, consider the same scenarios and show the same 

variations as Figures 2 and 3 respectively but in the presence of one interference. For Figures 6 and 7, the vector 

hI
 
is associated with the DOA θI = 20°, which means that (|α12|2, |α1I|

2, |α2I|
2) = (0, 0.74, 0.001) for Figures 6a 

and 7a, and (|α12|2, |α1I|
2, |α2I|

2) = (0.6, 0.74, 0.97) for Figures 6b and 7b, where αiI (1 ≤ i ≤ 2) is defined by 

(31) with hI
 
instead of hj. For figures 8 and 9, hI

 
 is random and associated with a Rayleigh fading. Moreover, 
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the INR/SNR is set to 15 dB in Figures 6 and 8 and to 5dB for Figures 7 and 9. Note, in the presence of one 

interference, for both deterministic and random channels and for orthogonal synchronization sequences, a 

performance degradation of all the receivers with respect to the no interference case and the equivalence of 

GLRT2, E0-GLRT3 and E1-GLRT3 robust receivers, which outperform the non robust ones even for a low 

INR/SNR value. Note that, for both the deterministic and the random case, very similar Figures are also obtained 

for a Gaussian interference instead of a QPSK interference. This result shows that the type of interference 

does not modify the performance of the considered detectors both in the deterministic and the random 

case. Thus, a good point of the robust detectors is that they are also robust to the interference 

constellation. Besides, for a given SNR, the decrease of the INR increases the detection performance 

but does not modify the relative performance of the considered detectors. 

Figure 6  

Figure 7 

Figure 8  

Figure 9 

  Under the same assumptions as Figure 8 but for (M, N) = (4, 4) and (M, N) = (2, 8), Figure 10 shows, for 

K'/K = 2 and 10, the variations of PM as a function of the SNR per receive antenna at the output of the GLRT2, 

GLRT2-CRD and E0-GLRT3-CRD receivers. Note an increasing performance degradation of GLRT2-CRD and 

E0-GLRT3-CRD with respect to GLRT2 (equivalent in this case to E0-GLRT3) as K'/K increases, while 

remaining lower than 1 dB for K'/K = 2, enlightening the interest of GLRT2-CRD and E0-GLRT3-CRD. Note 

also similar performance of GLRT2-CRD and E0-GLRT3-CRD receivers for K'/K = 2 and a better performance 

of E0-GLRT3-CRD with respect to GLRT2-CRD for K'/K = 10, showing a better robustness of the former.  

Figure 10  

b) Non-orthogonal synchronization sequences 

 For non-orthogonal sequences, we must consider the MMSE receiver in addition to the previous ones. 

Moreover, we also consider the COR receiver among the non-robust receivers. Under the previous assumptions, 

Figures 11 and 12 consider the same scenarios and show the same variations as Figures 4 and 5 respectively but 

in the presence of one interference. For Figure 11, the vector hI
 
is again associated with the DOA θI = 20°, 

whereas for Figure 12, hI
 
 is random and associated with a Rayleigh fading. Note increasing performance of all 

the receivers with both the SNR and N, despite the presence of a strong interference, and slightly decreasing 

performance of all the receivers with the correlation of the synchronization sequences. Note, for deterministic 

channels, the best behaviour of the MMSE receiver which is better than the GLRT2, E0-GLRT3 and E1-GLRT3 

receivers which are practically equivalent. Note, for random channels, the best behaviour of the MMSE receiver 

with respect to the others, approximately equivalent, below a certain value of SNR, increasing with the number 
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of antennas. However, above this value of SNR, we note the best behaviour of GLRT2, E1-GLRT3 and E0-

GLRT3, almost equivalent, which outperform the MMSE receiver. This analysis shows, in all cases, the practical 

interest of E1-GLRT3 and E0-GLRT3 with respect to GLRT2 receiver, since they behave similarly with a 

reduced complexity. It also shows the interest of MMSE receiver whatever the SNR for deterministic channels 

and at low SNR for random channels, jointly with its sub-optimality at moderate to high SNR for random 

channels. 

Figure 11  

Figure 12 

9.4 Optimization of M   
 

 As the complexity of all the previous receivers increases with the number of transmit antennas M, it is 

important in practice to wonder whether this parameter can be optimized for synchronization purposes. In other 

words, one may wonder whether it exists an optimal number of transmit antennas for given propagation channel, 

number of receive antennas and interference scenario. We investigate this question in this section and we analyze 

in particular the conditions under which it becomes sub-optimal to implement a MIMO receiver with respect to a 

SIMO one, both without and with interference. For this purpose, we consider (MxN) MIMO links with either 

deterministic or random channel matrix H and we assume orthogonal synchronization sequences of K = 32 

samples having the same power. In the presence of one interference, INR/SNR = 15 dB. PFA = 10
−3

 for all the 

scenarios and the figures are built from 10
6

 independent realizations. 

           a) Deterministic channels   
 

 Under the previous assumptions, Figure 13 and 14 show, for deterministic channels, N = 4 and several 

values of M,  the variations of PM as a function of the SNR per receive antenna at the output of the GLRT2 

receiver (similar results are obtained for E0-GLRT3 and E1-GLRT3 receivers) without and with an QPSK 

interference respectively. Note decreasing performance with increasing M in all cases and thus the optimality of 

SIMO receivers for synchronization through deterministic channels. In fact, for a given level of SNR at 

reception and in the absence of fading, increasing M does not create any spatial diversity but increases the 

number of transmitted sequences and thus the amount of interference at reception for each synchronization 

sequence. Hence the optimality of SIMO receivers. 

Figure 13  

Figure 14  

           b) Random channels   
 

 Figure 15 and 16 show the same variations as Figures 13 and 14 respectively under the same assumptions 

but for random channels. At low SNR, Figures 15 and 16 still show the optimality of the SIMO scheme for 
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synchronization, proving in this case that the dominant limitation parameter are the interferences. However, at 

higher SNR and for a given value of N, increasing M under the constraint of transmitting the same global power, 

should increase the spatial diversity order of the MIMO system for fading channels. However, increasing M also 

increases the number of transmitted sequences and thus the amount of interference at reception for each 

synchronization sequence. A compromize between diversity and interferences should then be found. Figures 15 

and 16 show in this case, and for N = 4, the sub-optimality of the SIMO receiver due to fading and increasing 

performance with M as long as M ≤ Mo, due to an increase of the system diversity order up to an optimal order, 

N Mo, which increases as the wanted PM decreases. For M > Mo, i.e. above a system diversity order of N Mo, 

the fading has practically disappeared for the wanted PM and the increase in diversity gain is very weak while 

the interference level increases, hence non increasing or even decreasing performance with M. Figure 15 shows 

that in the absence of interference, Mo = 2 for 2.10
−2

 ≤ PM ≤ 10
−1

, whereas Mo = 4 for 10
−3

 ≤ PM ≤ 2.10
−2

, 

which corresponds to an optimal system diversity order equal to 8 and 16 respectively. Similarly, in the presence 

of one interference, Figure 16 shows that Mo = 2 for 3.10
−2

 ≤ PM ≤ 2 10
−1

, whereas Mo = 4 for 2.10
−3

 ≤ PM ≤ 

3.10
−2

, which again corresponds to an optimal system diversity order equal to 8 and 16 respectively. 

Figure 15  

Figure 16  
 

10. CONCLUSION 
 

 In this paper, new insights into the time synchronization of (MxN) MIMO systems, without and with 

interference of any kind, have been given. In the absence of interference, the GLRT1 receiver has been computed 

for arbitrary synchronization sequences and have been compared to several receivers of the literature through a 

unified framework. While equivalent, for orthogonal synchronization sequences, to the COR and LS receivers, 

the GLRT1 receiver has been shown to be better than all the receivers of the literature for non-orthogonal 

sequences and random channels above a certain level of received SNR. In the presence of interference, several 

schemes aiming at reducing the complexity of the GLRT2 receiver presented in [30] and involving a determinant 

computation have been proposed. Two new receivers robust to interference, the E0-GLRT3 and E1-GLRT3 

receivers, corresponding to two different estimates of the GLRT receiver in known, Gaussian, circular, 

temporally white and spatially colored noise, called GLRT3 receiver, have been introduced. These receivers 

have been shown to give performance very close to that of the GLRT2 receiver whatever the correlation of the 

sequences, with or without interference and for both deterministic and random channels. An additional powerful 

procedure of computation rate reduction of the data correlation matrix has been proposed for orthogonal 

sequences and for both the GLRT2 and the E0-GLRT3 receivers, giving rise to GLRT2-CRD and E0-GLRT3-

CRD receivers respectively. The performance of these latter receivers have been shown to be close to that of the 

GLRT2 and the E0-GLRT3 receivers. A comparative complexity analysis of the considered receiver has been 
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presented for orthogonal synchronization sequences. From this point of view, the interest of E0-GLRT3 with 

respect to GLRT2 and of E0-GLRT3-CRD and GLRT2-CRD with respect to E0-GLRT3 and GLRT2 

respectively has been shown to increase as Min(N, M) increases. Finally, the problem of optimization of the 

number of transmit antennas for time synchronization has been investigated for both deterministic and Rayleigh 

channels. For deterministic channels, without or with interference, SIMO receivers have been shown to be better 

than MIMO receivers. For random channels, while SIMO receivers are still optimal for low SNR, MIMO 

receivers become better than SIMO receivers for moderate and high SNR. In this case, for given values of N and 

PM, it exists an optimal value, Mopt(N, PM), of the number of transmit antennas which gives the best 

performance. All these results should be useful to optimize the choice and the implementation of the receiver for 

time synchronization in practical systems.   

 
APPENDIX A  

 It is shown in this appendix that expression (9) is a sufficient statistic for the GLRT detection of the 

known matrix S from observation matrix X, assuming zero-mean, stationary, i.i.d, spatially white, circular 

Gaussian samples v(k) (1 ≤ k ≤ K), and unknown parameters H and η2. To this aim, let us first compute the ML 

estimates of (H, η2) under H1 and of η2 under H0 respectively. Using (8) and (6) for R = η2 IN, the Log-

likelihood, Log(L1), of (H, η2) under H1, observing X, can be written as  
       

  Log[L1] =  − NKLog(π) − NKLog(η2) − Σ;
K

;
k = 1

 [ x(k) − Hs(k)]H[x(k) − Hs(k)] /η2 

  (A1) 

Derivating this expression with respect to η2 and setting the result to zero, we obtain the ML estimate, η;^21, of 

η2 under H1, given by 
 

  η;^21  =   
1

;____;
NK

 Σ;

K

;
k = 1

 [ x(k) − Hs(k)]H[x(k) − Hs(k)]     (A2) 

In a similar way, it is easy to show that the ML estimate, η;^20, of η2 under H0 is given by  
 

  η;^20  =   
1

;____;
NK

   Σ;

K

;
k = 1

  x(k)H
x(k)  =  Tr(R;^x) / N =  r;^x / N    (A3) 

Moreover, the ML estimate, H;^, of H maximizes (A1) and is given by 

 H;^ = R;^xs Rs
−1 ,     

(A4) 

Replacing in (8) (H, η2) by (H;^, η;^21) under H1 and η2 by η;^20 under H0, we obtain the GLRT test, given 

by 
 

  GLRT   =  (  
η;^20

;____;
η;^21

 ) 
ΝΚ

       (A5)  
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Developing (A2) and using (A3), it is straightforward to show that η;^21 takes the form  
 

  η;^21  =   η;^20  −   
1

;___;
N

  Tr(R;^xs Rs
−1

R;^xs
Η)    

  (A6) 

Inserting (A6) into (A5), we deduce that a sufficient statistic for the previous problem is given by (9).  

 
APPENDIX B 

  

  It is shown in this appendix that expression (22) is a sufficient statistic for the GLRT detection of the 

known matrix S from observation matrix X, assuming zero-mean, stationary, i.i.d, spatially colored, circular, 

Gaussian samples v(k) (1 ≤ k ≤ K), a known matrix R and an unknown matrix H. The ML estimate, H;^, of H 

under H1 is still given by (A4). Replacing in (8) H by its ML estimate, using (6) and taking the Logarithm of (8) 

we find that a sufficient statistic for the previous problem is given by  

     K GLRT3 = Σ;
K

;
k = 1

 [ 2Re(s(k)H
H;^H

R
−1 

x(k)) − s(k)H
H;^H

R
−1

H;^ s(k)]    (B1) 

where Re[.] means real part. Using (A4) in (B1), we deduce that the sufficient statistic GLRT3 is defined by 

(22). 
 

Acknowledgements 

The authors would like to thank Prof. Philippe Loubaton for its valuable comments and suggestions that helped 

improve the quality of this manuscript. This work has been done through the CIFRE PHD contract of Sonja 

Hiltunen between CNRS, University of Marne La Vallee and Thales SIX GTS France. 

REFERENCES 
 
[1] G.J. FOSCHINI, M.J. GANS, "On limits of wireless communications in a fading environment when using multiple 

antennas",  Wireless Pers. Commun., Vol 6, N°3, pp. 311-335, 1998. 

[2] E.I. TELATAR, "Capacity of multi-antenna Gaussian channels",  Europ. Trans. Comm., Vol 10, pp. 585-596, 1999. 

[3]  V. TAROKH, N. SESHADRI, A.R. CALDERBANK, "Space-time codes for high data rate wireless communication: 

performance criterion and code construction", IEEE Trans. Inform. Theory, Vol 44, N°2, pp. 744-765, March 1998. 

[4]  V. TAROKH, H. JAFARKHANI, A.R. CALDERBANK, "Space-time block codes from orthogonal designs", IEEE 

Trans. Inform. Theory, Vol 45, N°?, pp. 1456-1467, July 1999. 

[5] S.N. DIGGAVI, N. AL-DHAHIR, A. STAMOULIS, A.R. CALDERBANK, "Great expectations: The value of spatial 

diversity to wireless networks", Proc. IEEE, Vol 92, No2, pp. 219-270, Feb. 2004. 

[6]  D. ASTELY, E. DAHLMAN, A. FURUSKAR, Y. JADING, M. LINDSTROM, S. PARKVALL, "LTE: The 

evolution of Mobile Broadband", IEEE Communications Magazine, pp. 44-51, April 2009. 

[7]  D. BAI, C. PARK, J. LEE, H. NGUYEN, J. SINGH, A. GUPTA, Z. PI, T. KIM, C. LIM, M-G. KIM, I. KANG, 

"LTE-Advanced Modem Design: Challenges and Perspectives", IEEE Communications Magazine, pp. 178-186, Feb.  

2012. 

[8]  D. GESBERT, M. KOUNTOURIS, R.W. HEALTH, C.B. CHAE, T. SALZER, "From single-user to Multi-user 

Communications shifting the MIMO paradigm", IEEE Signal Processing Magazine, Vol. 24, N°5, pp. 36-46, Oct..  

2007. 



 
 

 

 

   - 23 - 

   

 

 

[9]  V.R. CADAMBE, S.A. JAFAR, "Interference Alignment and Degrees of freedom of the K-user Interference 

Channel", IEEE Trans. On Info. Theory, Vol. 54, N°8, pp. 3425-3441, Aug. 2008. 

[10]  A.N. MODY, G. L. STUBER, "Synchronization for MIMO OFDM systems", Proc. Globecom’01, Vol. 1, pp. 509-

513, San Antonio, Nov. 2001. 

[11]  Y. ZHANG, S.L. MILLER, "Code Acquisition in transmit diversity DS-CDMA systems", IEEE Trans. On 

Communication, Vol 51, N° 8, pp. 1378-1388, Aug. 2003. 

[12]  A. VAN ZELST, T.C.W. SCHENK,"Implementation of a MIMO OFDM-Based Wireless LAN System", IEEE 

Trans. On Signal Processing, Vol 52, N° 2, pp. 483-494, Feb. 2004. 

[13]  G. L. STUBER, J.R. BARRY, S.W. MCLAUGHLIN, Y. LI, M.A. INGRAM, T.G. PRATT, "Broadband MIMO-

OFDM Wireless Communications", Proc. IEEE, Vol 92, N° 2, pp. 271-294, Feb. 2004. 

[14]  E. ZHOU, X. ZHANG, H. ZHAO, W. WANG, "Synchronization Algorithms for MIMO OFDM systems", Proc. 

IEEE Wireless Communications and Networking Conference (WCNC’05), Vol 1, pp. 18-22, 2005. 

[15]  Z. MA, X. WU, W. ZHU, "An ICI-free Synchronization Algorithm in MIMO-OFDM System", Proc. Int. Symposium 

Wireless Pervasive Computing (ISWPC’07), pp. 242-246, Feb. 2007. 

[16]  A. SAEMI, J.P. CANCES, V. MEGHDADI, "Synchronization Algorithms for MIMO OFDMA Systems", IEEE 

Trans. On Wireless Communications, Vol 6, N° 12, pp. 4441-4451, Dec. 2007 

[17]  L. QI, H. BO, "Joint Timing Synchronization and Frequency-Offset Acquisition Algorithm for MIMO OFDM 

Systems", Journal of Systems Engineering and Electronics, Vol 20, N°3, pp. 470-478, 2009. 

[18]  C.L. WANG, H.C. WANG, "Optimized joint fine timing synchronization and channel estimation for MIMO 

systems", IEEE Trans. On Communication, Vol 59, N°4, pp. 1089-1098, April 2011. 

[19]  N. HAN, N. DU, Y. MA, "Research of Time-Frequency Synchronization in MIMO-OFDM System", Proc. IEEE 

Symposium on Electrical and Electronics Engineering (EEESYM’12), pp. 555-558, 2012.. 

[20]  T.L. KUNG, K.K. PARHI, "Optimized joint timing synchronization and channel estimation for communications 

systems with multiple transmit antennas", EURASIP Journal on Advances in Signal Processing, 2013:139, pp. 1-12, 

2013. 

[21]  M. MAREY, O.A. DOBRE, R. INKOL, "A novel blind block timing and frequency synchronization algorithm for 

Alamouti STBC", IEEE Comm. Letters, Vol 17, N°3, pp. 569-572, March 2013. 

[22]  Y. WU, S. CHAN, E. SERPEDIN, "Symbol timing estimation in space-time coding systems based on orthogonal 

training sequences", IEEE Trans. On Wireless Communications, Vol 4, N° 2, pp. 603-613, March 2005. 

[23]  K. RAJAWAT, A. CHATURVEDI, "A low complexity symbol timing estimator for MIMO systems using two 

samples per symbol", ", IEEE Comm. Letters, Vol 10, N°7, pp. 525-527, July 2006. 

[24]  D. WANG, J. ZHANG, "Timing Synchronization for MIMO-OFDM WLAN Systems", Proc. IEEE Wireless 

Communications and Networking Conference (WCNC’07), pp. 1178-1183, 2007. 

[25]  S.H. WON, L. HANZO, "Non-coherent code acquisition in the multiple transmit/multiple receive antenna aided 

single- and multi-carrier DS-CDMA downlink", IEEE Trans. On Wireless Communications, Vol 6, N° 11, pp. 3864-

3869, Nov. 2007. 

[26]  S.H. WON, L. HANZO, "Analysis of serial-search-based code acquisition in the multiple-transmit/multiple-receive-

antenna-aided DS-CDMA downlink", ", IEEE Trans. On Vehicular Technology, Vol 57, N° 2, pp. 1032-1039, 

March 2008. 

[27]  S.H. WON, L. HANZO, "Non-coherent and differentially coherent code acquisition in MIMO assisted DS-CDMA 

multi-path downlink scenatios", IEEE Trans. On Wireless Communications, Vol 7, N° 5, pp. 1585-1593, May 2008. 

[28]  T. TANG, R.W. HEATH, "A Space-Time Receiver With Joint Synchronization and Interference Cancellation in 

Asynchronous MIMO-OFDM Systems", IEEE Trans. On Vehicular Technology, Vol 57, N°5, pp. 2991-3005, Sept. 

2008. 

[29]  S.H. WON, L. HANZO, "Initial and post-initial code acquisition in the noncoherent multiple-input/multiple-output-

aided DS-CDMA downlink", ", IEEE Trans. On Vehicular Technology, Vol 58, N° 5, pp. 2322-2330, June 2009. 



 
 

 

 

   - 24 - 

   

 

 

[30]  D.W. BLISS, P.A. PARKER,"Temporal Synchronization of MIMO Wireless Communication in the presence of 

Interference", IEEE Trans. On Signal Processing, Vol 58, N°3, pp. 1794-1806, March 2010. 

[31]  Y. ZHOU, E. SERPEDIN, K. QARAGE, O. DOBRE, "On the Performance of Generalized Likelihood Ratio Test for 

Data-Aided Timing Synchronization of MIMO Systems", Proc. IEEE International Conference on Communications 

(ICC’12), Bucharest, pp. 43-46, 2012.. 

[32]  T. KOIVISTO, V. KOIVUNEN, "Diversity Transmission of Synchronization Sequences in MIMO Systems", IEEE 

Trans. On Wireless Communications, Vol 11, N° 11, pp. 4048-4057, Nov. 2012. 

[33]  S. HILTUNEN, P. LOUBATON, P. CHEVALIER, "Large system analysis of a GLRT for detection with large sensor 

arrays in temporally white noise", IEEE Trans. Signal Proc., Vol.63, N°20, pp. 5409-5423, Oct. 2015.  

[34] L.E. BRENNAN, I.S. REED, "An adaptive array signal processing algorithm for communications",  IEEE Trans. 

Aerosp. Electronic Systems, Vol 18, N°1, pp. 124-130, Jan 1982. 

[35] D.M. DUGLOS, R.A. SCHOLTZ, "Acquisition of spread spectrum signals by an adaptive array", IEEE Trans. Acou. 

Speech. Signal Proc., Vol 37, N°8, pp. 1253-1270, Aug. 1989. 

[36]  S. HILTUNEN, P. CHEVALIER, P. LOUBATON, "New Insights into Time Synchronization of MIMO Systems with 

Interference" Eusipco’15, Nice (France), Sept. 2015. 

[37]  H.L. VAN TREES, "Detection, Estimation and Modulation Theory – Part I", John Wiley and Sons, 1968 

[38]  D.C. CHU, "Polyphase codes with good periodic correlation properties", IEEE Trans. Info. Theory, Vol 18, N°4, pp. 

531-532, 1972. 

 

 

 

                             
 

Figure 1 – Number of complex operations from GM as a function of N, K = 32, K'/K = 10 
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                            (a)                                                                               (b) 

Figure 2 – PM as a function of SNR, K = 32, M = N = 2, PFA = 10
−3

, No interference, Orthogonal sequences, 

Deterministic channel: |α12|
2
 = 0 (a), |α12|

2
 = 0.6 (b). 

 

                   
                            (a)                                                                               (b) 

Figure 3 – PM as a function of SNR, K = 32, PFA = 10
−3

, No interference, Orthogonal sequences, Random 

channel, M = N = 2 (a), M = N = 4 (b). 

 

         
                            (a)                                                                               (b) 

Figure 4 – PM as a function of SNR, K = 32, M = N = 2, PFA = 10
−3

, No interference, Non-Orthogonal 

sequences, Deterministic channel: |α12|
2
 = 0 (a), |α12|

2
 = 0.6 (b). 
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                            (a)                                                                               (b) 

Figure 5 – PM as a function of SNR, K = 32, PFA = 10
−3

, No interference, Non-Orthogonal sequences, 

Random channel, M = N = 2 (a), M = N = 4 (b). 

 

               
                            (a)                                                                               (b) 

Figure 6 – PM as a function of SNR, K = 32, M = N = 2, PFA = 10
−3

, One interference, INR/SNR = 15 dB, 

Orthogonal sequences, Deterministic channel: (|α12|2, |α1I|
2, |α2I|

2) = (0, 0.74, 0.001)  (a), (|α12|2, |α1I|
2, 

|α2I|
2) = (0.6, 0.74, 0.97) (b)  

            
                            (a)                                                                               (b) 

Figure 7 – PM as a function of SNR, K = 32, M = N = 2, PFA = 10
−3

, One interference, INR/SNR = 5 dB, 

Orthogonal sequences, Deterministic channel: (|α12|2, |α1I|
2, |α2I|

2) = (0, 0.74, 0.001)  (a), (|α12|2, |α1I|
2, 

|α2I|
2) = (0.6, 0.74, 0.97) (b) 
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                            (a)                                                                               (b) 

Figure 8 – PM as a function of SNR, K = 32, PFA = 10
−3

, One interference, INR/SNR = 15 dB, Orthogonal 

sequences, Random channel, M = N = 2 (a), M = N = 4 (b).  

           
                            (a)                                                                               (b) 

Figure 9 – PM as a function of SNR, K = 32, PFA = 10
−3

, One interference, INR/SNR = 5 dB, Orthogonal 

sequences, Random channel, M = N = 2 (a), M = N = 4 (b). 

 

      
                            (a)                                                                               (b) 

Figure 10 – PM as a function of SNR, K = 32, PFA = 10
−3

, One interference, INR/SNR = 15 dB, Orthogonal 

sequences, Random channel, (M, N) = (4, 4) (a), (M, N) = (2, 8) (b). 
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                            (a)                                                                               (b) 

Figure 11 – PM as a function of SNR, K = 32, M = N = 2, PFA = 10
−3

, One interference, INR/SNR = 15 dB, 

Non-orthogonal sequences, Deterministic channel: (|α12|2, |α1I|
2, |α2I|

2) = (0, 0.74, 0.001)  (a), (|α12|2, |α1I|
2, 

|α2I|
2) = (0.6, 0.74, 0.97) (b) 

 

               
                            (a)                                                                               (b) 

Figure 12 – PM as a function of SNR, K = 32, PFA = 10
−3

, One interference, INR/SNR = 15 dB, Non-

orthogonal sequences, Random channel, M = N = 2 (a), M = N = 4 (b). 

 

                                    
Figure 13 – PM as a function of SNR, K = 32, N = 4, Orthogonal sequences, Deterministic channel, No 

interference  
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Figure 14 – PM as a function of SNR, K = 32, N = 4, Orthogonal sequences, Deterministic channel, One 

interference  

 

                                       
Figure 15 – PM as a function of SNR, K = 32, N = 4, Orthogonal sequences, Random channel, No interference  

 

 
Figure 16 – PM as a function of SNR, K = 32, N = 4, Orthogonal sequences, Random channel, One 

interference  
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 Trace/Det Inverse Matrix products 
GLRT2 2M3/3 + 2M − 

1       
  8N3/3 MN(2K − 1) + N(N+1)(2K − 1)/2 + MN(2N − 1) + M2(2N 

− 1)   

E0-GLRT3 M − 1         8N3/3 MN(2K − 1) + N(N+1)(2K − 1)/2 + MN(2N − 1) + M2(2N 
− 1)   

GLRT2-CRD 2M3/3 + 2M − 
1       

  8N3/3β MN(2K − 1) + N(N+1)(2K − 1/β)/2 + MN(2N − 1) + 

M2(2N − 1)   
E0-GLRT3-

CRD 

M − 1         8N3/3β MN(2K − 1) + N(N+1)(2K − 1/β)/2 + MN(2N − 1) + 

M2(2N − 1)   

 
Table 1 – Number of complex operations required by different receivers using GM 

 

 

 




