
HAL Id: hal-02461632
https://hal.science/hal-02461632

Submitted on 30 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Determining vehicle acceleration from noisy
non-uniformly sampled speed data for control purposes

Edwin Solano-Araque, Guillaume Colin, Guy-Michel Cloarec, Ahmed
Ketfi-Cherif, Yann Chamaillard

To cite this version:
Edwin Solano-Araque, Guillaume Colin, Guy-Michel Cloarec, Ahmed Ketfi-Cherif, Yann Chamaillard.
Determining vehicle acceleration from noisy non-uniformly sampled speed data for control purposes.
IFAC International Symposium on Advances in Automotive Control, Jul 2019, Orléans, France. pp.66-
71, �10.1016/j.ifacol.2019.09.011�. �hal-02461632�

https://hal.science/hal-02461632
https://hal.archives-ouvertes.fr

Determining vehicle acceleration from
noisy non-uniformly sampled speed data for

control purposes

Edwin Solano-Araque ∗,∗∗ Guillaume Colin ∗∗

Guy-Michel Cloarec ∗ Ahmed Ketfi-Cherif ∗

Yann Chamaillard ∗∗

∗ Renault S.A.S, France (e-mail: edwin.e.solano-araque@renault.com;
guy-michel.cloarec@renault.com; ahmed.ketfi-cherif@renault.com)
∗∗ Univ. Orléans, PRISME, EA 4229, F45072, Orléans, France

(e-mail: guillaume.colin@univ-orleans.fr;
yann.chamaillard@univ-orleans.fr)

Abstract: Vehicle acceleration is an important variable for many automotive control applica-
tions. In this paper, we present an approach to estimate vehicle acceleration from vehicle speed
data coming from the CAN (Controller Area Network) bus. The proposed method, which can be
seen as an extension of the Savitzky-Golay filter to non-uniformly sampled signals, re-samples
them to a constant period while filtering noise coming from different sources and also provides a
proper estimation of vehicle acceleration. We also consider the frequency response of the filtering
effect of the method. Finally, some practical considerations for efficient implementation of the
algorithm are given.

Keywords: Vehicle acceleration, Controller Area Network, Non-uniformly sampled signal
processing, Local Polynomial Regression, Savitzky-Golay Filter, Computational complexity

1. INTRODUCTION

Vehicle acceleration has a major influence on many au-
tomotive applications. For example, it is a determining
factor in drivability (Bellem et al. (2016)) and also in
the energy consumption of electric vehicles (Mruzek et al.
(2016), Solano-Araque et al. (2018)). Therefore, acquiring
a vehicle acceleration signal from real-driving field tests is
of great interest for control design.

These data can be obtained by installing acceleration sen-
sors on the vehicle and obtaining this information directly.
However, in some cases, this type of information may not
be available; for example, when one wants to estimate
the acceleration of the preceding vehicle for an automatic
driving function, or when one must work in a given ECU of
a car which has no access to the accelerometers but it has
access to the vehicle speed. Another possibility is obtaining
the vehicle speed signal, which is usually already present in
the vehicle, and numerically deriving it in order to get an
estimation of the acceleration. Nevertheless, given the fact
that the vehicle’s speed signal is usually very noisy, it can
be hard to obtain an exploitable acceleration estimation
from it.

In this work, we will consider the problem of getting an
adequate acceleration estimation from the speed signal
available on the CAN (Controller Area Network) bus of
a commercial vehicle. This speed can correspond either to
the controlled vehicle or the predecessor vehicle.

The CAN bus is widely used for automotive applications.
This is due to its deterministic resolution of the contention
(i.e. for a given information to be transmitted, the message

to be sent is deterministically defined), low cost, and
simple implementation (Di Natale et al. (2012)). Today,
most all (if not all) of the vehicles produced in Europe are
equipped with at least one CAN bus (Davis et al. (2007)).

However, CAN characteristics lead to some phenomena
that can pollute the signal being sent. One effect of this
pollution is the fact that the sample time can vary slightly
between two transmissions or, worse, some messages can
be lost during transmission. This results in CAN signals
not being uniformly sampled. This can cause problems
when one wants to estimate the derivative of such a signal
(e.g. the derivative of a speed signal).

In this paper, we propose a technique allowing us to get
an exploitable estimation of vehicle acceleration, suitable
to be used for control design. This technique is based on
Local Polynomial Regression and can also be seen as an
extension of the Savitzky-Golay filter (Schafer (2011)) to
non-uniformly sampled signals.

2. SIGNAL DISTORTIONS DUE TO CAN
PROTOCOL

As already mentioned, the CAN protocol has some charac-
teristics that may introduce noise in the signals. The main
ones are :

- Priority based arbitration: The CAN arbitra-
tion protocol is priority-based, specifically it uses
Carrier Sense Multiple Access/Collision Resolution
(CSMA/CR) to determine access (Davis et al. (2007)).
This means that if two nodes are trying to send a
frame (sequence of bits) at the same time, the one

Preprints, 9th IFAC International Symposium on Advances in Automotive Control
Orléans, France, June 23-27, 2019

Copyright © 2019 IFAC 66

with the highest priority (with a numerically lower
identifier) will circulate and the other one has to wait
for the next opportunity to be transmitted. Hence, it
may introduce a non-deterministic delay in the signals
being sent.

- Bit stuffing: in order to avoid ambiguities in the
frames being sent (Davis et al. (2007)), to allow
nodes to synchronize their timing and to allow error
detection (Watterson (2012)), some bits can be added
to the frames. This operation affects the length of the
frames and, therefore, it may introduce a slight delay
in the transmission.

- Limited signal resolution: the maximum data
length for a CAN frame is 8 bytes (Di Natale et al.
(2012)). This means that the maximum resolution of
a signal being transmitted through a single frame is
64 bits. And in practice, the resolution is lower due to
the fact that automakers usually send many signals
packaged in one frame.

- Loss of messages: On the CAN protocol there is no
guarantee that the message that a node sends will be
received by all of the others. Some messages may not
be received by one or many of the concerned nodes.
This would mean a loss of points in the transmitted
signal.

3. METHOD FOR FILTERING AND DERIVING CAN
SIGNALS

The method presented in this section makes it possible
simultaneously to:

- re-sample CAN signals to a constant period, thus
enabling classical signal processing techniques to be
applied on them.

- reconstruct missing signal values during the transmis-
sion, thus compensating for messages losses.

- filter the signal to eliminate noise coming from dif-
ferent sources; the technique we propose performs
particularly well on signals polluted with Gaussian
noise.

- estimate the signal derivative, while compensating for
the effect of noise and of loss of resolution due to CAN
transmission.

Hence, the method we propose allows a filtered uniformly
sampled signal and a proper estimation of its derivative to
be obtained from a noisy non-uniformly sampled signal.

The method consists of several stages, in particular: 1)
defining the output signal time vector and “creating” time-
windows, 2) getting the signal points associated to each
window, 3) (local) polynomial approximation of window
points, 4) reconstructing the point at t = tend[k] and
estimating the signal derivative at this point.

Each of these phases is now presented in turn.

3.1 Output signal definition and windows consideration

First, it is necessary to define the time instants tend ∈
RRRNsign1 , for which we want to reconstruct the raw signal,
whose time vector is tini ∈ RRRNsign0 . In order to get a
uniformly-sampled signal, the output-signal time points
must be uniformly distributed, with a sampling time τe.
We will consider that the signal starts at tini1 = t0 and it
ends at tiniNsign0

= tf .

Once the vector tend has been generated, we can consider
the time-windows. First, we consider time-windows cen-
tered on each one of the points tendj and with a width τwin.
Such an algorithm can be used to obtain information from
an experimental setting a posteriori.

We will introduce the notation we are using. winj is the
window corresponding to the i-th value of tendj . winj starts

at tjwin0
and ends at tjwinf

; using equations 1 and 2 these

values are calculated as a function of tendj and τwin, for a
centered window.

tjwin0
= tendj − τwin/2, (1)

tjwinf
= tendj + τwin/2, . (2)

In order to promote that each window has enough points
to apply the method, we also introduce the following
constraints:

tend1 > t0 +
τwin

2
, (3)

tendNsign1
6 tf −

τwin
2
. (4)

The following condition ensures a uniform sampling for the
output signals:

tendj+1 − tendj = τe, ∀j ∈ [1, ..., Nsign1
− 1]. (5)

By respecting these conditions, we can get an appropriate
vector tend. For this paper, we have taken tend1 = t0 + τwin

2

and tendNsign1
6 tf − τwin

2 . This is represented in Figure 1.

3.2 Obtaining the signal points associated to each window

From this point on, we are only working on the j-th
window, winj . Each of the following stages can be applied
to each of the windows.

At winj , we will get all the points between twin0
j 6 t 6

twinf
j , each of which will be denoted xk

j , k = 1, ...,mj .

We will note xj the vector with all the points belonging to
winj , as presented in (6).

xj = [x1
j(t1), ... , xk

j(tk), ... , xmj

j(tmj)]T

| ∃xkj(tk) ∈ xj, ∀tk ∈ Tj
Tj = {t| t ∈ tini, twin0

j 6 t 6 twinf

j} (6)

3.3 (Local) Polynomial approximation of the points within
the window

Once we have gotten xj, it is possible to define a function
f(t) to approximate the values of the points xk

j(tk
j).

For the method we propose we use a polynomial func-
tion, fnp(t), as presented in (7), where np is the or-

der of the polynomial, Pnp(t) = [1, t, t2, . . . , tnp]T and

θ = [θ0, θ1, . . . θnp]T .

f(t) =

np∑
i=0

θi.t
i = Pnp(t)

T
θ (7)

In order to simplify the notation, from now on, we will
omit the super-index j from most of the equations. f(θ, t)
is a linear function w.r.t. θ, thus we can consider f(t)

2019 IFAC AAC
Orléans, France, June 23-27, 2019

67

w

i

n

d

o
w
s

Fig. 1. Time-windows for the proposed method

as a linear measurement model (Boyd and Vandenberghe
(2004)). Hence, by considering νk as the error between the
measurement xk and the estimation f(tk), where tk ∈ t,
we get:

xk(tk) = Pnp(tk)
T
. θ + νk (8)

By considering all the m points in x, we find (9),
where x ∈ RRRm are the points within the window,
Tp = [Pnp(t1),Pnp(t2), . . . ,Pnp(tm)]T ∈ RRRm×np is a ma-

trix where each row corresponds to the 0th − npth powers
of tk, θ ∈ RRRnp is a vector with the parameters of f(t), that
we want to estimate, and ν ∈ RRRmj is the estimation error
for each point. We will assume that mj > np.

x = Tp. θ + ν (9)

By considering that a function of the form f(θ? , t), such
as the one given in 7, can “perfectly” (i.e. goodly enough
for the application purposes) represent the signal behavior
within the considered window, and that the difference be-
tween the measurements and the estimations corresponds
to Gaussian noise (i.e. ν follows a Gaussian distribution),
finding the parameters that best represent the points
within the window becomes a least-squares problem (Boyd
and Vandenberghe (2004)). Therefore, the optimal value
for the parameters of f(t) for the window, θ?, are given by
(10).

θ? =
(
TTp . Tp

)−1
.TTp .x (10)

3.4 Signal Reconstruction at t = tendj and signal derivative
estimation

To find the filtered signal value associated to winj , we
need to find the value of f(θ?, t) at t = tendj , this value
will be associated to the output signal. This operation is
presented in Figure 2.

Fig. 2. Output signal reconstruction

We can find an estimate of the signal derivative at t = tendj

by applying (11):

dx

dt
(tendj) = [0, 1, 2, . . . , np] diag (θ?)



0(
tendj

)0(
tendj

)1
...(

tendj

)np−1

 (11)

Once we have done so, we only have to apply the method to
each of the windows to get a filtered signal and an estimate
of its derivative.

3.5 Causal implementation of the method: “left-oriented”
window

The method we have just presented, based on a centered
window, is non-causal, which means that it is not possible
to use it for a real-time implementation. However, one can
easily get a causal version of this algorithm by using a
window that only considers past values of the signal; it is

equivalent to saying that tendj = t
winf

j . We may call such
a window a left-oriented window. In that case, the values
of tjwin0

and tjwinf
can be calculated by applying equation

(12) and the condition t
winf

j = tendj .

tjwin0
= tendj − τwin. (12)

The conditions to promote having enough points to apply
the method will become:

tend1 > t0 + τwin, (13)

tendNsign1
6 tf . (14)

When one directly applies the polynomial approximation
presented in section 3.3, the frequency response of the
filter that one can get would not be acceptable for an
application. This is due to the fact that a polynomial
regression tends to be closer to the central values of the
signal and yields greater errors for the corners of the
approximation. However, a way to compensate for this
fact is to weight the signal points by the absolute value
of the difference between tendj , and each point time, tinik .

It is equivalent to minimizing the value of νTW1ν, where
W1 = diag (w), w1

k = |tendj − tinik |, which is a weighted
least-squares problem.

In order to prioritize even more the points that are closer to
the time at which one would like to reconstruct the signal,

2019 IFAC AAC
Orléans, France, June 23-27, 2019

68

one can generalize the previous method by considering the
magnitude of the l-th power of each gap. It is expressed by
equation (15), which is a variant without loss of generality.
The fact of dividing all the numbers by the l-th power of
the maximum value of |tendj −tinik | permits to normalize the
values of wk to 1, in order to avoid numerical problems.

Wl = diag (w) , wlk =
|tendj − tinik |

l(
max

r=1,...,mj

|tendj − tinir |
)l . (15)

The solution of the weighted least-squares problem is given
by:

θ? =
(
TTp .Wl. Tp

)−1
.TTp .Wl.x (16)

4. FREQUENCY RESPONSE OF THE FILTERING
AND CHOICE OF THE METHOD PARAMETERS

An important characteristic of a filter is its frequency
response. In this section we present the frequency response
of the proposed methods, which can be viewed as inter-
polation filters, obtained numerically by applying it to
sinusoidal signals of different frequencies and comparing
the amplitude of the input and the output signals in order
to get the gain. It is important to note that, given the
fact that the proposed methods are not necessarily linear
filters, it is possible that this representation does not give
a comprehensive representation of the filter behavior.

In Figure 3, we compare the frequency response of both the
proposed non-causal and causal methods with the response
of a classic technique, namely a Butterworth filter. The
parameters used for the method are: τwin = 200ms and
np = 1 for the non-causal method, and τwin = 850ms,
np = 1 and l = 2, which lead quite close to a cutoff
frequency at 6dB of 2.997Hz (i.e. the frequency at which
the output signal amplitude is attenuated by 50.12%
w.r.t. the input signal). The Buttherworth filter has been
designed such as to get the same cutoff frequency.

Fig. 3. Frequency response of the proposed method and
of a linear interpolation filter; (a) linear-scale, (b)
logarithmic scale

We can observe that the non-causal method preserves more
of the signal energy below the cutoff frequency and, at the
same time, it attenuates the signal better for frequencies
above the cutoff frequency. Concerning the causal method,
we can see that for a certain range of frequencies there is a
gain greater than 1, which means that those frequencies
will be amplified by the filter. Nonetheless, the filter

preserves (or amplifies) a great amount of signal energy
in the range of interest, while better attenuating the noise
on higher frequencies.

5. PRACTICAL CONSIDERATIONS FOR OFFLINE
ALGORITHM IMPLEMENTATION

When implementing the proposed method, the computa-
tional burden can be a problem. Probably, the main way
of reducing it is by improving the way one solves the least-
squares problem for the polynomial approximation. How-
ever, another interesting way of improving the complexity
is to reduce the burden associated to getting the points
within each one of the time-windows. This is particularly
true for long signals because, as is shown below, this is a
task whose complexity scales quite rapidly as the input
or output size increases. In this section, we present an
appropriate algorithm to recover the points within the
window while limiting the computational burden.

First we will consider a naive algorithm to get the point
within the windows, presented in Algorithm 1. It will take
as an input the original signal time vector, t, the number
of inputs of the output signal, m, the sampling time of the
output signal τe and the size of the windows, τwin. The
algorithm returns, for each window, a vector containing
the indexes of the points within the window.

Algorithm 1 Determining the window points - naive
version
Input:

Original signal : t ∈ RRRn ;
Number of windows (output signal size) : m ;
Method parameters : τe , τwin

Output:
m vectors vj with the indexes of t belonging to the window j

1: begin
Create m void vectors vj = ∅ , j = 1, ...,m

2: for each value of the signal, i, do
3: for time window, j, do
4: if t[i] is contained by the window j then
5: Append the value i at the end of vj

6: end if
7: end for
8: end for
9: end

In order to analyze the complexity of the naive algorithm,
we will use the pseudo-code of Algorithm 2, for which some
programming choices have been done, including the use of
dynamic memory allocation. The blue comments show the
computational complexity of each task. To calculate the
computational burden of a loop, one must add the cost of
every task within the loop and, then, multiply it by the
number of iterations in the loop, in “big O” notation.

For the naive algorithm, the main complexity is associated
to the two nested loops, whose complexity is O(n.m),
which means that the computational burden increases
linearly with the input and the output signal sizes n andm,
respectively. Given the fact that for a constant sampling
time τe, n and m are closely related, one can roughly
consider it as a quadratic growth.

Concerning the memory cost of the algorithm, the algo-
rithm requires generating m vectors, vj , with a mean
size ṽ, roughly constant (in fact, ṽ depends on different
parameters of the method, and it is indirectly associated

2019 IFAC AAC
Orléans, France, June 23-27, 2019

69

Algorithm 2 Determining the window points - naive
version pseudo-code
Input:

Original signal : t ∈ RRRn ;
Number of windows (output signal size) : m ;
Method parameters : τe , τwin

Output:
m vectors vj with the indexes of t belonging to the window j

1: begin
2: Create m void vectors vj = ∅ , j = 1, ...,m .O(m)
3: twin0 = 0; twinf = 0 .O(1)
4: for i := 1 : n do .loop: O(n)
5: for j := 1 : m do .loop: O(m)
6: twin0 := (j − 1) ∗ τe .O(1)
7: twinf := (j − 1) ∗ τe + τwin .O(1)
8: if t[i] > twin0 and t[i] 6 twinf then .O(1)
9: Append i at the end of vj .O(1) (big)

10: end if
11: end for
12: end for
13: end

to m, but here we are neglecting this dependency). This
represents a memory cost O(ṽ.m) = O(m).

The improved algorithm we propose is presented in Algo-
rithm 3. It takes the same inputs as the naive algorithm,
but it only returns two vectors of size m: vini

idx and vend
idx ,

which respectively contain the initial and the final indexes
of the points associated to each one of the windows.

Algorithm 3 Determining the window points - proposed
algorithm
Input:

Original signal: t ∈ RRRn ;
Number of windows (output signal size): m ;
Method parameters: τe , τwin

Output:
2 vectors with the initial and final indexes for each window,
respectively vini

idx and vend
idx

1: begin
2: Create and initialize the auxiliary scalars Iini, Iend Iini 1,

tsign, twin0, twin0, twinf
3: Create and initialize the vectors vini

idx and vend
idx

4: for each signal value, i (starting at i = 2) do
5: Save Iini’s last value in Iini 1

6: Find the first window Iini whose t
Iini
win0

6 t[i]

7: Find the first window Iend whose t
Iend
winf

> t[i]

8: for k from Idxini 1 + 1 to Idxini do

9: if

{
t[i] 6 twin

k
f and a point be-

longing to the window have
not been found yet

}
then

10: i is the first index of the window k i.e.
vini
idx[k] := i

11: end if
12: end for
13: for k from Iend to Iini do
14: i is the last-until-now valid index of the signal

within the window k i.e. vend
idx [k] := i

. note: if in future iterations another index greater

than i is found to belong to the window, vend
idx [k]

will be overwritten

15: end for
16: end for
17: end

In order to analyze the complexity of the proposed algo-
rithm, we will use the pseudo-code of Algorithm 4, for
which also some programming choices have been done;

however, this time we have chosen to use static memory
allocation, as we know the output size a priori.

Algorithm 4 Determining the window points - proposed
algorithm pseudo-code
Input:

Original signal: t ∈ RRRn ;
Number of windows (output signal size): m ;
Method parameters: τe , τwin

Output:
2 vectors with the initial and final indexes for each window,
respectively vini

idx and vend
idx

1: begin
2: Iini = 1; Iend = 1; Iini 1 = 0 .O(1)
3: tsign = 0; twin0 = 0; twinf = 0 .O(1)
4: vini

idx = [1 ; 0m−1]; vend
idx = 0m .O(1)

5: for i := 2 : n do .loop: O(n)
6: tsign := t[i] .O(1)
7: Iini 1 := Iini .O(1)

8: while

{
(tsign > Idxini ∗ τe)
and (tsign < m ∗ τe)

}
do .loop: O(m̃1)

9: Iini := Iini + 1 .O(1)
10: end while

11: while

{(
tsign > (Ifin − 1) ∗ τe + τwin

)
and (Iend 6 Iini)

}
do .loop: O(m̃2)

12: Ifin := Iend + 1 .O(1)
13: end while
14: for k := (Iini 1 + 1) : Iini do .loop: O(m̃1)

15: if

{
tsign 6 (k − 1) ∗ τe + τwin

and Vidxini[k] == 0

}
then .O(1)

16: Vidxini[k] := i .O(1)
17: end if
18: end for
19: for k := (Iend) : Iini do .loop: O(m̃2)
20: Vidxend[k] := i .O(1)
21: end for
22: end for
23: end

As we can see on Algorithm 4, after the initialization phase
there is a loop containing four independent internal loops.
Concerning the computational burden, the initialization
tasks (lines 2-4) can be executed in constant timeO(1); the
external loop is executed O(n) times, and each one of the
internal loops is executed in a mean time O(m̃l), l = 1, 2,
where m̃l does not depend directly on the number of
windows m. Therefore, by adding these results, we will
get an amortized computational complexity O(n(2m̃1 +
2m̃2) + 1) = O(n(m̃1 + m̃2)), with (m̃1 + m̃2)� m when
m is big.

Concerning the memory cost of the algorithm, we know
exactly the amount of memory that the algorithm requires.
We need six scalar variables (Idxini, Idxend, Idxini 1,
tsign, twin0, twinf) and two m-sized vectors (Vidxini et
Vidxend). Hence, the memory cost associated to the algo-
rithm is O(2m+ 6) = O(m).

Table. 1 presents a synthesis of the complexity results
detailed above.

Algorithm Time Memory

Naive O(n.m) ≈ O(m) (dynamic)

Proposed ≈ O(n) O(m) (static)

Table 1. Comparison of naive and proposed
algorithms in time and memory complexity

2019 IFAC AAC
Orléans, France, June 23-27, 2019

70

6. ESTIMATION OF VEHICLE ACCELERATION

Finally, we applied a posteriori the proposed method to
the vehicle speed signal obtained through sensors installed
on each of the wheels, and transmitted by a CAN bus

Figure 4 presents the raw and processed signals of vehicle
speed and acceleration. For the acceleration estimate, the
following estimation methods were compared: applying
Euler’s method to the raw signal, applying Euler’s method
to the speed signal processed by a Buttherworth O1
filter, filtering with a Buttherworth filter the derivative
of the raw signal, applying the proposed method with a
centered window (non-causal method) and applying it with
a left-oriented window (causal method). In order to fairly
compare the methods, we have use the same parameters of
the filters shown in Figure 3. In order to apply the linear
filters, we have linearly interpolated the signals in order
to get an uniformly-sampled signal (which introduces a
distortion in the signal as it behaves as a low-pass filter).

We can notice that all the considered methods produce a
much less noisy signal than the estimation based on the
raw signal. However, the linear method introduces a delay
in the speed signal.

Fig. 4. Vehicle Acceleration Estimation

Figure 5 presents a zoomed view of the velocity and
accelerations. We can see that there is a real improvement
in the acceleration due to the processing. However, all
the causal methods (the proposed causal method and
the linear ones) introduce a delay in the estimation;
however, by using the left-oriented window, one gets a less
noisy signal. Nonetheless, the proposed causal method also
amplifies the signal values at some points.

Also, there is a pronounced jump in the raw estimations
at the beginning of the vehicle maneuver. This is due
to the fact that commercial vehicle speed sensors are
usually not able to produce a reliable estimation at low
speed. Therefore, the speed signal has a value 0 when
the vehicle speed is below a certain level. This produces
a jump in the signal which has quite a strong effect on
the acceleration estimation. We can notice that, when the
non-causal proposed method is applied, this phenomenon
practically disappears without introducing a delay in the
signal.

7. CONCLUSIONS AND DISCUSSION

The proposed non-causal method provides an adequate
estimate of vehicle acceleration without having an ac-
celerometer, which could be used for many a posteriori

Fig. 5. Vehicle Acceleration Estimation - Zoomed view

applications. However, it is hard to say if the causal pro-
posed method really improves the acceleration estimation;
it could be the case when one needs to get a non-noisy
rough estimate of the acceleration.

Also, an efficient way to implement a crucial step of the
method has been proposed. This method could also be
applied to some other problems where finding whether
some given points belong to an equally spaced set of
overlapping intervals is required.

In this work, we have considered a speed signal based on
wheel sensors. Another possibility that could be applied
to single-gear electric vehicles would be to estimate ac-
celeration based on the electric machine speed; this is a
more noisy signal but, at the same time, it does not have
the problem of a low dead-zone and it could have a better
resolution. The proposed method could properly filter such
a signal in order to better exploit the information to get a
relevant acceleration estimate.

REFERENCES

Bellem, H., Schönenberg, T., Krems, J.F., and Schrauf,
M. (2016). Objective metrics of comfort: developing a
driving style for highly automated vehicles. Transporta-
tion research part F: traffic psychology and behaviour,
41, 45–54.

Boyd, S. and Vandenberghe, L. (2004). Convex optimiza-
tion. Cambridge university press, New York.

Davis, R.I., Burns, A., Bril, R.J., and Lukkien, J.J. (2007).
Controller area network (can) schedulability analysis:
Refuted, revisited and revised. Real-Time Systems,
35(3), 239–272.

Di Natale, M., Zeng, H., Giusto, P., and Ghosal, A. (2012).
Understanding and using the controller area network
communication protocol: theory and practice. Springer
Science & Business Media.

Mruzek, M., Gajdáč, I., Kučera, L., and Barta, D. (2016).
Analysis of parameters influencing electric vehicle range.
Procedia Engineering, 134, 165–174.

Schafer, R.W. (2011). What is a savitzky-golay fil-
ter?[lecture notes]. IEEE Signal processing magazine,
28(4), 111–117.

Solano-Araque, E., Colin, G., Cloarec, G.M., Ketfi-Cherif,
A., and Chamaillard, Y. (2018). Energy analysis of
eco-driving maneuvers on electric vehicles. IFAC-
PapersOnLine, 51(31), 195–200.

Watterson, C. (2012). Controller area network (can)
implementation guide. Appl. Note-1123 Analog Devices
Inc.

2019 IFAC AAC
Orléans, France, June 23-27, 2019

71

