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Predictive Control Framework for HEV: Energy
Management and Free-Wheeling Analysis
Nicoleta Stroe, Sorin Olaru, Guillaume Colin, Karim Ben-Cherif and Yann Chamaillard

Abstract—The focus of this work is to exploit the potential
of model predictive control for the energy management of
hybrid electric vehicles. The global framework covers the power
distribution between the internal combustion engine and the
electric machine(s) in order to minimize the fuel consumption.
Current technologies allow the forecast of speed profile and road
grade making predictive control a viable solution. The gears
within the prediction model are assumed to be pre-calculated at a
higher level and therefore, only the torque split problem needs to
be addressed by the energy management mechanism. Engine stop
can improve fuel gain which is even more noticeable for hybrid
vehicles and hence, its inclusion is naturally considered in the
present study. Furthermore, optimization of the speed profile is
addressed by introducing the free-wheeling functionality.

Index Terms—hybrid electric vehicles, predictive control,
model-based control

I. INTRODUCTION

HYBRID electric vehicles represent a promising alterna-
tive to conventional vehicles in the context of fossil fuel

scarcity. A hybrid powertrain contains at least one additional
electric machine, that can be used for stop and go, regenerative
braking, boost or electric propulsion. One or more of these
functionalities can be encountered, depending on the level of
hybridization (micro, mild and full hybrid).

Three types of topologies can be identified: parallel, series
and series-parallel. In the parallel architecture, both the ICE
and EM contribute to traction and their rotational speeds are
directly linked to the vehicle speed. Series topologies have two
electric machines, one that is used for traction and another that
works as a generator. There is no mechanical link between the
ICE and the wheels, which presents the advantage of choosing
the engine operating point regardless of the vehicle speed.
Series-parallel HEV have more complicated transmissions,
usually based on planetary gear sets and contain at least
two electric machines, between which there is an additional
mechanical link via the transmission [1].

The design, modeling and control of hybrid powertrains
represent a challenge for both research and industry in dif-
ferent fields. The power distribution between the engine and
its electric counterpart, referred to as energy management, is
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of major interest from a control perspective. The main goal is
to minimize fuel consumption, but additional criteria such as
pollutant emissions reduction [2] and drivability improvement
[3], can also be tackled.

In the literature numerous techniques have been proposed,
that will be summarized in the next section. A clear distinction
can be made between plug-in hybrid vehicles and those
without an external charging. For the former it has been
proven that a close-to-global optimum solution is to linearly
discharge the battery with respect to distance, for sections
with a certain pattern [4]. Hence, the main focus in this case
is to exploit long-term telemetry data and to divide the road
into segments with similar characteristics. In the absence of
external charging, the battery should not be depleted by the
end of the drive cycle, because this would imply charging at
a later stage, via the engine, which involves additional fuel
consumption. For this type of hybrid, it is therefore important
to maintain the final state-of-charge between certain limits.
In order to correctly evaluate the performance, it is required
in simulation that the final value of the state-of-charge must
equal the initial one. The goal is twofold: a fair comparison
with the consumption of a conventional vehicle and between
different control strategies for a given hybrid vehicle. Hence,
the energy management in the case without a plug-in requires
a different approach, because each consumption in the battery
needs to be later compensated, either by regenerative braking,
or by the engine.

Current technologies allow the acquisition of future traffic
data conditions (from GPS, for instance) that allow the recon-
struction of the speed profile and thus, favoring the orientation
toward predictive control structures. In the present study, it is
assumed that the vehicle speed can be predicted for a horizon
up to 1 minute, making it possible to predict the wheel torque
demand. Traffic forecast techniques are beyond the scope of
this study and therefore, no further information is provided
regarding data acquisition and processing.

Model predictive control (MPC) has aroused the interest in
the automotive industry, its application spanning several fields,
such as engine control [5], lateral vehicle dynamics [6], cruise
control [7] or autonomous vehicle [8]. MPC is a constrained
optimization strategy, which calculates a sequence of future
commands that minimizes a cost function over a prediction
horizon, but where only the first command is applied in a
receding horizon manner. The simultaneous calculation of a
control window, instead of just one command, means that
the impact of the value that will be eventually applied to the
system can be predicted, reinforcing the recursive feasibility.

In this paper, the gears are considered pre-imposed and
the torque distribution between the engine and the electric
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machine is provided by an MPC-based optimization. Engine
stop is performed during standstill and regenerative braking,
but it can also be shut off during electric propulsion phases.
In order to avoid an increase in complexity, the present work
deals with engine stop-start based on an a-posteriori model-
based decision, the advantage of such a decision being the re-
duction of the optimization variable within the MPC problem,
as will be detailed in the next sections. As a contribution, free-
wheeling functionality is introduced, in a predictive control
framework. In this case, no pedal is pressed, the driveline is
disengaged and thus, the vehicle is slowed down by resistive
forces only. The benefit in fuel gain for conventional vehicles
was analyzed in [9], [10], but existing MPC techniques do
not include this feature to the best of the authors’ knowledge.
For a hybrid vehicle, an extension is possible, which includes
energy recovery. This allows coasting initiation for cases when
it would have been too slow in its initial formulation and thus,
unacceptable from a performance perspective.

The paper is organized as follows: first, a brief presentation
of the existing strategies is given, followed by the powertrain
control-oriented model for a specific case-study, but with an
extended application to different hybrid architectures. An MPC
formulation of the joint problem of torque split and stop-start is
next introduced. Finally, an analytical approach of the analysis
and problem formulation of a coasting strategy is addressed,
this being the main contribution of the present study.

II. STATE OF THE ART

Powertrain modeling distinguishes two simulation ap-
proaches: forward and backward. The former respects the
physical causality of the power flow (from engine to vehicle
speed), whereas the latter starts from the target vehicle speed
and calculates the references for the propulsion system. A
comparison between the two can be found in [11]. The
backward approach is used in control-oriented applications,
i.e. it is assumed that there is an imposed drive cycle (speed
profile) and a control law needs to be designed in order to
ensure speed tracking.

As mentioned in the introduction, the energy management
unit of an HEV handles the power distribution between the two
propulsion elements. If the gears are pre-imposed, either by
the drive cycle standards, or calculated at a supervisory level,
the problem is reduced to a torque split decision. Therefore,
at each step, the wheel torque demand is calculated from the
target speed, resistive forces and slope, and a controller then
decides the distribution between the ICE and EM. The level
where the distribution occurs is defined by the position of the
electric machine (crankshaft, gearbox or wheel) and hence,
from a control perspective it is useful to propose a model that
covers a large class of configurations.

The first attempt toward a generalized model for a HEV
powertrain was made in [12], where an approach based on
energy flow was proposed. In [13] a more detailed model
was introduced, where an appropriate parametrization allows
the representation of different vehicle types: conventional,
electric and hybrid. For the latter, the 3 architecture types are
handled: series, parallel and series-parallel. Shaft dynamics are

included, but the type of transmission and the position of the
electric machine for a parallel configuration are not considered.

Over the years, the power distribution problem was handled
by different control techniques, whose main goal was to
minimize fuel consumption. However, other objectives can
also be handled, such as emissions reduction [2], drivability
[3] or battery health [14]. Passenger cars are the most targeted
category, but over the recent years an increased interest in
trucks [15], [16] and buses [17], [18], [19] has been witnessed.

Dynamic programming (DP) [20] provides the global op-
timum solution, but it assumes that the speed profile is
entirely known in advance and it is also very computationally
demanding, which makes it generally unsuitable for real-time
applications. Therefore, it is only implemented offline and
its result used as a reference value. Pontryagin's Minimum
Principle (PMP) is sometimes preferred to DP, because it
can also yield the optimal solution, but considerably faster,
provided the optimal co-state is found, as detailed in [21].
Equivalent Consumption Minimization Strategy (ECMS) is a
very popular control approach, derived from PMP and used
for online application [22]. It is based on the instantaneous
optimization of a cost function expressed as a weighted sum
of the two quantities that need to be minimized: the fuel and
the electrochemical consumption. The penalty factor is often
referred to as the equivalence factor, because each use of the
battery has a corresponding fuel consumption. Variations of
this method can be encountered, such as Adaptive-ECMS [23]
or Telemetric-ECMS [24], that propose different strategies for
tuning the penalty factor.

The ability to cope with constraints, but also the current
possibility to gather future information about the drive cycle,
made MPC an attractive solution, in its deterministic [25],
[26] or stochastic form [27], [28]. The use of preview data
for improvements in fuel gain has been the object of several
papers, such as [29] or [30]. In the former, a maximum head-
way of 400m was tested, whereas in the latter the prediction
was specified on a time headway, with optimal values found to
be on the order of 30s. However, within the use of the MPC
method, smaller prediction horizon values are used, mostly
below 20s.

Engine stop-start functionality provides additional fuel gain
if handled properly, especially in urban traffic. For a hybrid
vehicle it presents an additional interest, due to the possibility
of electric propulsion, but it introduces new challenges in the
energy management formulation in the MPC framework. In
the literature, there are two main approaches to tackle this
problem: simultaneous consideration of the torque split and
engine stop in the energy management problem, by adding a
discrete optimization variable [31] or division into a two-level
optimization [32], [33], [19].

Coasting, sometimes also referred to as free-wheeling, is
a special functional mode in which the vehicle motion is de-
scribed only by resistive forces, no pedal being pressed. During
coasting, the engine is usually disengaged, in order to avoid
the drag torque. In some cases, however, an additional negative
torque from the engine can be useful, if a fast decrease of
vehicle speed is demanded. If the engine is disconnected from
the wheels, it can either be on idle or stopped.
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One of the first papers which tackled the benefit of coasting
in terms of fuel consumption for conventional vehicles was
[9]. Two types of drive cycle were considered: NEDC (hard
deceleration) and FTP-75 (small deceleration). Although the
NEDC in its initial form is not representative for coasting,
a tolerated speed deviation allows early coasting initiation
during phases of constant reference speed. It was shown that
a gain up to 6% can be obtained, whereas for FTP-75, the
best-case scenario provides a gain of 10%.

In [10] the performance of coasting was analyzed for
constant speed phases on highway, with slope information
included. The focus was on conventional vehicles and two
main topics were addressed: coasting initiation and influence
of boost acceleration before coasting. The performance of
an HEV was also tackled for a downhill road profile and
results showed that coasting is more fuel-efficient than energy
recovery.

A. Abbreviations and acronyms

• ICE - internal combustion engine
• EM - electric machine
• DCT - dual-clutch transmission
• GB - gearbox
• Ri - gear ratio engaged on ith shaft (includes neutral

definition), i ∈ {1 : odd, 2 : even}
• Rf(Ri) - axle ratio corresponding to the Ri ratio
• Ci - clutch status (0 - open, 1 - closed)
• Ni = min(Ri, 1) - used to define the case where one of

the shafts is decoupled
• rwice/em - ratio between the ICE/EM torque at wheel level

and the component (ICE/ EM) torque
• ratem - ratio between the EM and the corresponding shaft

where it is connected
• ωctrlice - idle speed or 0 rpm, in case of engine stop
• QP - quadratic programming
• S&S - Stop&Start
• Af - vehicle frontal area
• cd - aerodynamic drag coefficient
• cr0, cr1 - rolling friction coefficients
• ρair - air density
• mv - vehicle mass
• Rw - wheel radius
• Iw,d - inertia of one wheel and of driveline, respectively

• OCV - open circuit voltage
• Pe - electrochemical power
• Pf - fuel power
• Qmax - battery capacity

III. POWERTRAIN CONTROL-ORIENTED MODEL

As mentioned in the previous section, the backward ap-
proach is suitable for control applications and was therefore
chosen in this work. Given the resistive forces and the vehicle

reference speed v, the wheel torque demand Tw can be
calculated:

Tw =
(1

2
ρairAfcdv

2 + (cr1v + cr0)mvgcos(α)

+mvgsin(α) +mv v̇
)
Rw

(1)

One of the goals of the control strategy is flexibility with
respect to the powertrain architecture. For instance, for a
micro-hybrid, characterized by the presence of a belt-driven
starter-generator, the torque split problem can be formulated
at the crankshaft level, but an electric machine can also be
found at the gearbox level (primary or secondary) or at the
wheel. Hence, if the control problem is formulated at the wheel
level, then a comprehensive description is provided about the
transmission type and the electric machine position. If the gear
ratios are calculated at a higher level, the only control variables
remain the torque of components (ICE and EM).

In this paper, a case-study of a dual-clutch transmission
hybrid with an EM connected to the primary shaft as in Fig. 1,
was chosen. The static model introduced below describes the
relation between the total wheel torque (known at each instant)
and the torque of components and it also defines the rotational
speeds from the vehicle speed and the gears. In [34] it was
shown that the proposed model can be used for all parallel and
series hybrid architectures, with a possible extension for series-
parallel, provided additional electric machines on crankshaft
and wheel are included. Here, only the relations that concern
the current case-study have been retained:

Tw = rwiceTice + rwemTem (2)
rwice = Rf(R1)

R1C1 +Rf(R2)
R2C2 (3)

rwem = Rf(R1C1C2+R2)
(R1C1C2 +R2) ratem (4)

ωice = rwice
v

Rw
+ (1− C1 −N2C2)ωctrlice (5)

ωem = rwem
v

Rw
+ ratemC2 (1− C1) (1−N2)ωctrlice (6)

For a better understanding of the model, its functional modes
are summarized in Table I. The driveline can be open (C1 =
C2 = 0) or closed, with one clutch closed at a time. It is
possible however to have both clutches simultaneously closed:
during take-off and the parallel mode of charge during driving,
as depicted in Fig. 2. In this case, the even shaft is on
neutral and the EM speed is given by the gear engaged on
the odd shaft. Hence, the EM gear is correctly defined by
R1C1C2 + R2; if R2 = 0 and both clutches are closed,
then the multiplication ratio is given by R1. Another special
use-case is charge at standstill, depicted in Fig. 3. Here, the
even shaft is decoupled from the wheel (N2 = 0), with the
even clutch closed (C2 = 1, C1 = 0) and the engine is
running at idle speed. The condition that defines when the
engine is disconnected from the wheel is therefore given by
C1 +N2C2 = 0. The EM speed in this case is also calculated
from the idle speed (ωctrlice ) and the condition that ensures it is
C2 (1− C1) (1−N2) = 1.

The only dynamical part of the system is the battery state-
of-charge, for which an equivalent circuit model is used (OCV



4

Fig. 1. DCT hybrid configuration

TABLE I
HYBRID DCT FUNCTIONAL MODES

C1 C2 N2 Case
0 0 0 standstill, sailing
0 0 1 electric driving, regenerative braking
0 1 1 hybrid or conventional, even gear engaged
0 1 0 charge during standstill
1 0 0 conventional driving, odd gear engaged
1 0 1 hybrid driving
1 1 0 take-off, charge during driving (parallel mode)

- open circuit voltage, R - internal resistance, Qmax - battery
capacity):

˙SOC = −
OCV(SOC) −

√
OCV 2

(SOC) − 4R(SOC)Pb

2R(SOC)Qmax
(7)

where Pb = π
30ωemTem + loss (ωem, Tem) .

A. Fuel consumption approximation

The engine fuel rate is given as a non linear map with
respect to torque and rotational speed. For the control design,
an analytical expression with an explicit dependence on the
control variable i.e. the engine torque, is needed. The vehicle
considered for this case-study is equipped with a turbo-charged
1.2 L SI engine, whose fuel rate dependence on torque is
illustrated in Fig. 4, via a parametrization of curves with
respect to ωice. In this paper, a piecewise linear approximation
with respect to torque is introduced, as expressed below:

ṁf = αj(ωice)Tice + βj(ωice), for j = 1 . . . Npart (8)

where Npart is the number of torque partitions.

IV. ENERGY MANAGEMENT - PROBLEM FORMULATION

As announced in the introduction, the goal is to reduce fuel
consumption and the approach is based on MPC. The receding
horizon optimization in MPC is based on the definition of a
cost function. To evaluate the fuel consumption of a hybrid
vehicle, a tank-to-wheel analysis is usually performed. In the
case of a hybrid with external charging, the goal is to reach
the destination with the battery depleted, i.e. to exploit the
potential of the electrical components as much as possible. The
battery recharge is not included in the optimization problem,
principally due to the fact that such a decision it is not
vehicle-related (a comprehensive analysis of the consumption
is called well-to-tank and it also considers the production of

Fig. 2. Charge during driving: torque split and parallel mode

Fig. 3. Charge during standstill

the electricity from the grid). Starting from these considera-
tions the present work focuses on fuel gain optimization for
a hybrid configuration without a plug-in and therefore, the
battery consumption needs to be explicitly considered. A low
battery SOC at the end of the drive cycle implies a reduced
fuel consumption, but also a decrease of the energy buffer for
a new trip. It is recalled that the gearbox setpoints are handled
at a supervisory level and therefore, the energy management
addresses only the torque distribution.

The cost function definition is based on PMP (Pontryagin's
Minimum Principle) design:

min
uk

Pfk + λkPek

Pfk = HLV ṁfk and Pek = −QmaxOCVk ˙SOC
(9)

where k is the current step, HLV is the lower heating value
of the fuel, uk is the engine torque Tice and λk is a penalty,
also referred to as the equivalence factor.
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ṁ
f
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ωice = 1200 rpm

ωice = 6000 rpm

ωice

Fig. 4. Fuel rate ṁf evolution with respect to engine torque Tice, for different
values of speed ωice
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In this work, a quadratic criterion is defined, where the
powers of the two components are introduced with their
squared values, but over a prediction horizon, denoted Nmpc:

min
u

k+Nmpc−1∑
i=k

P 2
f (i) + λ2

k (Pek(i)− Pemink(i))
2 (10)

The electrochemical power Pe can be positive (discharge) or
negative (charge), therefore the use of its squared value implies
the loss of sign information. The purpose of the displacement
term Pemin is to bring the two powers to the same level before
adding their squared values.

The penalty factor λ has a tremendous impact on the
performance and its tuning raises difficulties, as is also the
case for PMP. If chosen too low, the battery consumption will
not be properly taken into account and thus, a fast depletion
will occur. Conversely, if the weighting factor is oversized,
the battery may be overcharged. Here, the tuning relies on the
ratio of the fuel and electrochemical power variations between
their lower and upper limits. Preview information of length
Nλ (Nλ ≥ Nmpc) is exploited for tuning, as depicted in Fig.
5. If the future vehicle speed can be reconstructed over a
horizon Nλ, then an average of the aforementioned ratios can
be calculated, as expressed below:

λk0 =
1

Nλ −Nstop
λ

Nλ∑
i=1

−
Pf (uk,i)− Pf (uk,i)

Pe(uk,i)− Pe(uk,i)

λk = λk0 + kr (SOCsp − SOCk)

Nstop
λ - no. of predicted steps of vehicle standstill

uk,i(uk,i) - maximum (minimum) of uk,i
SOCsp - SOC setpoint

(11)

It can be noticed that there is a proportional feedback term
in the SOC (in this case, SOCsp is constant and equal to the
initial SOC). The purpose is to adjust the penalty with respect
to SOC variation: if the trajectory is below the setpoint, λk
will increase and a stronger penalty implies a reduced use of
the battery. If SOC is greater than the setpoint, then λk will
decrease, which will favor electrical traction. The proportional
factor kr is chosen such that λk remains positive. For a
given powertrain, an interval for the feed-forward component
variation can be determined, regardless of the drive cycle.
Therefore kr tuning is made for the worst-case scenario, i.e.
the lowest value of λk0 and SOCk = SOCmax.

A. MPC formulation

MPC is a model-based method that calculates at each instant
a sequence of commands that minimize a cost function over
a finite horizon, under constraints, but only the first command
is applied. There are therefore three aspects that need to be
defined: a control-oriented model, an optimization criterion
and constraints. As far as the former is concerned, linear
models are mostly preferred, whereas for the cost function,
a quadratic formulation is traditionally chosen. MPC is espe-
cially suitable for tracking problems where the anticipation of
the system evolution subject to future commands improves the
control performance. MPC minimizes the tracking error and

Fig. 5. Generic predictive control strategy. The uppermost level exploits the
navigation data for the calculation of the SOC setpoint SOCsp (however, in
the present study, this value was kept constant and equal to initial SOC) and of
the feedforward component of the penalty factor λ and it also interferes in the
coasting strategy. The next level concerns the MPC-based torque distribution,
which provides the engine torque setpoint and S&S command. These signals
are processed by an engine and gearbox supervisor, which eventually sends
the torques, clutches and gearbox number references to a vehicle high-fidelity
model.

the command effort, under state and command constraints. In
the absence of a setpoint tracking, MPC optimizes an energy
criterion in which case it is referred to as Economic MPC
(EMPC) [35].

The current problem can also be included in the framework
of EMPC. The goal is to minimize a criterion that reflects an
energy consumption (thermal and electrochemical), subject to
constraints, but no tracking problem is addressed. If SOC tries
to reach a steady-state value, the potential of the energy buffer
(the battery) is not exploited. Therefore, SOC is allowed to
freely evolve between the physical limits of the components.

The prediction model is based on the dynamics of the state
of charge. Despite the scalar state, the nonlinearity is important
and it will be represented for prediction purposes by a linear
time-varying (LTV) model.

xk+1 = xk +Bkuk +Dk (12)

where x(k) = SOC(k), uk = TICE(k), Dk is a residual
term resulting from linearization. It can be seen that the model
represents practically an integrator-like dynamics, with Bk and
Dk time-varying, dependent on wheel torque demand Tw(k)
and EM rotational speed ωEM (k). It is assumed that the
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open circuit voltage (OCV ) and the internal resistance (R) of
the battery remain constant during the prediction. Therefore,
the problem can be formulated in the quadratic programming
framework, for which efficient solvers exist:

min
U

1

2
UTHU + FTU (13a)

s.t.

{
AineqU ≤ bineq
AeqU = beq

(13b)

With the definitions from (8) and (10), the matrices involved
in the QP formulation can be expressed as:

Hk = ᾱ2
k + q2

kB̄
2
k (14a)

Fk = ᾱkβ̄k − q2
kB̄kU

max
k (14b)

where qk = λk
1

HLV
QmaxOCVk, B̄k = diag (Bk+i−1),

ᾱk =


αj1 (ωicek) · · · 0

...
. . .

...

0 · · · αjNmpc−1

(
ωicek+Nmpc−1

)
 ,

β̄k =
[
βj1 (ωicek) · · · βjNmpc−1

(
ωicek+Nmpc−1

)]
,

where the index ji denotes the fuel consumption region j for
the ith element, with α and β taken from (8); Umaxk is a vector
with the control upper bounds.
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Fig. 6. SOC limits for 2 cases: total distance known and reset distance fixed
at 10 km, respectively

The constraints are defined with respect to physical limi-
tations of torque and power, but the SOC balance problem
needs to be handled separately. For a hybrid without external
charging, it is usually required to have at the end of the
drive cycle the same SOC value as in the beginning. In this
way, a fair comparison with a conventional vehicle or between
different strategies can be made. The solution proposed here
is the use of distance-varying limits:

SOCmink = SOC0 − (SOC0 − SOCmin) e
1− 1

1− dk
dTot

SOCmaxk = SOC0 + (SOCmax − SOC0) e
1− 1

1− dk
dTot

(15)

where SOCmin, SOCmax are the physical lower and upper
bounds (usually with values of 20% and 90%, respectively), dk
is the current distance and dTot is the drive cycle total distance.

The purpose is to force the SOC trajectory to approach
the initial value, as the vehicle reaches its destination. This
condition implies knowledge of the total distance, which is
not always realistic, without an explicit declaration from the
driver, as can be the case when the energy management is in
direct relationship with the navigation unit. An alternative is
the use of a reset distance, as depicted in Fig. 6. In simulation,
this can be set to standard drive cycles distances, but in practice
it can be extracted from the driver’s history data.

The constraints are hence expressed as below:

Tminice (ωice) ≤ Tice ≤ Tmaxice (ωice) (16a)

Tminem (ωem) ≤ Tem ≤ Tmaxem (ωem) (16b)

SOCmink − εk ≤ Xk ≤ SOCmaxk + εk (16c)

where εk is a slack variable used to soften the constraints, in
order to avoid infeasibility problems that may occur when the
SOC variation range is too narrow.

B. ICE stop-start strategy

It is assumed that the driveline states (gears and clutches)
are calculated at the supervisory level and used as inputs by the
MPC controller. The ICE can be stopped during standstill and
regenerative braking, but also during pure electric traction. The
inclusion of stop-start functionality makes the optimization
more complex due to the discrete nature of the problem. In
order to avoid the introduction of an additional optimization
variable, an a-posteriori stop decision based on the sequence
of calculated future commands is introduced here.

Let tidle be the number of seconds of idling that corresponds
to the cost of a restart, ∆topt the MPC sampling time and cton
the number of steps after an ICE restart. Then, the condition
to stop the engine is given by:

Uk (1 : Nstop) ≤ T thrice (17a)
cton > Nstart (17b)

where Nstop = tidle
∆topt

and T thrice is an ICE torque threshold
below which it is preferable to stop the engine. The condition
(17b) is introduced in order to avoid frequent stops; here, the
choice Nstart = Nstop was made. With this approach, the
cost of a restart is implicitly included in the length of the
considered subsequence of commands.

The access to a sequence of future commands allows the
tuning of Non, representing the restart prediction step in order
to improve speed tracking. If the value of the command on
the position 1 +Non exceeds the ICE torque threshold, then a
restart command is activated. For the current study, a sampling
time of 0.5s was used and thus, Non was set to 1. The strategy
is detailed in Fig. 7.

C. Simulations and results for MPC with S&S functionality

The strategy was validated in Matlab/Simulink, in co-
simulation with AMEsim, used for the high-fidelity modeling
of the vehicle. The MPC sampling time was set to ∆topt =
0.5s, the cost of a restart tidle = 2s and hence, Nstop = 4,
T thrice = 5Nm. An MPC horizon of 5s was chosen, which
is long enough to include the S&S functionality. Simulations



7

Fig. 7. Schematic representation of S&S strategy
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Fig. 8. Speed profile for different representative drive cycles

were carried out for different drive cycles, depicted in Fig. 8.
The preview horizon Nλ for the tuning block can vary between
5s and 60s and its choice depends mostly on the availability of
navigation data and on drive cycle characteristics. A sensitivity
analysis with respect to tuning horizon Nλ, as well as a
robustness study can be found in [36]. Here, the value that
provides the best results was retained for each scenario.
Consumption results are summarized in Table II, where a
comparison with the performance of the PMP method is made,
given by relation (9). In [37] it is shown that this Hamiltonian
based method, with a constant, drive cycle dependent adjoint
state, gives close to global optimum results. Therefore, for
each drive cycle, a constant equivalence factor was determined
offline such that the final SOC is the same as for the trajectory
obtained with MPC. The engine stop was performed for the
phases of electric traction. It can be noticed that a control
horizon of 5s is enough to obtain a performance down to 6%
close to PMP solution.

TABLE II
FUEL CONSUMPTION [L/100KM] AND FINAL SOC[%], PMP AND MPC

XXXXXXXXCycle
Strategy PMP MPC Relative

difference

NEDC 4.5 4.76 5.77%(70.26%) (70.57%)

Artemis urban 5.61 6.11 8.9%(52.76%) (52.58%)

FTP-75 4.5 4.82 7.11%(55.74%) (55.16%)

Traffic jam 5.55 6.16 11%(50.12%) (50.32%)

tk2
tk1

k

k

Navigation
 data

Coasting

T pred
w = 0

Coasting
activation

(FF term)

T pred
w

λk,0

k +N

k +Nλ

Fig. 9. Coasting initiation: details about influence on the wheel torque
prediction and, hence λ feed-forward component

V. COASTING

As a supplementary feature with respect to the predictive
energy management, the goal in this study was to introduce
a coasting functionality and to analyze its performance for an
HEV. First, a framework for the scenarios where coasting is
potentially preferable over regeneration needed to be defined.
Second, a strategy that determines coasting acceptance in
terms of speed deviation and position, as well as the satisfac-
tion of time-dependent constraints was designed. A method to
determine coasting initiation and duration is also detailed.

A. Motivation: basic case-study

In order to motivate the coasting, a basic case-study is
considered, described by a constant speed, followed by a
decrease and shortly afterwards, a new increase phase, as
depicted in Fig. 10 (black, dashed curve). Two scenarios are
handled: basic coasting (red) and e-coasting (blue). The latter
is defined by free-wheeling with energy recovery and it can
be preferred in some cases, if the vehicle cannot be slowed
down fast enough by coasting, as will be presented in the
next example. If coasting is initiated around t = 82s , after
21s the vehicle will reach the new reference speed from the
acceleration section, without deviating significantly from the
setpoint. E-coasting can be started later and as a result of the
energy recovery, the speed decreases faster and thus, remains
closer to the setpoint.

The coasting decision is taken at the supervisory level, as
depicted in Fig. 5, from the exploitation of the navigation
data. This will influence the current driver request (coasting
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activation implies no pedal pressed), as well as the wheel
torque prediction, that will affect the value of the feedforward
component of the MPC tuning factor (λk0), as shown in Fig.
9. The purpose of this subsection is to evaluate the benefit
of coasting from a fuel consumption perspective. For the
following analysis, the coasting decision was taken offline and
the problem formulation (start and end of coasting) will be
introduced in the next subsection.

Simulations were carried out for the three scenarios: base-
line, coasting and e-coasting for NMPC = 5s and Nλ = 10s.
Consumption results show that coasting brings an improve-
ment of almost 3%: 4.98 L/100 km vs 5.15 L/100 km,
as it is obtained with the baseline strategy, for almost the
same distance, whereas the improvement with e-coasting is
poorer, as shown in Table III. The evolutions of engine
speed, engine torque and battery SOC are depicted in Fig.
11. The red trajectory of SOC remains constant in the interval
[82; 103]s, whereas the curve in black shows a slight decrease
before increasing due to regenerative braking, followed by a
new decrease in the acceleration part. The early initiation of
coasting (during the constant speed phase) allows the engine
to be stopped earlier. Moreover, due to coasting, the engine is
kept shut off longer, even during the beginning of acceleration,
thus improving fuel gain. It can be noticed that the engine
torque before coasting initiation is different in the three cases.
This is due to variations in the feed-forward component λk0

calculation: the predicted wheel torque is different, zero during
coasting and constant negative during e-coasting. The engine
torque continues to have a different evolution, even after
coasting deactivation (when λk0 is the same) for the following
reasons: the SOC trajectory changes, too, and therefore the
feedback component is different, and the prediction model is
linearized at a distinct operating point (current engine torque
and SOC). The e-coasting speed trajectory is very close to the
reference speed and hence, the performance is similar too, with
the major difference that the engine can be stopped earlier.
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Fig. 10. Speed profile of a basic case-study with flat road. Comparison
between coasting with recovery (blue) and baseline coasting (red)

This elementary case-study shows that instead of deceler-
ating only to accelerate after a short time, it is more fuel-
friendly to leave the vehicle in free-wheeling mode. Coasting
avoids degrading battery efficiency, as a result of bidirectional
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Fig. 11. Simulation results for a basic case-study with flat road: coasting with
recovery (e-Coasting), coasting and baseline

TABLE III
PERFORMANCE OF THE CONSIDERED SCENARIOS, SPEED FROM FIG. 10

hhhhhhhhhhhPerformance
Scenario e-Coasting Coasting Baseline

Consumption [L/100km] 5.07 4.98 5.15
(final SOC) (52%) (52.05%) (51.9%)

Distance[km] 2.51 2.505 2.517
RMS error speed [km/h] 0.72 1.66 0

power exchanges (charge, followed by a discharge) and allows
the engine to be stopped for a longer time, not only during
deceleration, but also at the beginning of the acceleration
phase. The feasibility of coasting depends on the possibility of
vehicle self-deceleration: if the resistive forces are not strong
enough, the free-wheeling may be too slow with respect to the
real speed. The acceptance of the solution may be defined by
limits on speed deviation, constraints on position (obstacles,
stop points) and preservation of the total distance.

In Fig. 12 a basic case-study with a lower speed is in-
troduced, for which coasting may be unacceptable, in the
presence of a deviation from 35 km/h to 45 km/h. In Fig.
13 simulation results are depicted and Table IV summarizes
the performances. The same observations can be made about
the torque and the SOC evolutions as for the previous case-
study. However, there is no longer an engine stop anticipation
for the coasting and the electrical traction is initiated during
the constant speed phase for the baseline strategy. The final
SOC is not the same for the three strategies and hence, a fair
comparison between them is not possible, but it can be seen
that e-coasting, with a slightly different speed trajectory, has
the potential of improving fuel gain.

B. Problem formulation and proposed solution

In [10] an analytical approach was introduced for coasting
initiation, by writing the energy balance i.e. work and kinetic
and potential energy variation. The resistive forces expression
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Fig. 13. Simulation results for a basic low-speed case-study with flat road:
coasting with recovery (e-Coasting), coasting and baseline

however does not contain the viscous loss, only the dry
friction and aerodynamic drag. Moreover, only the constant
speed scenario is considered and therefore it is enough to
evaluate the speed deviation at the end of coasting in order
to decide on the acceptability of the operation. In a general
framework, with a variable reference speed as presented in the
previous section, the speed evolution during coasting needs
to be explicitly considered at each time step or position. In
[38], analytical expressions for speed and distance as functions
of time were provided and were used in the present study.
Following the notations from the aforementioned paper, free-
wheeling equation can be expressed as:

− δ
g

dv

dt
= a+ bv + cv2 (18)

where δ = 1 + nIw+Id
mv∗R2

w
(n - number of wheels) and a, b, c

represent the coefficients of the resistive forces from (1),

TABLE IV
PERFORMANCE OF THE CONSIDERED SCENARIOS, SPEED FROM FIG. 12

hhhhhhhhhhhPerformance
Scenario e-Coasting Coasting Baseline

Consumption [L/100km] 5.46 5.52 5.76
(final SOC) (51.3%) (54.52%) (52.87%)

Distance[km] 0.69 0.7 0.695
RMS error speed [km/h] 0.55 2.05 0

divided by the vehicle weight mvg. The following calculations
are valid under the assumption that these coefficients are
constant, which implies a road with a piecewise-constant slope.

If expression (18) is inverted, then: − gδ = 1
a+bv+cv2 dv. The

coasting time can therefore be directly extracted:

−gc
δ
T =

∫
1

a
c + b

cv + v2
dv (19)

Let:

B =
g

2δ

√
4ac− b2, h =

gb

2δ

β = atan

(
1

B

(g
δ
cv + h

)) (20)

Then, the coasting time between speed v1 and v2 is Tcoast =
β1−β2

B .
The nominator can be expressed as: a

c + b
cv + v2 =(

v + b
2c

)2
+
(√

4ac−b2
2c

)2

. Let T = Tcoast− t. Then, the speed
evolution in time, in the new coordinates, is:

V (T ) =
δ

gc
[B tan (BT + β2)− h] (21)

The evolution in time of the position can be determined
by integrating the speed expression. By using

∫
tanxdx =

− ln(cosx), we have:

D(T ) =
δ

gc

(
ln

cosβ2

cos (BT + β2)
− hT

)
(22)

In this work the decision to initiate coasting is taken after
the evaluation of a cost function that includes the speed
deviations in time, maximizes the coasting time Tcoast and
ensures that at the end of coasting, the vehicle speed is
close to reference speed (thus avoiding strong compensations
from the driver model, that will result in additional fuel
consumption). Two approaches are proposed. Let tk1 , tk2
denote the moment of coasting start and stop, respectively
and therefore, tk2 = tk1 + Tcoast

∆topt
; vref the reference speed

and ∆v (tk) = v (tk)− vref (tk).
The first cost function has the following expression:

J1 (tk1 , tk2) =
1

Nt

tk=tk2−1∑
tk=tk1

∆v(tk)2+α∆v(tk2)2

+ β
1

T 2
coast

(23)

where Nt = tk2 − tk1 − 1.
The second cost function considers the cumulative speed

error during coasting, relative to the reference speed, but not
for the final speed deviation. The purpose is to assign high
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penalties to variations at lower speeds (a deviation from 90
km/h to 80 km/h is acceptable, whereas from 50 km/h to 40
km/h may not be possible), but at the end of coasting, it is
necessary to have a speed as close as possible to the reference,
regardless of its order of magnitude.

J2 (tk1 , tk2) =
1

Nt

tk=tk2−1∑
tk=tk1

∆v(tk)
∆v(tk)

vref (tk)

+ α|∆v(tk2)|+ β
1

Tcoast

(24)

The differences between the results given by the two cost
functions are depicted in Fig.15 and 16. It can be seen that the
second cost function avoids coasting initiations at low speeds
(Fig. 15, upper left corner) as a result of using the relative
error.

Cost function evaluation: Coasting initiation relies on three
aspects:
• start of coasting (tk1 )
• end of coasting (tk2 )
• validation of the solution acceptance (value of J1(2))
Coasting is therefore not included in MPC-based energy

management, but is handled at the supervisory level, as in
Fig. 5. This choice is dictated by several reasons:
• the two problems do not operate with the same prediction

horizons (Ncoast > Nmpc) and therefore, a time-scale
separation needs to be performed

• coasting activation implies a modified driver behavior,
which is situated by design at a supervisory level, the
MPC structure receiving as input the actual wheel torque
demand and the foreseen values

• under the assumption that the predictive control problem
had not the aforementioned hierarchical structure (i.e.
simultaneous optimization of the torque split and of the
vehicle speed), the problem would be formulated in a
hands-off control framework [39]. This implies however
the use of a non differentiable cost and hence, a bi-level
optimization is preferred.

Given a road preview of length Ncoast, the first step is
the detection of potential coasting initiation. As shown in
the previous subsection, the target scenarios are described
by a deceleration, followed immediately by an acceleration.
Hence, a check is performed on the acceleration sign change
in 2 consecutive steps, from negative to strictly positive.
Coasting should therefore be initiated at the latest at the
start of deceleration (tmaxk1

). An early start is also possible,
for constant speed phases or with only minor variations.
Therefore, tk1 ∈

[
tmink1

, tmaxk1

]
, where the lower bound is

several steps ahead the upper limit. The next aspect is the end
of coasting, which has a lower bound given by the duration
of deceleration. Strong accelerations and decelerations are a-
priori penalized.

The cost function J1 or J2 is evaluated by varying tk1 and
tk2 between their lower and upper bounds. The values of tk1
and tk2 that correspond to the minimum are retained, provided
the solution is acceptable, by comparing the minimal value
with a pre-defined threshold (in order to avoid large speed
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Fig. 14. Example of coasting trajectories for different starting points

Algorithm 1 Coasting activation
Require: Predicted vehicle speed v(k : k +Ncoast)

1: Find tk s.t. a(tk) < 0 & a(tk + 1) > 0
2: tmink2

← tk
3: tmaxk2

← k +Ncoast
4: Find min tk s.t. a

(
tk : tmink2

)
< 0

5: tmaxk1
← tk % beginning of deceleration

6: tmink1
← tmaxk1

−∆tanticip % early start of coasting
7: for tk1 = tmink1

to tmaxk1
do

8: for tk2 = tmink2
to tmaxk2

do
9: calculate J(tk1 , tk2)

10: end for
11: end for
12: Find tk1 , tk2 s.t. J(tk1 , tk2) = minJ
13: if min J ≤ J thr then
14: T predw (tk1 : tk2) = 0 % update of torque prediction
15: if tk1 = k then
16: pedal release % change in driver request
17: end if
18: else
19: no coasting initiation
20: end if

deviations). The following thresholds for the cost functions
were empirically chosen:

J thr1 =

(
5

3.6

)2

+ α

(
1

3.6

)2

+ β

(
1

Tmincoast

)2

(25a)

J thr2 = 0.1 + α
1

3.6
+ β

1

Tmincoast

(25b)

For J1, this threshold value indicates that an average speed
deviation of 5 km/h is preferable (expressed in m/s), whereas
for J2 the term 0.1 is related to an average relative deviation.
In both cases, a final speed error of 1 km/h is desired.

If the cost function evaluation at each point is to be avoided,
an approximation based on Gauss quadrature can be an alterna-
tive solution. This method is used to approximate the integral
of a function, by using a decomposition in basic functions and
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Fig. 16. Comparison between the speed profiles given by the 2 cost functions;
speed profile - Artemis highway

evaluating them at some specific points between the domain
of integration. It can provide good results if the initial function
can be accurately approximated by a polynomial. Therefore, if
a piecewise polynomial approximation for the reference speed
can be found, then the aforementioned exhaustive search can
be replaced with a faster evaluation at some points.

The standard drive cycles from Fig. 8 are not representative
enough for this functionality, the activation of coasting does
not make any visible improvement in the normalized con-
sumption. The proposed strategy was only validated on basic
case-studies, as presented in the previous subsection in Fig.
10 and 12. From Table III it can be concluded that coasting
has the potential of reducing the consumption by 3-5%, the
gain depending on the driver behavior and the speed profile.

VI. CONCLUSIONS AND PROSPECTS

In this paper, the predictive energy management problem
of hybrid electric vehicles was addressed. Torque distribution
and engine stop-start were jointly considered in an MPC
framework. The advantages of MPC for this problem are
the handling of constraints and simultaneous calculation of
a block of commands, which allows the introduction of the
engine stop decision, without the use of an additional, discrete
optimization variable. The Model-in-the-Loop validation for
different drive cycles shows that the MPC performance can
be as close as 6% to the global optimum. The potential
of free-wheeling in fuel consumption minimization was also
analyzed. This strategy implies deviations from the reference
speed profile, because the speed regulator is deactivated and
the vehicle decelerates due to friction forces. Even in the
context of the non violation of speed limits, the absence
of obstacles and preservation of the total trip distance, the
acceptance of the solution is subject to driver’s behavior and
remains an open topic. This functionality usually concerns
constant speed sections on highway, but here the problem
was extended to time-varying speed phases. Moreover, an
analytical formulation was proposed through the evaluation
of the time-wise speed deviation between the reference and
the free wheeling speed. To avoid high compensations from
the speed regulator, a penalty term was introduced to ensure
that when a pedal is pressed, i.e. coasting deactivation, the
vehicle speed is close to the setpoint. Future work may include
improvements in the cost function to cope with constraints
related to position, as well as a mechanism to handle change-
of-mind situations.
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