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Optimal predictive eco-driving cycles for conventional, electric and
hybrid electric cars

D. Maamria a, K. Gillet a, G. Colin a, Y. Chamaillard a and C. Nouillant b

Abstract— In this paper, the computation of eco-driving
cycles for electric, conventional and hybrid vehicles using
receding horizon and optimal control is studied. The problem
is formulated as consecutive-optimization problems aiming at
minimizing the vehicle energy consumption under traffic and
speed constraints. The impact of the look-ahead distance and
the optimization frequency on the optimal speed computation
is studied to find a trade-off between the optimality and the
computation time of the algorithm. For the three architectures
considered, simulation results show that in urban driving
conditions, a look-ahead distance of 300m to 500m leads to
a sub-optimality less than 1% in the energy consumption
compared to the global solution. For highway driving conditions,
a look-ahead distance of 1km to 1.5km leads to a sub-optimality
less than 2% compared to the global solution.

I. INTRODUCTION

Nowadays, energy efficiency is increasingly becoming
a major concern, and a subject of attention from major
international organizations. In the automotive industry, the
main research directions towards improving energy efficiency
focus on decreasing carbon dioxide (CO2) emissions. Engine
technology and car performances have improved rapidly
thanks to alternative propulsion technologies (hybrid and
electric systems) and engine downsizing, while drivers have
not adapted their behavior (driving style). Eco-driving can
be defined as a multi-criteria optimization problem (fuel
consumption, trip duration, drivability, etc.) of various tasks
(navigation, guidance, stabilization) under safety constraints
[1]–[3]. In other words, the idea of eco-driving is to compute
the vehicle speed and gear-box ratio set points that minimize
the vehicle energy consumption. The results reported in the
literature show the dependance of the energy saving via eco-
driving on the nature of the trip. In urban driving conditions,
the energy saving may reach 20% while for highway trips,
the energy saving is about 5 to 10% [3]–[7].

To help the drivers to reduce the energy consumption of
their vehicles, a human machine interface (HMI) integrated
in the dashboard proposes the optimal speed and gear-box
ratio set points to the driver. The computation of these set-
points can be formulated as an optimization problem under
constraints such as speed limits, traffic information, the trip
duration and the final destination [1], [8]–[10]. Depending
on the horizon of the available information, two scenarios
are distinguished: Off-line scenario and On-line scenario.
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In the off-line scenario, the constraints (speed limits and
traffic information) are fully known in advance. This question
was addressed for conventional vehicles in [4], [6], [11], for
electric cars in [1], [5], [12], [13] and for hybrid electric cars
in [9], [11], [14]–[16]. In this case, an upper bound on energy
saving that can be reached through eco-driving, can be
computed and used as a reference. In addition, some heuristic
rules to reduce the fuel consumption may be extracted from
the optimal solutions: anticipate the traffic flow, drive at a low
engine speed. The ability to anticipate traffic flow depends
on many factors such as the road layout, visibility and it is
therefore unreasonable to expect it consistently of a driver. It
is necessary to use algorithms to gather data from available
sources and help the driver to anticipate.

In the on-line scenario, the future driving conditions
are partially known for a given time or distance horizon
usually called e-horizon. The information can be retrieved
and updated in real time from many sources such as onboard
sensors, ADAS (Advanced Driver-Assistance Systems) and
navigation systems (Global Positioning System GPS unit).
Based on the available information, the optimizer has to
find the set points of the vehicle speed and the gear-box
ratio in real time to minimize the energy consumption of
the vehicle. This question has mainly been studied for heavy
duty vehicles (trucks) due to the cost of fuel consumption
for haulage companies [17]–[20] where the roadway grade is
among the biggest contributors to high fuel consumption. The
objective was to find the speed and gear-box ratio set-points
that minimize a trade-off between the fuel consumption and
the trip duration on a predefined speed range. The studies in
[21], [22] deal with an eco-driving system using Model Pre-
dictive Control (MPC) within a given prediction horizon for
passenger cars in an urban road network with complex traffic
flows. The study in [23] highlights the potential of real-
time vehicle speed optimization as a mechanism for energy
saving. A driver feedback system, designed using Dynamic
Programming (DP), was demonstrated in a test vehicle that
uses the optimal velocity profile for the upcoming road. The
DP algorithm was implemented with a distance step interval
of 50m and 30 steps in the horizon, giving a total of 1.5km.
The distance step interval of 50m from our viewpoint is high
(the time needed to travel 50m when the vehicle speed is
100km/h is 1.8s) and the choice of a 1.5km horizon was
chosen arbitrarily.

This paper follows the same approach as the on-line
scenario and pushes it further for passenger (conventional,
electric and parallel hybrid electric) cars. Depending on the
length of the e-horizon, the on-line scenario will lead to a



sub-optimality in the energy saving with respect to the global
optimum (full knowledge of the future driving conditions).
By using MPC and DP, the objective is to select the value of
the look-ahead horizon in order to minimize the induced sub-
optimality in the energy saving while keeping the algorithm
computation time reasonable. This choice is also interesting
to size/choose sensors that predict future driving conditions.
For this, various values of the e-horizon are considered and
the induced sub-optimality compared to the global optimum
is quantified. The choice of the look-ahead distance will be
realized based on the optimality/computation time balance.

The paper is organized as follows. In Section II, the
vehicle model and the computation of eco-driving cycles
for conventional and electric cars are detailed. Section III
presents the proposed predictive scheme. Numerical and
simulation results are discussed in Section IV. An extension
to hybrid electric cars is discussed in Section V. Some
conclusions about the algorithm tuning are drawn in light
of the presented results.

II. PROBLEM FORMULATION

A. Vehicle Modeling [24]

1) Motion equations: The vehicle is modeled in a vertical
plane. According to Newton’s law of motion, the vehicle
speed v satisfies the following differential equation

m · dv(t)
dt

= Ft(t)−Fr(t), (1)

where m is the total vehicle mass including rotating parts, Ft
is the traction force provided by the prime mover and Fr is
the sum of resistance forces including rolling resistance force
and aerodynamic drag force. Its expression is Fr(t) = c0 +
c1 ·v(t)+c2 ·v(t)2, where ci, i = {0,1,2} are the coefficients
of the road load equation.

2) Prime mover: In the case of a conventional vehicle,
the prime mover is an Internal Combustion Engine (ICE).
In this study, the ICE is a Diesel engine. Its measured fuel
consumption ṁ f (g/s) is computed through a look-up table
as a function of the engine torque Te and the engine speed
ωe: ṁ f (ωe,Te) (see Figure 1)1.

The choice of a Diesel engine is not restrictive as the
proposed method can be easily extended to gasoline engines.

In the case of an electric car, the prime mover is an electric
machine. It is modeled by a quasi-static map describing
the electric power (Figure 2) as a function of the electric
machine torque Te and speed ωe: Pm(ωe,Te). This measured
map usually includes the losses in the electric machine and
the power electronic devices.

3) Transmission: The torque Te is related to the driver’s
torque demand at the wheel Twh by

Twh(t) = rtire ·Ft(t) = ηgb ·Rgb(t) ·Rt ·Te(t), (2)

1The relation between ṁ f (g/s) and SFC (g/kWh) is given by

SFC =
ṁ f

3600×ωe×Te
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Fig. 1. Specific fuel consumption SFC (g/kWh) of the internal combustion
engine as a function of the engine torque and the engine rotational speed.
For confidentiality reasons, the data are normalized.
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Fig. 2. Electric Machine Power [kW] as a function of the electric machine
torque and the rotational speed. For confidentiality reasons, the data are
normalized.

where Rgb is the gear-box ratio, ηgb is the gear-box efficiency
(assumed to be constant) and Rt is the differential ratio. The
torque Twh can be positive (traction) or negative (braking).
Similarly, the rotational speed ωe is related to v by

ωe(t) = Rgb(t) ·Rt ·
v(t)
rtire

. (3)

4) Battery model: The battery is represented by an equiv-
alent circuit model comprising a voltage source Uocv in series
with an electric resistance Rb, both of which vary with ξ ,
the battery state of charge (SOC) [24], [25]. The expression
of the battery current Ib is given by [24]

Ib(ξ ,v,Te)=
1

2Rb(ξ )

(
Uocv(ξ )−

√
U2

ocv(ξ )−4Rb(ξ ) ·Pm(v,Te)

)
.

Based on the study [13], constant values of Rb and Uocv
are used: neglecting the dynamics of ξ in the eco-driving



cycle computation leads to a negligible sub-optimality. The
electrochemical battery power is defined by

Pech = Ib ·Uocv.

The dynamics of ξ is given by

dξ (t)
dt

=− Ib(t)
Q0

,

where Q0 is the nominal battery capacity.
The model parameters are summarized in Table I. The

numerical values are omitted for confidentiality reasons.

TABLE I
VEHICLE MODEL PARAMETERS

Acronym Description Unit
m Vehicle mass kg
rtire Wheel radius m
c0 Constant coefficient of the road load N
c1 Linear coefficient of the road load N/(m/s)
c2 Quadratic coefficient of the road load N/(m/s)2

ηgb Gear-box efficiency −
Rgb Gear-box ratio −
Rt Differential ratio −
Q0 Battery capacity A.h
R0 Battery internal resistance Ω

Uocv Battery open-circuit voltage V

B. OCP formulation

The eco-driving approach consists in finding the best
vehicle speed profile that minimizes the vehicle energy
consumption for a fixed road. The vehicle starts from a point
A at a velocity v0 (≥ 0) and must reach a destination point
B at time t f , with a velocity v1 (≥ 0). Some constraints have
to be considered: acceleration and speed limits, and traffic
constraints [5], [10]. This question can be formulated as an
Optimal Control Problem (OCP) [1], [10].

The cost function to be minimized is

J =
∫ t f

0
L(ωe(t),Te(t))dt,

where t f is the trip duration. In the case of a conventional
vehicle, L is the fuel consumption ṁ f while in the case of
an electric car, L is the electrochemical battery power Pech.

The control variable to be optimized u is composed of two
components: the torque Te and the gear-box ratio Rgb

u(t) = [Te(t), Rgb(t)].

For the electric car, the considered gear-box has one ratio,
only the electric machine torque is optimized. This optimiza-
tion is carried out under the following stable dynamics

dv(t)
dt

= f (v(t),u(t)), v(0) = v0, (4)

dx(t)
dt

= v(t), x(0) = 0, (5)

where x is the vehicle position and the non-linear function
f is calculated by combining (1, 2)

f =
1
m
(−c0− c1 · v− c2 · v2 +

ηgb

rtire
·Rgb ·Rt ·Te).

Since the speed, the torque Te and the gear-box ratio
are limited, the final position and speed are fixed, the
optimization is performed under the following mixed state
and input constraints

v ∈ [0, vmax(x)], (6)
f (v,u) ∈ [amin, amax], (7)

Te ∈ [Tmin(ωe), Tmax(ωe)], (8)
ωe ∈ [ωmin, ωmax], (9)

x(t f ) = D, (10)
v(t f ) = v1, (11)

where vmax(x) is the speed limits at the vehicle position x,
D is the total traveled distance, v1 is the desired final speed,
Tmin and Tmax are the minimum and the maximum prime
mover torque given by look-up tables as a function of the
rotation speed ωe (see Figures 1 and 2).

Equation (7) limits the vehicle acceleration between its
maximum and minimum values. The acceleration is an alge-
braic function of the vehicle speed and the control variables.
This function can be evaluated for all the possible choices
of the vehicle speed and the control variables. The values
not satisfying the constraints are excluded. The constraints
on the prime mover torque in (8) and the rotational speed
in (9) are mixed input-state constraints, they depend on the
vehicle speed v and the gear-box ratio Rgb.

In this paper, the torque converter dynamics is not consid-
ered in the OCP formulation because it increases the com-
plexity of the optimization problem (thus the computation
time) and the experimental and simulation results are very
close [6]. To summarize, the OCP is

(OCP) : min
u

∫ t f

0
L(v,u)dt (12)

under the dynamics (4, 5), the state and input con-
straints (6, 7, 8, 9), and the final constraints (10, 11). Thus,
the optimized vehicle speed trajectory can be computed using
(4) once the control variable u is optimized and the initial
condition of the vehicle speed is known.

1) Speed limits: To specify the speed limits vmax, a certain
(fixed) margin el (> 0) on the initial driving cycle speed is
considered

vmax(x) =
{

vre f (x)+ el , vre f (x)> 0,
0, vre f (x) = 0,

where vre f (x) is the speed value of the initial driving cycle at
the position x which is used as a reference of comparison to
point out the benefit of eco-driving in terms of fuel consump-
tion reduction. Note that the eco-driving cycle must have the
same number of stops as the initial driving cycle [10].

Other methods to compute speed limits can be consid-
ered [4], [14]. For example, the speed limits can be given by
the traffic signs or provided by a cloud server depending on
the vehicle position. The choice of method used to compute
the speed limits does not impact the solving method.



2) Solving method: The (OCP) defined in (12) can be
solved using several methods: Pontryagin Minimum Princi-
pal (PMP) or Dynamic Programming (DP). Because of the
non-linear nature of the optimization problem and the mixed
state-input constraints, methods based on PMP are more
complicated to implement [26]. Thus, the method proposed
here is based on Dynamic Programming [27], [28].

To reduce the computation time, the chosen approach
transforms a time-based OCP into a distance-based OCP
while introducing an additional term in the cost function as
suggested in [2], [4]. If the position space is discretized in
N fixed steps of length ∆x, the time step ∆t(k), k = 1 : N is
variable and is calculated from the vehicle speed v(k) and
the acceleration a(k) by solving the following equation [4]

∆x =
1
2

a(k) ·∆t(k)2 + v(k) ·∆t(k).

The final constraint on the vehicle position (10) is fulfilled
by construction: the total traveled distance is D = N ·∆x. The
trip duration is given by t f = ∑

N
i=1 ∆t(i). To control t f , an

additional tunable term β ·∆t(k) is added to the cost function
[2] as follows

J̄s(u) =
k=N

∑
k=1

[L(v(k),u(k))+β ]∆t(k),

where the constant tunable parameter β penalizes the final
time to obtain almost the same time duration as the initial
driving cycle. The tuning of this parameter is discussed in
the next paragraph.

3) Estimation of β : The parameter β is introduced to
penalize the trip duration t f . This parameter is usually
tuned iteratively [1], [4]. The objective here is to estimate
heuristically the value of β from the initial trip characteristics
while keeping the error on the final time acceptable.

For this purpose, various driving cycles are used. The
relation between β (searched iteratively) and the mean speed
value v̄ of the driving cycles (which is global information of
the trip) is studied. The results in the case of the electric car
for two values of el are summarized in Figure 3.
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Fig. 3. Relation between β and the mean speed value v̄: Electric case.

For a fixed value of el , the relation between β and v̄
is monotone: β increases when v̄ increases. This heuristic
relation can be approximated by a quadratic form (dashed
curves in Figure 3) as follows

β = α2 · v̄2 +α1 · v̄+α0, (13)

where αi, i = {0,1,2} have to be identified. These parame-
ters depend on the vehicle characteristics such as the weight
and the coefficients of the road load equation. In addition,
for the same value of v̄, β increases when el decreases.

To validate the proposed relation to estimate β , the error
on the final time for various driving cycles is given in Ta-
ble II. The Artemis Highway [29] and WLTC (the Worldwide
harmonized Light vehicles Test Cycle) are two normalized
driving cycles. The driving cycles 1 and 2 are real-driving
cycles provided by the French car manufacturer PSA.

TABLE II
ERROR ON THE FINAL TIME WITH THE VALUES OF β COMPUTED

USING (13): ELECTRIC CASE

Driving Cycle Cycle 1 Cycle 2 A. Highway WLTC
t f [s] 5787 2432 1043 1574
Error on t f [%]: el = 2 2.7% −3.9% −1.6% 1.6%

The error on the final time is less than 3.9%, which is
considered acceptable as the value of β is only estimated
based on the mean speed value of the trip. The same
approach is used for the conventional vehicle and the results
are similar: the error on the final time is less than 4%.

The heuristic relation between β and the trip mean speed
value simplifies the tuning procedure of β by providing a first
good guess of its value and thus restricting the research field.
This relation will be more useful for an embedded version
of the proposed algorithm where the computation time and
the number of iterations to find β have to be reduced.

III. PREDICTIVE ECO-DRIVING CYCLE COMPUTATION

It is well-known that control strategies obtained by optimal
control use the full knowledge of the future (speed limits
and traffic information in this study). However, these future
conditions are uncertain and not totally known in advance in
real situations. They may change in time and they depend
on many factors such as local traffic, infrastructure status,
non-vehicle actors and weather conditions. To deal with this
situation, Model Predictive Control (MPC) techniques can
be used [30]–[32].

A. Principle
The idea of the suggested method is the following: the

future driving conditions are only known for a look-ahead
distance D0 ≤D and the speed trajectory will be recalculated
every traveled distance D f called optimization frequency
where D f < D0. The total traveled distance D is divided into
n intervals Di, i = 0 : n−1 where n is the ratio between D
and D f . The OCP in (12) will be solved n times

(OCPi) : min
u

∫ ti+1

ti
L(v,u)dt, (14)

under the dynamics (4, 5), the state and input con-
straints (6, 7, 8, 9). The time ti corresponds to the moment
when the vehicle reaches the position (i ·D f ) while the time
ti+1 corresponds to the moment for the position (i ·D f +D0).
Thus, the constraints on the vehicle position are

x(ti) = i ·D f , x(ti+1) = i ·D f +D0.



For i = n−1, the vehicle position will be (n−1) ·D f +D0.
If this position is greater than D, the look-ahead horizon will
be only D− (n−1) ·D f ≤ D0.

As the future speed limits are only known for D0, vehicle
speed is free at the end of each segment (i ·D f +D0) except
for the last segment

v(tn) = v1,

where v1 is the desired final speed at the end of the trip.
Usually, this value is null, as it corresponds to a vehicle
stop. This choice simplifies the algorithm as it is difficult to
compute the appropriate speed at the position (i ·D f +D0).

The optimization scheme is illustrated in Figure 4. The
optimization problem for a total traveled distance of D is
divided into n sub-problems solved successively. At each
traveled distance D f , the speed limits and the traffic informa-
tion are updated. A new vehicle speed trajectory is calculated
on a distance horizon D0 by solving the OCP (14) using the
method described in Section (II-B.2). The speed trajectory
obtained has to be followed by the driver. To avoid the effects
due to human interaction, the vehicle is assumed to follow
the speed set points precisely (in simulation).

Optimization 
Frequency (𝐷𝑓)

𝒙(𝟎) = 𝟎 𝒙(𝒕𝒇) = 𝑫

Look-ahead distance (𝑫𝟎)

Optim 1
𝑫𝟎

𝑫𝟎

𝑫𝟎

𝑫𝒇 𝟐𝑫𝒇 𝒊𝑫𝒇 (𝒊 + 𝟏)𝑫𝒇

Optim 2

Optim 3

Optim m

Fig. 4. Predictive algorithm scheme for eco-driving.

B. Choice of D f

The optimality of the algorithm described in the previous
section depends on the choice of D0 and mainly on D f . The
choice of D0 depends on the information that can be gathered
from the available sources (GPS and vehicle sensors). In
this paper, for various values of D0, the choice of D f is
optimized to find the best trade-off between the optimality
and the implementation constraints of the algorithm.
• The value of D f must be greater than a lower bound

D f ,min defined by the traveled distance needed to solve
the optimization problem (14) (real-time computation
constraint). The value of this distance depends on the
value of D0, the equipment used (hardware) for comput-
ing and the available computation time: D f ,min increases
when D0 increases. D f ,min depends also on the vehicle
speed: a low (respectively high) computation time for
low (respectively high) mean speed value driving cycles.
Thus, D f ,min will be chosen for highway driving cycles.
In this study, D f ,min is 100m.

• An upper bound D f ,max on D f is computed based on
the optimality. The methodology is the following: for a
given value of D0 and for a fixed trip duration t f , the
value of D f is decreased from D0 until D f ,min. The sub-
optimality is computed. Figure 5 shows the extra-fuel
consumption and the variation of β for various values
of D f when D0 = 2km (β is tuned to get a constant trip
duration):
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– Optimality is conserved for D f ≤D f ,max: the solu-
tion is still optimal with a constant value of β .

– Sub-optimality increases for D f > D f ,max: the sub-
optimality solution increases when D f tends to D0.

In a distance window of length D0, the traffic constraints
and speed limits are checked periodically: if there is a
modification in the traffic constraints, the optimization is re-
launched. By this choice, the use of the Electronic Control
Unit (ECU) will be reduced as the optimization is performed
only when it is necessary. Obviously, the optimization can
be restarted every D f ,min, but the ECU will be constantly
used. This behaviour increases the electric energy consumed
by the ECU and thus increases the energy consumption.

IV. NUMERICAL ILLUSTRATION

To illustrate the proposed algorithm, five normalized driv-
ing cycles are used: ECE-15 (Urban Driving Cycle UDC),
EUDC (Extra-urban driving cycle), WLTC (Worldwide har-
monized Light vehicles Test Cycle), the Artemis Urban and
Artemis Rural driving cycle [29]. The duration t f without
stop phases, the total traveled distance D, the final SOC
(for the electric car) and the fuel consumption (for the
conventional case) for each initial driving cycle (vehicle
speed = vre f ) are given in Table III. The considered gear-
box has 6 ratios for the conventional vehicle. The value of
el is arbitrarily fixed to 2km/h.

A standard computer equipped with an Intel Core i5-4590,
CPU 3.30GHz with 8GB of RAM is used. Six scenarios are
tested with the values of the look-ahead distance D0 and the
value of D f given in Table IV.



TABLE III
INITIAL DRIVING CYCLES CHARACTERISTICS

Driving Cycle t f [s] D [km] SOC(t f ) [%] Consumption [g]
ECE-15 540 4 83.89 202.3
Artemis Urban 682 4.5 79.95 215.7
Artemis Rural 1053 17.3 54.16 742
WLTC 1574 22.7 37.26 973.3
EUDC 360 6.9 75.01 299.6

TABLE IV
D0 [KM] AND D f [KM] FOR THE VARIOUS SCENARIOS

Scenario I II III IV V V I
D0 [km] D 3 2 1.5 1 0.5
D f [km] D 1.9 0.9 0.34 0.26 0.14

The values of D f were identified from a driving cycle
of 6km with only one speed limit at 90km/h: an acceler-
ation from 0km/h, a stabilized speed around 80km/h and
a deceleration to 0km/h. The identification was done for
the electric and conventional vehicles. The values of D f for
the conventional vehicle were lower than the values of the
electric case. The minimum value between the two cases is
taken. Scenario I is considered as a reference of comparison
(global optimum) in this study as the look-ahead distance
D0 equals the total traveled distance: full knowledge of the
future driving constraints.

For the DP, a distance step of ∆x = 10m is used in the
case of the ECE and the A. Urban and ∆x = 20m for the
other driving cycles. These values of ∆x were chosen so as
to have a time step approximately around 1s [33]. Two cases
are studied: electric and conventional.

A. Case of an electric car

The cost function L is the electrochemical battery power
Pech. The control variable is the electric machine torque Te.
The following DP mesh parameters are used: ∆v = 0.02m/s
for the vehicle speed and ∆Te = 2N.m For the electric
machine torque. A sensitivity study using many driving
cycles has been conducted to choose the best values of the
quantization (∆v and ∆Te). The criterion was to find a trade-
off between the solution optimality and its computation time.
The initial value of the SOC is 90%.

For scenario I, the results in terms of energy consumption,
energy saving through eco-driving with respect to the initial
driving cycles and computation time tco are given in Table V.

TABLE V
RESULTS OF SCENARIO I (GLOBAL OPTIMUM) IN TERMS OF FUEL

CONSUMPTION, FUEL SAVING COMPARED TO THE INITIAL DRIVING

CYCLES AND THE COMPUTATION TIME: ELECTRIC CASE

SOC(t f ) [%] Energy reduction [%] tco [s]
ECE-15 85.09 19.6 3.5
A. Urban 84.63 46 4.6
A. Rural 59.74 15.6 16.2
WLTC 50.29 24.7 24.3
EUDC 76.86 12.3 6.8

The extra-energy consumption and the error on the final
time t f with respect to scenario I are given in Figure 6. For
each cycle, the results are obtained using the same value of
β calculated by (13).
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Fig. 6. Extra-energy consumption [%] and the error on the final time [s]
versus scenarios of Table IV: Electric case.

For each scenario from Table IV, a positive value of the
error on t f means that the trip duration obtained is greater
than its value for scenario I. The consequence of that is a
decrease in the energy consumption (as can be seen from the
negative values of the extra-energy consumption in Figure 6).
These results show that the trip duration t f increases slowly
with a maximum error of 3s when D0 decreases until 1km
except for the Artemis urban case where the error is about
8s. When D0 = 0.5km, the error on t f increases significantly:
3% of the total time in the WLTC case. At the same time,
the energy consumption decreases.

To make a fair comparison between the various scenarios,
the corrected extra-energy consumption with respect to sce-
nario I is given in Figure 7. The correction of the energy
consumption is calculated to take into account the difference
in the trip duration as follows:

corrected energy consumption= energy consumption−β ·∆t f ,

where ∆t f is the difference between the obtained final time
and its target value.
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Fig. 7. Corrected extra-energy consumption [%] versus scenarios of
Table IV: Electric case.



From Figure 7, the induced sub-optimality increases when
the look ahead distance D0 decreases, and its maximum value
is less than 1.2%. This sub-optimality reduces the energy
saving of eco-driving to 11.2% for the EUDC (see Table V).
Two cases are distinguished:
• Driving cycles with a low mean speed value (ECE-15

and A. Urban): the sub-optimality is lower than 0.6%.
• Driving cycles with a high mean speed value (A. Rural,

WLTC and EUDC): scenario V , where sub-optimality
is lower than 0.4%, is considered as a good choice.

The vehicle speed trajectories for the EUDC with a
constant value of β are given in Figure 8. For D0 ≥ 1km,
the speed trajectories are identical. When D0 < 1km, drops
appear in the vehicle speed trajectory because the vehicle
speed is free at the end of each iteration as explained in
Section III-A. That is why in some cases, the value of β

needs to be adjusted. For this kind of cycle with high vehicle
speed, the problem of speed drops appears when D0 ≤ 1km
even if D f = ∆x (not possible because of the implementation
constraint on the choice of D f ).
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Fig. 8. Speed versus time for the EUDC: Conventional case.

The mean computation time for each optimization and the
number of optimizations for the various scenarios are given
in Table VI. These values represent the mean time needed to
get the new trajectory for a distance window of length D0.
The computation time is approximately constant for each

TABLE VI
MEAN COMPUTATION TIME [S] FOR EACH OPTIMIZATION AND THE

NUMBER OF OPTIMIZATIONS n (BETWEEN BRACKETS) FOR THE VARIOUS

SCENARIOS: ELECTRIC CASE

II III IV V V I
ECE-15 1.8 (3) 1.2 (5) 1.1 (12) 0.7 (16) 0.4 (29)
A. Urban 1.7 (3) 1.4 (5) 1.1 (14) 0.8 (18) 0.4 (33)
A. Rural 1.6 (10) 1.1 (20) 0.8 (51) 0.5 (67) 0.3 (124)
WLTC 1.9 (12) 1.2 (26) 0.8 (67) 0.5 (88) 0.3 (163)
EUDC 1.8 (4) 1.2 (8) 0.7 (21) 0.4 (27) 0.2 (50)

scenario (in the same column): the computation time per
iteration for scenarios V (for the EUDC, the A. Rural and
the WLTC) and V I (for the ECE-15 and the A. Urban) is 0.5s
in the worst case. On the other hand, the overall computation
time for the various scenarios increases (in the same row):
to get the overall computation time, multiply the number of
iterations by the mean time.

B. Case of a Conventional vehicle

The cost function L to be minimized is the fuel con-
sumption ṁ f . The control variables are the engine torque
Te and the gear-box ratio Rgb. The following DP mesh
parameters are chosen based on the results presented in [33]:
∆v = 0.1m/s for the vehicle speed and ∆Te = 2N.m for the
engine torque2. For scenario I, the results in terms of fuel
consumption, fuel saving through eco-driving with respect to
the initial driving cycles and computation time of the DP tco
are given in Table VII.

TABLE VII
RESULTS OF SCENARIO I (GLOBAL OPTIMUM) IN TERMS OF FUEL

CONSUMPTION, FUEL SAVING COMPARED TO THE INITIAL DRIVING

CYCLES AND THE COMPUTATION TIME: CONVENTIONAL CASE

Fuel Consumption [g] Fuel saving [%] tco [s]
ECE-15 125.6 37.9 5.8
A. Urban 140 35.1 7.6
A. Rural 592.3 19.9 27.1
WLTC 755.9 22.3 41
EUDC 246.2 17.8 11.5

As for the electric case, to make a fair comparison between
the various scenarios, the corrected extra-fuel consumption
with respect to scenario I is given in Figure 9. The correction
is introduced to make up the difference in the trip duration:

corrected fuel consumption = fuel consumption−β ·∆t f ,

where ∆t f is the difference between the obtained final time
and its target value. The extra-fuel consumption induced by
the predictive scheme reduces the fuel saving of eco-driving
in Table VII: for scenario V I, the fuel saving with respect to
the initial driving cycle is reduced to 14.5% in the case of
the EUDC.
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Fig. 9. Corrected extra-fuel consumption [%] versus scenarios of Table IV:
Conventional case.

The extra-fuel consumption increases when the look ahead
distance D0 decreases. In the case of the ECE-15 and the
Artemis Urban, the maximum sub-optimality is less than
0.1% for all the scenarios considered. The sub-optimality
reaches 0.4% for D0 = 0.3km and D f = 0.1km for these

2A sensitivity study using many driving cycles has been conducted to
choose the best values of ∆v and ∆Te to find a trade-off between the
solution optimality and its computation time: with the chosen parameters,
the computation time is divided by 15 while the sub-optimality is lower
than 0.5% comparing to the case with ∆v = 0.01m/s and ∆Te = 1N.m.



two driving cycles. In the case of the Artemis Rural, the
WLTC and the EUDC, the sub-optimality is less than 1%
for scenario V .

The vehicle speed trajectories versus distance for the
Artemis Urban are given in Figure 10. The trajectories are
identical.
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Fig. 10. Speed versus distance for the A. Urban: Conventional case.

The number of optimizations n and the mean computation
time for each optimization for the various scenarios are given
in Table VIII. The computation time for scenarios V (the

TABLE VIII
MEAN COMPUTATION TIME [S] FOR EACH OPTIMIZATION AND THE

NUMBER OF OPTIMIZATIONS n (BETWEEN BRACKETS) FOR THE VARIOUS

SCENARIOS: CONVENTIONAL CASE

II III IV V V I
ECE-15 3 (3) 2.6 (5) 2 (12) 1.4 (16) 0.8 (29)
A. Urban 3.8 (3) 3.1 (5) 2.2 (14) 1.6 (18) 0.8 (33)
A. Rural 3.8 (10) 2.6 (20) 1.9 (51) 1.2 (67) 0.6 (124)
WLTC 4.1 (12) 2.4 (26) 1.6 (67) 1.1 (88) 0.5 (163)
EUDC 4.1 (4) 2.2 (8) 1.5 (21) 1 (27) 0.5 (50)

EUDC, the A. Rural and the WLTC cases) and V I: the ECE-
15 and the A. Urban cases) is less than 1.2s in the worst
case (the time needed to travel 34m if the vehicle speed
is 100km/h).

These results for the electric and the conventional cases
show that it is possible to compute eco-driving cycles in
a reasonable time (1.2s in the worst case) with a partial
knowledge of the future driving constraints and a quasi-
optimal energy consumption. These promising results are
a first step toward the implementation of the eco-driving
algorithm in an Engine Control Unit (ECU). A possible
extension to hybrid cars is discussed in the next section.

V. EXTENSION TO THE HYBRID ELECTRIC VEHICLES

A. Architecture description
The system considered here is a dual shaft parallel mild

hybrid with an electric machine of 12kW connected to
the Diesel engine described in Section II-A.2 by a belt
(Figure 11). The gearbox is between the power-train and the
wheel. Due to the choice of architecture:
• for a given gear-box ratio, the engine’s speed and the

electric machine’s speed are dependent,
• during the ZEV mode, the engine injection is cut off

and the electric machine keeps the engine rotating.

For more details about this architecture, see [34], [35].

Fig. 11. Parallel mild-hybrid architecture.

For the transmission, the engine torque Teng and the
electric machine torque Tel are related to the torque required
at the wheel Twh by

Twh(t) = ηgb ·Rgb(t) ·Rt · [Teng(t)+Rel ·Tel(t)] , (15)

where Rel is the constant motor-to-wheel transmission ratio.
Similarly, the engine and the electric machine rotating speeds
are linked by

ωel(t) = Rel ·ωeng(t).

B. Eco-driving cycle computation: Off-line solution

The simplified approach suggested in [36] for HEV is used
as its induced sub-optimality with respect to the optimal
solution is small (< 4%) while its computation time is
reasonable. The method involves two steps:

1) Step1: An eco-driving cycle is calculated assuming
that the vehicle is only propelled by the ICE (the
vehicle parameters such as the weight and the road
load coefficients do not change). The associated OCP
is given in equation (12).

2) Step2: An energy management strategy (torque split)
is calculated using dynamic programming. The vehicle
is assumed to follow the eco-driving cycle obtained in
Step1. The duration of the trip was fixed in the previous
step. The control variable is the engine torque Teng.
As the torque Twh is imposed (the vehicle follows a
pre-defined driving cycle with a predefined gear-box
ratios), the electric machine torque Tel is calculated
from the torque balance in (15). A final constraint
on the SOC is imposed. The formulation of this
optimization problem was addressed in [24], [37]

A similar approach was used in [11], [36] where the second
step was performed using the Pontryagin Minimum Principle
(PMP) [38].

As the two steps are decoupled, other methods to design
the energy management strategy can be used: for example,
the well-known ECMS (Equivalent Consumption Minimiza-
tion Strategy) [39]–[42] or any other heuristic strategy.

C. Predictive Eco-driving cycle computation

In a first step, the method described in Section III-A to
compute an eco-driving cycle for a conventional vehicle is
used. Next, an energy management strategy is designed. For
this, the driving cycle to be followed is only known for a
look-ahead distance D0. The optimization will be done every



traveled distance D f . The values of D0 and D f given in
Table IV are used.

As is commonly done for an HEV, a final constraint on the
SOC is imposed in order to make a fair comparison between
optimization strategies. A sustaining final constraint on the
SOC will be imposed at the end of each segment:

ξ (ti+1) = ξ (ti) = ξre f , (16)

where ξre f is the desired final SOC. Only the trajectory of ξ

on a distance window of length D f is considered: the SOC
does not come back to its target final value at the end of
each traveled distance D f .

D. Numerical Results

The computation of an eco-driving cycle for HEV is done
in the two steps described in Section V-B. The values of D f
in Table IV are used for the two steps. For the first step, the
DP mesh parameters are the same as in Section IV-B. For
the energy management strategy computation, the following
mesh parameters are used: ∆ξ = 0.025% for the SOC and a
step of 2N.m for the engine torque.

The fuel consumption and the desired final SOC for
scenario I are given in Table IX. Figure 12 summarizes the
extra-fuel consumption in [%] with respect to scenario I. The
various scenarios are compared with the same desired final
SOC (ξre f ) and with the same final time t f .

TABLE IX
RESULTS OF SCENARIO I: HYBRID CASE

ξre f [%] Fuel consumption [g]
ECE-15 60 86.4
A. Urban 60 89.3
A. Rural 60 554
WLTC 60 699.7
EUDC 60 238.6
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Fig. 12. Extra-fuel consumption [%] with the same SOC(t f ) versus
scenarios of Table IV: Hybrid case. The various scenarios are compared
with the same desired final SOC (ξre f ) and with the same final time t f .

The extra-fuel consumption increases when the look ahead
distance D0 decreases, and its maximum value is less than
3.1% compared to scenario I (the sub-optimality remains in
the same order of magnitude as the conventional case). Based
on the nature of the trip, two cases are distinguished:

• Driving cycles with a low mean speed value (the ECE-
15 and the Artemis Urban): the sub-optimality is less
than 0.5% for all the scenarios considered.

• Driving cycles with a high mean speed value (the
Artemis Rural, the WLTC and the EUDC): scenario V
for D0 = 1km and D f = 0.26km, where the sub-
optimality is less than 2%, is a good choice.

The vehicle speed and the SOC trajectories for the A. Ru-
ral driving cycle are given as a representative example in
Figures 13 and 14.
• The speed trajectories are very similar except for the

case where D0 = 0.5km. Small drops in the vehicle
speed appear. These drops are related to the speed free-
constraint at the end of each segment.
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Fig. 13. Speed versus time for the A. Rural: Hybrid case.

• The SOC trajectories are quite different. When the driv-
ing cycle is known in advance, the SOC variation is the
largest (16% between the maximum and the minimum
values of the SOC). When the look-ahead distance
decreases, the maximum SOC variation decreases. This
behavior is due to the constraint (16) on the SOC at the
end of each segment.
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Fig. 14. The SOC versus time for the A. Rural: Hybrid case.

To summarize, Figure 15 shows the inputs, the outputs
and the parameters of the optimization algorithm (for all the
architectures).
• β is estimated based on the mean speed value of the

trip as explained in Section II-B.3 by equation (13). The
information about the mean speed can be provided by
the GPS or any other source. The results are promising
with an acceptable error on the final time of 4%.



Fig. 15. Predictive Eco-driving algorithm: inputs and outputs.

• D0 is chosen based on the nature of the driving cycle and
depending on the reliability of the available information:
urban, extra-urban and highway. The study conducted in
Sections IV and V shows that a look-ahead distance of
0.3− 0.5km for urban trips and of 1− 1.5km for the
highway preserves the optimality.

• D f controls the launch of the algorithm. Its value is
chosen to find a good trade-off between the optimality
of the solution and the computation time. The choice
of D f can be related to the look-ahead distance D0
as explained in Section III-B. The algorithm can also
be launched if the traffic and speed constraints change
suddenly, if other barriers appear (persons crossing the
road) and if there is a difference between the real speed
and the set point.

• The outputs of the algorithm are the vehicle speed and
the gear-box ratio set points to the low level controllers
or to the driver.

VI. CONCLUSION

The computation of eco-driving cycles for electric, con-
ventional and hybrid electric vehicles using receding horizon
control was addressed and formulated as an optimal control
problem. The proposed method is based on dynamic pro-
gramming. A first objective was to investigate the choice
of the optimization frequency in order to find a trade-off
between the optimality of the solution and the computation
time of the algorithm. A relation between the optimization
frequency and the look-ahead distance was identified and
validated numerically.

Once D f had been optimized, a second objective was to
study the impact of the look-ahead distance on the compu-
tation of eco-driving cycles. The result is that, for the three
architectures under consideration, in the case of urban trips
(mean speed values less than 40km/h), a look-ahead distance
of 0.3−0.5km leads to a sub-optimality in the energy saving
less than 0.6% compared to the global solution. For high
mean speed value trips, a look-ahead distance of 1−1.5km
can be used as the induced sub-optimality is less than 1%.
Moreover, the computation times are relatively small: less
than 1.2s for a conventional vehicle and less than 0.5s for
the electric case. These results represent a first step toward
a real-time implementation of the proposed algorithm in an
Engine Control Unit (ECU).
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