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THE CLASSICAL BOUSSINESQ SYSTEM REVISITED

LUC MOLINET!, RAAFAT TALHOUK?, AND IBTISSAM ZAITER?

ABSTRACT. In this work, we revisit the study by M. E. Schonbek [11] concern-
ing the problem of existence of global entropic weak solutions for the classical
Boussinesq system, as well as the study of the regularity of these solutions by C.
J. Amick [1]. We propose to regularize by a ”fractal” operator (i.e. a differen-
tial operator defined by a Fourier multiplier of type €|¢|*, (¢,\) € R4 x]0,2]).
We first show that the regularized system is globally unconditionally well-
posed in Sobolev spaces of type H*(R), s > %, uniformly in the regularizing
parameters (e,\) € Ry x]0,2]. As a consequence we obtain the global well-
posedness of the classical Boussinesq system at this level of regularity as well
as the convergence in the strong topology of the solution of the regularized
system towards the solution of the classical Boussinesq equation as the param-
eter € goes to 0. In a second time, we prove the existence of low regularity
entropic solutions of the Boussinesq equations emanating from ug € H! and
Co in an Orlicz class as weak limits of regular solutions.

1. INTRODUCTION

In this paper we are concerned with the classical Boussinesq system, introduced
by J. V. Boussinesq in 1871 to describe weak amplitude long wave propagation on
the surface of ideal incompressible liquid for irrotational flow submitted to gravita-
tional force where the surface tension has been neglected. In 2002, Bona, Chen and
Saut [3] have derived a class of models called four parameters Boussinesq systems.
The corresponding PDE’s system is given by:

Ct + Uy + (UC):& + QUzye — ngmt - Oa (1 1)
Ug + Cz + uuy + Cszz - duzzt = 0. '

¢(x,t) + 1 corrrespond to the normalized total height of the liquid and then
describe the free surface of the liquid, z is the spatial position which is proportional
to distance in the direction of propagation. w(z,t) is the horizontal velocity field of
the liquid particle which is at position x at time ¢. a, b, c and d are four parameters
verifying consistence relation (see [3]). The classical Boussinesq system corresponds
to the choice of parameters: a = b =c¢ =0 and d = 1 and the system becomes:

Ut + Cx +UUy — Ugar = 0.

Schonbek (in [11]) have shown the existence of global in time weak solution
under a natural non-cavitation condition (1 4 {yp > 0) with initial data ¢y in some
Orlicz class and up € H'(R). She used a viscosity method by regularizing the
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2 LUC MOLINET, RAAFAT TALHOUK, AND IBTISSAM ZAITER

first equation with the Laplace operator after what a uniform entropic estimate is
established. This entropic estimate allowed to passing to the limit and defining
a weak solution for the classical Boussinesq system. Amick (in [1]) showed that
weak solutions given by Schonbek are in fact infinitely regular, i.e. in C§° if the
initial data are C°. Actually the results of Amick are implicitly containing also that
the entropic solution is in H” if the initial data are in classical regular spaces of
type H¥ x H 1 vk € N, k > 2. Bona & all. (in [4]) studied many cases of giving
a, b, ¢, d parameters and in particular concerning system (1.2) they give, without
proof, existence and uniqueness results of solution (¢,u) € C([0,T]; H* x H**1) for
given initial data in H*® x H*T! s > 1 with inf,er(1 + {o(x)) > 0 and announcing
the continuity of the flow on more restricted class of initial data. All the previous
studies are in one dimension, many other studies of the four parameters Boussinesq
system in the last ten years concerning the two dimensional case, see for instance [10]
and references therein.

In our work we reconsider the method of regularization by using generalized
derivative operator, also called ”fractal” operator, that is a differential operator
defined by a Fourier multiplier of type |£|*, A €]0,2]. More precisely we consider
the following regularized system:

U + Cx + UUy — Ugat 0. ’
where g is the non-local operator defined through the Fourier transform by
Flgle(t,)DE) = €1 F(p(t,))(€), with A €]0,2]. (1.4)

We show that this system is locally in time unconditionally well posed in H® x
H5+! for s > % uniformly with respect to the parameter ¢ > 0 and A > 0. In
particular we get the convergence in C([0,T]; H® x H**1) of the solutions to (1.3)
towards the solutions to the Boussinesq equation (1.2) as the parameter e tends to
0. Then we prove that the analysis of Schonbek to establish the entropic estimate
still work for (1.3) so that we can extend our solutions for all positive times. Finally
we prove that the low regularity entropic solutions of the Boussinesq equation with
ug € H' and ¢ in an Orlicz class can also be obtained as limits of regular solutions
by regularizing the initial datas and using our main convergence results. We prove
also the continuity of the flow map. All the previous results are obtained only under
the non zero-depth condition 1 + ¢y > 0.

1.1. Statement of the main results.

Definition 1.1. Let s > 1/2 and T > 0 . We will say that ({,u) € L>°(]0,T[; H® x
H*TY) is a solution to (1.3) associated with the initial datum (o,uo) € H*(R) x
H*T(R) if (¢, u) satisfies (1.3) in the distributional sense, i.e. for any test function
P e CP(] —T,T[xR), it holds

J5% Jo [ @+t + er ()¢ + YulCu)| dadt + fR )G dz = 0
f()oo f]R wtmz""wz)u‘i‘wm 2/2:| d$dt+fR ’U,OdQE =0

Remark 1.1. Note that H*(R) is an algebra for s > 1/2 and thus (u and u? are
well-defined and belong to L°°(]0, T[; H*(R). Moreover, gx(¢) € L>(]0,T[; H*~?).
Therefore (1.5) forces (Ciyus) € L°(]0,T[; H*~2(R) x H**Y) and thus (1.3) is
satisfied in L>=(]0,T[; H*~ 2( Yx HT1). In particular, ((,u) € C([0,T]; H*2(R)x
H**1) and (1.5) forces (¢(0),u(0)) = (¢o, uo)-

Definition 1.2. Let s > 1/2. We will say that the Cauchy problem associated with
(1.3) is unconditionally globally well-posed in H*(R) x H*TL(R) if for any initial

(1.5)
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data ((p,up) € H*(R) x H*TH(R) there exists a solution ((,u) € C(Ry ; H¥(R) x
H**Y(R)) to (1.3) emanating from (Co,uo). Moreover, for T > 0, (¢, u) is the
unique solution to (1.3) associated with (Co,uo) that belongs to L>(]0, T[; H*(R) x
H*TY(R)). Finally, for any T > 0, the solution-map ((o,uo) + (¢, u) is continuous
from H*(R) x H*TYR) into C([0,T]; H*(R) x H*TY(R)).

Theorem 1.1. For any e > 0, A €]0,2] and any s > 1/2, the Cauchy problem (1.3)
is unconditionally globally well-posed in H*(R) x H*T1(R).

Moreover, denoting by (5, u®?) the solution to (1.3) emanating from ((o,uo) €
H*(R) x H*TY(R), for any T > 0 it holds

(¢ u?) — (G u) in C((0,T], H*(R) x H*M(R)) . (1.6)
e—
where ({,u) denotes the solution to (1.2) emanating from ({o,uo)-

2. NOTATIONS AND PRELIMINARY

2.1. Notations and function spaces. In the following, C' denotes any nonneg-
ative constant whose exact expression is of no importance. The notation a < b
means that a < Cyb.

We denote by C'(A1, A2, ...) a nonnegative constant depending on the parameters
A1, A2,...and whose dependence on the A; is always assumed to be nondecreasing.
Let p be any constant with 1 < p < oo and denote LP = LP(R) the space of all
Lebesgue-measurable functions f with the standard norm

e = ([ 1@)lPa)”” < .

When p = 2, we denote the norm |- |r2 simply by |- |2. The real inner product of
any functions f; and f in the Hilbert space L(R) is denoted by

(flva):/Rfl(x)fz(x)d:c.

The space L = L*°(R) consists of all essentially bounded, Lebesgue-measurable
functions f with the norm

| f]oo = esssup |f(z)] < oco.

We denote by Wh> = WL(R) = {f,0,f € L=} endowed with its canonical
norm. For convenience, we denote the norm of L>(R% x R) by || - || s .

For any real constant s > 0, H® = H?*(R) denotes the Sobolev space of all
tempered distributions f with the norm |f|g: = |A®f|a < oo, where A is the
pseudo-differential operator A = (1 — 92)'/2.

For any functions v = u(t,z) and v(t,2) defined on [0,7) x R with 7" > 0, we
denote the inner product, the LP-norm and especially the L2-norm, as well as the
Sobolev norm, with respect to the spatial variable z, by (u,v) = (u(t,-),v(t,")),
|u|e = |ult,)|Le, |ulp2 = |u(t, )|z , and |u|gs = |u(t, )| g=, respectively.

For (X, | - ||x) a Banach space, we denote as usually LP(]0,T[; X), 1 < p < 400,
the space of mesurable functions equipped by the norm:

1/p

T
bl = ([ Toel) o1 <p <o

and

[ull b x = ess sup [u(t, )[lx for p= oo
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Finally, C*([0,T]; X) is the space of k-times continuously differentiable functions
from [0, T] with value in X, equipped with its standard norm

max sup |[uD(t,-)|x .

H“Hck([o,T];X) - 0<I<k ¢¢[0,T]

Let C*(R) denote the space of k-times continuously differentiable functions.

For any closed operator 1" defined on a Banach space X of functions, the commu-
tator [T, f] is defined by [T, f]lg = T(fg) — fT(g) with f, g and fg belonging to the
domain of 7'. Throughout the paper, we fix a smooth cutoff function n such that

ne€Cr(R), 0<n<1l, n_,,=1 and supp(n) C[-2,2].
We set ¢(€) := n(&) — n(2€). For I € N\ {0}, we define
921 (€) = $(27'€). (2.1)

Any summations over N or K are presumed to be dyadic i.e. N and K range over
numbers of the form {2% : k € Z}. Then, we have that

> on(€) =1 VEER".

N>0

Let us define the Littlewood-Paley multipliers by
PNU:]:I_l(QﬁN}—IU), PNUZ (P271N+PN+P2N)U
Poy =Y Pgand Pey:= Y Pk
K>N K<N

2.2. Some preliminary estimates. The following product and commutator es-
timates will be used intensively throughout the paper.

Proposition 2.1. Let N > 0 then
[Pxs Pen f1gelL2 S |folre|PrglLe, (2:2)

We give a short proof of (2.2) in the appendix for sake of completness.
We will also need the two following product estimates in Sobolev spaces :

(1) For every p,r,t such that r +p—t > 1/2 and r,p > t,
£ gl ey S NI @ N9l e R) - (2.3)
(2) For any s >0
£l ey S 1 Lo gl ms @y + I1f ey llgll oo - (2.4)

Inequality (2.3) is a standart Sobolev product estimate, the second one (2.4) is
the well known Moser product estimate (see for instance [13] or [8], and references
therein.) With (2.3)-(2.4) in hand, it is straightforward (see Appendix) to prove
the two following frequency localized product estimates given in proposition (2.2)
that we will extensively use in the next section.

Proposition 2.2. For any N > 0 and s > 0 it holds
N*|Px (Pon f g2)lie S o min (| fligesslglee, | flae
whereas for s > 1/2 it holds

N*"YPx(Psn fg)l2 S OnIf e |9l (2.6)
with |(d)>0li2 < 1.

geli=) (25)

We also need the following property of the regularizing operator defined in (1.4)
(see Appendix).
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Proposition 2.3. Let f € HM?T5 for s € Ry . We have
(AN FL A )Lz > [ falgareres. (2.7)

3. LOCAL EXISTENCE FOR THE REGULARIZED SYSTEM AND ENERGY ESTIMATES

3.1. Local well-posedness and estimates for a Bona-Smith’s approxima-
tion. We fix € > 0 in (1.3). For u > 0 we consider the Bona-Smith’s type regular-
ization problem associated to (1.3)

Ct - /Lgtzz + Uy + (U‘C)I + €g,\(§) = 07
Up — Uggt + Co + ULy = 0, (3.1)
(€, u)(0) = (Co,u0)-
Setting V' = ((,u), (3.1) can be rewritten as
d

where
(V) = (1 = 0 ™ [~ = () = er () (1= 92)7 [0 — un])

Since H*(R) is an algebra for s > 1/2 and A < 2, it is straightforward to check that
Q,, is alocally Lipschitz mapping from (H**!(R))? into itself for s > 1/2. Therefore
by the Cauchy-Lipschitz theorem for ODE in Banach spaces we infer that (4.14)
is locally well-posed in (H*T1(R))2, i.e. for any ((o,uo) € (H*T1(R))? there exists
Ts = Ts(|Co|gs+1 + |uo|gs+1) and a unique solution (¢,u) € C*([0,Ts]; (H5T1)?).
Moreover, for any R > 0, the mapping that to ({p, uo) associates (¢, u) is continuous
from (B(0, R)g=+1)% C (H*T1)2 into C([0, Ts(R)]; (HT1)?).

We start by stating some energy estimate fundamental to prove our result. For
5>0and p > 0 we define E5 : (H*"'(R))> = R by

B (Cu) = [ClE + plCalre + [ulfgn (3.3)

In the sequel we denotes by (dn)nyeoz any sequence of positive real numbers such

that
> s <1.
JEZ
3.1.1. H*® estimate. Applying the operator Py to the equations in (3.1), multiply-
ing respectively by (N)2*Pyx( and (N)?*Pyu the first and the second equation,
integrating with respect to x and adding the resulting equations, we get
N2 d ,
W8 (P, ) + (V) (r [P, Pa)i
= —(N)**(Pn(Cu)s, PnC) 2 — 2(N)** (Pn (uuy), Pyu) pe.
(3.4)

We note that Proposition 2.3 yields
(N)**(galPn ¢l PrC)re = | PrGalfpnsas 2 0.
Integrating by parts and using (2.2) and (2.5) we get
(N)2|(Py (uuz), Pyu) 2| = (N)**|(Pr (Pen + Pon)uua), Pyu) |

1
*§(P<<N’U,1PN’U,, PNU)L2+

([Pn, Penulug, Pnu)r2 + (Pn (P> yuug), Pyu)

= (V)2

< <N>28|UI|LOO|PNU|%2 + ONN®|Pnu|pz|ug| Lo |ulgs -

~
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In the same way, integrating by parts and using (2.2) and (2.5) we obtain
1
(N)®[(Pn (uC), PnQ) 2| = (N)* —5(PanuzPNG, PN Q)2 + ([PN, PantlCa, P ()12

+ (PN (P>nu ), PNC) L2
S AN [ug Lo | Pn ¢z + (N)*6N(C] noo |ul gros1 [ PaC| 2 -
While (2.4) leads to
(N)2[(Pn (usC), PnC) 2| S (N)*On|uaC]me | P L2
< (N (Sl Claos + el e [l ) | PvCls

Plugging the three last inequalities in (3.4), integrating on ]0,7[ and applying
Holder inequality in time one gets

|PNClEe e + WIPNCI R e + [Pyuliee o + €l PNCI72 rosnsa S (N)* B (P Go, Pruo)
+ Y265 (Juel g, + 1Close ) (ul g e + [ClLge e )(IPNClp2 e + | Pl 2 press)
Summing in N > 0 and applying Cauchy-Schwarz inequality in N on the last term
to the above right-hand side member we eventually get
€T g0 pre H1IC1 Lo proen + ulTge roen + €lCI72 grasnsas S E;(Co, o)
+ T2 (|ual g, + IClog, ) (Jul g movr + [l ) (1] g me + lul oz mess)
N EZ(COJLO, ) + T(|U1|L%‘; + |C|L§°9I)(|U|%;°Hs+1 =+ |C|2L39Hs) (3.5)
According to classical Sobolev inequalities, denoting by 77° the maximal time of

existence in (H*T1(R))?, The local well-posedness of (3.1) in (H*"1(R))? together
with (3.5) ensure that for any s > 1/2, T3° = Tt . On the other hand, (3.5)

with s = %—i— together with a classical continuity argument ensure that Tfﬁr >
2

~

[Eé+(§0,u0)]’1/2 and that for any s > 1/2,

sup - EL(Cu)(t) +elGll, iy < 2B (G, uo) (3.6)

te[O,T%+7M] F

with Ty, , = T3 (i ¥ (Co,u0)) ~ [AEZ T (Go, o))~/

3.1.2. H*~! estimate for the difference of two solutions. Let ((;,u;) be two solutions
to (3.1) with respectively p; and po, then setting n = ¢4 — (o and v = uy — ug it
holds
M — MNws + Ve + (uin)z +ega(n) = (0¢2)o + (111 — B2)C2taa (3.7)
v + Nz + ULV — Vgat = VU2,
Applying the operator Py to the equations in (4.1), multiplying respectively by
(N)26=D Py¢ and (N)2(~D Pyv the first and the second equation, integrating
with respect to x, adding the resulting equations and proceeding as above but with
(2.3) and (2.6) instead of (2.4) and (2.5) we get

d
(N)2=D—E (Pyn, Pyv) + 26<N>2(571)|PN771@1A/271

dt M S 5N<N>Sil|u1|H5+1

X (Inlgs—1 + [v]gs—1)(I1Pnnl 2 + [PyvlL2)
+ <N>28_2|PNU|L2|PN(vu21)|Lz

+ (V)22 Pyl (1P (062 )al 22 + 111 — g2l | P Gor|12)-
(3.8)
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Noticing that, since s > 1/2 it holds
(NY* 7PN (vG)el 2 S PN (vG)) e S OnlvCalms S Onlol |Gl
and that (2.3) leads to
(NY* Y Py (vugg)| 12 < O |vuse|me—1 < ON|0| et |ua| ot
Therefore integrating (3.8) on |0, T[, we eventually get
|PN77|2L§9H5*1 [ PN g+ | PNO[L o gy + €|PNC|%2TH3+A/272
S AN)* LB (Pro(0), Pyn(0)) + iy — p2l?|G2e 72 pres
+TY20N (14 |ur| pge provr + [ual oo mosr + [Colngemre)
X ([vlegeme + nlpge a1 ) (1PNl 2. -1 + [Pyvulpz prs)
Summing in N > 0 and applying Cauchy-Schwarz inequality in N on the last term
to the above right-hand side member we obtain
|77|%7°?H5*1 +N|77|%§9H8 + |U|%%°Hs + 6|n|%%HS+A/2*2
S By (0(0),7(0)) + T — N2|2|C2t|%§9H5+1

+ T(1 + |ur|pse s+t + |ug|pee s + |C2|L%°H5)(|U|%;CHS + |77|%§9HS*1)
(3.9)

3.2. Local well-posedness of (1.3) uniformly in € € [0,1] and A €]0,2]. We
will prove the local well-posedness of the regularized problem (1.3) using a standard
compactness method.

Proposition 3.1 (Uniform in € and A LWP). Let s > 1/2 and (o, uo) € H*(R) x
H*TY(R), then there exists Ty = To(Col, 1+ + luol, 3+) such that for any e > 0
and \ €]0,2] there exists a solution (C*,u¢?) of the Cauchy problem (1.3) in
C([0,To); H*(R) x H*TY). This is the unique solution to the IVP (1.3) that belongs
to L>(]0, To[; H*(R) x H*T1).

Moreover,

sup (¢, ue’/\)|L§?0HS><HS+1 S 1(Co, wo) | i x o1
€,

and for any o > 0, the solution map Scx : (Co,uo) — (¢, us?) is continuous
from B(0, @) gsx o1 into C([0,T(a)]; H*(R) x HTYHR)) uniformly in € and \.

Finally, let T* be the mazimal time of evistence in H*(R) x H*tY(R) of the
solution (C*,us*) emanating from ((o,uo) € H*(R) x H*TL(R). Then for any
0<T' <T* it holds

(€L b1 + [ulfoc povn S exp(C T (Jual s + €]z ) EG (o, uo) (3.10)
for some universal constant C' > 0.

Proof. e Unconditional uniqueness. Let ((;,u;), i = 1,2 be two solution of the IVP
(1.3) that belong to L>°(]0, T'[; H*(R) x H**!) for some T > 0. Setting = (1 — (o
and v = u; — ug, exactly the same calculations as in 3.14 on the difference of two
solutions to (3.1) but with p; = p2 = 0 (note that all the calculus are justified since
for any N, Pyu; and Py(; belong to C1([0,T]; H*®)) lead for 0 < T” < T to

|U|QL3?,HS+|77|%;3HS*1 < Ey7H(v(0),7(0))
+ T (1 Jun| g press + [ualpge press + Gl ) (0720 e + [0l Z g o)
(3.11)

that proves the uniqueness in this class by taking

0<T < (1 + |u1|L70§H5+1 + |u2|L%oHs+1 + |<2|L’10_9Hs)_1
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and repeating the argument a finite number of times.

e Existence. Let (Co,up) € H*(R) x H*T}(R). We regularized the initial data by

setting (o, = 5,,¢ and ug,, = Spug where S), is the Fourier multiplier by X[=n,n]-

It is straightforward to check that for n > 1, (Co.n,uo0.n) € (H*(R))? with
[won|pre+r < nuglgs  and  [Con|gs+r < n"|Co|gs  for anyr >0. (3.12)

5, we thus obtain that for any s > 0 and any r > 0

Setting = p, =n"
B (Conswo,n) = [Gonligesr +1072100Co,m Fresr + |to,nl3esrin S n* B (o, uo)
In particular setting, for s > 1/2,

Ty ~ (14 [uo| o1 + [Colms) ™", (3.13)

we deduce from subsection 3.1, that we can construct a sequence (G, uUn)n>1 C
C([0, Ty, s (H*(R))?) such that for any n > 1, (G, un) satisfies (3.1) with p =
tn = n~°. Moreover, from (3.6) and (3.12) we infer that for s > 1/2 and 7 > 0

sSup EZ:T (Cnyun)(t) < 2EZ:T(CO,naUO,n)
tE[O,T%+]

<n?"E (o, uo) - (3.14)
On the other hand from the first equation in (3.1) we obtain that on [0,T

-

+]

1)

10¢Cnl s+ < (1 — Mna§)71 (un,z + (Unn)z + egA(Cn)) | s+
< |Un,9c + (unCn)z + €92 (Cn )| s+
5 |un|Hs+2(1 + |Cn|Loo) + |un|H5+1 |Cn7Z|Loo + |Cn|H5+1+>\
VU B, GV By G) S n°(1 4 Bi(uo, ) (3.15)
For ny > ng applying (3.9) with (G, ui) = (Gayy Un,), @ = 1,2, using (3.14)-(3.15)

and that |4 — L| < nl we thus obtain
1 2

5
n n. 2

_ 1
|<n1 - Cn2|2L39SHS*1+|un1 - un2|%§f;H5 /S E(S) 1((0,711 - CO,nQﬂUO,nl - uOmz) + F

2

(3.16)

that forces (((n,un))n>1 to be a Cauchy sequence in C([0,Ts]; H*~! x H*®). Since

according to (3.6), (G, un))n>1 is bounded in C([0, Ts]; H® x H¥*) with ((n)n>1

bounded in L2(]0, T,[; H*+2 1) it follows that there exists (¢, u) € L ([0, Ty]; H* x
Hst1) with ¢ € L2(]0, T, [; H¥T2 1) such that

Cnrttn)  —  (Gu) inC(0,Ty); H x H¥tY), Yo<s <s (3.17)

n—-+o0o

G — ¢ mIX0, T HTEY (3.18)

n—-+o0o

In particular, (¢, u) is a solution of the IVP (1.3).

e Continuity in the strong norm To prove the continuity of (¢,u) in H*® x H*T!
we use Bona-Smith arguments to check that the sequence ((¢,, un))n>1 is actually
a Cauchy sequence in C([0,Ts]; H® x H*T!). Let n1 > ny and set (1,v) = (y, —
Crgs Uny — Uny )y i = fn; = ”;5- By the definition of ({,,uy,) for any 0 <r < s

B 7 (n(0),0(0)) < n5* B (1(0),v(0)) (3.19)
Therefore, (3.16) together with (3.14) and (3.13) ensure that

1. 1 1 2
s+ 0l e S g Bo0(0),00) + o < (o)) - (320
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with y(n) — 0 as n — +o00. On the other hand, (3.14) ensures that for any r > 0,

sup BT (Co, (1), un, (1) S " EG (Go, o) - (3.21)
te0,Ty ]

Now observing that (n,v) satisfies (3.7) with ((;, u;) = (n,; s Un,;) and proceeding
as in (3.8) we eventually get

. d
N2 B, (PN, PN o) + 26 Punal e oon S T g (Inle + [o]ae)

X N‘S(|PN7’]|%2 + |PN’U|%2) + (SNNS|PNU|L2|Un2|Hs+1|U|Hs

o NPl (0125 G g1 + [0l 752G 11 + 15104 1)
(3.22)

But in view of (3.14) and (3.20)

1
ol mosa ol e S magatns) | = 0

and (3.15) yields

1 1 .
n—3|3tCn2|Lq°§Hs S n—2(1 + E (uo, o)) -

Integrating in time and summing in N, it thus follows that
|77|%;° He T oy |77|2L395Hs+1+|v|2L395H5+1 + 2€|771|%2T5H5+A/2*1
< B3 (1(0),0(0)) + Tu(n2)
+ To(1 + |uny [Lge mreer + [tny | Lge ot + |Cns L5 1)
X (|77|2L393Hs + |U|%§$;Hs+1) (3.23)
(¢,u) € C([0, Ts]; H® x H**1). Observe that

B (Comi = Comgs Uomy — Uoms)  — E§(Co = Congs U0 — Uo,n,)

ni——+oo
= ES((l - Snz)CO’ (1 - Snz)uo)a

and thus letting n; — +00 in (3.23) we get

sup E§(C = Gy u—un)(t) S EG((1 = Sn)Co, (1= Sn)uo) +75(n) ,  (3.24)

te[0,Ts]

with an implicit constant that is independent of € > 0 and A €]0, 2].
e Continuity of the flow-map. Let now ((¢§,uf))k>1 € H*(R) x H*T(R) be such
that (¢¥,uk) — (Co,uo) in H*(R) x H*t1(R). We want to prove that the emanating
solution (¢*,u*) to (1.3) tends to (¢, u) in C([0, Tp]; H® x H**1) uniformly in e and
A We set ¢, =S¢ and ufy ,, = Spuf and we call (¢}, uk) € C([0,Ts]; H® x H5t1)
the associated solution to (3.1) with u = pu,, = n=°. By the triangle inequality, for
k large enough, it holds

[u—u oo, are) < umtinl oo gom ey Flun =gl Leqo,r, o)+t = Lo o 1)
Using the estimate (3.24) on the solution to (3.1) we infer that
sup (ES(C — Gyt — up) (t) + B (CF — ¢k uk — uﬁ)(t))

te(0,T5]
S EG((1 = 8n)Gos (1 = Sn)uo)
+E§ (1= S0)65, (1= Sn)ug) +(n)  (3.25)
and thus

. k k —
nth;O ilelg(w — Un|Lg e + U — un|L§g;Hs) =0. (3.26)
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Therefore, it remains to prove that for any fixed n € N,

ko UZ|L§?SH5 =0 (327)

lim |u
k—+oo

For this we first notice that (3.9) with p1 = pg ensures that

Hun — ufz||%co(]07Ts[;Hs) < EZ;l(Coyn _ <§7n7uO1n — u&n)
< By (Go = ¢6uo — ug) - (3.28)

and that (3.21) leads for » > 0 to

Sup ]EZT(Cﬁ(tMZ(t)) S E (G u0,) S 17 (E5(Goyuo) +1) . (3.29)
tel0, Ty
2

Now, setting (1,v) = ((n — ¥, u, — uk), observing that (n,v) satisfies (3.7) with
(Cryu1) = (Cnytun), (Coyu) = (CF,uk) and py = pa = n=° and proceeding as in
(3.22) we get
s d
(N)** By, (Pn, Prv) + 26 Paitefggoinsas S [unl g (Inle + o))
< (N)*(|PynlZz + | Pyol72)
+ o (N)* (1Pl e o] e + |Pvnlefol e [GE L )
+5N<N>S|PN7]|L2|’U|HS <7]§|H5+1 . (330)
But (3.28)-(3.29) ensure that

}1/2.

Ciler S [(ES(COJLO) + 1) E;(¢o — €5 uo — ug)
Therefore integrating in time and summing in N > 0, it follows that
g me HO Lz prosn S E5(0(0),0(0)) + Ten® (B3 (o, o) + D EG™ (o — G o — ug)

+ To(L+ lunlnge mer + [l pge mosr + G Lge ) (Il ge e + [0lEo0 o)
(3.31)

|| s

which ensures that
|77|%%‘;H3 + |U|%§S;HS+1 < E5(n(0),v(0)) 4+ Tsn? (B (Cos uo) + 1) E5 ™ (Co — ¢F, uo — uf)

and proves (3.27). Note that this last estimate and (3.25) are uniform in € and
A. Combining (3.26) and (3.27), we thus obtain the continuity of the flow map in
C([0,Ts]; H® x H*T1) uniformly in € > 0 and A €]0,2]. Hence the IVP (1.3) is
locally well-posed with a minimal time of existence T that satisfies (3.13).

Let now (Co,up) € H® x H*™' and TF be the maximal time of existence in
H* x H"! of the emanating solution (¢, u). Then proceeding exactly as to obtain
(3.5) in the preceding subsection we get for any 0 < to < to + At <T' < T,

€17 s o to A mrey F [T g1, 10t arpme+1y S B2 (C(t0), ulto))
+ At(lugrz + 11z YICIT o o0+ At a7
+ |u|%°°(]to,tg+At[;HS+1)) (3.32)

Therefore, for At ~ (Jug|r + |C[r, )~1, it holds
€17 o o to ey T [T g1, 10t arpme+1y S B2 (C(to), ulto))

This proves (3.10) by dividing [0,7"] in small intervals of length At ~ (|um|qu§/ +
I¢lLes, )~
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Finally, (3.10) and Sobolev embeddings ensure that 77 = 77, and thus the

2
minimal time of existence in H* x H*t! is bounded from below by T% . that satisfies
(3.13) with s = 1+. This completes the proof of Proposition 3.1 with Ty = Ty,. O

3.3. Continuity of the flow-map with respect to the parameter €. It re-
mains to prove the continuity of the flow-map with respect to the parameter e
but this a direct consequence of the uniform in e LWP. Indeed, let A €]0,2] be
fixed and let (Co,uo) € H*(R) x H*T'(R). As in the preceding subsection, we
set (Co,ns uo,n) = (SnCo, Sntto) and we denote by (¢5, uy) € C([0, T ]; H*(R)) the
associated solution to (1.3). For e € R} we have

lee=ut =l . SNE = Gout —uillig
3t T3+
+H(§fz* 271‘;*“2)‘&? e
1
2
€ =G’ =)l e e (3.33)
2+

By the continuity of the flow-map uniformly in € € R, the first and the third
terms in the right-hand side can be made arbitrarily small by taking n large. To

estimate the second term, we set (n,v) = (& — —uY) and we observe that
(n,v) satisfies

e+ vz + (upn)e +ega(nn) = (0G2)x — ega(Cp)

U + 1+ UGV — Vgt = v0yuy,

Proceeding as in the obtention of (3.34) (in particular, making use of (3.14)), we
obtain for 0 < T < T%+,

1L e H0lEge gresn S B (1(0),0(0)) +€TH4AE5(C0,Uo)
+ 701+ 02) (14 By n(0),0(0) ) (0l e + o3 o) (3.34)
Noticing that 7(0) = v(0) = 0 and proceeding as above we then get
|77|%§9H3 + |U|2L39Hs+1 < exp {CT(l + 712)} eTn**E§(Co, uo)

Taking e sufficiently close to 0 according to n, we see that the second term in the
right-hand side of (3.33) can be made arbitrarily small. Therefore, the convergence
follows.

4. A PRIORI ESTIMATES AND GLOBAL EXISTENCE OF STRONG SOLUTIONS

In this section, we establish the global existence for any fixed € > 0 of (1.3). This
completes the proof of Theorem 1.1. To obtain the uniform estimates, we proceed
as in [11] by constructing a convex positive entropy for the associated hyperbolic
system

r = 07
{CtJr(Uthig) (@.1)

U + (C + T)Z = 0.
Let us we recall the notion of entropy for a hyperbolic system. Consider the system
Ut + f(u)m =0, (4-2)

where u = u(t,x) € R", f: R” — R™ a smooth function. We say that a pair of
functions 7,q : R™ — R is an entropy-entropy flux pair if all smooth solutions of
(4.2) satisfy the additional conservation law

n(uw)e +q(u)e =0, (4.3)
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which can also be written
Vnu: + Vqu, = 0.
On the other hand, multiplying (4.2) by V7, we obtain
Vnuy + ViV fu, = 0.
This ensures that the compatibility condition
vnVf = Vg, (4.4)

forces any smooth solutions of (4.2) to satisfy the additional conservation law (4.3).
We define

w=1+¢ ow)=whw, op(w)=c(1)+o'(1)(w—-1)=w-—1
and
oo(w) = o(w) —op(w) =whnw —w+ 1.
Note that o is a convex function on |0, 4+o00[ and enjoys the following property.

Lemma 4.1. Let s > 1/2 be fized. The functional

¢ / oo(1+ ()dx
R
is well-defined and continuous for the L°°(R) N L?(R) metric on the subset © of
H*(R) given by
©:={Ce H*(R),1+(>00onR}.
Moreover, there exists C' > 0 such that for all ( € O,

0§/00(1+C)dx§0/§2dz. (4.5)
R R

Proof. Let us fix ( € ©. We first notice that since s > 1/2, we have ¢ € C'(R) with
¢(z) — 0 as |z| = 400 and thus 1 + ¢ has got a minimum value ag €]0,1] on R.
Therefore, for ¢’ € O such that |¢ — {'|p~ < ap/2 it holds

14+ ¢ = min(1+¢) — ao/2 = ao/2 > 0. (4.6)

Now, clearly o(,(1+2) = In(1+z) and thus 0 < o(,(1+2) < z for z > 0. On the other
hand, by the mean-value theorem, for z € [ag/2 — 1,0] it holds | In(1 + 2)| < CY%|z|
Gathering these two estimates and using again the mean value theorem we thus
infer that

war+o—aa1+cns§;mxmucm<—c

that yields

\/Rao<1+<>—/Rao<1+<’>

Taking ¢’ = 0 we obtain that [, 0o(1+()dx is well-defined on © and the continuity
result follows as well from (4.7).

Finally, we notice that as og(1 + ) ~ zInx at +o00 and o¢(1 + x) ~ 22 near the
origin, there exists M > 1 and ¢, ¢} > 0 such that

< (e +IC)IC e - (47)
0

() 2? > o0(1 4+ 2) > Ma®  for —1<az<M
and ()12? >o0(1+2)>cMaene >z for x=>M. (4.8)

This clearly leads to (4.5). O
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We introduce the Orlicz class associated to the function oo (1 + -)

Ay = {§ measurable// oo(l+ ¢(x))de < +oo} ,
R

with the notation |(|a,, = / oo(1 4+ ((x)) dx.
R

Now, we shall establish a uniform crucial entropic estimate for our solution.

Proposition 4.1. Let ({p,uo) € H® x H*™L, for s > 1/2, and such that 1+ (o > 0.

Then, the solution (¢,u) € C([0,To); H*x H*TY) to (1.3), constructed in Proposition

3.1, satisfies 1+((t,x) > 0 a.e. on [0,Tp] xR with ¢ € L*>(]0,To[; Aw,) and it holds
—+oo

%|u(t)|%,1 +/_ oo+ C(t,a))de < %|u0|§11 +/_ oo(1 + Co(a))da, Vi € [0, Tp).
(4.9)

—+oo

Proof. We first assume that (¢o,up) € (H*®(R) N W21(R)) x H*(R). According
to Proposition 3.1, (1.3) has got a unique solution (¢,u) € C([0,Tp]; H™ x H™>)
emanating from ({p,up), where Ty only depends on |C0|H%+ + |u0|H%+. Then we

observe that for § = 0,1,2, A?C verifies the following integral representation on
[07 TO]
+oo
AC(t, ) = / ACo(2)K(t,x — 2)dz
B (4.10)

+ /Ot /_;OO AYD, (u(s, z) +((s, 2)u(s, z))KA(t —s,x — z))dzds,

where K (t,z) = ‘7-"_1(6_“|'|A)(x) is the kernel associated to gy that satisfies (see

[6]):

[ KAt )| prwy =1, and |0 Kt )iy = c1(te) /A, Ve € R (4.11)
and for (¢,x) €]0; +o0[xR
1 x c
Kk(tax) = mKA(l, m)’ |K)\(t,.’1;)| S tl/A(l +t,2/A|z|2)' (412)
In particular, we obtain that
¢ € L=(0, To[; W' (R)) - (4.13)

Now we make a change of unknown by setting w = 1 + ¢, the system (1.3)
becomes

we + (uw), = —ega(w),
{ u+ (w+u?/2), = Ugat, (4.14)

with initial data w(0,z) = wo(z) = 1 + {p(z) and u(0,2) = ug(x). The associated
hyperbolic system becomes

{ wt + (uw),
ur + (w+u?/2),

0,

0 (4.15)

As in (4.2), let f: R? — R? be defined by

flw,uw) = (wu,w + u?/2).
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Let n(-,-) and ¢(-,-) be a pair of functions satisfying the compatibility condition
(4.4). Then, setting V = (w,u)?, the solution of (4.14) satisfies
n(w,u) +q(w,u)e = Vn(V)Vi+Ve(V)V;
= Vi(Vi+(F(V)).)

T
= VU(V) (Gwmma Utmm)
= €enwga(w) + Nulaxt. (4.16)
Let n be the function of the form
n(w,u) = u®/2 + a(w),

for some function «. Thus, (4.16) becomes

n(w, w)e + q(w, u), o (w)ga(w) + Uiz (4.17)

o (w)ga(w) — (u2/2)¢ + (Wtgt) -

In order to get an a priori estimate on solutions to (4.14), we have to choose «
to be a convex function (see Lemma 4.2 below) and 7 to be a convex and positive
function. Since u +— u?/2 is convex and positive, it actually suffices to ask a to be
also convex and positive. At this stage, it is worth noticing that Proposition 6.1 in
the Appendix ensures that 14 ((¢) > m}én(l + (o) on R for any ¢ € [0,Tp]. We set

a(w) = o(w) = wlnw that is a convex function on |0, +oo[. It is straightforward to
check that with this a, 7 satisfies the compatibility condition (4.4) with the entropy
flux given by
q(w,u) = a(w)u +uw +u®/3 .

Thus we have found an entropy which is convex but not positive. To obtain a
positive convex entropy 7, it suffices to substract from « its linear part at 1 that
leads to

a(w)=o(w) —d(1)(w—-1)=whw+w—1=o0g(w) ,
so that the entropy function becomes

Alw,u) =u*/2 +whhw +w—1. (4.18)
Note that, in order for (4.4) to hold, the entropy flux function ¢ has to be modified
consequently and becomes
(j(wa ’U,) = q(wau) - q(la 0) - 01(1)[f(wa ’U,) - f(la 0)] ;

where we choose the constant so that ¢(1,0) = 0. Now, by omitting the tilde, the
new 7 and ¢ satisfy the equation (4.17) which will be the starting point of our
calculations. As in [11], we consider the space time square

R={(s,2) eR*/0<s<t,—N <z <N}, for N>0.

Then integrating equation (4.17) over R and using the divergence theorem, we get

N
/W (n(w, w)(t, ) = n(w, u)(0,2))dz + [3(g(w, u)(s, N) = q(w, u)(s, N))ds

N
= —e/ / dxds—[N(um/Q(t,x)—uz/Q(O’x))dx
+ fot(uumt(s, N) — uug(s, —N))ds.

Since for any fixed t € [0,Tp], ((t) € H>*(R) and w(t) =14 {(¢t) > 0 on R, we
deduce that there exists wWmin(t), Wmax(t) > 0 such that w(t) € [wmin(t), wmax(t)].
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Clearly the mapping o : w — wlnw+1—w belongs to C?([wmin (1), Wmax(t)]) with
00(1) = 0 and using a regular convex and positive extension of oy we can assume
that og is a C%(R) convex positive function that belongs to W*°°(R). Therefore
(4.13) ensures that oo(w(t)) € W(R) for any t € [0, Tp]. Letting N go to +oco in
the above equality, we can thus use the Lebesgue dominated convergence theorem
to get

/ - 0w, u)(t, x)da + / - %i(t, x)da

_mm _io B t (4.19)
:/m n(w,u)(O,x)+[m ?E(O,x)dxe/o /Raé(w)g,\(w)dzds.

We need the following Lemma to conclude.

Lemma 4.2. Let A €]0,2[,p € CZ(R") and a € C*(R) be a convex function. Then,
we have

ga(a(p)) < ' (p)galy)

For the proof of this lemma, see [7].
Now, let us treat the last term in (4.19). For each ¢ € [0, Ty] Lemma 4.2 yields

gr(oo(w(t))) < og(w(t))gx(w(t)) -
and (4.19) leads to

/ - n(w, w)(t, 2)dz + / o g(t, z)da

— 00 — 00

IS

. - t (4.20)
<[ awanoa)+ [ oz —e [ [ o(ootwls)des

Now since og(w(t)) € W21 for each t € [0, Tp], we get that gx(oo(w(t,-)) € L*(R).
Indeed, this result is direct for A = 2 and for 0 < A < 2 it suffices to notice that

|€|>\ 2 2,1
On(©) < 02f . Vf e WH(R),

Paga() = (- Pon ()« £ = 7 (g0

where ¢p is defined in (2.1) . It follows that
[Pyga(f)ler S min(NMflpn, NY72|07 f|p) VN >0,
and thus
lgx(F)ler S Z |Pngr(f)lr S Z N flo + Z NY2|02 flpr S| flwan
N>0 0<N<1 N>1

that proves the desired result. Finally, since

F(or(oo(w(t, ) (©0) = 0
this ensures that

Rg,\(ao(w(s,x))dx =0, Vtelo,To.

This proves (4.9) for (Co,u0) € (H®(R) N W3Y(R)) x H*(R). The result for
(Co,up) € (H*(R) x H*TL(R)) follows by using the continuity of the flow-map
together with Lemma 4.1. Note in particular that the continuity in C([0,T]; H*)
of the flow-map associated with ¢ and Proposition 6.1 (see the appendix) ensure
that 1+ ((t,z) > I;lé]g(l +¢o(z)) > 0 a.e. on [0,Ty] x R. O

Next, we state the global well-posedness result.
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Proposition 4.2. Let (¢,\) € R x]0,2] and let ({o,u0) € H*(R) x H*TH(R),
s> 1/2, such that 14y > 0 . Then the unique solution (¢, u) to (1.3) constructed in
Proposition 3.1 can be extended for all positive times and thus belongs to C(R4; H® X
H**Y). Moreover, for any T > 0 there exists a constants Cr s > 0 only depending
on |Colms and |ug|gs+1 such that

IClLoeqo, 70y + Ul Loe o, 7o +1) < O (4.21)

and the flow-map Se x : (Co,uo) — (¢4, us?) is continuous from H* x H**L into
C([0,T); H*(R) x H*TY(R)) uniformly in € and \.

Proof. According to (3.10) and the local well-posedness result, it suffices to proves
that for any T > 0 there exists ¢y > 0 only depending on T, |UO|H%+ and (|

such that if the solution (¢,u) to (1.3) belongs to C([0,T[; H® x H*™1) then

HET O

€l o qo,7[xR) + |Uz|Loo o, T[xR) < CT - (4.22)
We mainly follow the proof of Theorem 1.2 in [1]. Let N be a positive odd integer,
we start by deriving an estimate on sup,co 7 [C(t)|[rv. For this we multiply the
first of (1.3) by ¢V and integrate with respect to z, to get

N+1dt/CN+1+€/9A )CN:f/R(NuszJrl/CNH

To treat the term € [ gx(¢)¢”, we use the property of operator gy in Lemma 4.2 to
prove that it is non negative. Note that the convexe function taking here a(x) =
N Therefore integrating the above identity on (0,t), using that N + 1 is an
even integer, we get

t
N+1IC( ]LVJL_N+1|COZLVJL—/O/R§N@L N+1//§N+1 Up. (4.23)

Now, we make use of the fact that for any f € L?(R) it holds (1-92)"1f = Le=l'lx f
and 0%2(1-0%)"1f = —f+(1—02)~' f. Differentiating the second equation of (1.3)
with respect to x we thus obtain

Uy = (— %/e'ZCderu; i/ei‘;z‘lﬁ(z)dz
R R
= (+fit+fot+fs. (4.24)

We would like to estimate the L> and the L?-norms of the f;. The terms with u
in the above right-hand side can be easily estimate in the following way

11
ot o] <l G+ 7le7MIn0) < Juff
and
(ot ], <l + 1w u?le S uls S fulf

To estimate f; we will make use of (4.8). Denoting by A(t) the measurable set of
R defined by
At) ={zeR,/((t,2) = M},

Young’s convolution estimates lead to

e s (Cxa)

Lo

|e,|,| % Cpe < o=l % (Cxac) .

e pilCxac oo + e L [Oxal
2M + [¢A,,

IN N
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and
le7lTx¢ls < |€17‘.‘|L1|CXAU|L2 + |67|.||L2|<XA|L1 (4.25)
< awlllag, +ICla, S ICla, '
Integrating (4.24) on [0,t] we get
t
walt) = w0+ [ G(s)ds+F (4.26)
0

where, according to the above estimates and Proposition 4.1,
F@lze +1F@®l2 S ¢(1+ [uofhs + [Gola,, ), VE€ 07T

Making use of Holder’s inequality, this enables to bound the first term of the right-
hand side member to (4.23) in the following way :

’f//gN §)ua (s dsf’—//g‘ (uoe + F) — //CN/g dT
< (Ioalowes +1Flover) [ eentoras + [ [ as [ iclas

t
< (ol + 17 + 171 [ i ds w0 [ [ i as
0

t
S0 (1ol +Gl, ) (14 [ 1L () ds) (4.27)
0
where in the penultimate step we perform Holder’s inequalities in time.
Finally, since ¢ > —1 on [0, ¢], (4.26) leads to
Ug(t) > up e —t+ F .

Since N + 1 is even, this enables to control the last term of the right-hand side
member to (4.23) in the following way :

t
N+1 N+1
N+1/ / (t+ |wo,2| Lo + |F|L°°(]O,t[><]R))/O ¢

Gathering (4.23) and (4.27)-(4.28), we infer that y(t) = f(f Je 1¢(s)[N T 1ds satisfies
the following differential inequality on |0, T'[

IN

A

t
(14 (14 ol g, + 6ol ) [ IR (@29
0

(1) S 1l Fh + W+ D (1+ ol g, +1cola,, )T +7(0) . (4.29)

Making use of Sobolev inequalities and (4.5), Gronwall’s inequality ensures that
there exists C7 > 0 only depending on 7', [uo| 3, and [Go| 1, such that y(t) < Cr
on [0,T]. Then re-injecting this estimate in (4.29) we obtain
sup |§(t>|LN+1 < CT .
€[0T

Letting N — 400 this proves the estimate on the first term in (4.22). Finally, the
estimate on the second term in (4.22) follows directly from the first one together
with (4.26).

The continuity of the flot-map follow directly from Proposition 3.1. O

Finally we can state the following theorem as a consequence of the previous
results.
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Theorem 4.1. Let s > 1/2. For ({p,uo) € H* x H*! such that 1 + {y > 0,
the classical Boussinesq system (1.2) has a unique solution (¢,u) in C(RT, H® x
Hs™HNCYRT, H*~! x H?).

The flot-map S : ((o,u0) — (C,u) is continuous from H*x H*™* into C(R*; H*(R)x
HS+1(R)).

5. GLOBAL ENTROPY SOLUTIONS OF THE BOUSSINESQ SYSTEM

In this section, we study existence of weak solution for the Boussinesq system
(1.2) for initial condition (o, ug) € Ay x H'. To do so, we regularize the initial data
by a mollifiers sequence (p ), C D(R) by setting (o,n = pn * (o and ug.n = pn * Uo,
where p,,(-) = np(n-), p € D(R) such that

0<p<1, supp p C [0,1] and /pdm:l.
R

Note that (ug,), C H® and it is bounded in H' with |lug,|m < ||uol/z: and
up.n — up in H(R). For (o, we first notice that {y € A,, ensures that 1+ ¢y >0
a.e. on R. Since 1+ (o = pn * (1 + (o), it follows that 1 + (p,, > 0 on R.
Moreover, using (4.8) and proceeding exactly as (4.25) by replacing eIl by py, it is
straightforward to check that (o, € L? with |(pn|r2 < cn|C0|AU0 where ¢,, depends
on ||pn| 2. Similary, we can verify that ¢y, € H®, for s > 0.

Now, consider ((y,uy) the solution of (1.2) emanating from ({on,u0.n) given by
Proposition 4.2. we will prove that ({,,u,) has a subsequence which converges to
a weak solution of the Boussinesq system (1.2) with initial data ({p, ug). Note that
(Cn, up) satisfies the entropy estimate (4.9) which implies

Jun () + |

— 00

“+oo “+o0

oo(l+ ¢p)dx < ||u07n|\§{1 +/ oo(1 4 on)dx .

— 00

The H'-convergence of (uo,) towards ug ensures that the first term of the above
right-hand side converges to ||ugl|%,.. For the second term one has to work a little
more. We follow [11] and use the convexity of op and Jensen inequality to get that

oo(1 + Co,n) = 00 (/R(l + Go)pn (- — Z)dz) < /RUo(l + Co)pn(- — 2)dz .

Therefore, integrating on R, using Fubini and fR pn = 1, we obtain

+oo +oo
[ atr e [ o s

— 00 — 00

We thus are lead to the following uniform estimate on R :

Jun ()1 + |

— 00

“+oo —+o0

20(1+ Gul)ds < ol + [ onll 4 Go)de. (1)

— 00

In the sequel we will make a constant use of the following lemma that can be easily
deduced from (4.8) and (5.1).

Lemma 5.1. let x € LY(R) N L>°(R). Then

/R Ca(t,2)x(@)] dz < c, (5.2)

for all t, where c is independent of n.
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Proof. Let M be defined as in (4.8). Then by (5.1), we have
/ Gty ) [x(@)ldx = / Gt )| ()
R {z/=1<Cn(t,x)| <M}

+ |Cn(t, 2)x ()| d (5.3)
{/Ca(t,m)>M}

M/R|X(~T)|d$+|X|Loo/RUo(1+Cn(t,z))dz <e.

IN

O

Proposition 5.1. Consider the sequence (Cp,uy) constructed above for ((o,uo) €
Ayy x HY  (in particular 1+ (o > 0 a.e. on R). Then there erists a subsequence
(Copstema))y 0 (C,0) € L, (0, +00[xR) x (L(J0, +oof, H'(R)) 1 C(R* x R))
such that (Cn, )k converges weakly to ¢ in LY on every compact of 0, +oo[xR and
(tUn, )i converges weakly-+ in L>°(]0, +oo[, L>°(R)) and strongly, for any T >0 , in
C([0,T],C(R)) (and then in C([0,T),L? (R))) to u.

loc

Proof. First, applying the above lemma with x = 1_4 4] for A > 0 we obtain
that (¢, (t))n is bounded in L}, (R) uniformly in ¢ € Ry. In particular, (¢,), is
bounded in L} (R4 x R). According to Dunford-Pettis Theorem (see [5] Vol I
p.294), to prove that ((,), is weakly compact in L1(]0, T[x] — 1, A[), it suffices to
check that for any € > 0 there exists § > 0 such that for any bounded measurable

set B C]0,T[x] — 1, A with |B| < § it holds
sup/ [Cn|(t, x)de dt < €.
neNJB

But this follows directly from (4.8) and (5.1). Indeed, proceeding as in the proof of
the above lemma, we easily check that for any & > M and any B C]0,T[x]— 1, A],

/|Cn|(t,x)dxdt§/ Cndxdt—i—/ Cndx dt
B BN(—1<£,<k) BN(¢n>k)

T
< k|B|+ (O} 1nk:)*1/ / oo(1 + Cn)dz dt
o Jr

< k[B| + TGola,, (C3' nk) ™,

that clearly gives the desired result by taking k large enough.

Now, let us tackle the strong convergence of (uy,),. By (5.1), we have that (uy, )y
is bounded in L>°([0,T], H'(R)). Then, (uy), is bounded in L>(]0, +-oc[, L°(R)).
We deduce that it has a weakly-* convergent subsequence in L>(]0, +o00[, L°°(R)).
Now, we will prove that (dyuy,), is bounded in L*(]0, T'[, L?>(R)) and after we use
a theorem of Aubin-Simon to get the strong convergence. To do so, we recall that
by the equation it holds

Opun (t, z) = /Rk(:c —2)(Cn +u2/2)(t, 2)dz.

1
where k(z) = §sign(x)e_‘xl. Now by (5.1) and Young’s convolution estimates, we
have

k(x — 2)u? /2(t, 2)dz = |k xu2 /2|32 < clk|p1|ul|L2 < cte.

For the first integral on ¢,,, we will use, as in [1], the fact that [oo(14+(, )| < cte
given by (5.1) and the property of the mapping oo(1 + -) giving in (4.8). Again
denoting by A, (t) = {z € R/, (t,x) > M}, with M > 1 as in (4.8),we write

/Rk:(x — 2)Cn(t, 2)dz = /A k(x — 2)¢n(t, 2)dz + / k(x — 2)Cn(t, 2)dz = f1 + fa.

An

c
n
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By Young’s convolution estimates, (4.8) and (5.1), we get

L2 < (O} </A

1
Folt o <5 [ 160l 5 Gy

|fi(t, )2 < |klpalCnlag

1/2
%a+@mmmﬁ S 6ol

c
n

and
[fa(t, ) < [kl ]Cala, [ S IColaq, -

Then, we obtain

[Fa(t )|z < [Fal21fal 0 < ete.
Combining the above estimates, we deduce that ||0suy, | 2 is bounded uniformly in
n and .
Next, we prove that (uy,), has a strongly convergent subsequence in C([0,T]; C(R)),
i.e. in C([0,T); C(K)) for every compact K of R. For this end, set K,, = [—m,m],
by compact Sobolev injection and Aubin-Simon theorem see [12], we have that
ET . is compactly embedded in C([0,T], C(K,,)) where

EZ o ={ue L>(0,T[,H"(K)) such that dyu € L>(]0,T[, L*(K))}-

By the preceding calculations, we have proved that (uy), is bounded in E7 . We
deduce that it has a subsequence (u]! ) strongly convergent in C([0,T], C(K,,))
(also in C([0,T], L*(K,,))). By applying the diagonal extraction processus, we can
construct a subsequence (uy,)r which is strongly convergent in C([0,T], C(Ky)),
for every m > 1 and thus in C([0,7],C(K)) ( and then in C([0,T], L*(K))) for
every compact K of R. This completes the proof of the theorem. Now, the next
theorem gives a weak solution of the Boussinesq system.

Theorem 5.1. Let ((,,un) be as in Proposition 5.1. Then, the limit functions
(¢, u) obtained by Proposition 5.1 is a weak solution for the Boussinesq system with
initial data (o, ug).

Proof. Let ¢ € C2°(]0, 400[xR). Multiplying (1.3) by p and integrating, we obtain

—+o0 “+o0
/ / Cnprdxdt + / /(un + unCe)padxdt =0 (5.4)
0 R 0 R

and
+oo +oo —+oo

/ /ungotdxdt —|—/ /(ui/Q + ) padadt —/ /uegomtdxdt =0. (5.5)
0 R 0 R 0 R

By taking the limit when n tends to infinity, we have to prove that

+oo +oo
/ / Cprdzdt + / /(u + uQ)pgdrdt =0
0 R 0 R
and
+o00 +oo —+00
/ / wprdxdt + / /(u2/2 + Q) dadt — / / UPpprdrdt =0
0 R 0 R 0 R

Since ¢ is with compact support in ]0, +0o[xR and ((,), converges weakly in L},

to ( we obtain
+oo +oo
lim /Cntptdxdt:/ /C(ptdxdt.
n—+ Jg R 0 R
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And the strong convergence of u,, to u in C([0,T], L*(K)) implies that

+oo
lim / u)p drdt = 0.
n—-+o0o

Let S be the support of ¢ and suppose that S C]0, T[x]e, d[C]0, +00[xR. Then,
we write

/+°°/ (Crttr, — Cu)ppdxdt = /Cn U, gomdxdt—y/ (G — Q) ppdrdt

S

Since u,, = u in C([0,T]; C(K)), for every K compact of R and (), is bounded
in L}, we deduce that the first term in the above right-hand side member tends
to 0 as n — +o00. Noticing that the limit for second term follows directly from the
weak convergence of (), in L}, and the fact that up, € L>(S), we finally obtain

+oo +oo
/ /CcptdzdtJr/ /(quuC)gazdzdt:O,
0 R 0 R

which implies that ({, u) satisfies the first equation of (1.2) in the distribution sense.
For the second equation (5.5), the proof is direct using the weak convergence of ()
and the strong convergence of (uy,).

It is still to prove that the limit ({,u) satisfies the initial data ({p,uo). Recall
that (uy) converges to v in C([0,T],C(K)) (i.e. in C([0,T] x K))) for every com-
pact K of R and that ug,, converges to ug in H 1(IR). This enough to implies that
u(0,2) = up(x) for a.e. 2 € R. In fact we notice that

[1(u(t, ) = wo()loo,re < I(ult, ) = un(t, ))lloo, i

H[(un(t; ) = wo.n (oo, x + [[(w0,n () = 10 (:)))lloc, i

The above convergence results force the first and the third term of the above right-
hand side to converge towards 0 uniformly in ¢ € [0,7] whereas the continuity of
uy, force the second term to tends to 0 as ¢ N\, 0 for each fixed n € N, and thus
u(0,2) = up(x) for a.e. z € R.
Let us now prove that ¢ satisfies the initial condition. For ¢ € C°(R) and (t;)r €
[0,T] converging to 0, we have

'/ (b ) — Co(a))pdr| < ‘/ (b, 2) — Gt 7))ol
/R(Cn(tka) Co,n(®))pdx| + }/ Con(x) — Co(x))pda] .

For the first integral, we proceed as in [11], Claim 4.2 of Theorem 4.2]. So by
Dunford’s lemma and Lemma 5.1, for each ¢ there exists a subsequence ((!),, of
(Cn)n such that

(5.6)

lim (C(t,z) — ¢ (t, 7)) pdx = 0.

n—-+o0o R

Now applying the diagonalization process to ((%*)n k, we can extract a subsequence
(k) such that
lim [ (¢(tk, ) — Cx(tx, x))pdx = 0.
k—-+oo R
For the second integral, using the integral representation of (i, we get

/R(Ck(tk,x)—Co,k(t,x))go(x)dx = //k uk(s, ) + urCe(s, x)), p(z)dsdx

/tk/ ((ur(s, ) + urCr(s, ) pz (v)drds. o
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By Lemma 5.1 it holds
tr
/ /((uk(s,z) + upCr(s, z)) pu (z)dxds
o Jr b
. " , © dr < )
<lurdem [ [ ool + louts.)enle) d < et

where ¢; is independent of k. So for the subsequence (i, we obtain that

S Cltk.

/R (ot ©) — Co(@))pde

1
loc

The last integral in (5.6) goes to 0 since ¢y € L;,,. and thus (o x)r converges to o

in Lj .. Then, by using the subsequence (()y in (5.6), we deduce that
| [ (¢(tk,2) = Gola)ods] =0,
k<r+oo R

6. Appendix

6.1. Proof of Proposition 2.1. Let N > 0. We follow [8]. By Plancherel and
the mean-value theorem,

(Px. Pen flg:) @)| = | (Px. Pen 1Py gs) (@)
= | [ F oml = )P ) Prgs )
- [ Pan @7 o)l = ) Pran) dy
= | [ (Pen ) = Pen SN E )N @ = 9) g dy

< ||P<<fo|\L;°Alefyllfil(w)(N(x*y))llpzvgz(y)ldy

Therefore, since N| - ||F, () (N-)| = |F; (") (N-)| we deduce from Young’s con-
volution and Bernstein inequalities that

[Py, Penflg:) 12 S N7 IPen folloz1Pgallie S |1 Pacv folliz | Prgllza -

This completes the proof of estimation (2.2). Let us prove estimation (2.5). Using
Bernstein inequality and the characterization of the Sobolev space, we have

NS|PN(P2Nf 9x)|L2 NS5N|PZNf 9ulr2
N*6N|P> N flr2lgsl e

SNN*(Cpsn | Prfl72) %192 | =
ONN® (g 0K 2| f137:) %]l
SNN N[ flae (s 07)/? (92| o
On|flme|galLee-

AVANR VAN VAR VAN AN

Now it remains to prove

NP|PNn(Pon f g2)|e2 S ONIf e+ |g]nes.

To do, we write Py (P>n f gz) = 0: PN (P>n f g) — PN (P> fz 9). The second term
can be treated as above to obtain

N*|PN(P>p fo )l S On|flmsrilglre.
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For the first term, we have

N*|0.PN(P>nfg)lee S N°N|Pn(P>nfg)le
< N°NON|P>yfglre
< NN (s [Pef172) Y2 gl
< NS+15N(Zk>N 51%K72(S+1) |f|§15+1 )1/2|9|L°°
< Ns+16NN_(S+1)|f|H5“(ZkzN 6]%)1/2|9|L°°

< Onlflaerlgle

Finally to prove estimate (2.6), we first notice that it follows directly from (2.5) for
s> 3/2 since H*~1(R) < L*°(R). For s < 3/2, we start by noticing that

Pn(Psnf gs) = Pn(PunPsngs) + Pu( Y PxfPig.) -
KZN
The contribution of the first term of the above right-hand side is easily estimated
by
N* 7PN (Pun fPsnga)lre S NP floee N2 72|l e
S NIPon flrelglpe—
S ONIflaesrlgle—

since s > 1/2. On the other hand, the contribution of the second term can be
estimated by

NS*I‘PN( Z Px fPxgs) Lo S NS*lNl/Q‘PN( Z Pk Pk gs)
KZN K>N
SNTYEN T KT Pk e K278 | Preglprea
K>N
<N g lgl Y K
K>N

S NYEZ | fliosa gl

Lt

that is suitable since s > 1/2.

6.2. Proof of Proposition 2.3.

Proof.

(Oa[ASF1A%F) = [galAsfIAsFde B
= [IEP2A+ IR FfdE = [ 121+ €2)° fufu dE
A ST 7
> f(l + 52)2 1(1 + §2> fofzd€ = |fac 3'_1571#»)\/2'
]

Proposition 6.1. Let (, € H® and ¢ € L*>(]0,T[, H°xW?21(R)) satisfying the
first equation of (1.3). If 14+ (o > 0 on R then for all t € [0,T], 1 + ((t,z) >
mRén(l + (o) on R.
Proof. Let o €]0,1[. We set v = 1+ ( —myg,q, where 0 < mg,o = Hﬁn(l +)Na <

«a < 1. v satisfies the equation

v+ (vu)y + ega(v) + mo qty =0 (6.1)
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Let v~ = min(0, ). Note that since for all ¢t € [0,T], ((t,z) — 0 as |z| — +o0 and
¢ € C(]0,T];R), there exists M > 0 such that v~ =0 on [0,7] x (R \ [-M, M]).
This ensures that v~ € C([0,7]; L?). Multiplying by v~ and integrating over R,
we get

1d

1
oy (v™)dx + 5/(u_)Quzdx+e/g,\(u)u_dac+mo/umu_dx =0. (6.2)

We have to prove that [ gx(v)v~dz > 0. For this aim, set n(z) = min(0,z)?/2 and
let ns = 1 * s where (¢s)s is a mollifiers sequence. It is easy to see that ns is a
convex function of class C*°(R) and that

/memz/mwwm=m,ww%wm

6—0

using the dominated convergence theorem. Let us check that ns(v) € W2(R).
Note that we can write

ns(v) = Bs(¢)

where S5(¢) = (n* ¢)(1 + ¢ —moq) and B5s € W2, For § sufficiently small, it
is easy to verify that £5(0) = 0. Since £ € H>*(R), £ is bounded on R, and since
Bs € W2°°(I) for any interval I C R, we deduce that ns(v) € W21, Now using
Lemma 4.2 we have

[ ox0msds = [ grnstyie
Since ns(v) € W21 we get that gx(ns(v)) € L'(R) and since

Forms(v))) (0) = 0
this ensures that

/g,\(ng(y))dz =0.
R

Finally, we obtain

1d 1
% (v™)dx + 5/(u_)2uzdx+mo7a/umu_dx = —e/g,\(u)u_dac

— —clim m@%@ﬂéfﬁﬁ/mW@tho
—

6—0
Thus, we get
d 9 _ _ _
= | W) de S T efuelpee + 17 [refuslre S (07 e fulsta

By Gronwall Lemma, we have
/(V_)2dx < C|u§|LzefJ lelsradt, (6.3)

As vy =0, we deduce that ¥ > 0 and then 1+ ¢ > m]Rin(l + (o) A a. Since it holds
for any « €0, 1], it ensures that 1+ ¢ > m]Rjn(l +C)N1= m]Rjn(l + Co)-
O

Notice that , as signaled page 15, by using the continuity of the flow map associ-
ated with ¢ , Proposition 6.1 still valid for s > %, Co € H® and ¢ € L>(]0,T[, H®).
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